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MODERATE DEVIATIONS OF DEPENDENT RANDOM
VARIABLES RELATED TO CLT!

By Wu LiMING

Wuhan University

This paper consists of three parts. In the first part, we find a common
condition—the C2-regularity—both for CLT and for moderate deviations.
We show that this condition is verified in two important situations: the
Lee—Yang theorem case and the FKG system case. In the second part, we
apply the previous results to the additive functionals of a Markov process.
By means of Feynman-Kac formula and Kato’s analytic perturbation
theory, we show that the Lee—Yang theorem holds under the assumption
that 1 is an isolated, simple and the only eigenvalue with modulus 1 of the
operator P, acting on an appropriate Banach space (b, C,(E), L? ).
The last part is devoted to some applications to statistical mechanical
systems, where the CZ2-regularity becomes a property of the pressure
functionals and the two situations presented above become exactly the
Lee-Yang theorem case and the FKG system case. We shall discuss in
detail the ferromagnetic model and give some general remarks on some
other models.

Introduction. The moderate deviation (MD) estimations, like large devi-
ation (LD) estimations, arise from the requirements of statistics. The LD
offers a precise estimation associated to LLN (the law of large number), and
the MD is often used to give further estimations related to CLT (the central
limit theorem) and LIL (the law of iterated logarithm).

Let (X3):>1 be a sequence of real-valued iid. r.v’s on (Q,% P). Set
m = EX, and X, = (1/n)L}X,. For many purposes in statistics, one needs to
estimate the limit behavior of

(L1) P(X,-meA,),

where A,, a Borel subset of R, represents the deviation of X’n from m.

When A, = A, for all n, the term (I.1) is the well known large deviation. If
A, =(1/Vn)A, the CLT tells us the limit behavior of (I.1). If A, = (Mn)/
Vn)A, where Mn) verifies

I 0 d Mr) 0
(1.2) <AMn) > +* an 7 -0,
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then the quantity (I.1) becomes the so-called moderate deviation. For such
A,, (I.1) can be rewritten as

Vn
(L3) P\ 5o

[X’n—m] EA].

So MD is an intermediate estimation between CLT and LD. .

Borovgov and Mogulskii (1978, 1980) considered the MD for (X,),.,
taking values in a Banach space. Under the condition that E exp ¢[| X, || < +o
for all ¢ > 0, they obtained that for suitable A,

(1.4) the quantity (I.8) = exp[ —A%(n) - I(A) + o(A%(n))],

where I(A) = inf, _ ,(x%2/20?%) with 0% = Var(X)). In other words, (I.3) veri-
fies a large deviation principle (LDP) with speed A~2(n) and with rate
function I(x) = x2/202.

Recently the MD estimations have attracted much attention; see, for
example, Baldi (1988), de Acosta (1990), Chen (1990, 1991), Gao (1991) and
Ledoux (1992). For Mn) = n* with 0 < a < 3. Chen (1990, 1991) found the
necessary and sufficient condition for the MD (I.4) in a Banach space and he
obtained the lower bound for general A(n) under a very weak condition.
Using the isoperimetric techniques, Ledoux (1992) obtained the necessary
and sufficient condition in the general case [i.e., for any sequence A(n)
satisfying (I.2)], extending the works of Chen.

However, there are very few works on the MD of dependent random
variables until now. The author is only aware of the work of Gao (1991),
which discussed the MD of the Doeblin recurrent Markov processes.

The goal of this work is to establish the MD and the CLT for dependent
random variables, especially for those arising from Markov processes and
from statistical mechanical systems. This paper is composed of three parts. In
the first part (Section 1, an abstract), we shall employ the Cramér method of
LD theory to establish the MD estimation of a family of probability measures
(p,, B> 0) on R. More precisely, define

(L5) A (t) = & log fR exp(tx/g) dp,(x) = &log Z,(t)

and assume that

(I.6) A(2) = lin(l)Ae(t) € (—,+»] and A < +~ on a neighborhood of 0.

Define the associated MD

(1.7) u(A) = ug(x; 2ome) 4,
; a(e)

where m(s) = [gxdp(x) = X,(0) and (a(#)), . , satisfies
(1.8) a(s) >0 and a(s)/Ve > +.



422 W. LIMING

Now introduce the notion of C%-regularity of (u,), _, o:

( K.) .0 is said to be (resp. right, left) C2-regular if
(I1.9) A, (t) » N(t) wuniformlyforte[—-6,8]
(resp.t €[0,68],¢€[-4,0]).

Our first abstract result (Theorem 1.2) affirms that the right C2-regularity
implies the CLT [i.e., », with a(&) = Ve tends weakly to N(0, A", (0))] and the
C2-regularity implies the MD estimation [i.e., », defined by (I.7) and (1.8)
satisfies LDP with speed &/a%(e) with rate function I(x) = x2/(2A'(0))].
Then the remaining question for us is to check the C%regularity. We shall
employ two ideas that originated from statistical mechanics. The first is the
idea of the Lee—Yang theorem, which consists of locating the zeros of the
functions Z_(¢) defined by (1.4) (but for ¢ complex), so that the classical theory
of analytic functions can be applied. The second is inspired by the FKG
systems and the associated GHS inequality, which comprise our second
abstract result, Theorem 1.4.

