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NECESSARY AND SUFFICIENT CONDITIONS FOR THE STRASSEN
LAW OF THE ITERATED LOGARITHM
IN NONUNIFORM TOPOLOGIES

By PAauL DEHEUVELS AND MIKHAIL A. LIFSHITS

Université Paris VI and St. Petersburg Institute of Finance and Economy

We give a necessary and sufficient condition for the Strassen functional
law of the iterated logarithm for the Wiener process to hold when the topol-
ogy is defined by a general class of norms on C(0, 1).

1. Introduction and results. Let {W(¢),t > 0} be a standard Wiener
process, and consider the set Y = {Yr(s), T > 0} of functions of s € [0, 1], where

(1.1) Yr(s) = (2T log, T)~Y/2W(Ts),

log, T =log, log, T'and log, T' = log(max(T,e)). Let (Cy(0, 1), U) denote the space
C(0, 1) of all continuous functions 4 on [0, 1] with A(0) = 0, endowed with the
uniform topology U, generated by the norm || = sup; < ; < ; |(s)|. The functional
law of the iterated logarithm due to Strassen (1964) shows that Y is almost
surely relatively compact in (C(0, 1), U) and that the limit set of Y in (Cy(0, 1),
U), defined as the set of all limit points of the sequences {Y7,,n > 1} with
T, — oo, is almost surely equal to the Strassen set

s 1
12 K= {h € Cy(0, 1): h(s) = / Ji(s)ds with / h(s)ds < 1}.
0 0

Given the Strassen law, a simple argument shows that with probability 1,
for any continuous functional ¥ on (Cy(0, 1), U), one has

(1.3) lim sup ¥(Y7) = sup ¥(h).

T— o0 heK
In particular, the choice of ¥(h) = |h(1)| in (1.3) yields the usual law of the
iterated logarithm for the Wiener process due to Lévy (1937).

In view of extending the validity of (1.3) to a larger class of functionals than
that of the continuous functions on (Cy(0, 1), U), a natural question is to charac-
terize the topologies 7 on Cy(0, 1) for which this statement holds with U replaced
by 7. This problem has received some attention lately. Particularly, Baldi, Ben
Arous and Kerkyacharian (1992) have shown that the Strassen law holds for
the topology generated by the Hélder norm

(1.4) IR = sup l|h(s)—h(t)|/|t—s|"

0<s<t<
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if and only if o < 1/2. Their arguments are based on Schilder-type large devia-
tion principles [Schilder (1966)] under the Holder topology. Beibel and Lerche
(1994) have established similar large deviation principles when the topology is
defined by a weighted sup-norm of the form

(1.5) IRl = sup |h(s)l/qs),
0<s<1

where g is a monotone increasing function on [0, 1], positive on (0, 1] and satis-
fying

(1.6) lim sup [W(s)|/q(s) < 00 a.s.
slO

A nontopological approach to the Strassen law was followed by Ben Arous
and Ledoux (1993). Recently, some sufficient conditions for the Strassen law
were provided by Deheuvels and Lifshits (1993). The purpose of this paper is
to give a simple necessary and sufficient condition for that property. In order to
state our main theorem, we will need the following notation and assumptions.

In the sequel and unless otherwise specified, || - || will denote a norm on
Co(0, 1), with values in [0, c0]. We assume, namely, that for any fi,fs € Co(0, 1)
andAlwkezR,

1.7 0 < [IAif1 + Aafell < IMAll + Iefell = (Ml 1Al + [Ae] If2]l < oo,

with the conventions that (0 x o0) = 0 and ¢ + 00 = oo for —00 < ¢ < oo.
Throughout, B will denote the o-field of Borel subsets of (Co(0,1),U) and || - ||
will be supposed to be a B-measurable mapping of Cy(0, 1) onto [0, cc]. We will
denote by (Co(0, 1), 7) the topological space obtained by endowing C(0, 1) with
the topology 7 induced by || - |.

We will say that a topology T obeys the Strassen law if the following statement
(SL) holds with probability 1.

(SL) The set of values of each subsequence {Yr,,n > 1}, with T, — oo, is
relatively compact in (Cy(0, 1), 7). The set of all limit points of sequences of this
type is equal to K.

REMARK 1.1. The statement (SL) is slightly weaker than that proved by
Strassen (1964) for the uniform topology. Namely, it does not imply that the sets
of the form {Yr, 0 < T < U} are relatively compact in (Cy(0, 1), 7) for U < oo.
On the other hand, (SL) is still sufficient for the main implication of the Strassen
law, since it implies that (1.3) holds for each 7-continuoeus functional ¥.

REMARK 1.2. If 7 is generated by a measurable norm || - || as above, and
whenever K is T-compact, (SL) is equivalent to

(1.8) lim {hixelfn'( Y7 — h||} -0 as.

T — o0
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and
1.9 l;m inf||[Y7 — h||=0 a.s.foreachh e K.

Denote by I the identity mapping of [0, 1] onto itself. Our main result is
as follows.

THEOREM 1.1. Let the norm || - || be lower semicontinuous on (Cy(0,1),U).
Then, the Strassen law (SL) holds for the topology T generated by || - || if and
only if the condition

©) P( sup ||W(Q-o0)| < oo) >0 forsomee>0

0<6<e

is satisfied.

