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ASYMPTOTIC EXPANSIONS FOR THE DISTRIBUTIONS OF
STOPPED RANDOM WALKS AND FIRST PASSAGE TIMES!

By TZE LEUNG LAI AND JULIA QIZHI WANG

Stanford University

Let S, =X +--- +Xp,n > 1, be a d-dimensional random walk and let
T, = inf{n > ng: ng(Sn/n) > a}, where n, = o(a). Let 0 = g(EX1),0, =
8(Sn/n)and Aq = Taé'z',, — a. Edgeworth-type expansions are developed for
P{T, = n, y1 < Aq < y3} and for the distribution functions of 7, and of
VTa(h(@r,) — h(6)), where h is a real-valued function such that A'(9) #0.

1. Introduction. Let X, X7, X5, ... beii.d. d-dimensional random vectors
such that
(1.1) lim sup |Eexp(i(t,X))| <1 and E|X|* < .
Il — oo
Letp=EXand S, =X;+---+X,. Let g R? — R be a smooth function such
that g(u) > 0. First passage times of the form

(1.2) T, =inf{n > no: ng(Sa/n) > a},

in which n, = o(a) is nonrandom (representing a required minimal sample size),
play an important role in sequential statistical methodology. Motivated by these
applications, Woodroofe and Keener (1987) developed the following asymptotic
expansion of the distribution function of T}, in the case d = 1 = n, and under the
assumption that g is twice continuously differentiable in some neighborhood of
pwith g'(x) > 0. Let v = Var(X), o = g'(u)v'/2 and 6 = g(u). For positive integers
n such that n = a/6 + O(v/a), letting ¢, , = (@ — 6n)/(c+/n), they showed that

(L3)  P{Ta<n}=1-2(na)+n 2Qtn,a)f(tn,a) +o(n "7,

where ® and ¢ denote the standard normal distribution and density func-
tions and
g'(uwz?  E(X — p)? 9

50t e (17%)

0
(1.4) Q@) = 0! / P{M < x}dx — @1(2),

Q1) = —

M= nllzlf; 2; {g'(w(X; - u)+g(y)}.
J=
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Assuming furthermore that P{T, < a/20} = o(a~1/2), they also obtained the
following asymptotic expansion for the distribution function of the normalized
sum Z, = (nv)" V%S, —np)atn = T,:

(1.5) P{Zy, <2} = 8(2) + N5 7/ *q(a,2)¢(2) + 0(a™/?),
where
v(a,z) = mf{x > a/20: xg(p+2zv2%~1/2) > a},
N, = [v(a,2)] ([] being the greatest integer function),
ba,z = Y(@,2) — Ng,z,
q(a,z) = 071{66,,, +g"(uwz?/2} — Q)

—O'_IZ/ P{M > x}dx.
r=1 (

r— 64,200

(1.6)

For d = 1, the special case g(x) = x in (1.2) gives the first time that the
random walk S, crosses the level a, whereas the special case g(x) = x2/2 in
(1.2) gives the-first time that S, crosses the square-root boundary (2an)'/2.
Takahashi (1987) analyzed the latter case directly for normally distributed X,
without reexpressing the square-root boundary crossing time of S, as a first
passage time (1.2) of %n(S,, /n)?, and was able to improve (1.5) to a higher-order
asymptotic expansion, with o(a~!) remainder, when 6, , = 0. He also gave some
numerical results in this case showing that the higher-order approximation is
more accurate than the Woodroofe—Keener approximation (1.5), and that both
these approximations are substantial improvements over the simple normal
approximation ®(z) to the left-hand side of (1.5). However, his arguments are
applicable only under the very restrictive assumption of Gaussian X and linear
or quadratic g. Without this assumption, we shall develop a new approach to
show that (1.3) and (1.5) can indeed be refined to higher-order expansions with
o(a~1) remainders and also generalize the results to the case of d-dimensional
X ;. These higher-order expansions for the general d-dimensional case are stated
and discussed in Section 2, and their proofs are given in Section 4. Section 3
gives some preliminary lemmas that are related to nonlinear renewal theory,
fluctuation theory of random walks and multivariate Edgeworth expansions.

2. Asymptotic expansions of the distributions of T, and % 0g(Sr, /T,).
In this section we shall consider the general d-dimensional case. Define

(2.1) p=EX, V=Cov(X), 0=g(p), On = 8(Sn/n).
The function g: R? — R will be assumed to be such that
(2.2) g(w) >0, Vg(u)#0 and g € CXU)
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(i.e., g is four times continuously differentiable in U) for some neighborhood
U of p. Denote the partial derivatives of g evaluated at u by g; = 8g/0x;| 1=,
gii = 0%g/0 x?|,-,, and, in general, g;,...,; = 9g/ox; - - 0% |x=,, and de-
note the components of X and x by XV and 4, j = 1,...,d. Let v;,...,; =
E{II}_ (X% — i)},

1/2 :
0=< Z gigjvij) = [|[Vewv*2], ap = Z 8ijvij/2,

1<i,j<d 1<i,j<d

ar= Y. Zi8igwVin+3 > 8i88kmVikVim,
1<i,j,k<d 1<i,j,k,m<d

az= Y gignvig+ Do (8i8kmVinjk + 8 BkmVikVin/2),
1<i,j,k<d 1<i,jk,m<d

as= Y £i88r8i i — 3vijvm)

1<i, )k, 1<d

(2.3) +12 )" giEggmVilim
1<i, jkl,m<d

-y {3gi 8r (VijVR1/2 + Vipvy) + 68 3g1Y; jvkl}
1<i ik i<d

><< > gmgrvmr)

1<m,r<d

>

1<i, j kyl,m,r<d
2
X { (%gi 8kl + §gijkgl)gmgrv(i, ik, d,m,r) — 68; jgklgmgrvimvjrvkl}a

where v, j k.1, m,r) = VijUkiVUmr + VigVjiUp, + - - is a sum of 15 terms. The as-
sumption (1.1) implies that V is nonsingular and, therefore, o > 0 if (2.2) also
holds. Define

Q1(2) = —07tag + (603)_1a2(1 - 2%),

2
az+ o oy +4ojo
3 212— 4 41 2(23—32)
20 240

(2.9 Q@2(2) = —

o2
- 72(9;6 (2° — 102% + 152).

In the case d = 1 and g'(u) > 0, Q;(2) agrees with that in (1.4), in which ¢ =
&'(u)y/v. Moreover, it follows from Theorem 2 of Bhattacharya and Ghosh (1978)
that

2.5) P{n'/%6, - 6)/0 <z} = ®(2) + n"2Q,(2)p(2) + n'Q2(2)¢(2) + 0(nY).
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The polynomials @; and @5 also play an important role in the asymptotic ex-
pansion of the distribution of T, given below in Theorem 1, which is a general-
ization and refinement of (1.3). Another important ingredient in the expansion
is the random walk S}eY) defined by

k
(2.6) Y= (X, -, Vaw)+6, SP=>"Y,
i=1

which is used to approximate T, g(St,/To) — (To — k)8(ST,—1/(Ts — k). In the
case d = 1, this reduces to the random walk whose minimum is the quantity M
in the Woodroofe—Keener expansion. Our higher-order expansion also involves

277 M= 11>1f; SY,  r(w=inf{n>18Y <u} (infP=oc0).

Furthermore, it involves besides S the following “second-order” random walk
approximation. Let G = (g;j)1<i, j<d be the Hessian matrix and let 7y, ...,74_1
be independent standard normal random variables that are independent of
X1, Xs, . ... Let A be an orthogonal d x d matrix whose first row is ¢ ~1Vg(u)V1/2
and let AT denote its transpose. For @ > 0 and z € R define

Yi(a,z) = Yi + (e/a) 1/2<(X'; - N)le/zATa (z’ My .- 777d—1)>,

@8) : _
Si(a,2) =) Yia,2), Mi2)= jnf Si(a,z).

i=1

In the case d = 1, Yi(a,z) = Y; + 2(w8/a)'/2(X; — p)g"(u)sgn g'(1), where v =
Var(X). Note that Y;(a,z) = Y;if G = 0. In fact, Y;(a,2) arises from a second-
order Taylor expansion of g(x + u) — g(x) and from an Edgeworth expansion
of a certain nonlinear transformation of S, /n that yields the normal random
variables 71,...,74_1 from the last d — 1 coordinates of this nonlinear trans-
formation (from R? into R?), the first coordinate of which involves g, as will
be shown in Section 4 (see, in particular, the proof of Lemma 7). Under condi-
tions (1.1) and (2.2), it will be shown in Lemma 4 of Section 3 that the quantities
mg, m; and ) associated with (2.7) in our asymptotic expansion are finite, where

0
mj=/ uJP{M<u}du (j=0, 1),
(2.9) o
rm [ B 0} <oy

With ¢ and @;(2), Q2(z) defined by (2.3) and (2.4) and M, (z) defined by (2.8), let

\ o
= _ -1
@10 P 1,a(2) = —Q1@) + o /_ ooP{Ma(z) <u}du,
pZ(z) = _QZ(Z) + O'_Imo{Qi(z) _‘le(z)} + 0.—2()\ _ ml)z.
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The functions p;,, and ps are central to the following asymptotic expansion
for T,.

