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A UNIVERSAL ONE-SIDED LAW OF THE ITERATED LOGARITHM!

By DaviD M. MAsoN
University of Delaware

We prove that the lim inf of suitably normalized sums of i.i.d. nonnega-
tive and nondegenerate random variables can with prebability 1 only be a
constant between —21/2 and 0. Moreover, we show that each value within
this range is attainable by an appropriate choice of the underlying common
distribution function.

1. Introduction and main results. Let X, X;, X,..., be a sequence of
independent and nonnegative random variables with common nondegenerate
distribution function F. Denote the inverse or quantile function of F by

Q(s) = inf {x: F(x) > s}, 0<s<1,

with @(0) = Q(0+). Also set
1-3s
u(s) = Q) du, 0<s<l1,
0

and
1-3s 1—s
2 - —
o2(s) = /0 /0 (@ Av - uv) dQ() dQ(w),

which after some integration by parts equals
]
Q1 —s)+ / Q*(w) du — (sQUL—8) + u(s)) .
0

Note for future reference that ¢%(s) is a decreasing function of s. [The function

o2(s) is a one-sided version of a function that plays a crucial role in a quan-

tile function approach to the asymptotic distribution of sums of i.i.d. random

variables developed in S. Csorg6, Haeusler and Mason (CsHM) (1988a).]
Writing Lt = log (¢ V e) and LLt = L(L¢), set forn > 1,

n=LLn)/n and a, =n'%c(b,).
Denote the nth partial sum of the X;’s as
Sn=X1+”-+Xn, n>1.
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The main purpose of this paper is to establish the following universal one-
sided law of the iterated logarithm for sums of i.i.d. nonnegative random vari-
ables.

THEOREM 1. With the above notation and assumptions, there exists a con-
stant —2Y/2 < K(F) < 0 such that

nu(by,)
(1.1) l}t_’gf—————-—————a TIn)i

and, moreover, all values in the interval [-21/2,0) are attainable.

=KF) a.s.

Our choice of the centering and norming sequences in (1.1) was motivated by
those used in Haeusler and Mason (1987) and Haeusler (1993) in their studies
of laws of the iterated logarithm for trimmed sums. Indeed, the behavior de-
scribed in our theorem can be explained roughly by the fact that in general S,
is infinitely often of the same order as its corresponding trimmed sum formed
when the top LLn extreme values are deleted, for which the normalization in
(1.1) is appropriate for a law of the iterated logarithm.

Recently Einmahl and Mason (1994), as a by-product of a more general in-
vestigation into a universal Chung-type law of the iterated logarithm, have
shown that if X is nonnegative with a distribution in the Feller class, then the
constant in (1.1) is strictly less than 0. To determine the actual value of K(F') in
our Theorem 1, one needs more information about the upper tail of F combined
with precise large deviation results such as those to be found in Jain and Pruitt
(1987). In fact, relying on the work of Jain and Pruitt (1987), Pruitt (1990)
proved the following result, which is closely related to our theorem.

THEOREM 1 OF PRUITT (1990). Assume X, X;, Xy, ..., areindependent and
nonnegative random variables with common nondegenerate distribution func-
tion F in the Feller class. Let (3,, n > 1, be a sequence of positive constants such
that B, /n is nondecreasing. Then

(1.2) P(S,<pB, to0)=00rl

according to whether the sum

(1.3) > n7'p, log(3p;
n=1

is finite or infinite, where p, = P(S, < ,), n > 1.

The necessary information about the asymptotic behavior of the probabilities
pn required to apply Pruitt’s theorem can be obtained from the large deviation
results of Jain and Pruitt (1987). -

Let K(F) be the constant appearing in (1.1) of our Theorem 1 and for any
real € set, forn > 1,

(1.4) B =2 (unlbn) + (KF) + ) o ba)b1?).
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Then, obviously, our Theorem 1 says similarly that the probability in (1.2) is
equal to 0 or 1, according as € < 0 or £ > 0. However, a direct comparison
between Pruitt’s result and ours is extremely difficult. It is only possible when
F is in the Feller class and the sequence 3, in (1.4) is such that 3, > 0 and the
sequence (,/n is nondecreasing or, at least, is asymptotically equivalent to a
sequence with this property. This happens, for instance, when F'is in the domain
of attraction of a stable law, but, clearly, any in-depth comparison between the
two results requires knowledge of the constant K(F) and of the behavior of the
functions u(s) and o(s)s'/2 as s | 0, when, more generally, F is in the Feller
class. Even in the stable case, to obtain this information entails a considerable
amount of analysis. Our theorem only says that —21/2 < K(F) < 0 and Pruitt’s
(1990) Theorem 1 is not concerned with this constant at all.