REMARK 1.3. The above-mentioned result of Baldi, Ben Arous and Kerky-
acharian (1992) is an easy corollary of Theorem 1.1, since the Hlder norm |- | &
is readily verified to be lower semicontinuous on (Cy(0, 1), U) and satisfying (C)
iff & < 1/2. Likewise, under the assumptions of Beibel and Lerche (1994), the
weighted sup-norm || - ||fIW) is lower semicontinuous on (Cy(0, 1), U) and satisfies
(C)iff (1.6) holds. Beibel and Lerche (1994) do not prove that (SL) is valid under
(1.6) in the weighted sup-norm topology, but Theorem 1.1 implies that such is
the case.

REMARK 1.4. The importance of the assumption that || - || is lower semi-
continuous on (Cy(0, 1), U) originates from the following observation. Since the
map 8 — W((1 — 6)I) is continuous with respect to U, then if | - || is lower semi-
continuous, the maps § — [|[W((1 — 6)])|| and € — supy <<, [|[W({(1 — O)I)| are
also lower semicontinuous with respect to U. Hence, the supremum in (C) can
be replaced by the supremum over any dense countable subset of [0, €], which
in turn proves measurability of sup, <4<, [|W((1 — 6)I)|. We are not aware of
any interesting example (with respect to the Wiener process) of a norm which
is not lower semicontinuous. However, our arguments enable us to prove the
following result when this condition does not hold. Under the assumption that
SUPg < g <. ||W((1 — 6))| is measurable with respect to the o-field B completed
with respect to the Wiener measure [see, e.g., Dellacherie (1972)], (C) is neces-
sary for (SL) and sufficient for (1.8) and (1.9). However, we are unable to prove
in this general case that K is compact in (Cy(0, 1), 7). This means that, under
this measurability assumption, (C) implies a weak version of (SL), with rela-
tive compactness changed into total boundedness. In this case, (1.3) turns out
to hold for all functionals ¥ that are uniformly continuous with respect to | - ||
on K (see Theorem 3.1 and Corollary 3.1 in the sequel).

REMARK 1.5. The label “C” in the necessary and sufficient condition of The-
orem 1.1 refers to consistency of the norm || - || with respect to the Wiener process
(see Section 2 below).
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The remainder of our paper is organized as follows. In Section 2, we discuss
some additional consistency conditions, which turn out to be intimately con-
nected with the functional law of the iterated logarithm. We prove Theorem
1.1 in Section 3. In Section 4, we give examples of norms commonly used in
statistics to illustrate the meaning and implications of our results.

We refer to Goodman and Kuelbs (1991) and the references therein for related
results on the law of the iterated logarithm.

2. Consistency conditions. A B-measurable norm || - ||, generating the
topology 7 on Cy(0, 1), will be said to be consistent if the first two of the fol-
lowing conditions are satisfied, where c3, ¢4 and c5 are some appropriate finite
constants.

(C.1) P(|W| < 0c0)=1.

(C.2) K is a compact subset of (Cy(0, 1), 7).

(C.3) P(lim, | o{supgcg. W1 - —-W|} <c3)=1.

(C.4) P(lim, | o{supg <, g, < W01+ (1 — 82)I) — W(61) — W|} <eq)=1.
(C.5) P(imsup, | o ||W(min(Z,e))|| < ¢5) = 1.

Variants of (C.1)~(C.5) have been used by Deheuvels and Lifshits (1993) to
obtain sufficient conditions for the validity of Strassen’s law and of some of its
generalizations. In the forthcoming Section 3, we will discuss the relationships
of these conditions with the Strassen law (SL) and limit ourselves to (C.1), (C.2),
(C.3) and (C.5). The aim of the remainder of the present section is to establish
the following theorem.

THEOREM 2.1. Let the norm ||- || be lower semicontinuous on (Co(0, 1), U) and
satisfy (C). Then, the conditions (C.1), (C.2), (C.3) and (C.5) are valid.

The proof of Theorem 2.1 will be captured in the following sequence of facts
and lemmas. We first note that (C) obviously implies (C.1), so that we will
concentrate on proving that it also implies (C.2), (C.3) and (C.5). We will make
use of the following framework [see, e.g., Borell (1976)]. Let Z denote a random
vector taking values in a Hausdorff locally convex topological space X. Denote
by Bx the o-field of Borel subsets of X, and assume that the probability law
P4(B) = P(Z € B), B € By, is a centered Gaussian Radon measure. Then, there
exists a kernel H, which is a linear subspace of X, endowed with a Hilbert norm
|- |, such that the following property holds. For any k € H, there exists a linear

measurable form % on X satisfying the equalities

@1  PyB+h)= / exp(x) - Lh[3)Pz(dx) for each B € By
B
and

2.2) / h2(0P(dx) = |h[2.
X



1842 P. DEHEUVELS AND M. A. LIFSHITS

In the sequel, we will specialize in the case where X = (Cy(0,1),U), Z = W is
the standard Wiener process and P; = Py is the Wiener measure [see, e.g.,
It6 and McKean (1965), Kuo (1975) or Hida (1980)], in which case H con-
sists of all absolutely continuous functions % of the form h(u) = [ 4(t)dt with

fo #2(¢)dt < co. The corresponding Hilbert norm is defined on H by the expres-
sion |- |g = { fo #%(t)dt}/? and the Strassen set K is the unit ball of H. It is
noteworthy that in this case, (2.1) reduces to the celebrated Cameron—Martin

formula [Cameron and Martin (1945); see, e.g., Kuo (1975)]. The next lemma
[Borell (1977)] states a useful simple consequence of (2.1).