In the second part, we shall consider the applications of the previous
abstract results to Markov processes. Using the Feynman—Kac formula, we
translate the C%regularity in this situation as a property of perturbations of
(P,), r (which is the transition semigroup of the considered process). Under
the assumption that 1 is an isolated, simple and the only eigenvalue with
modulus 1 in the spectrum of P, acting on a suitable Banach space (e.g.,
b&,C,, L? ---), we show in Theorem 2.1 that the Lee—Yang theorem holds for
bounded additive functionals, by means of Kato’s analytic perturbation the-
ory. With the same ideas, we extend Theorem 2.1 to the unbounded case in
Sections 2.2 and 2.3 by assuming that the process has some special struc-
tures: hyperbounded or reversible w.r.t. an invariant measure m. In particu-
lar, we get the CLT and the MD for a wide class of additive functionals, such
as sojourn times and local times. As applications, we consider systems of
infinite interacting particles and show the CLT and the MD hold under the
sufficient condition for the ergodicity given in Liggett (1985). Such examples
are provided by the particle systems associated to Gibbs fields at sufficiently
high temperature. :

We notice also that CLT can be easily obtained by the martingale method
[see Jacod and Shiryayev (1987)]. The MD results in this part extend consid-
erably the works of Gao (1991), but the results about CLT are more or less
known (except perhaps the uniform convergence for initial laws, established
here).

In the last part, we shall apply the results of the first part to statistical
mechanics. In the present case, the functions A_,A become the pressure
functionals and the CZ2-regularity becomes a property of the pressure func-
tionals. Thus our results in the first part can be applied successfully to the
systems which satisfy the Lee—Yang theorem of FKG and GHS inequalities.
We carry out this idea in detail for the ferromagnetic model, and we present
many other models to which the results of Section 1 are applicable, such as
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one-dimensional statistical mechanical systems (including a large class of
dynamical systems), the XY-model with two or three components, continuous
statistical mechanic models and even the :¢*: euclidean quantum field. It is
worth noticing that the CLT results in this part are known: CLT was
obtained by Iogolnizer and Souillard (1979) for Lee-Yang systems and by
Newman (1980) for FKG systems (however the methods are different). We are
also largely inspired by the works of Ellis [(1985), Chapter 5].

1. An abstract theorem about MD and CLT. The goal of this section
is to establish the MD and the CLT under a common condition, the so-called
CZregularity condition. We shall show that this condition is verified in the
following situations: the Lee—Yang theorem case and the FKG and GHS
inequalities case.

1.1. Uniform LDP of Cramér type. Let (ul, i €A, &> 0) be a family of
probability measures on R, where A is an index set. For £ > 0 and i €A,
define

(1.1) A(t)=¢ 1oijexp(tx/s) dui(x) = &log Zi(t).

We assume always that there is A: R — (—o, + ] so that for every ¢t € R
fixed,

Vt € R, Ai(t) tends to A(¢) uniformlyon i € A, as ¢ > 0 and
A is finite on a neighborhood of zero in R.

(1.2)

The Legendre transformation of A is defined as
(1.3) A*(s) = sup[ts — A(t)] forall s € R,
teR

which is convex, lower semicontinuous and nonnegative on R.

The following result, taken from [Wu (1991c), Theorem 5.3], is a slight
generalization of a well known result due to Cramér, Gartner and Ellis in the
LD theory (they coincide if A is a singleton).

PrOPOSITION 1.1.  Assume (1.1) and (1.2).

(a) A* is a good rate function for the uniform upper bound of LD of (u.,
e — 0) with speed &. More precisely, A* is inf-compact (i.e., [A* <] is
compact, ¥V | > 0) and for all closed subsets F in R,
(1.4) lim sup ¢ log supue(F) < - 1an*(s)

e—0

(b) If A is moreover differentiable on the interior of [A < +»] and |N(t)| —
+ as t tends to the boundary, then A* is also a rate function for the uniform
" lower bound of LD of (ul) with speed e, that is, for all open subsets G in R,

(1.5) liminfe log inf 4i(G) = — inf A*(s).
-0 i€A . se@
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[If (a) and (b) hold simultaneously, we say that (i), as & — 0, verifies a
uniform (for i € A) LDP with speed & and with rate function A*.]

REMARKS. (i) We notice that

(1.6) A*(s) =0 iff s € [A_(0), A, (0)].
So in Proposition 1.1, if A is differentiable at 0, then by the part (a),
(1.7) V8 > 0: limsup ¢ log sup ul(x: [x — A(0)| > 8) <O,
e-0 i€A

that is, u! tends to the Dirac measure at the point A'(0) exponentially. This is
a reinforced form of the law of large numbers.

(ii) Let (X,),.; be a sequence of iid. r.v’s with values in R so that
Eexp(8]X,) < + for some 8> 0. for £ = 1/n, taking u, as the law of
X, = (1/n)X1X,, we have A(¢) = A (¢t) = log Eexp(¢X,). So Proposition 1.1 is
applicable and gives us Cramér’s theorem. If one takes for ¢ = A"%(n), v, as
the law of Vn /(Mn)XX, — EX,), where A(n) verifies (1.2), then A(¢) = 0 2t2.
Applying Proposition 1.1 to (»,) one get that (3,), _, , satisfies the LDP with
speed A72(n) and rate function I(x) = A*(x) = x2/202% This is just the
classical MD.

Thus we can say roughly that LLN is determined by the differentiability
of A at 0. What we shall show in the next paragraph is that the CLT and
the MD are determined, roughly speaking, by the second differentiability of A
at 0.