THEOREM 1. Under the assumptions (1.1) on X and (2.2) on g, suppose that
the n, appearing in the definition (1.2) of T, satisfies

(2.11) lim a !n, =0, liminfa=3n, > 0.

a — oo a — o0

Thenasa (€ R) — coand n(e Z =set of integers) — oo such thatn = a /0 + 0(\/a),
P{Ta < n} =1- Q(tn,a) + n_l/zpl,a(tn,a)¢(tn,a)
+n_lp2(tn,a)¢(tn,a) + O(n_l),

where t, o = (@ —nd)/(o/n).

(2.12)

Let Ay = T, g(S1,/T,) — a denote the overshoot over the boundary at the
stopping time (1.2). Lalley (1984) has shown that for n = a/6 + O(y/a),

y
(2.13) P{T =n,Aq <y} ~ o242, ) / P(M>uldu asa— oo,

0
for every y > 0. A refinement of this result in the form of a higher-order
asymptotic expansion is given by Theorem 2. When d = 1, a similar result
under stronger assumptions has been established by Keener (1987), who used

different methods and considered instead of (1.2) stopping times of the form
Tq =inf{n: S, > af(n/a)}.

THEOREM 2. With the same notation and assumptions as in Theorem 1, let

A@) = E(Yy — Ol g5 ) — / E{SY),_, —br.(u—y)}

X I{.,-_(u_y)<°o}P(Y € dy).

(2.14)

Then as a (¢ R) — oo and n(€ Z) — oco'such that n = a/6 + O(\/a),

P{T,=n,y1 <A <y}=M sz{M(t )>u}du
a y Y1 = La )2 0_\/’—1- » a\ln,a/) Z
Y2
(215) + M / { [Qll(tn,a) - tn,an(tn,a) - 'lftn,ajl
on 1 g

x P(M > u) + t'?T’aA(u)} du+o(n7?),

uniformly in y3 >y > 0.

We next provide a higher-order refinement of (1.5) and generalize it from the
case d = 1 tod > 1. First note that the normalized sum Z, = (nv)~Y%(S, — nu)
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in (1.5) can be expressed in terms of the basic entity 6, = g(S, /n)in the stopping
time (1.2) via
(2.16) Zn = (n/0) " (hBr) — h(O) i |n~1S, — | <,

where £ > 0 is sufficiently small such that g is strictly increasing on I = [§ —
€,0 +¢] and h(x) = g~ 1(x) for x € I, recalling that g’() is assumed to be positive
by Woodroofe and Keener (1987). More generally, we shall consider 2: R — R
such that £ is four times continuously differentiable in some neighborhood of

and #'(8) 0. Let
2.17) Zn = 12 (h@n) - b)) /5 = n*/2{F(S,/n) - &)} /5,

where g = hog and & = (£, 2%, 82,0:;)/% = o|h'(9)|. Define &y, &, &s. s

as in (2.3), but with g;, g;;, g replacing g;, g;;, 8ij» and define Q1(2), Q2(2) as
in (2.4), but with & replacing o and &; replacing ;. Here g; ,...,; denotes a
partial derivative of g evaluated at p, as before. By Theorem 2 of Bhattacharya
and Ghosh (1978),

(2.18)  P{Z, <z} = ®(2) + n"12Q1(2)$(2) + n"1Qa(2)¢(2) + 0o(n"Y).

We shall give an asymptotic expansion of the distribution of Zr, and compare it
with (2.18). To begin with, note that 4 is strictly monotone in [#—¢, §+¢] for some
€ > 0 because A/(6)#0. Let ¢ be a monotone function such that ¥(u) = h~1(u)
for u € [0 — ¢,0 + €]. Define

(2.19) 1(a,2) = inf{u > ng: uzp(h(0)+z6u‘1/2) > a}, Na,. = [(a,2)].
Let (Sa,z = ’Y(a,z) —Na,z,

lo(@,z) =01 Z /oo P{M,(2) > u}du,
j=1"(

J= 60,200 +N; 2 %20 /2)

1 [® ,
(2.20) li(a,2) = - Z/o { (Ql(z) —2Q4(2) — %)

j=1 (j_‘sa,z)

% P(M > u) + ;A(u)} du,

where Q1(z) and Q2(z) are defined in (2.4) and A(z) is defined in (2.14). Let
pla,z) = 0= 1{06, , + " (h6))5222/2},

(2.21) q1(@,2) = —p14(2) — ly(a,2) + pla, 2),
gs(a,z) = —po(2) — l1(a,2)

s 0o
+a_lzZ {p(a,2) — 0_101'} / P{M >u}du
(2,22) j=1 0(j — 6a,2)

+a 1" (h(6))5°2%/6 — 2p*(a,2)/2
+ {07 'zmo — 2Q1(2) + Q1(2)} pla, 2),
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where p1,,(2) and ps(z) are given in (2.10). The functions ¢; and g, and the
nonrandom approximation N, . in (2.19) to the stopping time T, are central to
the following asymptotic expansion of the distribution of Z7, .

THEOREM 3. With the same notation and assumptions as in Theorem 1, in
the case h'(8) > 0, we have uniformly in z belonging to compact subsets of R,

(2.23) P{Zr, <z} = ®() + N5 *q1(a,2)(z) + N Lqa(a,2)¢(z) + 0 (a)

as a — oo. In the case h'(8) < 0, replacing h by —h, the asymptotic expansion
(2.23) still holds for P{—Zr, < z}.

It is interesting to compare (2.23) with the Edgeworth expansion (2.18) for
the normalized statistic Z, based on a nonrandom number n of sample obser-
vations. The polynomials @1(z) and @5(z) depend on the moments of X and the
partial derivatives of g = g o k, and (2.18) is an asymptotic expansion in pow-
ers of n~'/2, Because the random variable Zr, in (2.23) involves not only the
sequence of normalized statistics {Z,}, but also the first passage time T, for
the sequence {ng(S,/n)}, the asymptotic expansion (2.23) resolves this com-
plexity by using the nonrandom quantity N, , as a first approximation to T,
and is an asymptotic expansion in powers N, 2/ 2. The functions q1(a,z) and
qs(a,z) in (2.23) are analogous to the polynomials @1(z) and Q3(2) in (2.18), but
are considerably more complicated. Not only do they have to make Edgeworth-
type corrections in the normal approximations of Z,, and of ng(S, /n), but they
also have to account for the oscillations of T, around N, .. This leads to the
fluctuation-theoretic quantities mgy, m; and ) defined in (2.9) and /y(a,z) and
l1(a,z) defined in (2.20), associated with the random walks {S{’} and {S(a, 2)}
defined in (2.6) and (2.8). Because T, is integer-valued, approximating its dis-
tribution by a (continuous) normal distribution also entails certain adjustments
that lead to the sawtooth function &, ,. Except for these continuity adjust-
ments and fluctuation-theoretic quantities, the asymptotic expansion (2.23)
is markedly similar to the Edgeworth expansion (2.18) with n replaced by
Ng,..

For nonrandom sample sizes n, the Edgeworth expansion (2.18) has recently
been used to show that P{Zy < z} can be alternatively approximated by Efron’s
(1979) bootstrap method with an error O,(n~1). This plays an important role
in the theory of bootstrap confidence intervals for A(9) [cf. Hall (1988)]. The
bootstrap is a resampling method based on the empirical distribution F, =
n=1y?_, 6x,. Let X7,...,X}; be ii.d with common distribution F, and let S;, =
sr_ Xy and Z; = VR{E(S;/n) — E(fn)}/IVE@n)Va' |, where fn and V, are
the mean and covariance matrix of the empirical distribution F},. Under (1.1)
and (2.2), it has been shown that P{Z* < z|F,} also satisfies an Edgeworth
expansion of the form

(2.24) P{Z: <z|F,} = @) +n~Y?Qy ,(2)p(2) + Op (n 1),
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where sup, |Q1,,(z) — Q1(2)|¢(2) = Op(n~/2) [cf. Hall (1988)]. Combining (2.18)
with (2.24) yields P{Z, < z} = P{Z} < z|f‘n} + Op(n~1). Therefore, a second-
order approximation, with an O,(n~!) error term, to the probability P{Z, < z}
is provided by P{Z; < z|F,}, which can be evaluated to arbitrary accuracy
by using simulation, without assuming knowledge of 1, V and the third-order
moments v;j. )

In the sequential setting where the fixed sample size n is replaced by the
random sample size T}, it is straightforward to extend the bootstrap method
to provide an approximation to P{Zr, < z}. The quantity P{Z}; < z|F,} is
now replaced by P{Z*; < z |f‘Ta}, where X7,X5,... are iid. with common
distribution f‘Ta and T% = inf{n > n,: ng(S}/n) > a}. Making use of certain
properties of empirical characteristic functions, Lai (1994) has modified the
proof of Theorem 3 to develop an analogous Edgeworth-type expansion for
P{Z}. < z|Fr,}, which can be evaluated directly by simulation without as-
sumi;1g knowledge of the underlying distribution F of X. An important ap-
plication of the Edgeworth-type expansions of P{Zr, < z + a~'/2U} and of
P{Z%. < z +a~Y2U|Fr,}, with O(@™!) and O,(a~!) remainders, where U is
a bounded random variable with a continuous density function and indepen-
dent of {X},X3,...,X;,X5,...}, is the development of a theory of bootstrap
confidence intervals based on sequential samples, analogous to that for sam-
ples of fixes size [cf. Lai (1994)]. In this connection, note that the Woodroofe—
Keener asymptotic formula (1.5) has a remainder o(a ~1/2) instead of our desired
O@a™Y).