If one assumes that F' is in the domain of attraction of a stable law of index
0 < a < 2, written F € D(a), or F has a slowly varying upper tail, written
F € D(0), then the value of K(F) can be derived from known results by Wichura
(1974) for the case 0 < a < 2, by Klass (1977) for the case o = 2 and from our
Theorem 1 for the case a = 0. Lemma 4, in Section 2, provides the value of K(F)
when F € D(a), 0 < o < 2, thus showing that the choice of a,(LLn)'/2 as our
norming sequence is correct when F € D(a) with 0 < a < 2. For F € D(0) it is
pointed out in Section 2 that one also has

(1.5) liminf S, /(an(LLn)/?) =0 a.s.

In this case our choice of the norming sequence is optimal in the sense that if
we were to replace a, by the slightly slower sequence

a,(\) =n26(0\b,) with 1<A<oo, n>1,
then
(1.6) lim S, /(an(NLLn)Y?) =00 as.

The proof of this is deferred to Section 2.

We remark in passing that the lim sup of the normalized sums in (1.1) is in
general almost surely infinite, except when EX? < co. As soon as we allow X to
have a nondegenerate negative part, our problem can change drastically. Our
present norming and centering constants may no longer be appropriate and
we then enter into the realm of the one-sided laws of the iterated logarithm
of Klass (1976, 1977, 1984), Klass and Teicher (1977) and Pruitt (1981). The
norming constants in our Theorem 1 are finite only when E{(X~)?} < co. [For a
real number x, x* = max{0,x} and x~ = min{0,x}.] In'this case, the conclusion
of our theorem remains valid. We state this as a corollary.

‘COROLLARY 1. Assume thatX is nondegenerate and E{(X~)?} < occ. Then
(1.1) remains true.
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2. Proofs. We begin by recording a couple of facts:

2.1) lim sup s¥/2Q(1 — s)/o(s) < 1.
sl0

This fact is contained in the proof of Lemma 2.1 of CsHM (1988b). Alternatively,
when 0 < Var X = 02 < 00, then o(s) — 0 ass | 0 and s/2Q(1 —s) - O ass | 0,
implying that the limsup in (2.1) is equal to zero, whereas, when EX? = oo,
then it is easy to show that

1-s
o2(s) ~ 5Q2(1 — 8) + / QW) du ass | O,
0

from which (2.1) follows.
For 0 <s < 1set

1-s
7%(s) = Q*w) du — u3(s).
0
By considering the two cases 0 < EX? < oo and-EX? = oo, it is readily veri-
fied that

(2.2) limsup7(s)/o(s) < 1.
sl0
Let U, Us, ..., be a sequence of independent uniform (0, 1) random variables

and for each integer n > 1, let Uy, < -+ < Uy, , denote the order statistics
based on Uy,...,U,. The two sequences X;, X, ..., and Q(U;),Q(U,),..., are
equal in law. Therefore, without loss of generality we shall assume throughout
that X, = Q(U,) for alln > 1.

Proor oF THEOREM 1. We first establish the lower bound:

(2.3) limint S22 o 5172

iminf - T e 2 a.s.

SetforO<b<landn >1,

Su®) = 3" {QUILU; < 1- )+ QU — BILU; > 1 - b)}.
i=1

Notice that S, () is an increasing function of b with

ES,(b) = nu®) +nbQ(1 —b)

Var S,(b) = no?(b).
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Since S,, > S,(b,), to prove (2.3) it suffices to show that

(2.4) liminf 5200 —n6a) o1/

minf = e 2 a.s.

For this we require two lemmas.

LEMMA 1. Forall0<b<1,0<n<3Y2andn>1,
2
(2.5) P(S,(b) — nu(b) < —nbY2na(b)) < 2exp (—%nb).
PROOF. Set y = bY/2Q(1 — b)/0(b) and choose 0 < 7 < 31/2, The probability
in (2.5) is equal to
P(8,(6) — nju(b) — nbQ(1 — b) < —b"2no(B){1+ n}),

which by Bernstein’s inequality [cf. Pollard (1984), page 193] is
2
< 2exp [ - 7—72—nb{1 + n_l’y}z/(l + %n{l + n_l’y})J .

