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CORRECTION
UNIVERSAL PREDICTION SCHEMES

By PAuUL H. ALGOET
The Annals of Probability (1992) 20 901-941

In an earlier paper, the author proposed a universal scheme to learn
the conditional distribution of the next outcome of a stationary process
given the infinite past from past experience. An error in that paper is
corrected.

1. Introduction. Let {X;} be a stationary random process with values
in a Polish space 2. It follows from the martingale convergence theorem that
the conditional distribution P(dx | X~ %) of X = X, given the t-past X~ =
(X_4,...,X_1) converges weakly almost surely to the conditional distribution
P(dx | X~) of X given the infinite past X~ = (..., X_3, X_1). In Section 5
of Algoet (1992) (hereafter referred to as [A92]), we assumed that the process
distribution P is unknown a priori and we constructed estimates P(dx| Xt)
on the basis of the ¢-past X ¢ such that

1) f’(dx | X~t) > P(dx | X~) weakly almost surely as ¢ — oo.

A sequence of estimates P(dx | X~t) such that (1) holds under any stationary
process distribution P was called a universal prediction scheme.

If & is a finite set, then the prediction scheme of [A92] reduces to that
of Ornstein (1978) and is universal. The scheme of [A92] was claimed to be
universal in general when 2" is a Polish space, but Gusztav Morvai (1993;
personal communication) has kindly informed me of a gap in the proof of
Lemma 6. The purpose of this note is to show a way to avoid the gap. Lemma 6
may not hold as originally stated for all bounded continuous functions A(x),
but it does hold for certain simple functions A(x), and this is all we need
to prove the main result (Theorem 11) in Section 5 of [A92]. Lemma 4 was
obtained by specializing Lemma 6 to the finite alphabet case, but remains valid
as originally stated since Lemma 6 holds for the indicator functions A = 8, of
elements x € 2" when 2 is a finite set. The results on gambling, investment,
modeling and data compression in the earlier sections of [A92] did not depend
on Section 5 and hence are not affected.

We reformulate Lemma 6 of [A92] and introduce an approximation argu-
ment to show that the prediction scheme of [A92] is universal. We use the
same notation as in [A92] with some minor changes.
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2. Reformulation of Lemma 6. Let (2°,#4 ) be a separable metric
space with its Borel o-field and let {X;} be a stationary 2"-valued random
process. Let {«#;}1>1 be an increasing sequence of finite subfields that asymp-
totically generate #4 and let F ! denote the finite subfield of o(X~*) that
is generated by the events {X_; € B;,...,X_; € By}, where By,...,B; are
&-measurable subsets of 2°. Notice that % ! is monotonically increasing
and asymptotically generates the limiting o-field o(X ™). For s,¢ > 0 we de-
fine the empirical estimate i’s(dx | &) of the true conditional distribution
P(dx | %) as in [A92].

Let &1 = 1/k. We say that two distributions @ and R on the space 2" are
k-close if
(2) sup |Q(B) — R(B)| < &.

Be¥y,
Thus the total variation distance between the restriction of @ and the re-
striction of R to the finite field 4, should be no larger than &;. If A(x) is
any #p-measurable function such that 0 < A(x) < 1, then the expectations
Q{h(X)} and R{h(X)} will differ by at most &p.

For each 2 > 1 we define the empirical estimate Pk(dx | X7) of the true
conditional distribution P(dx | X~) as follows. Find the least integer n for
which there exists an integer K and a sequence (s;)o<i<kx such that 2 < K =
Sp < 81 < -+- < Sg = n and all empirical estimates }A’s,.(dx | F78),80 <t <s;_1,
1 < i < K are well defined and k-close to each other. Choose K smallest
possible, choose the sequence (s;)o<i<x smallest in lexicographic order when
read in reverse and set

3) Pr(dx | X7) = P, (dx | F5%1).

The estimate Pk(dx | X~) was denoted by P(dx | X—9*) in [A92] and is well
defined almost surely for all £ > 1 since the search for K and (s;)o<;<x must
terminate by the ergodic theorem and the martingale convergence theorem
(see Lemma 5 of [A92]).

The bad event Bf;, x(h) is defined as in [A92] for any bounded measurable
function A(x), any integers K > 1 and £ > 0 and any real number 0 < @ < 1.
Lemma 6 of [A92] should be replaced by the following result.

LEMMA 6'. Suppose the function h(x) is & g-measurable and 0 < h(x) < 1.
Then for £ >0 and 0 < a < 1 we have
4) P{Bf:r,{,(h) | B, g(h)} < (1—a) almost surely
and consequently, by induction on ¢,
(5) P{B.x(h)} = (1-a).