3. Lemmas on Edgeworth expansions and fluctuation theory of
random walks.

LEMMA 1. Let X3,X5,... be i.i.d d-dimensional random vectors satisfying
(1.1) and let £ be a standard normal d-dimensional random vector indepen-
dent of {X;}. Let p = EX, V = Cov(X) and A be an orthogonal d x d matrix.
Then m~Y%(S,, — mu + m=2¢6)V-1/2AT has a density function f,, satisfying the
Edgeworth expansion
B.1)  fnw) = @r) 2~ 10I*/2{1 4 m~1/2P,(w) + m~1Pyw)} +o(m ™)

uniformly in w € R?, where P {(w) is a polynomial in w of degree j whose coeffi-
cients involve A, V and the cumulants of X up to order j+ 2 (j = 1, 2).

PROOF. Let Up = m~Y%(Sy, — mpu+m=2¢),i = v/~1, and note that
(3.2) Eexp(i(t, Un)) = {E exp (i(t/v/m, X - 1)) }

x exp{ —m~®||¢|?/2}, teR-



EDGEWORTH-TYPE EXPANSIONS 1965

Hence U,, has an integrable characteristic function and, therefore, also a den-
sity function ¢,,. Take any ¢ > 0. By (1.1) there exists 0 < g < 1 such that
|Eei®:X}| < q for ||t|| > 6. Because

/Iltll >m3 eXp<_”m_5/2t”2/2) dt

(3.3)
= mPd/2 / e l1xl*/2 gy = 0(m5d/2e_m),
llxll > vm

(34) |Eexp (i(t/vim, X)) " dt = O(m¥gm),

/ma 2 It = 6v/m

we can apply standard Taylor expansions and Fourier inversion arguments to
show from (3.2) that v, has the Edgeworth expansion

(3.5) sup =o(m™1),

xeRd

2
Y ) — {1 3 m-f/zp;f(x)}w(x)

Jj=1

where ¢* denotes the multivariate normal density with mean 0 and covariance
matrix V, and Pj is a polynomial of degree j whose coefficients involve the
cumulants of X up to order j+2 [cf. Section 19 of Bhattacharya and Rao (1976)].
Noting that

Cov (U, V~2AT) = AV-Y2(V+ m=SI)V-1/2AT =1+ O(m~5),

it follows from (3.5) that the density function f,, of U, V~1/2AT has the expan-
sion (3.1). O

A basic idea in the proof of Theorems 1-3 is to approximate m~1/2(S,, —
mp) by m~Y%(S,, — mu + m~2¢), whose density function has the Edgeworth
expansion (3.1), which will be used to evaluate certain probabilities. Another
basic idea is to approximate {tg(S;/t) —mg((S, +m~2¢)/m), m <t < m+Cm*/3}
by a quadratic function of certain random walks given in Lemma 3(ii), whose
proof uses the following lemma.

LEMMA 2. Let Z,Z,,... be i.i.d. random variables such that EZ = 0. For
every a > %, there exists an absolute constant A, (depending only on o) such

that A
> a}

t
P22

< Aak_(4°‘ - 1){5_4EZ4I{|Z| >(2— a—1)ek>/14} + k_a(€_2EZ2)

t

2%

i=1

la:-g

t>k

> sk"‘} +P{ supt™¢

(5a—1)/20 — l)}
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ProOOF. Let v be the smallest integer greater than or equal to (5a:—1)/(2ac—
1). As shown in Chow and Lai [(1975), page 55],

t<k t<h 4

t t
P{ max » Z; > sk"‘} < kP{Z > ek®[(2v)} +P”{ maxZZi > 5k°‘/(21/)}
=" i=1 i=1

< k' *Qu/e)*EZ (75 cho o

(Ba-1/Q2a-1)
+ {Ca(2v/e) k2~ PEZ?) ot

for some absolute constant C,,. Note that v < 7a /(2 — 1) = 7/(2 — o~ 1). More-
over,

t

2%

i=1

t

D Z
1

i=

P{ supt— ¢

t>k

- J+1lz\&
Ze}SZP{WkSI?ng > 2% (2/* k) }

Jj=0
Hence the desired conclusion follows. O

LEMMA 3. Let X1,Xs,... be i.i.d. d-dimensional random vectors such that
E|| X1||* < oo and EX; = puand let ¢ be a d-dimensional random vector indepen-
.dent of {X;} such that E||¢|| < co. Let S; = ¢ _,X;. Suppose that g: R? - R sat-
isfies (2.2). Let g;; = 0%g/0u; Oujly -, and G = (gl <i, j<a- Let C > 0and e > 0.

® P{maxn/2gt§n—cn1/3 |ng(sn/n) - tg(st/t) —(n - t)g(ﬂ)l/(n —t) > 8} =
o(n~1).
(ii) Let b,, = m + O(\/m). Then for every 6 > 0,

-2
tg(%) - mg(%u) — (@t —m)g(w)

P max
m<t<m+Cml/3

! 1 [(Sp—mp+m=2¢\ G
- <Xi—u,Vg(ﬂ)+\/5m< v ) >

i=m+1 \/E
1 i t T
_%< > (Xi—u)>G< > (Xi—u)) > m—2/3+a} —o(m™Y).
i=m+1 izm+l

ProoF. We shall only prove (ii), because the proof of (i) is similar and sim-
pler. First note that P{||¢|| > m} = o(m~!) because E||{|| < co. Take (arbitrarily
small) § > 0 and define Q = {MaXy<i<mscm ||St — tu]| < m¥/2+5/3 ||¢| < m}. By
Lemma 2 (with o = 1/2+6/3), P(Q) = 1 —o(m~1). Let S; = S; — tju. Defining r(x)
as the remainder in the Taylor expansion g(x+p4) = g(p)+(x, Vg(u))+ —%xGxT+r(x),



EDGEWORTH-TYPE EXPANSIONS 1967

note that r(x) = O(||x||*) and Vr(x) = O(||x||2) as x — 0. Writing tr(x) — mr(y) =
(¢ — m)r(x) + (mVr(%),x — y) with 2 lying between x and y, it follows that on €,
form <t <m+Cml/3,

tg(p+t1S;) — mg(u+ m1S,,)
= (t — m)g(w) + (S; — S, V()
+(t718,GST — m~'5,,GST,) /2 + O(m1/3~3/2+9)
+0(m* /3| ¢728, - m=18,])),
[#78~m
= 0(m 3, - Bul) + O(m-10+41%,
t718,GST — m~18,,GST.
= 2m~18,,G(S; — 8)T + (71 — m™1)S,GST
+m 1S, - 8m)GE: — 8
= 265 *mY2(S,, + m~2¢) G(S, — 8,7
+m~ 1S, — 8,)G(S; — Sp)T + 0<m_1+6/3”§t - §,,,H)
+o(m‘2/3+‘5),
m{g(u+m15n) —g(u+m Ty + m=3)}
=0(m™2|¢|l) =O(m™1).

By Lemma 2, P{max,, <;<m.cmvs ISt — Sml| > m'/3} = o(m~=1). Hence (ii)
follows. O

Note the resemblance between Lemma 3 and similar ideas in nonlinear re-
newal theory [cf. Woodroofe (1982)]. Throughout the rest of this section we
shall let Y,Y;,Y5,... be i.i.d. random variables such that EY = 6 > 0 and let
SY¥) = x7_,Y;. Define M and 7_(u) by (2.7). From the fluctuation theory of ran-
dom walks, there exists for £ = 1,2,... an absolute constant C}, (depending only
on k) such that

0
/ u*~'P{M < u}du

—00

= k- IE(M- )
(3.6) 3
< C{0TIE(¥ - )" + (07! Var ¥)*}

[cf. Chow and Lai (1975), page 63]. This gives a bound for the m; defined in
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(2.9). The following lemma provides a bound for the other fluctuation-theoretic
quantity X in (2.9).

LEMMA 4. () sup, <o | S(z)(u) [ I we<oo} =M.
() M2/2< | [0 8P ir w < ooy dul < (M),
(iii) Letting 7 =7_(0)and Z = SY) I(; < 0}, e have

0
E(/ T_(u)I{T_(u)< oo} dU) = E(,ZITI{T<°°}) + (E,Z,)E(TI{T<°°})

oo P{r = o0} P2{7 = 0} ’

0 EZ? EZ \*®
(Y) = — -
E(/_OOST_<u>I{r-<u><oo}du) T T P{r=o0} {P{T = oo}} '

(iv) For every p > 0, there exists an absolute constant A, such that

sup ET? Wl (4 < 00} < Ap {E((Y -0~ /0)"" Ty (672 Var Y)p}.
u<0

Proor. To prove (iv), first note that

Er* @< = P / tP=1P{co > 7_(u) > ¢} dt
(1]

Sp/ tP - 1P{supk 12(0 Y)>9}dt foru < 0.

k>t i=1

Hence (iv) follows from Theorem 1 and Lemma 2 of Chow and Lai (1975).
Let (247,81 ,,), 1<k <K :=max{i:n < oo} (K = 0ifry = 00), be

the descending ladder points of the random walk {S{’}, that is, 7; = 7(0), 7 +
73 = inf{n > r1: Y < S} and so forth [cf. Feller (1971), page 390]. Letting

S(Y) 0, note that

T_(u) = ifu<ZZ where Z; =S ., —ST) T
(3.7) i
(1), 8, = (ZT,,ZZ> 1sz <u<) Zwithj<K.
i=1 i=1