1.2. CLT and MD under C?regularity. We begin with the precise defini-
tion of right CZ?-regularity.

DEFINITION. (ui, i €A),,, is said to be right (resp. left) C%-regular
uniformly for i € A, if [AL]"(¢) —» A’(¢) uniformly for i € A and ¢ € [0, §]
(resp. t € [—8,0]), where A’(0) is interpreted as the right second derivative
AN, (0) :=lim, , o (A(¢) — A,(0))/¢ [resp. A, (0)]. If it is simultaneously right
and left C2%regular uniformly on i € A, we say that it is C2-regular uni-
formly on i € A.

The following result illustrates the role of right (left) regularity both in
CLT and MD.

THEOREM 1.2. Let (ul; i € A, £ > 0) be a family of probability measures
on R satisfying (1.2). If it is right (resp. left) C*-regular uniformly for i € A,
then for any (a(¢)),, , verifying (1.8) or a(s) = Ve, and for all t > 0 (resp.
t <0),

lim sup
-0 jeA

?%log_/;@exp[?(x —m(i,e))a(e)/e] dui(x)

. (1.8) .
- - 5X(0)F] =0,
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where m(i, €) = [gxdui(x). In particular, let

X = m(i,s))
’ a(a) 2

then under the right or left C%-regularity assumption, v} with a(e) = Ve
tends uniformly for i € A to the normal law N(0, . (0) or A'_(0)) as ¢ = 0
weakly. Additionally, under the C?-regularity assumption, (v}), with a(e)
verifying (1.8), satisfies the uniform LDP for i € A with speed &/(a*(¢)) and
rate function I(x) = x%/(2N'(0)).

(1.9) () = pe|x

We begin by a lemma that collects some elementary facts.

LEMMA 1.3. (a) Let (x, i€ A, neN) be a family of elements in a
separated topological space X and x € X. For x, — x uniformly for i € A as
n — «, it is necessary and sufficient that x'™ — x for any choice of (i(n),
n>1).

(b) Let (u,), ., be a family of probability measures on R. If

fe“‘d,ug(x) - fet" duo(x) fortelase— 0,
R R

where I is an interval so that 0 € I and I° # &, then u, tends weakly to .

(c) Let (f,) be a sequence of real convex functions on (a, b), converging
pointwise to f. Then f is convex and for any t, -t (¢,, t € (a,b)), and
x, € df,(t,), the limit points of (x,), 5, liein df(¢). Here df(t) = [ f.(¢), f1.(8)]
is the set of subdifferentials of f at t. In particular, if f, and f are moreover
continuously differentiable on (a,b), then f, tends to f' uniformly on all
compact subsets of (a, b).

Proor. Part (a) is elementary; (b) is taken from Martin-Lof (1973) and (c)
is a well known result in convex analysis. O

We turn now to the proof of Theorem 1.2.

Proor oF THEOREM 1.2. We begin by showing the crucial estimation (1.8)
under the right C 2-regulaljity assumption. Without loss of generality, we can
suppose that m(i, £) = [A,]'(0) = 0. In this case, we can rewrite (1.8) as

1

a’( &)

(1.8) lim sup

£-0 ;e

: 1
No(a(€)t) — —2—A”+(0)t2 =0.

By the assumption (1.2), there is 8 > 0 such that Aie, i€A, £>0, are all
_analytic over (—28,28). Applying twice the Newton-Leibnitz formula, we get

A(u) = [()“[Ag]”(s) (u—-s)ds VYucelo,s).
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Since A is twice continuously differentiable on [0, §), we have also
A(w) = N, (O)u + [N(s)(u-s)ds Vue[0,5).
0
We show now that A, (0) = 0. In fact, by the right C?-regularity,
A(u) — K, (0) = [“N(s)ds = lim [“[AL]'(s)ds = X(x),
() = 8.(0) = [(N(s) ds = lim [[[A,]'(s) ds = K(u),

and hence A, (0) = 0. Combining these facts, we see that
sup sup |u"2A (u) — u"2A(w)l

i€A O<u<sé

< sup sup f [AL]"(s) = A'(s)l(u — s) ds/u?

i€A O<u<é
< sup sup [A‘E]"(s) - N(9)l/2,
i€A O<u<é
where the last term tends to zero by the right C2-regularity condition.
Letting u = a(&)t, we get thus for every ¢ > 0 fixed,

1
lim sup [5——A.(a(&)t) — —A” ' (0)¢2

-0 jea

2()

hm

———A(a(&)t) — lA"+(0)t2

2( )
Finally the uniform CLT follows from (1.8) and Lemma 1.3(a) and (b). MD
is a direct consequence of Proposition 1.1. O

1.3. Two situations for C2-regularity. The following result consists of two
simple remarks that originated from statistical mechanics.

THEOREM 1.4. (a) Let Z(z) = [ge** dui(x), i € A, £ > 0 (which are all
well defined and holomorphic on a neighborhood of 0 in Q). If there is a ball
B(0, 8) in C such that |ZX(z)| > ¢ > 0 for all z € B(0, 8), i € A, £ > 0, then
A.(z) = £ log Z(2) converge to a function A(z) unlformly for i €A and z
belongmg to any compact subset of B(0,8). A is holmorphic on B(0, d),
coincides with A(t) for z = t real and [ALI® tends to A® in the same way. In
particular, (u!, i € A) is uniformly C 2-regular

(b) If there is 8 > 0 so that [ AL] are all concave (or convex) on [0, §) and
A is twice continuously differentiable on [0, 8), and if

(1.10) [AL]"(0) = A'(0) uniformly fori € A, as £ > 0,
. thep (ui, i € A) is uniformly right C*-regular.