Since 0 < n < 3/, this last expression is less than or equal to 2 exp(—n2nb/2). O

LEMMA 2. For all € > 0 there exists a \€) > 1 such that for all 1 < \ < \()
and all large k depending on ),

(2.6) max n{,u(bn) _ “(ka)}

<eg
mpSn<mp,y a,(LLn)1/2 ’

where my, = [\*], k > 1, with [x] denoting the integer part of x.
Proor. Notice that for any m;, <n <my, 1,

0< n{ﬂ(bn) — N(bmk)} < (mk+1 )1/2 /l_b”"“l Q) du
= a,(LLn)/2 = \LLm,, 1 o(1l—u)

— b’"k

which by (2.1) is, for all large enough &,

1-bm,

< 2mya/LLm? [ - w2 d,

1=bm,

which in turn converges to 4(\1/2 — 1) as £ — oo. Thus by choosing A(e) > 1
small enough, we have (2.6) for all large enough £ dependingon 1 < A < A(e). O
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We are now prepared to prove (2.4) and hence (2.3). Choose any 0 < ¢ < 1
and A(e) > 1 so that (2.6) holds. We see that with 1 < A < A(e) and my, = [\*],
k > 1, for all large enough %,

. Sn(bn) - nH(bn) 1/2
P(m M S CIE <-(21+e) 7" - e)
. Sp (bm ) - nﬂ(bm )
< k k
<P ( ma<nSmiy an(LLn)V?

< P(’nk <n,3?f,,k” { _Sn(bmk) +n/-t(bm,,) +nbka(1 — bm,,)}

< —(2(1 +9)) ‘/2)

> (2(1 + E)LLmk)l/zamk + mkbka(l - bmk)) s
which by Lévy’s inequality [cf. Loeve (1955), page 248)] is less than or equal to
2P <_Smk,,1 (bmk) +myp 4 lﬂ(bmk) +mp lbmk Q(l - bmk)
s 1/2
> (2my )Y a(bmk){ [((1 + a)/A)LLmk] - 1} +Mpbm, Q(1 - by,) |
This is easily seen to be, using (2.1), for all large £, less than or equal to
2P (Smy,, (bmy) — 11+ 111(bm,) < —{((2+e)/A2)1/2—2(1—A—1)}mk+1b,‘,,/,fa(bmk)).

We can assume that A\ > 1 is sufficiently close to 1 so that 2 < (2 +&)/\2—
2(1 — A1) = n% < 3. Therefore, by inequality (2.5) this last bound is less than
or equal to

2
4exp <— —2—LLmk) .

The Borel-Cantelli lemma and the arbitrary choice of 0 < ¢ < 1 finishes the

proof of (2.4).
To complete the proof of our Theorem 1, we need only show that
2.7) liminfon — 700 o o g

n — 00 an(LLn,)l/2 - 2

since (2.3) and (2.7) combined with the Hewitt—Savage 0-1 law imply the exis-
tence of a constant —21/2 < K(F) < 0 such that (1.1) holds almost surely.
Set ny, = k%, k > 1. To establish (2.7) it obviously suffices to prove that

Sn - bn
2.8) tim jnf S = 4 (0m)

—_— < .S.
k—oo ap,(LLny)1/? s0 as

Assertion (2.8) will be a consequence of the following lemma combined with a
result due to Kiefer (1972).
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LEMMA 3. Forall e > 0,

Snk - nkll/(bnk) .
. —_— ny,n — Op .0, = V.
(2.9) P( o CLn) 2 > & Unyny < 1=, zo) 0

Proor. Obviously,

Q Un M,

which by (2.1) converges to zero as £ — oco. Note that (2.1) also implies that
14(bny) / (@n,LLnp)"/?) — 0 ask — oo.