We use the convention Zf= 1 =0if 2 =0. Hence

0 J K K 2
/_ S(ﬁu)l{,_(ukoo}du:—z(ZZ) %{Zz%(Zz,-) }

Jj=1
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Because M~ = —Zﬁ 1Zj, (ii) follows. Moreover, (i) also follows from (3.7), which
also yields

0 .
/ T (7 )< 00} AU = Z (ZTL) |1Z,|

j=1
oo
(3.8) = Z !ZlejI{7-1<oo ..... Tj<oo}
j=1
oo j—1
+Z Z IZ 'TI,I{T1<OO ..... Tj<oo}*
Jj=2i=1

In the preceding second equality, we extend the definition of 7; as 7; = oo if
Ti_1 = 00, letting 7; = inf{n > 7,_1: S{¥ < S(Y) JGnf @ = 00) if 7,_1 < oo as
before. Moreover, define Z; as before if 7; < oo and set Z; = 0if 7; = co. From
(8.8) it follows that

0
E < / T_(u)I{.,-_(u)<oo} du>

= (E1Z|TI(r < o0}) EPJ'- Y7 < o0}

j=1

+(B1Z| (s < 0}) (BT < 00}) D (= DP/~2{r < o0}
Jj=2

Likewise —E( ffoo S(Tl_?u)l {r_(u) < 00} du) can be written as

{520 ($2) e cn]

l

oo j—1
—EZZ I{‘rl<oo ..... TI<OO}+EZZZZI{T1<OO ..... Tj<oo}
Jj=1 j=2i=1
= (BZ* (7 < o}) D P/~ Hr < o0}

Jj=1

+(BZI(; < o)’ }:u — DP/~2{r < o0},
Jj=

implying (iii). O

In Section 4 the integrals that appear in (2.9), (2.14) and (2.20) will be ob-
tained as limits of certain Riemann sums. Let ¢, be positive constants such that
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lim, _ o€, = 0 and let I = I(n) and J = J(n,c) be positive integers such that
I(n) — oo and J(n,c) — oo as n — oo, uniformly in ¢ > 0. Let

6_1(n) > 0 =6p(n) > --- > 61(n),

9
(3.9) c_1(n,c) <c=coln,c) <- - <cjln,c)

be such that 6;(n) — —oo and cs(n,c) — oo, uniformlyinc > 0, and for allj > —1

8i(n) = 6j41(n) <en,  cjr1(n,e) —cj(n,c) < (c+ 1en,
(3.10) 11— (6;(n) — §+1()) / (84 1(0) — §j42(n)) |
+[1 = (cj+1(n,0) — cj(n,0)) / (¢j+2(n,¢) — ¢js1(m,0)) | < €p.

The proof of Theorems 1-3 uses (3.9) as partitions to form the Riemann sums
that approximate the integrals ffoo and fc°° in (2.9), (2.14) and (2.20). Moreover,
we shall replace the S;Y) and M that appear in the integrals by their perturbed
versions Sj(a,z) and M,(z) in the approximating Riemann sums. The following
lemma, which considers somewhat more general perturbed sums than Sj(a,2),
uses Lemma 4 to establish the desired convergence of such Riemann-type sums.

LEMMA 5. Assume that EY* < oo and let X,, be random vectors such that
(Y1,X1), Y9,X),...arei.id. Let U be a random vector independent of {X1,Y1,
X,,Y,,...} and let F be a class of real-valued functions v such that sup,, ¢ 5
E@X;, U)* < oo and E[Y(X;,U)|U] = 0 a.s. for every i € F. Let Sy (¢) =
Ef‘ﬂ(Yi + e(X;, U)). Then for every h > —1,ase — 0, n — oo and k — o0,

.

I-1
> {6j(n) = 6.1 }E(S, (V) — kD (min, <, 5, .9) < 8,00}
=h

3.11) .
- / E(Sg-{)(u) — 0T (u))I{‘r_(u) < oo} du,
J—-1
Z {cj+ l(n1 C) - CJ(n,C)}E(Sk, €(¢) - ka)I{mmisk Si, 5(1/}) ch(,“c)}
j=h
(312) = / E(Y1 — H)I{MZu} du

- [ ] By -t - )
X L7 (u=y) < o0} AH(y) du +0((1 +)7%)

uniformly in ¢ > 0 and 1 € F, where H is the distribution function of Y.

Proor. Let S, = S .(¥) and 7(u) = inf{t: S; < u}. For notational simplic-
ity we shall write §; and c; instead of §;(n) and c;(n,c). To prove (3.11), note
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that

k
E(S, — kDI 26)<r) = E{ ZE[(Sk — kDI 6p=iy | U, Y1, Xy, .. -,Yi,Xi]}
i=1

(3.13) LA
= E{ > (S - ie)I{w:i}}

i=1
= E(gmsj) — 07(6)) Lz <k}

Sp+1 I-1
A=) [ Fel i< du < 36 50 6Ty
/4

(3.14) j=h

6_1,—-1
< / FI (3 < o0} At

— 00

for either f(u) = 7(w) or f(u) = |Szq)|. Because E|Y|* + supy ¢ 5 [ E[¢(X1,2)[*
dG(z) < oo, where G is the distribution function of U, we can apply Lemma
4 to the sequences {Y; + ey(X;,2)} and {Y;}. Combining the representations in
Lemma 4(iii) with related uniform integrability results implied by Lemma 4(i)
and (3.6) and by Lemma 4(iv), it can be shown that ase — 0,

0 0

E (/ ;(u)I{‘F(u) < oo} du> —E (/ T— (u)I{T._(u) < oo} du) )
0 _ 0 .

£ ( /—oo S?(u)I{ﬂu) < oo} du> —F ( /_oo Sﬁ'_)(u)I{‘r_(u) < oo} du)

uniformly in ¢ € ¥. From (3.13)—(3.15), we obtain (3.11) ase — 0, £ — o and
n — oQ.

LetY; = Y; +e¢(X;,U) and write S, —kf = (Y1 —0) + Efgll(Y” 1—0)fork > 2.
Let H be the distribution function of Y;. Foru > 0 and & > 2,

(3.15)

ESp — kD imin, ., 3;_ #20)

= E(Yl - e)I{miank 2;= lfﬂ'Zu}
o [k=1_ ~
+/ E[Z(Yi+1_o)I{minrsk-1(Ef-1f’j+1+y)2u} dH(y),
u i=1

E{Sk—l_(k_I)H}I{min,sk_lzgﬂ?izu-y}
=—E{Sp_1—- (& — ;)Q}I{minrsk_lz,r:lim—y}

= —E{gk—l — (k= DO (w -y <k -1}
=—E{Sru_y — 07w —NH iz -y <k-1}
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asin (3.13). Let B(e, v) = EM~ +sup, < o 07 () < 0}, Where M = inf; > 1 S..

By (3.6) and Lemma 4(iv), supy < . < 1 5 ¢ 5 B(€, %) < 00. Moreover, sup, <o & 1S w
— 07 (W {3w) < 00} < B(e, ) by Lemma 4(i), and it follows from (3.10) that

J-1
Z(Cj+l - Cj){E(|Y1| + G)I{?lzcj} +Ble,p)P(Y1 2 cj)}
Jj=h
<(L+en) E{|Y1|+6 +Ble, )}, >,y du
(1—ep)c—en -

=o(c™2) asn — ooandc — oo,

noting that supy<.<1,yer E(l?f) < o0. Hence an argument similar to that
used above to prove (3.11) can be used to prove (8.12). O

4. Proof of Theorems 1-8. In this section we first state a key lemma
(Lemma 6), of which Theorems 1 and 2 are then shown to be simple corollaries.
We next preface the proof of this key lemma by two additional lemmas, which
we use in conjunction with the basic lemmas in Section 3 to prove Lemma 6. We
then prove Theorem 3 by a modification of the arguments used to prove Lemma
6 and by applying Theorem 1 and some of the lemmas in Section 3.

LEMMA 6. With the same notation and assumptions as in Theorem 1, let
t =tn,q = (@ —nb)/y/no. Forany 8 > 0,as a — o0 and n — oo such that | t |< (3,

P{T, < n,nb, < a}

O
v P{M, () <u}du
) [° |t
4.1) + %(—) . {;E(ng)(u) = b7 @) (r_w<oo)

+ (Q'l(t) —t@:1(t) - %‘)P(M < u)} du+o(n71),

P{T, =n,nb, > a+c}

a2 = 0 c><>P{Ma(t) >u}du

ovn Je
t o [ 4 ) , t —
" %(E) / {;A(u)+ (Ql(t) — Q) - ;")P(M > u)} du+o(n”")
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uniformly in ¢ > 0 and | t |< 8. Moreover, for every € > 0,

(4.3) P{Ia‘lTa - 0‘1| > e} =o(a™!) as a— .