' ProOOF. Part (a) follows from the classic Montel and Hurwitz theorems in
complex analysis and (b) is elementary by Lemma 1.3(c). O
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REMARKS. (i) Part (a) is inspired by the Lee—Yang theorem in statistical
mechanics, and we shall see in Section 3 that it becomes the Lee-Yang
theorem for statistical mechanical systems.

(ii) If one applies part (b) to statistical mechanical systems (as we shall do
in Section 3), the condition (1.10) will be guaranteed by FKG inequality and
the concave property is a consequence of GHS inequality.

As the readers should see clearly, the results of this section are not difficult
(even very easy). However, the new point of view adopted here avoids
fastidious estimations in many applications and it often gives a unified way
to understand the limit behavior of dependent r.v.’s. These will be justified in
the next sections.

2. Markov processes with exponential convergence. In this section,
we discuss MD, CLT for additive functionals of a Markov process (X,),c 1,
where T = N or R*. Using the Feynman—Kac formula, we can translate the
C2-regularity as a property of the perturbations of (P,),. ;. Applying Kato’s
analytic perturbation theory, we show that the Lee—Yang theorem holds for
bounded additive functionals under the assumption that 1 is an isolated,
simple and the only eigenvalue with modulus 1, of P, acting on an appropri-
ate Banach space (e.g., b&,C,, L?, etc.). This is the content of Section 2.1. In
Sections 2.2 and 2.3, we shall extend them to unbounded additive functionals
and, in particular, we shall discuss sojourn times and local times.

2.1. Main results: bounded case. We describe first the framework of this
section. Let E be a Polish space and & its Borel o-field. We denote by &
(resp. C,) the space of real bounded measurable (resp. continuous) functions
on E and by M,(E) [resp. M,(E)] the space of all measures of finite variation
(probability) on (E, &). For a measurable function f and a measure u, we
write || fll = sup, c gl f(x)| and u(f) = [fdp.

Let (P,), .t be a semigroup of Markov kernels on E with Py(x,-) = §,,
where T = Nor R*. Let (Q, %,(%); c 1, (X)), e 15, (6,); c 7> (P,), < ) be a Markov
process (P,) as semigroup of transition. We suppose always that (P,) pos-
sesses an invariant probability measure m, and in the continuous time case,
(X,) is cadlag, that is, X. € D(R"*, E). We write P, = /P, u(dx) for an initial
measure u € M,(E) and we denote P; by P for simplicity.

Define the empirical measures (L,) by

t
Z 8Xs(w), ifT=N,
(2.1) Lw)={"°"C

| = |

[‘ox,uy ds, ifT=R*
0 8
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and set for f € b&,

((F=m(F)) )+ 2 D (B f = m( )y HT =N,

(22) V(f)=1{
2[ (Pf,f~m(f)ndt, if T = R*.
0 .

The main result of this section is the following.

THEOREM 2.1. (a) If 1 is an isolated, simple and the only eigenvalue with
modulus 1 of P, acting on (b&, |- |) for one ¢, € T, then for every f € b&:

P.(Vt[Lf) — m(f)] € -) converge weakly to N(O,V(f)) as
(2.3) T- », and this convergence is uniform for initial states
x € E;

ast - +o, (PGt /AN L,(f) — m(f)] € ), c psatisfies a
(2.4)  uniform LDP for x € E with speed A\~ 2(t) and rate function
I(s) = s /@2QV(f)),

where Nt) satisfies (1.2).

(b) Assume (P,) is Feller. Part (a) holds if one changes b& by C,(E).

(¢) If 1 is an isolated, simple and the only eigenvalue with modulus 1 of
P, acting on L*(m) for some t, € T, then for f € b&, the CLT and the MD
still hold for {L(f) — m(f), t - =} under the laws P;.,,, h € L?(m), and they
are uniform for the initial distributions u € U,,. Here U, ={u=h-m €
M (E); (h?) <1} where l is an arbitrary constant.

REMARKS. (i) For a Markov kernel P, we have the equivalence between
the following properties [see Revuz (1976)]:

(a) P = P, satisfies the assumption (a) of Theorem 2.1.

(b) P is quasicompact on b&, Harris recurrent and aperiodic.

(¢) P is Doeblin recurrent and aperiodic.

(d) P is Harris recurrent, aperiodic and E is a small set [i.e., 3 (¢ > 0,
k € N and v € M,(E)) so that P,(x,dy) > c- v(dy)].

(e) P is Harris positively recurrent and for any f € b&,

P"f tends to m( f) uniformly on E.

(i) In the discrete time case, the Doeblin recurrence is a necessary
condition for the uniform LDP of (L,), _,, on (M,(E), 7), where 7 is the weak
topology o(M,(E), b&). This is indicated in Wu (1991b).

(iii) The CLT is well known under the assumption of Doeblin recurrence
(except perhaps the uniform convergence stated above).

(iv) The assumption in (c) is weaker than that of (a) or of (b). In fact,
suppose that the assumption in (b) holds, which is obviously weaker than
that of (a). We have

c>0sothat [P, f—m(f)l <e“lfll, VfeCy(E).
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On the other hand, P, — m is contractive on all L?, p > 1. Thus by the
theory of interpolation of operators, the norm of P, as an operator on L%(m)
is strictly less than 1 [see Stein and Weiss (1975)] So the desired result
follows.