Thus to prove (2.9) it is enough to show that for all € > 0,

-1 {Q(Uin,) — (bn) }
(2.10) P( Z ank(LLnk)l/2 >¢€, Upyny <1 -0y, 1.0.) =0.

i=1
Now
P, = "'kz_l {Q(Ui,nk) - ,u(b,,k)} U s
" i=1 ank(LLnk)l/z =& Ui, m — On,
<F,(1- 2bn,,)
1-by, (-1 {Q(Ui,nk) —,u(bnk)}
+ P ‘ >e|Uy n =x | dF,
/1—2b'lk ( HZ]. ank(LLnk)l/z - | Np,Np x) k(x)
= piD + PEZ),
where F,, denotes the distribution function of Uy, n,.
First note that

P{V = (1-2b,,)™ < exp(—2LLny).

Next, since conditioned on Uy, », =%,

np—1 np—1

Z Q(Ui,n,) =p Z Q(Vix)),

i=1 i=1

where Vy(x), ..., Vy, —1(x) are independent uniform (0, x) random variables, we
see that g

) /1—b,.,,P("k‘1 {Q(Vi(x)) - ,u(b,,k)}

>
ank(LLnk)l/Z = 8) ank(x),

i=1
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which, since pu(b,,) > (1 —x) for 1 — 2b,, < x < 1 — by,, is less than or equal to

/11 ~ bn P( "kz—:l {Q(Vi(x)) -l - x)} > 6) dFy,(x).

— 2b,, i=1 an, (LLny)Y/?

Observe that for all 1 — 2b,, <x <1 - b,, and all large &,

(g — D{p - 0)/x — p(1 — 2} / (n,(LLnp)"?) < 46321 (bn,) /0 (By)-

Noting that the right side of this last inequality converges to zero, we obtain
the bound valid for all large %:

1-by,  (m=14Q(Vi(x)) — u(1l —x)
PI£2) S/ P( Z { ( ) H x/x} > _;_) ank(x).
1

— 2b,, et @, (LLny )12

Since EQ(V1(x)) = u(1 — x)/x, we can apply Chebyshev’s inequality to get, for
eaCh 1- 2bnk S X S 1- bn;,;

p(5 {00 ke o\ amevir)
@y, (LLny)Y/? 2 €2LLno2(by,)

i=1

which, by (2.2) and the fact that F is nondegenerate implies u(s) = O(o(s)) as
s | 0, for all large & uniformly in 1 — 2b,, <x < 1 — b,,, is less than or equal to

82 /l & Q%(s) ds/(az(b )LLn ) < C/LLn
ny k) = / k
0

for some constant 0 < C < co. Therefore, for all large k&,
P® < CF,,(1-b,,)/LLn;, < C exp(~LLn;)/LLny,.
From our bounds on Pﬁel) and Pﬁf) it is clear that for all large &
P, < 2C exp(—LLny)/LLn,,.

Since

o0
> exp(—LLny)/LLny, < oo,
k=1

we infer from the Borel-Cantelli lemma that (2.9) is trueforalle > 0. O

To finish the proof of (2.8) we need a special case of a result due to Kiefer
(1972), namely,

(2.11) P(1=Up py > bn, i0) = 1.
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Since {1 — Uy n}n>1 is equal in law to {Uy,,}n>1, (2.11) is contained in the
proof of Theorem 2 of Kiefer (1972).
By (2.11) and Lemma 3, for almost every w there exists a subsequence {r,}
{nz} such that U;, ,, <1—b,, fork > 1 and
lim inf 5 — T4 (bn)

Tne CREAR)
kE—oco @y, (LLry)l/2 <0,

which of course implies (2.8). This completes the proof of (1.1).
The following lemma shows that all values in the interval [-21/2, 0] are at-
tainable.

LEMMA 4. IfF € D(a), 0 < a < 2, then

(2.12) léﬂiggf%%z =K@ as.,
where
(0, ifa=0,
{(r@-a)"" - 1}a1 - ) *(2 - a)/2)",
(2.13) K(a)={ f0<a<2 a#l,
—21/2, ifoa=2,
| —K/2%/2, ifa=1,

with « being the Euler constant.

[Since the function K(«) is continuous and strictly decreasing on [0, 2], taking
all values from 0 to —2'/2, Lemma 4 completes the proof of our Theorem 1.]