PRrROOF OF THEOREM 1. Because P{T, <n} = P{n67n > a}+P{T, < n, nb, <
a} and because P{n6, > a} = P{\/n(6, —6)/o > t, o}, the asymptotic expansion
(2.12) follows from (4.1) and (2.5). O

ProoF oF THEOREM 2. The desired conclusion (2.15) follows from (4.2)
because P{T, =n, Ay > y1} —P{To =n, Ag > y3} <P{To =n, y1 < As <2} <
P{T,=n, Ay >y1} —P{To=n, A, >y, +n71}. O

To prove Lemma 6, the first step is to approximate the left-hand side of
(4.1) as

P{Ta S n,ngn <a}
(4.4) = Z P{ max r8 > a,a+6,1 < nd, < a+5j} +0(n‘1)
Jj>0:16;] <nl/3 n—k<r<n

and to use a similar discretization of the interval [c, 0o) in which the overshoot
T.07, —ais assumed to lie for the event on the left-hand side of (4.2). Specifically,
the é; = 6;(n)in (4.4) and the partition c; = ¢ ;(n, c) used to prove (4.2) are defined
forn >3 and g > 0 by

cj=c+jlc+1)nlogn)~2 and §;=—j(nlogn)~1/2
4.5) for —-1<j<(n logn)1/2,
’ Ci+1 =cj+cj(nlogn)‘1/2 and 6j+1 =(5j— |6j|(n10gn)‘1/2

for j > (nlogn)'/2.

The cj(n,c) and §;(n) defined in (4.5) satisfy the assumptions on the partitions
(3.9) in Lemma 5, for which we let J = J(n,c) and I = I(n) be such that ¢; <
nl/3 < ¢z,; and |§| < n'/3 < |6;,1|. We shall apply Lemma 5 in conjunction
with Lemma 1 on Edgeworth expansions of multivariate densities to derive
the fluctuation-theoretic integral that appear on the right-hand sides of (4.1)
and (4.2). This is the content of the following lemma whose proof, and those of
Lemmas 8 and 9, are given at the end of this section.

LEMMA 7. Let & be a standard normal random vector independent of {X;}.
Denote m=Y2(S,, — mp +m=26)V-12AT by W,,, = (WD, ..., WD) and define

Y m(@,2) = (X; — 1, Va(u))
+0+(6/a)*(; — WGVV2AT, (2, WD, ..., WD) ).
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Let a, ~ nd and let Ky > Ky > 20~L. Then for fixed § > 0 and integer h > —1,
asn — oo,

sup > P{' S & - || <l
Klnl/alglkggﬁKznlﬁ Ji>0:c;<nl/? i=n—k+1
- 1,3213<,,2Ym Wan, 2) 2 g,
\/— _]+l
(4.6) z+a\/_ (0 -6) < t o
~ 2 [ piM,, @) > u} du

ovn Je
- @/ Z A+ ( 1@) —2Q1(2) — E2>P(M > u)} du
on J, |o g

=o((1+ c)‘zn‘l) + O(n_3/2)

uniformly in 0 < ¢ < n'/% and

n
su P X, — p)|| <nl/3,
lzlSpﬁ . Z v/s {‘ ._Z imH
Klnl/askSKznl/s Jj20:1651<n i=n—k+1
n
n—Ikn<iI;‘l§ni rYivn_k(an’z)<5j+ha
b1 VP 6
z+g\/ﬁ (0 -0) <z+—= s
4.7) 0
#(2)
Tovml P{Ma"(Z)<U}du
#2) 0™
" on oo o (SS'Y()u) (97'_(u))I{,,_(u)<oo}

+ (Q’l(z) —2@1(2) — E;)P(M < u)} du

=o(n71).

In Section 3, we introduced Lemma 3 (ii) to approximate {tg(S;/t) —mg((S,, +

m=2¢)/m), m < t < m+C3m} by a quadratic function of certain random walks
so that the remainder does not exceed m~2/3+¢ with probability 1 — o(m 1) for
every § > 0. Setting m = n—[36~1n1/3], an important step in the proof of Lemma
61 is to remove the second-degree term in Lemma 3(ii) so that {nen —r6., m<r<
n} can be approximated simply by the random walk {¥7_ ., Y, m(tn,2), m <
r < n} used in Lemma 7. This is the content of the following lemma, which
we use the notation a Vv b to denote max(a, b).
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LEMMA 8.  Let k, = [30~'n'/3]. Then for every 8 > 0, as n — oo,

n
w2 pf] 5w
o!zjffl/ajzochs"m i=n—ky+1
<e< e \/_
- n
48) i ® . fz
-1 .
n—glgsnn . Z & =)
i=n—Fkp+1

> (c; vV 1)n~18/24 5 =o(n"1),

Zn: &X; — p)|| <n/?

i=n—kp+1

sup Z P{
Izl Sﬁjzo |5J| Snl/S

8iv1 Vvn o ]
(4.9) Z+a\/ﬁ 0(6" 9)<z+a\/r_z’2
-1 - , —13/24
I DGR ROTRIE
i=n—kp+1

=o(n71).

Let m = n — k, and a, = nf + O(\/n). Then for every fixed 3 > 0, as n — oo,

n
sup { Z X; — | <n'?
0<|2c|§fl/al>°°1 <nl/d i=m+1
24 gﬁ(gn—0)<z+cj+1,
(4.10) 7V e
‘ n
mlgra)én nb, — ré, _Lzr;lYi’M(an,Z)
>n~Y% min(c; —c¢;_1,¢42 —Cj+1)} =o(n7),
n
sup Pﬂ Y Xi—-p|f<n'
IzlSﬁjZ():l&lenl/s i=m+1
/LS ‘F(e —O)<z+—L,
\/_ ay/n
(4.11) n
max nb, — ré, —lzr;IYi,m(an,z)

>n~Y25 min(g; _ 1— 65,641 — 5j+2)} =o(n71).
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PROOF OF LEMMA 6. Because T, > ng, P{T, < a/(0+¢)or T, > a/(0—¢)}is

majorized by
S;
P{ sup g(—.—) —g(,u)l > 6}
i>ng l
(4.12)
< P{ sup i -,u“ <6, ——8———) =o(a™?),
B i>ng |l 2| Vgl

by (2.11) and Lemma 2 (with o = 1), where § is so chosen that ||Vg(x)| <
2||Vg(u)|| if ||x — || < 6. Hence (4.3) follows.

To prove (4.1), we shall first establish the representation (4.4) and then apply
Lemmas 8 and 7, in which we let @, = @ and &, = [36~'1n/3]. From (4.3) and
Lemma 3 (i), it follows that

P{T,<n—k,nb, <a} = P{n/2<T,<n-—k, né, < a}+o(a™?)
(4.13)

<P{,,mx 0 —r8) <0} vo(a) =o(a”)

as a — oo and n — oo such that |t|(= |¢,,4]) < 8.
Let S; = S; — ip. By Lemma 2, P{max, 2 <; <, [ISil|2/i > n¥/*} = o(n~1). In

view of the Taylor expansion g(x + ) = g(u) + (x, Vg(u)) + O(||x||?) as x — 0, it
then follows that for any € > 0,

P{nb, — r6, < —en'/® for somen —k <r <n}

(4.14) <P S, -85, s et
' < {‘?a" | ”_2||Vg(u)ll}

+o(n™!) =o(n"!) byLemma 2.

From (4.13) and (4.14), (4.4) follows. Because a = nf + \/not,

biv1 \/ﬁA 8;
_ < J+ YN (. — _J
P{n £n<ur1< (na r9) Ojr1,t+ «/ﬁ— 5 6, 0)<t+0\/7_l}
(4.15) <P . rlglg}qrerza,a+5j+1sn0n<a+6j}
Sis1 \/ﬁA §;
< - < Jt Y- L%,
_P{n %n<ll;l< (nfn =16, < bir t+ \/7—1, o " a\/r_z}
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Combining (4.15) with (4.4) and (4.11) yields

> PH Z & — )

J>0:16;] <nl/3 i=m+1

n
1/3 i V. .
<n ’mgl}%nZYl’m(a’ t) < djo,

i=r

5; NP 5

t+ 2L < V7 (3, - J -1

t s S 0(0,, 0)<t+aﬁ}+o(n )

(4.16) < Z P{mrgfuénr@Za,a+6j+l§n§,,<a+6j}
J20:]8;1<n1/ =

= P{T, <n,nf, <a}+o(n™")

< Y P{ fj(Xi—u)

. . m<r<n
Jj>0:18;|<ni/3 i=m+1

n
<n, min Y'Y n(a,t) <41,
i=r

6; n,~ 6
t+ ;f\;—% < %——(0,, —6) <t+ ;—\;—ﬁ-} +o(n7Y)
uniformly in |¢| < 8. Applying Lemma 7 to the upper and lower bounds of
P{T, < n,nf, < a} +o(n~') in (4.16) then gives the desired conclusion (4.1).
The proof of (4.2) is similar. Note that the left-hand side of (4.2) is o(n~1) for
¢ > nl/3 by an argument similar to (4.14) and that the right-hand side of (4.2)
is also o(n—1) for ¢ > n1/3, so we can restrict to the range 0 < c < nl/3 for which
Lemma 7 is applicable. O

The preceding argument used to prove Lemma 6 can be modified to give the
proof of Theorem 3, which we present next before giving the proof of Lemmas
7 and 8.