PRrOOF OF THEOREM 2.1 IN THE DISCRETE TIME CASE. For f € b&, define
(2.5) P.(x,dy) = e’™P(x,dy). '

We have the following simplified Feynman—Kac formula in the present case:

(2.6) (Pr)"g(x) =E* exp[ r f(Xk)]g(X )-

Thus taking u? as the law of L,(f) under P, for ¢ = 1/n, then the function
A% defined in Section 1 equals (P;)"1(x). Consequently, the C2-regularity
becomes a property of the perturbation operator P, of P. Our basic tool will
be the following result in analytic perturbation theory, taken from Kato
(1984).

THEOREM [Kato (1984), [K], Chapter 7, Theorems 1.7 and 1.8]. Let B be a
Banach space and (A(z)), . p be a holomorphic family of bounded operators
on B, where D is an open domain in C [i.e., z > A(2)x is differentiable on D
for every x € B). Suppose that A(z,) has an isolated point A, in its spectrum
and the corresponding eigenspace E, is one dimensional. Let E, be the
subspace corresponding to the remaining part of the spectrum of A(z,). Then
there is an open neighborhood U of z, such that V¥ z € U, the spectrum 2(z)
of A(z) is separated into two parts: 3(z) = 3,,(2z) U 3,(2), which satisfies:

(1) 3(2) = {N2)}, where M z) is an isolated and simple eigenvalue of A(z)
and N z) is holomorphic on U with Mzy) = A,.

(i1) If one denotes by E(z) [resp. E(z)] the subspace corresponding to
3,(2) and 2.(2), then the family of projections (Jy(2)),.y on E\z) along
E(2) is also holomorphic.

We now introduce some functions:

G'(z) = the complex number with the largest modulus in

27 the spectrum of P, regarded as an operator on (6, |- [);
(2.8) G?%(z) = the complex number with the largest modulus in

’ the spectrum of P, regarded as an operator on (C,(E), || - I);
(2.9) G3(z) = the complex number with the largest modulus in

the spectrum of P,; regarded as an operator on L*(m).

Under the assumption of Theorem 2.1(a) [resp. (b) and (¢)], G* (resp. G? and
G?) is well defined and holomorphic over a neighborhood U of 0 in C. We turn
now to the proof of Theorem 2.1. in the discrete time case.

We begin with the case ¢, = 1.
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First it is easy to show that (z > P,;), . is a holomorphic family of
bounded operators on B = & or C,(E) or L*(m). In the following, we deal
only with the case where B = b&. The other cases can be treated in the same
way.

Identifying A(z) with P,;, A, with 1 and using the notations in Kato’s
theorem above, we have A(z) = G'(2). Since I — J,(2) is the projection on
E (2) along Eo(z) we have

z,;’ - [Gl(z)] JO(Z) = Pz’}'(I - J(z))
On the other hand, because the largest modulus in the spectrum of P
restricting to E, is strictly smaller than 1 by the hypothesis, we can choose a
neighborhood U of 0 sufficiently small in C, such that

|P% = [G'(2)]" Jo(2)ll < e and
(2.10) |G}(2)|>e™™  wherey> 0,
ingl[Jo(z)l](x)I >1/2 forany zin U.
xe
Therefore we have by (2.10),

-0, asn — o,

(2.11) sup sup —log P1(x) — log G'(z)
zeU x€E

Thus with the identifications given at the beginning of this paragraph, we see

that the condition in Theorem 1.4(a) is verified. Hence the CLT (2.3) and the

MD (2.4) follow from the Theorem 1.2 if we note that

(2.12) ‘/—IIIEL(f) m(f)ll—r“ ZPkf—m(f)"w,

which is obvious by the assumption.

For the general case where ¢, # 1, we shall consider the perturbation
(P,;)" of P, . Following the same proof as above, we can get the CLT (2.3)
and MD (2. 4) for ¢ tending to infinity along the subsequence {nt,, n = 1,2,...}.
The passage to the whole sequence is easy. O

PROOF OF THEOREM 2.1 IN THE CONTINUOUS TIME CASE. The proof of Theo-
rem 2.1 becomes more difficult in the continuous time case, because (P,),, , is
not strongly continuous, the semigroup theory cannot be applied directly.
Fortunately the Feynman-Kac formula holds always and it will help us to
overcome this difficulty.

In the continuous time case, in place of (2.5) and (2.6), we define the
Feynman-Kac operators (Pf), , as follows:

(2.5) Plg(x) = E'g(X,)exp [ f(X,) ds.

‘By the Markov property, we see that (Pf) is a semigroup. Instead of regard-
ing (P/),. , as a perturbation of the semigroup (P,), we shall consider P/ for
t fixed.
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LEMMA 2.2. Foreveryf € b& andt > 0 fixed,(z - P),_ is a holomor-
phic family of bounded operators on B = b& or L?*(m). Furthermore, it is
holomorphic on C,(E) if f € C,(E) and if (P,) is Feller.

Its proof is elementary, so it is omitted.
Now let us modify the definition of G* (i = 1,2, 3) given in (2.7), (2.8) and
(2.9) as follows: .

G'(z) (resp. G*; G®) = the spectral radius of P/ considered as an

operator on B = b& [resp. C,(E), L*(E)],
where ¢, is the index given in the assumption of Theorem 2.1.