PRrOOF. First assume that F € D(0). Now 1 — F(x) is slowly varying at
infinity if and only if @(1 — s) is rapidly varying at zero, that is, for all A > 1,

Q(1—-s)/Q(1 —s)\) - 00 ass |0

[cf. Corollary 1.2.1.5 in de Haan (1975)]. This allows us to apply Theorem 1.3.2
in de Haan (1975) to obtain

1-s
(2.14) Qu)du=0(sQ(1—5)) ass|0
0
and
1-s
(2.15) / Q*w)du=0(sQ*1-s)) ass|O.
; 0

Limit relations (2.14) and (2.15) together imply that
(2.16) o¥s) ~sQ3(1—5) ass|O.
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From (2.14) and (2.16) we get
nu(b,)/ (an(LLn)?) —» 0 asn — oo,

which in combination with (1.1) yields

(2.17) lim inf S = 46

im1in m = lé,"l'gigg.f Sn/(an(LLn)l/z) _<_ 0 as.

This obviously says that the lim inf’s in (2.17) are equal to zero almost surely.
Next assume that F € D(2). It can be inferred from Corollary 1 of CsHM
(1988a) that when F(0-) = 0, F € D(2) if and only if

(2.18) sY2Q(1 —s)\)/o(s) =0 ass|Oforall 0<\<oo
if and only if
(2.19) o(s) is slowly varying at zero.

From (2.18) and (2.19) it is simple to argue that

1
(2.20) n Qw)du/(an(LLn)*?) -0 asn — oo,
1-b,

which in turn implies that

N Sn_nﬂ(bn)_ c . S, —np

(2.21) l}gl}lgf a L2 = l}zn—l»lcgfan(LLn)lﬂ ,

where p := (0+) is the mean of X. By our Theorem 1, the liminf’s in (2.21) are
greater than or equal to —2/2 almost surely. Next, an application of (2.6) of

Theorem 1 of Kuelbs (1985) shows that

. oo Sp—np 1/2
—_— < - .S.
l}lrggfan(LLn)m < -2 a.s

So putting everything together we get

(2.22) lminf S22 JimingSn Z ) | o1y

n — oo an(LLn)l/z n — 60 an(LLn)1/2 a.s.

Alternatively, we could have applied statement (2.15) after Theorem 2.6 of Klass
(1977) to derive (2.22) from (2.21). ‘

Finally, we consider the case when F' € D(a), 0 < a < 2. The appropriate
liminf statement in this case can be derived, after some lengthy but routine
analysis using standard properties of regularly varying functions, from the
work of Wichura (1974). For the sake of brevity we omit these details. This
completes both the proof of Lemma 4 and of our Theorem 1. O
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PROOF OF ASSERTION (1.6). Applying Theorem 6 of Kiefer (1972) [also refer
to page 134 of Deheuvels (1986)], we have for any choice of 1 < ) < A < oo,

(2.23) limsupn(1—U,_p,,»)/LLn < X as.,
n— oo

where k, = [cLLn] and ¢ > 0issuitably small. Now for anysuch 1 < \' < \ < o0,
obviously by (2.16) and (2.23), we get

l,i,‘E.ié.}f S,,/(an()\)(LLn)l/z) >ceA"1/2 léln_l’igf Q1 - X\'b,)/Q(1 — \b,) aus.
Since Q(1—s)is rapidly varying at zero, this says that (1.6) holds forall A > 1. O

PROOF OF COROLLARY 1. First assume that E{(X*)?} < oo. In this case,
(1.1) is an easy consequence of the usual law of the iterated logarithm because
0(s)? — 02 = VarX < co as s | 0 and it is readily verified that n{u — u(,)} =
o(n'/?)as n — oo.

Now assume that E{(X*)?} = co. Set @* = max{Q,0} and @~ = min{Q, 0}.
Further, let u.(s), p_(s), o.(s) and o_(s) be defined as u(s) and o(s) with @* and
@ replacing @, in the respective formula. Let, for eachn > 1,

Sy =Q"(Up+---+Q"(U,) and S, =Q (Up)+---+Q (Uy).

Since we are also assuming that E{(X~)%} < oo, it is straightforward to show
that 0,(b,)/0(bn) — 1, 0-(b,)/0(bs) — 0 and n{EX ™) — u_(b,)} = o(n'/2) as
n — oo. Thus by the usual law of the iterated logarithm,

S; — n,u’—(bn) _

nllrrgo . LLZ - 0 as.
Applying our Theorem 1, we have
+ p—
liminfs" n1+(bn) K as,

n — 00 an(LLn)1/2

where —21/2 < K < 0. Noting that u(s) = u.(s) + u_(s), we see that the proof is
complete. O
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