PROOF OF THEOREM 3. For notational simplicity write N for N, . and é for
84, Fix any 8 > 0 and suppose that K'(9) > 0. Noting that ¥(h(9)) = 8, ¢'(h(8)) =
1/h(9) and o = 5/R'(9), Taylor expansion yields

() +25u?) = 8 + z0u™'? + 122U " (R(D))
+3285%u=3/2" (h(9)) + O(u™?)
as u — oo uniformly in |z| < 3. Hence (2.19) implies that as @ — oo,

a = 0v(a,2) + zo7"%(a,2) + 225%" (R(9)) /2
(4.17) :
+255%y" (h(6))y~/*(@,2)/6 + O(a™")

uniformly in |z| < 3. Because N - v(a,z) — 6§ with 0 < § < 1, it follows that
(N + )12 = y~Y2(q,2) + O((v + IDN~%/2) uniformly in 0 < v < N3 and,
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therefore, by (4.17),
a—0N +v) - _9(1/ — ) 2+ z232¢//(h(0))
ovVN +v oVN 20vVN

2353y (h(6)) (v+1)?
T 60N +O< N3TZ )

(4.18)

uniformly in 0 < v < N3, If n > n, and |67n — 6] < g, then by (2.17) and (2.19),
Z, <zand n@?\n >a& h(@,) < h(@) +25n"12 and ngn >a

s a<nb, < ny(h(0) +2on~Y2) = n > (a,2).
Because P{|§T.z — 0] > €} = ola™!) by (4.12), it then follows that

P{Zr, <z} =P{T. >N, Zg, <z} +o(a™!)
(4.19)
=P{T, >N} —P{T. >N, Zg, >z} +o(a™}).
Let t,, o = (a — 6n)/(0\/n), k = [30~N'/3] and p = 0=1{86 + 222" (h(0))/2}
[= p(a,2)]. Setting v = 0 in (4.18) and noting that @,(z+s) = Ql(z)+sQ’1(z)+O(32)
and &(z +s) = B2} +s¢(2) — 35%24(2) + O(s®) while ¢(z +s) = ¢(z) — s2¢(2) + O(s?)
as s — 0, we obtain from Theorem 1 that uniformly in |z| < 3,

P{T, > N} = ®@) + $(){ pN /2 + 259" (W(O) N~ /60
—zp?N71/2+ O(N‘s/z)}
(4.20) ~N"V24() (1~ N"2pz + O(N 7))

0
X {0‘1/ P(M,(2) < u) du — @(z) — N~Y2pQ!(2) + O(N‘2/3)}

—0o0

—N7lpye)¢(2) + o (N7,

because py(z + s) = pa(2) + O(s) as s — 0 by (2.10) and because for any non-
random sequence ey = O(N~1/2),

0 0
4.21) / P{M,(z+en) <u}du= / P{M,(z) <u}du+ O(N‘z/a).

To see (4.21), note that /N ~ 360-'N~%/3, P{max; <j<; |%I_,(a"V2X; — )G
VY2AT (en,m1y-..,Md—1))| > k/N} = o(N~1) by Lemma 2 and that by (3.6) and
Lemma 2, '

—NY/3 .
/ [P{Ma(z +ey) < u} +P{Ma(z) < u}] du +N1/3P{ jg{Si(a,z) < 0}

+N1/3P{ iilgsi(a,z +en) < 0} =Q(N~%3).
12
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Noting that (N +v)~Y2 — y~Y2(a,z) = —IN-3/2(v — §) + ON ~5/212), we have

(o0 ) =s(0 ) - S ot ),

uniformly in 1 < v < N*8, Combining this with (2.17) and (2.19) yields on
{|0N+1/ - 6' < E}’

Zxay 224 Oyey > V(R0) +25/VN +V) & (N + )y 4, > a +cv,2),

where uniformly in |z| < fand 1 < v < N5/8,

=w -6 he 25
c,z2) = — 60y ()+m)

N +v)zo(v — 6) _ _
(422) —_——Tna ‘ N3/2h’(0) + O(N ]'V +N 3/21/2)
(- 27 ~7/8 9 =y
0% 6)(0 + 2\/N> +O(vN~"/®) because o %0) oy’ (h)).

By (4.17) and an argument similar to (4.3), P{T; > N +N5/8} = o(N—1) and
therefore

P{Ta >N, ZTa ZZ}
423) = Y P{T.=N+v, N+v)y., > a+c,2)}+o(N 7).

1<v<N5/8

Take any 1 < b < 3/2. In view of (4.22), we have for all large a,

Y P{T.=N+vy,(N+v)iy., > a+cw,2)}

N1/3 <y <N5/8

= ZP{(N+ VI +v — [N+ 6NY3) 0y , iy > B'NY26/2
i=0
for some b'NY/3 < v < bi+1N1/3}

(4.24) o v
Z { BIN1/3 < V< bl+ 1N1/3J [bigl;a] o <XN +j — Hs Vg(u)>
> 6N1/3( (6 - bi)) } +o(NY)
o(N-? Z b3+ =o(N7Y

by Lemma 2 and an argument similar to that of Lemma 3(i), noting that 5 —1 <
1.Letm = N — k. An argument similar to (4.4), (4.14) and (4.24) can be used to
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show that
[N1/3]
Z P{T,=N+v,(N + Wiy, >a +c(v,2)}
v=1
(4.25) W% R
= Z P{ max 10, <a,a+ N +v)/3
] m<r<N+v

>N +)ysy > a+c(1/,z)} +0(N‘1).

The desired asymptotic expansion (2.23) follows from (4.19), (4.20), (4.23)—(4.25)
and Lemma 9. O

LEMMA 9. With the same notation and assumptions as in Theorem 3, let
N=N,.6=06s.p=paz),m=N— [36—1N'/3] and define c(v,z) as in (4.22).
Ifh'(9) > 0, then as a — oo,

[N1/3]
S Pl max rf <a,a+W+n)"? > W40y, Za+elr2)}
o1 m<r<N+v
$(2) /°°
= P{M,(z) >uldu
VN =4 Jw- 600 +20/2VF) { }
2¢(z) — ( 01/) o0
(4.26) - _ / P{M > u}du
oN = P70 ) S o { I

P2) = [ z , 2u
+ -(-J'W V§=:1‘/( o0 {;A(u) + (QI(Z) —ZQ(Z) — _J—)P(M Z u)} du

+o(N71)
uniformly in |z| < B, for every fixed § > 0.

We now give the proofs of Lemmas 7-9, from which the reason for the partic-
ular choice (4.5) of the partitions §,(n) and c;(n,c) will become clear. Through-
out the sequel we shall let f;, denote the density function of m~ Y28, —mpy +
m—2¢)V-1/2AT, By Lemma 1, f,, has the Edgeworth expansion (3.1), which we
shall use to integrate over certain sets in the proof of Lemma 7. To perform this
integration, we shall use a change of variables and Taylor’s expansion of its Ja-
cobian, similar to Lemma 2.1 of Bhattacharya and Ghosh (1978). Moreover, in
view of the restriction of \/n(6, — )/ to certain narrow intervals in the events
in Lemma 7, we shall also use ideas similar to the conditioned random walk
approach in nonlinear renewal theory, involving time reversal arguments and
local limit theorems [cf. Chapter 5 of Woodroofe (1982)].
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ProOF OF LEMMA 7. Let S, =X, + ---+X, _4+1 and decompose \/r—z(@,—
6)/o as a sum of three terms:

-0 Sy (%) o0

n n
\/;"- Sn,k —kp
+7{g< ——n——) —g(u)}
vn
+T g

L+
(4.27)
{ (ﬂ.,. Vn_kWn_kAvl/Z.,.M)

n n

Sn,k_k/J'
e

Here A is an orthogonal d x d matrix whose first row is c~'Vg(u)V'/2, as in
(2.8). Let

— &\ wAVY/2
w mosr BB ) o) e

so the last summand in (4.27) i8 pn 4,5, , — ku(Wn—z). Because (o~ 1Vg(p)V1i/2)T
is the first column vector of AT and is orthogonal to the other column vectors of
AT, it follows that o ~1Vg(u)V¥/2AT = (1,0, ...,0) and, therefore,

o1 (Vg(p), wAVY/?) = ¢~ 1Vg(wV/2ATw”

(4.29)
=w® forw=(w?,...,w?).

In view of (4.28) and (4.29) and recalling that £ < Kpn!/3, Taylor’s expan-
sion yields

(4.30) pp g 2w) = w® + 0~ 0" V2wAVY2GVY2ATWT /2 + O(n~?/* logn)
uniformly in ||x|| < n'/3 and |w|| < logn.
Let ||x|| < n/3 and consider the transformation u = T(w) = (pn,, (W), w®?,
.., w9) for ||w|| < logn. In view of (4.30), it has an inverse

4.31) w=T"w) = (u(l) +n Y2p(u) + O(n‘z/3 logn),u?,... ,u(d))

uniformly in ||x|| < n'/3 and ||lw|| < log n, and in this region the Jacobian satis-
fies

(4.32) det(—.—) = 14n~V2q(w) + O(n~%/3logn),
1<i,j<d
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where p(z) and ¢(u) are polynomials whose coefficients do not depend on n and
x. Letting A, . = vn{g(up + n~1x) — g(u)} /o, note that

An,x = 07072 (x, Vg(w) + O (=32 |1x|?)
(4.33) s
=0 1n‘1/2{<x, V() + (6/an) (xGV/2AT, w)} +0(n"%3logn)

uniformly in ||| < /3 and |w| < 2log n. Because the 7; in (2.8) are inde-
pendent standard normal random variables that are independent of X, Xy, ..
we have

T R A —
oo J—oo d
(z,u® ) u@) >) > e +h} H¢(u<z) u®
i=2
(434) = P{ Irnguklz_; (Yi + <(9/an)1/2(Xi — WGVY/2AT,

(2,711,~--,77d-1)>) > Cj+h}

Let F, denote the joint distribution function of (X; — p, X3 +Xo —2p,..., X7 +
-+X, —kp). Fora=+landz € R, let

= P{ Irnsi%Sr(an,z) > cj+h}.