We prove now Theorem 2.1(c) in the continuous time case. By Lemma 2.2
and Kato’s theorem, we get with the same arguments as in the discrete time
case that
(2.17) sup sup ——logf[P,f[l](x) du —logG3(2)| >0 asn — =,

zeU pel,
where U is a neighborhood of 0 in C and U,, is defined in Theorem 2.1. Now
applymg the results of Section 1 with A=U,,, e=1/n and i =ve U,
ut = the law of (1/nt,)[J*° f(X,) ds under P,, we get them the CLT (2.3) and
the MD (2.4) for ¢ tending to infinity along ¢ = nt,,.

For the control of the limits as 7' — « along the whole R™, it is enough to
notice that

[y ds — [ rx) as| <111t
Finally (a) and (b) can be shown in the same way. O

2.2. Some complements to Theorem 2.1.

2.2.1. Discrete time case: MD for empirical measures (L,).

THEOREM 2.3. In the context of Theorem 2.1(c), (P) Vn /(Mn)) (L, — m)
€ ‘1, u € U,) satisfies a uniform LDP on (M,(E), 1) with speed A~ 2(n) and
. with rate functwn I: M,(E) - [0, +=] given by

3[F(@+Q* ~I)'fdm,

(2.13) I(v) = if v<mandf=dv/dm € I3(m),
+ oo, otherwise,
where @ =1+ P + P2 + --- is the potential operator [acting on L3(m)] and

Q* is its adjoint on L3(m).
NoTE. Since @ + @* — I > I, it is invertible on L2(m).
, PrROOF. By Theorem 2.1, we have for every f € b& that

A2( )IOgIEMeXp )‘(n)‘/_(Ln(f) - m(f))
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converges uniformly to A(f) = 3V(f) for u € U,,, as n — ». The so-defined
function A: b& — R is convex, Gateaux differentiable, and its Legendre
transformation A*: M, (E) - [0, +] defined by

A*(v) = sup [v(f) = A(f)]
feb&

can be calculated by means of variational calculus and it equals I(-) given by
(2.13). Now by Theorem 4.1 in Wu (1991c) [see also Dawson-Gértner (1989)],
it remains to show that:

if v € b&* (the algebric dual) verifies

A*(v) = sup; ol v(f) = A(f)] < +, then v is a measure

of finite variation, that is v € M,(E).
For proving such v is a measure, we have only to show that lim,__, ,»(f,) =0
for every sequence (f,) in b& verifying sup,llf,ll < © and lim f,(x) =0 V
x € E. To do this, since V(f) < 2{f — m(f), Q(f) — m(f)) by definition (2.2),
and @ is bounded on L%(m), we have

A(cf,) = 0 for any such sequence ( f,) and for all ¢ € R.

Hence

+o > sup[c- v(f,) — A(cf,)] = ¢ limsup (or liminf)v(fn).

n-—w

Because c is arbitrary, we obtain the desired result. O

REMARKS. In the same way, the MD in this theory holds uniformly for
u € M,(E) under the assumption of part (a) or (b) of Theorem 2.1. This result
extends the previous works of Gao (1991, 1993) on the Doeblin recurrent
Markov chains, because there are many Markov processes with noncompact
state space, which satisfies the condition of Theorem 1.2(c), but not that of

the part (a).

Recently Gao (1993) discovered that the Doeblin recurrence is also neces-

sary for the uniform MD w.r.t. u € M,(E).
Unbounded case. The following result extends Theorem 2.1 to the un-

bounded case.

THEOREM 2.4. In the context of Theorem 2.1(c), suppose moreover that
(H) 3¢t>0,3q>p>1sothat P,: LP(m) — LI(m) is bounded
(say, P, is hyperbounded), then for every real measurable function f on E
satisfying
(2.14) fexp(&lfl) dm < + for some 8 > 0
E

[L(f) — m(f), t > =] satisfies CLT and MD uniformly for the family of laws
{P,, n€ UL} for every p > 1, where UE =={u € M(E); p <m and lldu/
dml|l, < 1} where l is an arbitrary constant. -
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ProoF. We begin with the situation where £, = 1 in the assumption of
Theorem 2.1 and ¢ = 1 in (H) above; in other words, P is hyperbounded and
has a gap near 1 in its spectrum.

Notice that P: L? — L? also has a gap near 1 in its spectrum for every
p > 1 under the assumption of Theorem 2.1(c) (by Riesz—Thorin’s interpola-
tion theorem). Consider the operator

(2.15) Pf(x,dy) = ef¥P(x,dy).
We have another version of the Feynman-Kac formula given by
(2.16) (P")"g(x) = E*g(X,)exp L f(X,).

k=1

We show now that for any q > 1, there is a constant & > 0 so that P®/! is
bounded on L?(m) under the hypothesis (2.14). In fact, for ¢ > 1 fixed, by
Riesz—Thorin’s interpolation theorem, there is p € (1,q) such that P is
bounded from L? to L. Let a, b be two conjugated numbers. For a nonnega-
tive g € L9, we have

[(P'&)" dm < [ [E* exp af (X,)]”°[E*g*(X,)]"" dm
1/a 1/6
< [];Eexp aqf(s) dm] {[E[Pgb(x)]q dm}

1/a
< [f exp agf(x) dm} lig®ly’®.
E
Choosing b so that bp = q, we get that P’ is bounded on L? once f verifies
[exp agf(x) dm < +o,
E

and so the affirmation above follows.