LEMMA 2.1. Let h € Hand let A € Bx denote a symmetric subset of X. Then

2.3) P#(A +h) > exp(~3|h|Z) PZ(A).

PRrROOF. By setting B = A in (2.1), the Jensen inequality gives, by symmetry
of A and linearity of h

/ exp(h(x))Pz(dx) > Pz(A) exp{ /A E(x)Pz<dx)/Pz(A>} = Pz(A). 0
A
Lemma 2.2 yields the key argument in the proof that (C) implies (C.2).

LEMMA 2.2. Let (C,| - |o) denote a normed space, let || - ||o denote a lower
semicontinuous norm on (C,| - |o) and let T denote the topology defined by || - ||o
on C. Then, whenever a compact subset of (C, | - |o) is totally bounded with respect
to || - |lo, it is also compact with respect to T.

PRrOOF. See Proposition 4.1 of Deheuvels and Lifshits (1993). O

LEMMA 2.3. Let the norm || - || be lower semicontinuous on (Cy(0,1),U) and
satisfy (C). Then the condition (C.2) holds.

PrOOF. By Lemma 2.2, all we need is to show that, under the assumptions
of the lemma, K is totally bounded with respect to the norm || - ||. For any
h € Co(0,1)and M > 0, let Dy, 5, = {g € Co(0,1): ||h —g|| < M} denote the ball of
radius M centered on k. Since (C) implies (C.1), we may use the latter property
to establish the existence of M so large that

2.4) Pw(Dyr, o) = P(W € Dy, o) = P(|W|| < M) >0,

where 0 denotes the null function. Let ¢ > 0 and hq,...,k, € K be such that
|hi — hj|l > e for 1 <i < j < n. Since the balls Dy, oys,/. are then disjoint,
7 1Pw(Dym, omn;/e) < 1, whence

-1 -1
(2.5) n< { min Py (D, oun, /e)} < {hirelngw(DM, 2Mh/e)}

1<i<n
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On the other hand, (2.3) and the symmetry of the ball Dy ¢ imply that, for any
h e K,

(2.6) Py (Dyg,2n01/¢) > exp(—(2M /)4 bl ) Pw(Das, o)

By combining (2.4), (2.5) and (2.6) with the fact that |h|g < 1for A € K, it follows
that

@2.7) n < exp(—(2M/2) 4 1l /Pw(Du, o)
By (2.7), the total boundedness of K with respect to the norm ||-|| isimmediate. O

We now turn to the more delicate part of the proof of Theorem 2.1 related to
the conditions (C.3) and (C.5).

LEMMA 2.4. Let the norm || - || be lower semicontinuous on (Cy(0, 1), U) and
satisfy (C). Then the condition (C.3) holds.

ProoF. The triangle inequality implies that

Cs = gf%{ sup [|W(@ - 6)) _Wn}

0<6<e
(2.8)
< lim { sup ||W((1-06)) ||} +||W].
€l0 Lo<o<e
Next, we make use of the fact that, provided | - || is lower semicontinuous,

for any fixed § € [0,1] the map A — ||A((1 —0)])| is lower semicontinuous
on (Cy(0, 1), U). This, in turn, implies that, for any ¢ € [0, 1], the map A —
supy < ¢ < [[A((1 — )D)|| is also lower semicontinuous. It follows that the set

(2.9) E. = {h € Co(0,1): sup [R((1-0ON) < 00}
0<0<e

is a B-measurable linear subspace of (Co(0,1),U). The zero-one law [see
Cameron and Graves (1951), Kallianpur (1970) and Jain (1971)] implies there-
fore that Pw(E.) = 0 or 1 for each ¢ € [0, 1]. In view of (2.9), it follows that the
assumption (C) is equivalent to

(2.10) Pw(E.) =P( sup |[R((1-0))| < oo) =1 for somee > 0.

0<60<Le¢

By combining (2.8) with (2.10) and the fact that (C) implies (C.1), we see that
(C) implies almost sure finiteness of C3. All we need therefore is to set c3 = C3 in
(C.3) and to prove that Cj3 is nonrandom. Toward this goal, we will make use of
the almost surely uniformly convergent on [0, 1] orthogonal Karhunen-Loéve
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expansion [see, e.g., Example 1.4.4 in Ash and Gardner (1975), page 42]

wey =3+ > {(r- %)w}_lgne,,(t)

(2'11) n=1 n=m+1
= WSmt)+ W>™(¢t) for0<t<1,

with e,(¢) = 21/2sin((n — })mt), n = 1,2,..., and where {&,, n > 1} is a se-
quence of independent N(0, 1) random variables. Noting that, almost surely for
n=12,...,

1
(2.12) o=(n—3)m / W(t)en(t)dt,
0

we will show that the limit c3 is independent of ¢y, . .., &, for each m > 1. Since
the o-algebra of events (),,~ ;0{&n+1,&m+2,...} is degenerate, this, in turn,
will suffice to prove the nonrandomness of Cs. Toward this goal, we make use
of the triangle inequality to obtain from (2.11) that

sup ||[W((1-6)0)-W|— sup |[W>™((1-60)—-W>"|
(213) 0<6<e 0<0<e
< sup |[WS™((1-0))-W=m|.
0<6<e

In view of (2.13) and of the fact that W>™ and W=™ are independent, the proof
boils down to showing that for each m > 1,

(2.14) lim [W<"(1 - O) ~WS"[[ =0 as.