Qa,jz = {(w,sl, ., 51) €RIEHD: g || < n1/2

m
1<i<k
+ < (6/an) 1/2s,~GVl/2AT, @ w?, . w(d)) >>

> ¢jrmz+cj/lovn) — By g — an™2 < py 15, (W)

< z+cj+1/(a\/ﬁ) —Apn g +an_2}.

in ((si, Vg(w) +16

Noting that ¢(z +1) = ¢(2) — tzd(2) + O(t?) ast — 0, we have, in view of (4.5), that

z+Cj+1/(a\/ri)—A,,,x+an_2
/ P, ) ¢>(u(l) +n_1/2p(u(1), ... ,u(d)) +O(n_2/3 log n)) du'V
z+cj/lov/n)—LAn s—an~

1, -1/2

(4.35) = {¢(Z)+ [An,x —o7'n -1/2

p(z,u

+0(n"?31og n)] (z¢(2) +0(1)) }

Cj—n (2),...,u(d))

X {a‘ln‘1/2(cj+ 1—c)+ 2an~2}

uniformly in j > 0 with ¢; < n1/3, ||x|| < n'/3, [u@|+ .- +[u®| < logn and
lz| < B. Because k = O(n'/?) and ||s;|| < n'/3 on Qg j,., it then follows from (3.1),
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(4.31)~(4.35) and the change of variables w = T~1(x) that

/ fn_k(w)dwdFk(sl,...,sk)
Qa j7

cj+1— j 2a>

“\Uovn | n?
x qS(z)P[mfmsr(aun,z)ch+h]—%’\;—f9 P minsS;@,2) 2 ¢

z¢(z)+o(1)

0'\/— E(Sk(an’z) - 0k)I{minr<k Sran,2) >¢jin}

(4.36) +o< [ > & —w
> X —p

i=1

+0<n‘1/2E
i=1
+?i(_z%/ / [Py —2p +q1(z,u®, ..., u®)

x P [m<i% (Y,. +((0/an)"*X; - WGV/2AT,

> nl/3, mlnSr(an, ) > cJ+h}>

T4~ )l >n1/3, min, < 4 s,<an,z>2c,-+,.}>

i=1

d

(z’u@)’ B .,u(d))>) > ¢, hJ H ¢(u(i)) du®
i=2

+ O(n-2/3 1ogn)P[1rn<iI;S,(an,z) > cj+h] }

uniformly in j > 0 with ¢; < n'/3 and |z| < 8, where P;(u), p(u) and g(u) are
polynomials given in (3.1), (4.31) and (4.32).

Because [ .-+ [ [Py —zp + ql(z,u®,...,uNTL_,6@P)du® = Qi(z) —
z Q1(z) by (4.31), (4.32) and an argument similar to the proof of Lemma 2.1 of

Bhattacharya and Ghosh (1978), and because P{max, <, | ¥/_(X; —p, u) | /al/ 2
> (1+c)n~ Y8} = o(||ul|*(1 +¢)~*n~1) uniformly in ||ju| < logn and 0<c<nl/3
by Lemma 2, it follows from (4.5) that

/ / { o1 —c))

J2>0:c;<nl/3

e 1/2
XPl:Irn<11’: <Y +((0/an) s - WGV/2AT,

=%i=1
(z,u®,.. .,u(d)) >) > cj+h] }

. d
. [Pl —zp+q] (z u(2) u(d) H¢ u(i) du(i)
i=2

{ / PM > t)dt}{Ql(z) — le(z)} + 0((1 +e) %n —1/6)

(4.37)
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uniformly in |z| < 8 and 0 < ¢ < n'/3, noting that for ¢ > 1, P{inf,»,%/_,Y; >
t} < P{Y; >t} = O(t—*). Moreover,

Z (cj+1_cj)ch{n1<i]l::Sr(an,Z)ZCj.,.h}
(4.38) jz 0, <ni/? =
= / tP(M > t)dt +o((1+¢)~?)

c

and, by Lemma 5 and (2.14),

> (¢je1 = cHE(Sk(@n,2) — OF) fmin, -, Sytan,2) > 500}

(4.39) J>0:c; gnlég
= / A@)dt+o((1 + c)_2)

uniformly in |z| < 8 and 0 < ¢ < n'/3, Because E||X||* < co and & < Kyn'/3,

k
> X

i=1

n~12g

I{"Z’;(Xi_#)”>nl/37 minrs & Srlan,2) > cj+h}

k
Z(Xi — /J:)

4
I{Y1<an,z>zc,-+;.}}
i=2

(4.40) < 8n—1/2—1{E||X1 —u|*+E

g

(4.41) X P{Yl(a,,,z) > Cj.,.h}
= o(n_4/3) +o(n_1P{Y1(an,z) > cj+h}) by Lemma 2.

= O(n_3/2 +n_5/6P{Y1(a,,,z) > cj+h}>,

k
> &

> n'/3 minS,(a,,z) > Ci+h
i1 r<k
i=

k
Z(Xi - /1)

i=2

< P{|X; — | > n?/2} +P{

> n1/3/2}

By (4.5), 5> 0:c; <n1/3(Cje1 — €5) = n'/3 + o(1). Moreover, for » > —1 and all
large n,

nt/3 41
/ P{ min S,(an,z) > t} dt.
¢ —(c+1)nlogn)-1/2 r<k

(4.42) > Y (©ea—c)P{minSan2) 2 ¢}
: Jj>0:c;<nl/3 s
nl/3 _1

> / P{minS,(a,,2) > t} dt.
¢ +(c + 1)(h + 1)(n logn)—1/2 r<k
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Becausek > Kin'/3 withK; > 20~ and E||X||* < oo, we obtain by Lemma 2 that
1/ 41
/_ - P{infS ) <t}ar
(4.43)
< (n'/3 +2)P{ supr 12(0 Yian,2) > — } =0(n1)
>k
unlformlym lz| < B. Moreover, |Yi(an,2) — 0] < || X; — p||{Cy + Can~ 1/2(|z| +
L!mi)} for some positive constants C; and Cy and P{Y1(an,z) > t} <
4EY4 (an,2), so

/ P{ inf ,(an,2) > ¢} de

nl/3 —1

(4.44) .

< / P{Y1(an,2) > t}dt = O(n"Y).
1

nl/8 _

From (4.42)-(4.44), it follows that uniformly in 0 < ¢ < n'/3 and |z| < 8,

> 1= c)P{minS,@n2) 2 ¢}
Jj>0:c;<nl/3 TS

(4.45) -/ " P{ inf8,(@,,2) > ¢}t
¢ r>1
+0({e+ Dinlogn)/2}(c + 17*) +O(n ™).

Combining (4.36) with (4.45) and (4.37)—(4.41) yields

> / Foo @) dwdFysr, ., 5)

Jj>0:cj<nl/3

=0~ 1n"12¢(x) / ” P{M,,(2) > t}dt
(4.46) +a‘2n‘lz¢(z){ / ” A®)dt — / tP(M > t)dt}

+0 I 16 {Q4(2) — 21} / P(M > t)dt

+o((1+ c)‘2n_l) + O(n‘3/2)

uniformly in |2| < 8, Kin¥/3 < k < Kpn/? and 0 < ¢ < nl/3 , noting that
Si<oc, <nialCa1—cj+1) ~ nl/3 by (4.5). Because ¢ is normal, P{||§|| >logn} =
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o(n~2). Because E||X||* < oo, P{||n"1S, — u|| > &} = O(n~2) for every ¢ > 0.
Taking ¢ sufficiently small then gives

N e

g
Because f,, _; is the density function of (n — k)"Y/2{S,_}, — (n — k)u + (n —
k)~2¢}V-1/2AT which is independent of (X, X,, 1, .., Xn _ 4+1), it follows from
(4.27) and the definitions of Y; ,, _ (@n,2) and of Q,, j , for a = 1 that

(4.47) sup P{

Kinl/3 <k <Kynl/3

Y [ hes@dwdRiy,... o0 - 447)
Q_1,j,2

Jj>0:c;<nl/3

SZP{

Jj>0:¢c;<nl/3

n
S K-l <nth,

t=n—k+1

n
min Y, .,_ (an,2) >c;
0$i<ktz, t,n—k\@n,<) Z Cj+h,
=n-—i

¢ _ Vn(B.—0) Gis1
z+o_\/’7 < p <z+0\/,_l
< ) fo kW) dwdFy(sy,. .. ,5;) + (4.47).