. The proof of Lemma 6 in [A92] breaks down at the foot of page 938, where it
is asserted that the atom W = W(w) is a cylinder set in & ~7! since all evidence
proving that w € B!, x(h) is contained in & ~?!. Morvai (1993) observed that



476 P. H. ALGOET

W is not & ~?'-measurable, while the assertion on page 940 that Ag(N) —
P{h(X) | &'} requires that W be an atom of % . [In general we have
Ag(N) - P{h(X) | W}.] Thus the proof of Lemma 6 is not valid for every
bounded continuous or bounded measurable function A(x), as was claimed.
However, the lemma is valid if A(x) is constant on atoms of the finite field
# k, and this turns out to be sufficient for our purposes.

3. Consistency of the estimates Pj(dx | X ™). Theorem 11 of [A92] is
valid, but the proof needs adjustment because we cannot rely on the old
Lemma 6. We proceed in two steps: first we infer some conclusions from the re-
vised Lemma 6, and then we prove universality of the estimates f’k(dx | X°).

THEOREM 11A. For any measurable set B in the generating field \J, <, we
have

6) lizn Pi{XeB|X }=P{XeB|X"} P-almost surely.

If a function h(x) is & -measurable for some k > 1, then the estimate

Pk{h(X ) | X~} converges almost surely to the true conditional expectation
P{h(X)| X }as k— oo

PROOF. Suppose k > 1, h(x) is a & -measurable function such that 0 <
h(x) <1and 0 < a < 1. We consider the event

¢ Py{h(X)| X} > 2+ P{R(X)| X~} io.

If this event occurs, then the event Bg x(h) occurs for infinitely many K.
However, if K > k, then A(x) is & g-measurable and Lemma 6’ implies that

P{BE(h)} < (1 - &)K.

The event Bf x (h) will occur for only finitely many K with probability 1 by
the Borel-Cantelli lemma. Thus the event (7) has vanishing probability and
Theorem 11A follows. O -

We now deﬁne the increasing subfields ; in a special way and prove that
the estimates Pk(dx | X~) converge weakly (in law, in distribution) almost
surely to P(dx | X~) as kB — oo.

Let {h«}«>1 be a separating sequence of bounded continuous functions on
Z . For any probability distributions @, and @ on .Q" we have weak conver-

gence @, — Q iff

Qn{h(X)} - Q{h«(X)} asn — oo for each fixed « > 1.
Wé assume without loss of generality that all A,(x) are bounded between 0
and 1 and we define ¢} as the finite ﬁeld that is generated by atoms of the
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form
(8) Biiyiy={x e i,27F <h(x) < (i, +1)27%1 <k <k},
where 0 < i, < 2%, 1 < k < k. The functions g1, g, ..., g oscillate by no more

than 27* on each atom B,;,..;, of ;. The finite fields &/, are monotonically
increasing and asymptotically generate the Borel o-field # 4.

THEOREM 11B. Suppose the fields £ and F~ are defined as above. If P
is a stationary distribution, then for any bounded continuous function h(x) on
2 we have

9) I}im P{h(X)| X }=P{h(X)| X~} P-almost surely.

If a regular conditional distribution P(dx | X ™) exists, then

(10) i’k(dx | X7)—> P(dx| X~) weakly P-almost surely as k — oc.

PrOOF. It suffices to prove that for any fixed « > 1 and £ > 0,
11) limksup |Pp{h(X)| X~} — P{h(X)| X"} <& almost surely.
For each K > 1 we select a representative point §§3K) in each atom B of £
and for any k > 1 we consider the  g-measurable function
B (x) = b (€59) if x € B, B € Atoms(Z k).
If K > «, then by construction
(12) |he(x) — BB (x)] < 27K,
To prove (11), choose some K such that K > « and 2%+ < ¢. Obviously
P{h(X) | X7} = P{h(X) | X"} = U + Vi,
where
U = Pi{h(X) | X7} - P{AO(X) | X7},
V) = Pp{h(X) - BE(X) | X7} - P{h(X) - R{O(X) | X}

The function hf(K )(x) is & g-measurable and bounded between 0 and 1; hence,
U gi) — 0 almost surely as 2 — oo by Theorem 11A. On the other hand, it
follows from (12) that |V§£?| < 27K+l < £ The desired conclusion (11) and
the theorem follow. O
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In general X;(w) = X(T?w) for some random variable X with values in a
separable metric space 2" and some invertible measure-preserving transfor-
mation T of the underlying probability space ({2, &, P). A regular conditional
distribution P(dx | X~) exists if 2" is a Polish space or a universally measur-
able subset of such a space, or alternatively if the measure P is perfect.
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