Now consider the family of operators (z — P*f), which are bounded for z
in a neighborhood of 0 in C, by what has been proved. To show it is
holomorphic, we need only to show that z — {(u, P*/v),, is analytic for every
u,v € b&. This is easy. Now we can apply Kato’s perturbation theorem and
the remaining proof is the same as that of Theorem 2.1 [what will be obtained
is the limit behavior of L, o 6(f), in place of L,(f). The remaining passage is
easyl. O

REMARKS. (i) This theorem extends the results of Borovkov and Mogulskii
(1980) for the i.i.d. case. Condition (2.14) is the same as their condition.
Unfortunately, we have not found the counterpart of the necessary and
sufficient condition for MD in the i.i.d. case, obtained previously by Chen and
Ledoux. -

" (i) In Wu (1991-1993, 1991b), it is shown that the hyperboundedness (H)
is also a sufficient condition for the LDP of L, (n — ) on (M,(E), 7); see
these papers for a detailed discussion of hyperboundedness.
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2.2.2. Continuous time case. With the same proof as that of Theorem 2.4,
we can establish the following theorem.

THEOREM 2.3'. In the context of Theorem 2.1(c), {P#[x/t_ J/A@NL, — m)
€ -], u € U,} satisfies as t = » a uniform LDP on (M,(E),t) with speed
A~2(¢t) and with rate function I: M,(E) — [0, + ] given by

I(v) = sup{v(f) — 3{f,(Q + @) f); f € L}(m)}

HH@+Q)T,
(2.17) if v<mand

f=dv/dm € L3(m) n Dom[(Q + @*) '],
+ oo, otherwise,

where @ = [§(P, — m) dt is the potential operator [ acting on L4(m)] and @* is
its adjoint on Li(m).

REMARKS. The last term in (2.17) is well defined: since @ + Q* is self-ad-
joint, injective on L2(m) and its range is dense in L23(m), (@ + @*)! is
self-adjoint too on L3(m) and (f,(Q + @*)~1f) is then its quadratic form.

If (P,) is symmetric w.r.t. m, then I(v) can be explicitly calculated out by
means of its Dirichlet form as follows:

ig(f,f), ifv<mandf=dv/dm € L3(m) N Dom(&),

+ oo, otherwise,

(2.17) I(v) = {

where &(f,g) = (V—-Lf,V—-Lg)n for f, g € Dom(&) = Dom(y — %) and .&¥
is the generator of the semigroup (P,) on L%*(m).

In the continuous time case, there are many other important additive
functionals besides those studied in Theorem 2.1, such as sojourn times and
local times. This is our goal in this paragraph and the next.

Let A =(A,),., be an additive functional (i.e., A, ., =A, +A,°6,, V
t,s > 0) such that A, is #-measurable, V ¢ > 0. We associate A with the
Feynman—Kac operator [as in (2.5')]

(2.18) PAg(x) =E*g(x,)e’.

THEOREM 2.5 (in the continuous time case T = R*). (a) If (P,) verifies the
assumption of Theorem 2.1(a) and if A, is bounded for every ¢t > 0, then the
limit

: 1 mA 2 m 2
(2.19) V(4) = lim ~[Ema? - (Ema,) ]
-exists and we have CLT and MD about the limit behavior of A, — E™A,

uniformly for the laws (P,, x € E), as in Theorem 2.1(a).
(b) Under the assumption of Theorem 2.1(c), if A verifies 38> 0,3 ¢t° > 0,
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so that P, ** are bounded operators on L*(m) and
(2.20) sup E™ exp(8|A,l) < =,
0<s<t”
then the limit in (2.19) exists and the corresponding CLT and MD hold
uniformly for the laws (P,, u € U,).

Proor. Considering z — Ptf)A as a analytical perturbation of P, , we can
show (a) in the same way as in Theorem 2.1. For (b), we assume without loss
of generality that ¢, = 1 in the assumption of Theorem 2. 1(c) and consider
Pj as a perturbation of P, (in the general case, consider Pz o). We get as in
Theorem 2.1 the corresponding CLT and MD, but only for t — o along
t = nt°% n € N. For the limit along the whole R*, there is no question for CLT
since

sup{E[ A, — E™A, — (Anp0 — E"A,0)]°, p € Uy, t € [nt°, (n + 1)2°]} > 0,
as n — «,

For MD, by a comparison lemma in the LD theory [see Wu (1991c¢), Section 1],
we have only to show that

1
11m limsup A~2(¢) sup P{x/_)t(t)'A — A o0l >L} o,

t— o neU,
which can be established easily by Markov’s inequality and by assumption
(2.20). O

REMARKS. For unbounded additive functionals, what is difficult to check
in the assumption of Theorem 2.6(b) is the boundedness of the operator P/ on
L?(m). As in the discrete time case (Theorem 2.4), this boundedness is
guaranteed by condition (2.20) under the hyperboundedness of (P,). The
following result is then counterpart of Theorem 2.4 in continuous time.

THEOREM 2.4'. In the context of Theorem 2.1(c), if (P,) is hyperbounded in
the sense of (H) and if (2.20) is satisfied, then A = (A s> o satisfies CLT and
MD uniformly for P,, u € Uk, where p > 1 is arbitrary and Uy} is given in
Theorem 2.4. .

The theorem has many consequences, shown by the following corollary.

COROLLARY 2.6. In the context of Theorem 2.4', assume moreover that
(X,);- o is continuous. Then the affirmations of Theorem 2.4’ are valid for
A = (A,) given by:

@ a,-= ‘f(X,) ds with f satisfying
0
(2.21) 36> 0 such that [ exp(8lfl) dm < .