Let m > 1 be fixed. We see from (2.11) that
[W="™((1- o)1) —w=m|

i -1
< { > {(- )} I&l}  max_|lea((1 - 6)]) —ea.
n=1 snx

Moreover, since e, (1 — 0)I) —e, e Hforn =1,2,...,

(2.15)

,maxlen((1—6)) —en|

@16 <{ max len(1-00) —ealgf, sup {IAl/Ihln}

= { max len((1~0N) ~ (1~ Oenly +0 max |en|H} sup [A

where we have used the triangle inequality. Lemma 2.3 implies that, under our
assumptions, K is compact with respect to-the topology defined by || - ||, so that
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supy, ¢ ||| < co. On the other hand, it follows from the definitions of e, and
| - [m (for Wiener measure) that, uniformly overn =1,...,m,

len ((1 = 6)) — (1= Ben |
1
<2(n- 1220 - 9)2/ |cos((n — $)m(1 - o))
0

(2.17) o ((n B %),rt) |2dt

1
<8(m - %)%2/ sin2((n - %)71'0/2)dt —0 asf—0.
0

Thus, by combining (2.16) with (2.17), we see that for any fixed m > 1, the
right-hand side of (2.16) tends to 0 as § — 0. The proof of Lemma 2.4 is now
complete. O

LEMMA 2.5. Let the norm || - || be lower semicontinuous on (Co(0, 1), U) and
satisfy (C). Then the condition (C.5) holds.

PrROOF. Let W, = W(min(7, y)) for v > 0. The map v — W,, of [0, 1] onto
the linear space Cy(0, 1) endowed with || - || defines a nonhomogeneous Co(0, 1)-
valued process with independent increments. Therefore, we may apply to any
finite (or countable) subset II of [0, 1] the Lévy inequality

(2.18) P( sup |W,| > r) < 2P(|Wy|| >r) =2P(|W|| >r) forr>0.
vyen

Since the map v € [0, 1] — W,, is continuous with respect to the uniform topol-
ogy, the map v € [0, 1] — ||W,| is lower semicontinuous, whence, by (2.18),

(2.19) P( sup ||W,|| > r) <2P(|W|| >r) forr>0.
[0, 1]

v €10,

Next, the condition (C) implies (C.1), which in turn implies the existence of an
rs > 0 so large that 2P(|W|| > r5) < 1. Let

(2.20) Cs :=limsup |W,|.
710

It follows from (2.19), (2.20) and the inequality 2P(|W| > r5) < 1 that P(C5 <
r5) > 0, which in turn implies that P(C5 < co) > 0. On the other hand, Cjs
is measurable with respect to the o-field N, ,o{W(s), 0 < s < ¢}, which is
degenerate by Blumenthal’s zero-one law [Blumenthal (1957)]. Hence, C; is a
finite constant and (C.5) holds with c5 = C5. O

PrROOF OF THEOREM 2.1. In view of the obvious implication that (C) implies
(C.1), the statements of Lemmas 2.3, 2.4 and 2.5 prove the theorem. O
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3. Proof of Theorem 1.1. and related results.

3.1. Necessity of (C). Denote by B* the o-field B completed with respect to
the Wiener measure [see, e.g., Dellacherie (1972)]. We will say that the norm
| - || is sup-measurable if the following condition is satisfied:

The map A € Cy(0,1) » sup |h((1 — )| is B*-measurable
(M) 0<6<e
for each ¢ € [0, 1].

We will say likewise that the norm || - || is lower semicontinuous if it is lower
semicontinuous with respect to the uniform topology U. Clearly, this assumption
implies (M). Recalling that E. = {h € Cy(0,1): supy<¢<, [|R((1 — OI)|| < oo},
the arguments following (2.9) imply that, under (M), the assumption (C) is
equivalent to P(W € E.) = 1 for some ¢ € (0, 1]. Moreover P(W € E.) = 0 or 1 for
each ¢ € [0, 1]. Let further

(3.1) E, = U E. = {h € Co(0,1): limsup ||A((1 - O))|| < oo}.
10

e>0

In view of (3.1), we have E., C E., C E; for 0 < g3 < g1 < 1. Therefore, if
(C) does not hold (resp. holds), then P(W € E.) = 0 for all ¢ € (0,1] (resp.
P(W € E,) = 1 for some ¢ € (0,1]). This in turn is equivalent to P(W € Ey) =0
[resp. P(W € E;) = 1]. Observe from (1.1) and (3.1) that if P(W € Ej) = 0, then,
foreachn=1,2,...,

3.2) lim sup ”(2 log, n)Y/2Y, _ 9)” =00 as.
010

This readily implies with probability 1 the existence of a sequence 6,, € (0, 1]
with 6, 1 1 such that ||(2logyn)Y/2Y 1 _g,)|| > 2log,n. It follows that there
exists almost surely a random sequence 0 < T < --- < T}, — oo such that

(3.3) Jim_|[Y7, || = co.