Q1,j,2

Jj>0:c;<nl/3

Hence the desired conclusion (4.6) follows from (4.46). The proof of (4.7) is
similar, noting that in analogy with (4.44) we now have

—n/341

—nl/341
/ P{iigfl'si(an,z) < u}du < / |u|-3E(Ma—n(z))3du =0(n~23),

—00 —o0

because sup, E(M, (2))® < co by (3.6). O
ProoF OF LEMMA 8. We shall only prove (4.9) and (4.11), because (4.8) and

(4.10) can be proved by similar arguments. Using the same notation as that in
the proof of Lemma 7, let & = &, and define

Ej, = {(W,SL coysp) € RIEFD: 51| < n1/3)

-1 2 2 —13/24
n~* max(lss|, max, s - sil?) = (1] v )=,

9j+1 -2 i _2
z+ —Apg,—n Spn»kvsk(lf))<z+0\/,_l_Anrsk+n .

ovn
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From (4.27) and the definition of E; ,, it follows that the sum of probabilities
in (4.9) is majorized by

> fo-rw)dwdFy(sy,. . .,sp)
j>0:16; <n1s3/Bie

_p)-2
* P{? o(32) (BB n}
6j—6j+1 2
< (g_ + —) (¢(2) +0(1))
OS.I'S%)gn)lﬂ oyn  n?
t 2
(4.48) X P{ lxélta%(kn—l ;(Xi —w| > n—13/24}
6j—bj+1 2 )
' Y =g [CORLCY
J‘Z(ngn)‘/z ( 0\/7_1 n2
16, <n/3

t

X P{ 121?%(1@ L_ZI(X; -

in view of (4.47), (4.31), (4.32) and (4.35) together with the change of variables
w = T~1(u). By Lemma 2 (with o = 11/16), P{max, < |} _ ,(X; —p)|| > n'V/48} =
o(n™"/12) and P{max, < | {1 (X; — | > |8,[/*n1/%8} = o(|6;|~*n="/1?) uni-
formly in 1 < |§;] < n'/3. From (4.5), it follows that 3 < ; <(n10gny/2(6; — &j+1) =
1 + 0(1). Moreover, 5> iognyt/2, |s,) <n1/3(8; — 6+1)/87 = O(1). Hence (4.48) is
o(n~1), implying (4.9).

We next make use of (4.9) to prove (4.11). Noting that m~Y%(S,, — mu +
m~2¢) = W,,AV'/2, it follows from Lemma 3(ii) that on an event €, with P(),) =
1-o(n™Y),

> |6j|1/2n11/48} + O(n‘2),

r

76, = mg((Sm +m™=26)/m) +(r —m)d + Z (X; — p, Vg(w)

i=m+1

+(6/an)" S (Xi - WGVY2AT, W)

i=m+1
+O(n_1

r
Z X —
uniformly in m < r < n. Hence on Q,, we have uniformly in m < r < n and

2) +0(n=47)

i=m+1
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el < B,

s

Y Xi-w

2
m<s<n )

n
nb, —ré, = Z Yi,m(an,z)+0(n‘ max

i=r+l i=m+1

(4.49) -1/2 . 1/24T )
+O(n max Z;((Xi—u)av AT (W —z,O,...,0)> )
+O(n_4/7),

because 17,-, m@n,2) = 0+(X; — p, Vgp) +(0/an)?(X;— nGVY2AT 2, W2, ...,
W)). Let

< nl/3|Wy| < logm,

En:{m<s<n Z(X ,LL)
\/ﬁ Sy Sn+m_2€ -2
—g(ﬁ) ‘g(—n—”)fs” }

(2
—E n j+1
n,j,z U\/’_l

=

By (4.47) and Lemmas 1 and 2, P(E,) = 1 — o(n™1). From (4.27), (4.28), (4.30)
and (4.33), it follows that on the event E,, ; .,

n
WL —z=-0"2nY2 Y (X; - p, Vew) + O(n~2(logn)?) + O(n~2(¢,1]).

i=m+1

Combining this with (4.49) yields that on Q, N E, ; , with |z| < 3,

1By — rf, - Z Yi,m(@n,2)

i=r+1

(4.50) =0(n~*") +0(n"*3(logn)?) + O(n=2/3|5;.1|)
2)
noting that |57, , /& — W 172, — Wl < 2187 001K = I + 1155041
x (X; — w)|%. By (4.9) there exists E* . . C E, ; , such that

n,j,z

sup
m<r<n

8

Y Xi-w

m<s<n||,
i=m+1

+0 (n‘l max

(451a) sup > P&;.—E;;,)=0(n""),
lzlSﬁjZOZl&ﬂSnl/s -

2

< (16;/v1)n=13/2% onE; ..

s

Z X —w

i=m+1

(4.51b) max n~!
m<s<

sn
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From (4.5), (4.50) and (4.51b), it follows that for all |z| < 8 and large n,

n
sup |nb, — 16, — Y; m(@n,2)
452)  meren| " },21 hm

<n VY5 min{6;_1—68;,641— 42} onQy NEy ;.-

From (4.51a) and (4.52), (4.11) follows, recalling that P(E,) =1 —o(n~1). O

PROOF OF LEMMA 9. We shall use the same notation as that in the proofs
of Theorem 3 and Lemma 7 and modify the proofs of Lemmas 6 and 8 to prove
(4.26). By Lemma 3(ii), there exists an event Qy, with P(Qy) = 1 —o(N~1), on
which (4.49) with a, = a holds uniformly in m(=N —k) <r <n < N+N'3 and
|z] < 28. Let

Dy = N {

m<n<N+N/3

n

Z (Xi —IL)

i=m+1
\/f_l Sn Sn +m‘2§ —9
() - (=) =y

g
By (4.47) and Lemmas 1 and 2, P(Dy) =1 — o(N~1).
Fixv e {1,...,N¥%} and z € [- 43, ], and simply write c instead of c(v,z) and
t instead of ty 4,0 = {@ — OV + 1)} /(6 VN + v). Note the relationship between
t and z via N = N, , = [y(a,2)]. Define c; by (4.5) [in which ¢ = ¢(v,2)] and let

<03, | Wl < logm,

c; VN +v ~ Cis1
D,i::=Dyn{t+ I < Onsy —0) < t+ —L——,
It N { ovVN +v o N oVN +v

N+ )8y —(N+v—Dbyyp_1 > c}.
From (4.49), it follows that on Qx N Dy,

n
nb, —ré, = Z Y; +O(N~Y8logN) uniformlyinm <r<n <N +NV3,
i=r+1
recalling that Y; = 0 + (X; — u, Vg(w)). ’Eherefore, for all large N, Yy,, >c—1
on Qy NDy N{(N + )N 4+, —(N+v —1)8yN+, —1 > c}. It will be shown later that

Z 0. )

Snl/s) Yn ZC_ 17

su P{
Itl < 2[312 0:cj < 9N1/3

i=m+1
to—2d gﬁ(§n—0)<t+ cj“,
(453) U\/T_l (2 0'\/7_1
, 2
-1 u , _13/24
x| 3 i) v
r=m

=o((1+c)™?n7') uniformlyinm <n <N+N/3and 0 <c < N2
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Hence, as in (4.51), there exists D} ; , C D, j,; such that uniformly in 0 < ¢ <
N1/3’

(4.54a) sup, S P(D,;:-Dj;,) =o((1+c)*N71),
lglxlz_gN‘/a Jj>0:c; <2N1/3 . 2

max (N +v)7? < (c; V1)V +v)~18/24

(454b) m<r<N+v

Y &Xi-w

i=m+1

%
on Du, e

Therefore, we can use an argument similar to that for (4.52) to show that on
Qn ND*

V)j)t’
N+v .
sup |(N+v)bn4y, —16r — Z Y ma,t)
m<r<N+v i=rel

—1/25 :
<N / mm{cj—cj_l,cj+2—cj+1},

for 1 < v < N1/3 and all large N. Combining this with (4.54a) and an argument
analogous to that of (4.15) and (4.16), we obtain that uniformly in |¢| < 2,

LR N+v
Z Z P{ Z X — || < WV + )3,
v=1 jZO:CjS(N.q.,/)l/a i=m+1
N+v
. . -
m<lrnSHl{7+u iZ_;Y"'”(a’t)—cj+2a
e m(§N+u—0) <t
oy e SN Tv
NV,
+ Z 0((1+C)_2N_1) +O(N‘1)
v=1
IN'/3) R )
(455) < ,,Zl P{, max rf <a, @+ N 403> (N + )., 2“6}
W N+v
v=1 j>0:c; <N +v)/3 iema+l
N+v
m<II¥lSIIIIV+V l-Zr Yi»'n(a)t) Z cj—l,
cj VN+v ~
t+ I < Gores —6)
U\/N+y o 'N +
Ci+1
<ty —1
am}

/3]
+ Z o((L+e) 2N~ +o(N7Y),
v=1 N
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where the o(N~1) term represents an upper bound of the probability of the
complement of Qx N Dy. From (4.18), it follows that ¢(t)(= ¢(tn+.,q)) = ¢(2) —
N-122¢4(z)(p— 0~ 10v)+ O ~5/8) uniformly in |z| < fand 1 < v < N'/3, Because
¢ =c,z) = v — 6)6 +20/2VN) + O(uN~"/8) by (4.22), the desired conclusion
(4.26) follows from (4.55) and (4.6), making use of arguments like those in
(4.21), (4.37), (4.44) and (4.45), and noting that sup,|< 53 7% ,(1 + c(v,2))2 =

% ,0(r=2?) < oco. '

It remains to prove (4.53), which is a refinement of (4.8). Note that for m <
n <N +N3,

m+s 2
-1 - . 13/24 _
P{lsgnga:c_mn i_%;l(Xz || >(c;vn'¥? Y, >¢c 1}

< P{||Xn —ul > (c;/2 v 1)n11/48/2}

m+s
1/2
*P{ .0 DO RO 1)n"/48/2}pm >e 1),
i=m+

Moreover, P{Y >c — 1} = O((1 +¢)~*) and as n — oo,

S (Ger —en VIP{IX - ull 2 (e} v )ntt/4E 2}

Jj=0
)
<n-V2 / P{IX — pll > (Vu v Dnl/*8/2} du
¢ —(c+1)(nlogn)l/2

= O(n1/12(1 +.0)7Y)
=o((1+ c)‘2n‘1)

uniformly in 0 < ¢ < 4n'/3, Hence a straightforward modification of the proof
of (4.8) can be used to prove (4.53). O
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