Since (3.3) is in contradiction to the fact that {Yr,, n > 1} would be, according
to (SL), relatively compact in (Cy(0, 1), 7), the topology r defined by || - || obeys
the Strassen law only if (C) holds.

By all this, we have proved the necessity of (C) in Theorem 1.1. This result
is stated in the stronger setting of (M) as follows.

LEMMA 3.1. Let the norm | - || satisfy (M). Then the sequence of values of
Y, || is bounded with probability 1 for each positive sequence {T,, n > 1} with
T, — oo only if (C) holds. In particular, (SL) holds only if (C) holds.

3.2. Sufficiency of (C). A rough outline of our proof is as follows. In view
of Theorem 2.1, all we need is to establish that the norm obeys Strassen’s law
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when the conditions (C.1), (C.2), (C.3) and (C.5) are satisfied. This will require
the following technical arguments.

We will make an instrumental use of the isoperimetric inequality [Borell
(1975); Sudakov and Tsyrelson (1978)]. In the general setting of (2.1) and (2.2),
with a space (X, Bx), an X-valued random vector Z and kernel H with unit ball
K with respect to the norm | . |y, for any r > 0, A € Bx and B € Bx with
BnNnA+7rK) =@, wehave

(3.4) P#(B) < 1- o{071(Py(4)) +r},

where ® (resp. 1) denotes the distribution function (resp. the quantile func-
tion) of the standard normal N(0, 1) law. For a proof and discussion of (3.4), we
refer to Ledoux and Talagrand [(1991), page 17]. The following lemma states
some useful consequences of (3.4).

LEMMA 3.2. Let || - || be a measurable seminorm defined on a Hausdorff
locally convex topological space X, and let Z denote an X-valued centered
Gaussian random vector with Radon distribution Pz such that P(|Z| < o) = 1.
Let m be a median of the distribution of ||Z|, and let ¢ > m, o = sup, < |||,
B =pBc,Z) :=c/HP(|Z|| < c)).

Then, for any R > m, the following inequalities hold:

P(|Z| > R) <1-&((R—m)/0),

(3.5) o< B,
P(|Z]) > R) < 1- &(R - m)/8).

Moreover, for R > Ry(Z, || - ||) sufficiently large, we have

(3.6) P(|Z| > R) < exp(—Rz/(Bo—z)) and P(|Z|| > R) < exp(—Rz/(3ﬂ2)).

Proor. By the triangle inequality, we see that, for any x = y + rh with
lyll < m,h € K, the inequality ||x|| < m +r||h| < m +ro holds. The isoperimetric
inequality (3.4), applied to A = {y: |ly|| < m} and B = {x: ||x| > m + ro} yields
Pz{x: ||x|| > m +ro} < 1 — &), which gives the first well-known inequality
[Talagrand (1984)] in (3.5) after a change of variables.

For the second inequality in (3.5), we let A € K be nonnull and expand Z in
a vector of the form Z = Z,, + ¢k, where Z,, is a centered Gaussian vector and ¢
is a centered N(O, lhh}",[z) Gaussian random variable independent of Z;,. In view
of the symmetry of the distribution of Z), we have, for any r > 0,

P(IZ] 2 7) 2 3P(Igk]l 2 ) = 3P(I¢] > r/I1All) = 1 — @(rlhlu/Ik]).-

By taking the supremum of the latter expression over & € K, h # 0, we obtain

P(12] 27) > sup {1-2(ihln/IRN)} =1~ 2(r/0);
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hence, 0 < r/®"Y(P(||Z| < r)). By setting r = c in this last expression, we get
o < (. The remainder of the proof is straightforward and therefore will be
omitted. O

We now turn to the proof of the sufficiency of (C) via the following three steps.

Step 1. Geometric sequence argument. Let A > 1and set T, = \* for n =
1,2,.... The following lemma holds.

LEMMA 3.3. Let the norm | - || satisfy (C.1). Then for any fixed \ > 1, we have
3.7) lim { inf |[¥r, - h||} =0 as

n— oo

ProoF. By the Borel-Cantelli lemma, it is enough to prove that for any
e > 0, we have

(3.8) ;P(hlg{( IYr, — k| > e) < 0.

Toward this aim, we set Ly = (2log, T)Y/2, Dy 1, = {g € Co(0,1): |lg — k|| < M}
and observe that (C.1) implies the existence of a large M > 0 such that

3.9 Pw(Dy,0) = P(|W| < M) > ®(1).

Since for any T' > 0, LyY7 and W are identically distributed, we have ultimately,
as T — © ,

(3.10) P(huelf]l‘( 1Yz = hll > 8) = P(W¢D5LT,0 +LTK)

< P(W ¢ Dy,0 +LTK).

We now apply the inequality (3.4) with Z = W, X = C¢x(0,1), K = K, r = Ly,
A = Dy o, Bx = B and B = Cy(0,1) — {Dy, 0 + L7K}. We note that K, being
compact in (Cy(0, 1), U), belongs to B, the same being true for Dys, ¢ and B by the

measurability assumption on || - ||. This, in combination with (3.10), yields
. _ <1_ '
(3.11) P(hlg{( Y7 —h| > e) <1-®(1+Lp)

By setting T' = T}, in (3.11), one can easily infer (3.8). O

REMARK 3.1. One readily extends (3.8) via (3.11) to all sequences T, - —
oo such that the series 3,(log T,)~'(log, T,,) /2 exp(—+/21log, T},) < oo. This
shows that, under the sole assumption (C.1), Y7, clusters into K with respect
to the topology T for all sequences satisfying this condition.

Step 2. Continuity argument. Let A > landletT, =M forn=1,2,.... We
have the following lemma.



A NECESSARY AND SUFFICIENT CONDITION FOR STRASSEN'SLIL 1849

LEMMA 3.4. Let the norm | - || satisfy (M), (C.1) and (C.3). Then for any fixed
€ > 0, there exists a \g > 1 such that forall 1 < )\ < ),

n — oo

(3.12) limsup{ sup |[Yr-Yr, } <& as.
TG[Tn:TrHI]

PRrROOF. Set for convenience U = T, , ; and recall that Ly = (2log, T)%/2. The
triangle inequality entails that, for all large n,

sup Y7 Y|

U/AST<U

< sup {||YT — T-'>W(UI)/Ly|| + |T~2W(UI)/Lr - YU||}
U/AST<U

< sup U~Y2\W(TI)- WUD)| /Ly
U/ALST<LU

(818)  + sup |(Lu/Lr)(U/T)" - 1|U-2WWD|/Ly

U/ALST<LU

<2Y2y-Y2  sup |W(TI) - W(UD)| /Ly

U/AST<U

+O\ = DU Y2|\WUD)|| /Ly
< 21/2Ll_11{771 + 7]”},
where 7' is identical in distribution to supy < g <11/ [[W(1 — 6)I) - W|| and 7"
is identical in distribution to (A — 1)||W]||. It follows readily from (3.13) that

P( sup  [¥r—Yg|> e)
TG [TnyTn+1]

< P( sup ||[W(@-6)1)-W| > %(logz U)l/z)

(3.14) 0<9<1-1/A

+P(IIWII > -;-(logz Y2/ - 1))
=: D, + D).
To evaluate D), observe by (M) that the seminorm

Ny = sup |[h((1—6)) —h
0<9<1-1/A .

is measurable. Moreover, the assumption (C.3) ensures that P(N,(W) < c0) = 1
for all A > 1 sufficiently close to 1. In addition, if c; is as in (C.3), we see that
this assumption also implies that

BN = (s + 1) /@7 (PNAW) < c5+1)) -0 asA |1
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By choosing X > 1 sufficiently close to 1 and then by applying (3.6) to N, with
Z =W and R = (¢/2)(log, U)'/2, we obtain that for all large n,

2

£ '
< =&\ )
520y log, U) <n ,

(8.15) D;, <exp (—

where 6§'()\, €) = €2 /(165%(\)).

Consider now Dj. By (C.1), P(|JW| < oo) = 1, so that we may apply (3.6)
with Z = W, and R = e(log, U)Y/2/(\ — 1) and o = supy, < k ||k|| to obtain that, as
n — oo,

2

6 11
- < p="0e
12520\ — 12 02 U) =" ’

(3.16) D) < exp(
where §”()\, €) = €2/(160%(\ — 1)?).

By choosing further X > 1 so close to 1 that min{§’(\, ), 6”(\,€)} > 1, we ob-
tain (3.12) by combining (3.14), (3.15), (3.16) and the Borel-Cantelli lemma. O

REMARK 3.2. As follows from Lemmas 3.3 and 3.4, the relation (1.8), which
is the first half of Strassen’s law, is implied by (M), (C.1) and (C.3), the latter
conditions being satisfied via Theorem 2.1 if || - || is a lower semicontinuous
norm fulfilling the assumption (C).

Step 3. Occupancy argument. Let A > landletT, =M forn=1,2,.... We
have the following lemma.

LEMMA 3.5. Let the norm | - || satisfy (C.1) and (C.5). Then for any fixed
h € Kwith |hlu < 1 and € > 0, there exists a A1 > 1 such that for all X > )1,

(8.17) limiorgf{HYTn —h|} <e as.

ProOF. Let A > 1,set T, = A" for n = 1,2,... and Ly, = (2log, T,,)*/2.
Consider the decomposition

Yz, = LT3 V2 (WD - W(Ta_ 1)) Lgs 1,1y
(3.18) + LT *W (T, min (1,7, 1/T5) )
=&+ el 2

Observe first that ¢, follows the same distribution as L;nIW(min(I A7),
Moreover, by (C.5), there exists a A\; > 1solarge that, forall A > )\, P(||W min(Z,
A1) < 00) = Land B = B(N) := (e5+1)/@~1(P(|W(min(Z, A\~ 1))|| < e5+1)) < £/5.
This enables us to apply (3.6) with Z = W(min(I, A\~1)) and R = L7, /2 to obtain
that for all n sufficiently large,

(3.19) P(|lg, — Yr,|| = ¢/2) =P(||&)|| > ¢/2) < exp(—€®L}, /125%) <n~2.



A NECESSARY AND SUFFICIENT CONDITION FOR STRASSEN’SLIL 1851

| 'fT|n al}:fl}ifatio? of the triangle inequality to (3.18) yields ||&, —&|| < ||Y7, — A+
&"||, which implies, in turn,

(3.20) P(|l&, —h| <e/2) <P(|Y7, —h| < e/4) +P(|l&)|| < €/4).

Since L1, Y, and W are identically distributed, we have

(821) P(|Y7, —hll<e/4) = P(|W — Lr,h|| < L1,e/4) = Pw(An + hy),

where A, := Dy, ./4,0 and hy := Lr,h. Observe that 1L§, =(1+o0(1))logn, and,
by (C.1), that PW(A ) — 1 as n — oo. It follows therefore from (3.21) and (2.3),
taken with Z = W, A = A,, and h = h,,, that for all large n,

(3.22) P(|Yr, —h| < e/4) > 2exp( |h|1H[L2 ) > 2exp( |h|mlogn).

By combining the estimates (3.19), (3.20), (3.21) and (3.22) with the assumption
that |h|g < 1, we readily obtain that

(3.23) > P(||é, —hll <e/2) =co and > P(llg, — Yr,ll > £/2) < o0

Since the ¢, are independent, based on nonoverlapping increments of the
Wiener process, a repeated application of the Borel-Cantelli lemma in (3.23)
implies (3.17). O

We may now combine Steps 1, 2 and 3 to obtain the following variant of the
sufficient part of Theorem 1.1.

THEOREM 3.1. Assume that the norm || - || satisfies (M), (C.1), (C.3) and
(C.5). Then

(3.24) Jim {hlgtﬂ"( Yy — h||} =0 as.
and, for any specified h € K,
(3.25) lg‘m inf||Yr — k|| =0 as.
In addition, if K is totally bounded with respect to | - ||, then

(3.26) sup {liminf||YT - h||} =0 as.
heK T — oo

ProOF. The assertions (3.24) and (3.25) are direct consequences of Lemmas
3.3, 3.4 and 3.5. Note that an application of Lemma 3.1 in conjunction with
(C.1) suffices to show that ¢ = sup; ¢k |k|| < co. Given (3.24), (3.25) and total
boundedness of K, (3.26) is immediate. O
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The following corollary of Theorem 3.1 shows the usefulness of the weak form
of the Strassen law obtained by combining (3.24) and (3.25) [or equivalently (1.8)
and (1.9)].

COROLLARY 3.1. Assume that the norm || - || satisfies (M), (C.1), (C.3) and
(C.5). Assume further that K is totally bounded with respect to || - ||. Then for any
specified mapping ¥ of Cy(0, 1) onto R, uniformly continuous with respect to || - ||
on K, we have

(3.27) lim sup ¥(Y7) = sup ¥(h) a.s.
hEK

T — o0

ProOF. Assume first that L; = limsup;,_, ., ¥(Y7) < oo and Ly = sup;, ¢ g
¥(h) < oo, and let ¢, be a sequence such that £, — oo with ¥(Y;,) — L. By
combining the total boundedness assumption with (3.24), it follows that for
each fixed n > 0, we may find an A, € K and extract a subsequence ¢, from ¢,
such that ultimately ||Yy — h,|| < 7. The uniform continuity assumption shows
that, given any ¢ > 0, we may choose ¢ > 0 so small that |g — A,|| < n implies
|¥(g) — ¥(hy)| < €. Therefore, we have L; < € + Ly almost surely. Conversely,
if A is such that ¥(k) > Ly — £/2, we may use (3.25) to obtain likewise that
L, > L, — ¢ almost surely. Since ¢ > 0 can be chosen arbitrarily small, the
conclusion is immediate. O

ProoF oF THEOREM 1.1. The proof follows directly from a joint applica-
tion of Theorem 2.1, Lemma 3.1, Theorem 3.1 and the facts that (C.2) implies
total boundedness of K with respect to the norm || - || and that the lower semi-
continuity of || - || implies (M). O

4. Applications and examples.

.

4.1. Weighted sup-norms. Let q be a positive measurable function defined
on (0,1) and bounded away from 0 on each interval of the form [e, 1] for € > 0.
Assume further that

(4.1 lim sup |W(s)|/q(s) < 0o a.s.
sl0

For instance, (4.1) is satisfied when

1/2
4.2) lim sup {q—l(s)(slog2 (l/s)) } < 0.
slO

It is readily verified that under (4.1) the weighted sup-norm ||A| = sup,¢ (o, 1
|h(s)}/q(s) satisfies (C). Recalling the results of Beibel and Lerche (1994), we
see that we need not assume [as they do in (1.6)] that ¢ is monotone to ensure
the validity of (SL).
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4.2. Integral norms. Let q is positive measurable function defined on (0, 1)
and assume that

1
4.3) / W(s)|/q(s)ds < 00 as.,
0

which is easily checked to hold when
1
4.4) / g (s)s2ds < o0.
0

Then the integral norm ||| = f01(|h(s)| /a(s))ds satisfies (C).

4.3. Holder-type norms. Letq be a positive locally bounded function defined
on (0, 1) and assume that

(4.5) sup |W(s)-W@)|/g(s—2t) < oo as.,
0<s<t<1

which is easily checked to hold when

(4.6) lim sup {q‘l(s) (s log(l/s)) 1/2} < 0.
s|l0

Then the Hélder-type norm |2 = supg < s < ; <1 [2(¢) — h(s)|/q(¢ — s) satisfies (C)
(see Remark 1.4).

4.4. Norms based on the Karhunen—Loéve expansion of W. 'We return to the
Karhunen-Loéve expansion given in (2.11). Introduce the norm

1
(n— D / h(t)en(t)dt' / (log, )'/2.
0

4.7) |k|| = sup
n>1
It is easily checked through the Borel-Cantelli lemma that this norm satisfies
(C.1) since, via (2.12),
(4.8) |W|| = sup {|¢.|/(og, )%} <o a.s.
n>1

On the other hand, it can be seen likewise that
(4.9 limsup |[W((1-0I) - W| >2 as.
610 -
The assertions (4.8) and (4.9) show that § — W((1 — 0)]) is a rare example of a

bounded but discontinuous (Cy(0, 1), || - ||)-valued process. We have the follow-
ing proposition.

PROPOSITION 4.1. The norm | - || defined in (4.7) satisfies (C).



1854 P. DEHEUVELS AND M. A. LIFSHITS

Proor. Fixn > 1 and introduce the centered Gaussian process defined by

1
4.10) GO = (n— )7 / W(bt)e,dt for 6 [3,1].
0
In view of the definition of (C) and of (4.7), all we need is to check that
(4.11) sup { sup |(.(0)|/(log, n)l/z} < 00.
n>1 loell/2, 1
Toward this goal, we first represent (,(0) as a stochastic integral by letting
6) = 22(n / W(ensin((n — 3)rt)de

(4.12) = 212(n — 1) / Wewsin((n - §)m/0)du/6

= 91/2 / cos((n — §)mu/0)dW(),
0
so that
6
(4.13) E(®) =2 / cos? ((n — })me/0)du =0 < 1.
0

Next, we consider the natural metric pn(;, t) = {E(((a(s) — Gu(8))2)}/2 gener-
ated by the process (,(-). We obtain from (4.12) thatfor 1/2 <6 <60+6 <1,

2
0 1\ 7u 1\ nu
2 _ _L\mu) L\ mu
pn(0,0+6)-2/0 (cos((n 2) 7 cos (n 2)0+6 du
0+6 1\ 7u
2 — — —_—
+2/e cos ((n 2)6+6
1\ ,./1 1 \2 3 1\ 6
< _ = B )
_2<n 2)%9(0 0+5) + 26sin (n 2>6+6

(4.14)

whence p,(6, 8 + 6) < 4nné. It follows that for any € € (0,2%/2), the 26 grid with
6 = e/(4nr) provides an e-net of the metric space ([1/2,1], p,). Let N,(¢) be
the minimal number of balls of radius € covering this space. We have N,(¢) <
(46)~! < nn/e. This yields an estimate for the Dudley 1ntegra1 D,, [see Dudley
(1973) and Adler (1990)]:
21/2

. D, = / ( logN,,(s)) 172 ge
(4.15) 0 .

< (2lognm)/? +/ |loge|Y/2de < 2Y2(logn)'/? + 3.

0



A NECESSARY AND SUFFICIENT CONDITION FOR STRASSEN’SLIL 1855

It is well known [see, e.g., Dmitrowskii (1990)] that for each bounded centered
Gaussian process ¢, the median m of the random variable sup |{| can be evalu-
ated from the corresponding Dudley integral D via the inequality m < 4(21/2D).
When applied to {,(-), this estimate yields the following upper bound for the me-
dian my, of supg ¢ (12, 1 2 (0)|:

(4.16) m, < 4(2Y/2D,) < 16(logn)'/% +18.

We finally use the basic upper bound (3.5) with X = C(1/2,1) (C(e, b) denot-
ing the set of continuous functions on [a,d]), Z = (,(-) and the norm ||A| =
SUPg ¢ (1/2, 11 [7(6)|. This, in combination with (4.13) and (4.16), shows that, for
any A > 1,

P( sup |¢(6)] > (16 +A)(logn)Y/2 + 18) < 1- &(A(logn)'/?).
0el1/2,1]
Thus, for A > 1,
ZP( sup  [Ga(®)]/(logn)V/2 > 34 +A> <31 - 8(Alogn)"?) < oo
= \oeel/2,1 n
An application of the Borel-Cantelli lemma completes the proof of (4.11). O

REMARK 4.1. A similar construction shows the delicate difference between
the conditions (C) and (C.1). Let k,, = 2" for n > 1 and set

1
(kn - %)w /0 h(t)ek,,(t)dt' / (log, n)'/2.

It is immediate from the fact that the random variables in (2.12) are indepen-
dent that the seminorm defined via (4.17) satisfies (C.1). However, a careful
evaluation shows that it does not satisfy the condition (C).

(4.17) Al = sup
n>1

5. Conclusion. It is obvious that our arguments can be used, in the spirit
of Goodman and Kuelbs (1991) to obtain results similar to those given above for
general Gaussian processes, or likewise to treat the related problem of partial
sums. This will be considered elsewhere.
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