'(ii) (A, = M,) is a continuous martingale with {M ), = [{ f(X,) ds, where f
satisfies (2.21). . -
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(iii) (A,) is the local time LY(f) of the semimartingale (f(X,)),., at O,
where fand 2 belong to the domain of Z [in L*(m)] and satisfy the condition

(2.22) lfl, ZF, T(f, ) =Zf% — 2fZf satisfy all (2.21).

PrROOF. By Theorem 2.4, we have only to justify condition (2.20). Part (i)
follows from Theorem 2.4'. _

(ii) Consider {exp(AM, — A?/2{M );)}, o, which is local martingale for any
A € R. It is a martingale for all A small enough by (i) above and by Novikov’s
criterion. Thus we have for any couple of conjugated numbers (p, q) and
a >0,

E™ exp AM, = E™ exp(AM, — a{M ), + a{M ;)
< [E™ exp(ApM, — ap(M):)] " [E™ exp(ag(M):)]""".

Choosing p =q = 2 and a = A%, then by this estimate we see that for |A|
sufficiently small, E™ exp AM, is bounded on finite intervals of time. Thus
A = M satisfies condition (2.20).

(iii) Recall Tanaka’s formula for local time,

F(X)| = If(Xo)l = [ sign(¢(X,)) df(X,) + L§,
and notice
F(X,) - f(Xo) =M, + [()‘.?f(xs) ds,

where (M,) is a (continuous) martingale with (M), = [{T(f, FXX,) ds (see
[D-M]). Now it is easy to deduce (2.20) from (i) and (ii) by means of Holder’s
inequality. O

2.3. Some further studies.

2.83.1. Symmetric case. The hyperboundedness is often difficult to check.
In the symmetric case, it is possible to handle the boundedness of (P,*)
assumed in Theorem 2.5 in another way. The following result is taken from
‘Wu (1994). '

THEOREM 2.7. Suppose (P,),cg+ is symmetric w.rt. m. Let A, =
JEF(X,) ds. Then (Pf),. , is a strongly continuous semigroup on L*(m) iff

A(f) = sup{[uzfdm —&(u,u); u € Dom(&) and (u?), < 1} < +oo,

In particular, all assumptions in Theorem 2.5(b) for (A,) will be verified once
(2.23) A(+8f) < +> for some 8 > 0.

2.3.2: Multivariate functionals. It is interesting to extend the previous
results to multivariate additive functionals, such as A, = X723 f(X,,...,
X,,q), where f: E¢ > R in the discrete time case, or A, = [{f(6,X)ds,
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where f: D([0,»), E) > R is % -measurable. For this purpose, consider the
process (X*), . ¢ defined by

(X,,X,.1,..., X,s,_1) €E*, ifT=Nandt,seN,

(8) =
X X, :+s € D([0,5],E), ifT=R"* and ¢t,s € R".
Then the multivariate functionals of (X,) above become the adapted additive
functionals of (X®). The following result allows us to apply the previous
results to such functionals.

ProposiTION 2.8. If (X)), 1 satisfies the assumption of the part (a) [resp.
(b); (0)] of Theorem 2.1, then (X)), .t satisfies the same property both in the
discrete or continuous time case.

PrROOF. We deal only with the discrete time case and only with the
situation of the part (c) of Theorem 2.1. The other cases can be treated
similarly.

Assume without loss of generality that ¢, = 1. Denote by m® the law of
X§® under P,, and by P the one-step transition kernel of (X%), ¢ y. For
every function fe€ L*(E?, m®), we denote by g(x) the function E*f(X{?),
and we have

[PDO1 F(xg,..., %g_,) = EX-1E(F(XD)IX,) = P"%g(x,.,) Vn=d,
d

which implies

[ P(d)]nf— m(d)( llzzge, may = |pr-dg — m(g)llz2 &, m)-

As n increases to infinity, the last term above tends exponentially to m(g) by
the assumption of Theorem 2.1(c). This implies the desired result. O

REMARKS. From this result, we can get CLT and MD for those functionals
presented above. However, it does not allow us to obtain CLT and MD for
additive functionals such as A, = X2~ (f(X,, X;.1,...), where f depends on
an infinite number of variables (i.e., f depends on the future). However, this
can be done in a more restricted framework; see Section 3.3.1.

More generally one can consider for a two-sided Markov process (X,), <z
the additive functionals depending both on the past and on the future. In this
case, one has no results even for i.i.d. sequences.

2.3.3. Some examples.

1. Ornstein—Uhlenbeck process. For an Ornstein—Uhlenbeck process (even
infinite dimensional), its semigroup of transition is hypercontractive and then
all assumptions in this section are satisfied. An interesting example is the
following. Let (X,) be the canonical Ornstein—Uhlenbeck process in R?, that
is, it satisfies

dX, = dB, + 1X, dt.
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Its unique invariant measure is m = N(0, 1). Take f(x) = |x|? and consider
the local time L(f) of (f(X,)) at 1. It is easy to see that all the conditions
given in (2.22) are verified. Moreover, since I'(f, f)X(x) = 1on {f = 1} = S(0, 1)
(the unit sphere), Li(f) is also the local time of (X,) at S(0, 1). Thus we get
the CLT and MD for this local time with

(2.23) V(L)) = [fs(o G 9) dedy,

where G(x, y) is given by [5(P, — m)dt(x,dy) = G(x, y)dy (i.e., G is the
Green function) and dx in (2.23) is the usual Riemann measure on S(0, 1).

2. Diffusions on compact Riemann manifolds. Let E be a C* compact
connected Riemann manifold and dx its Riemann measure. Let . be a C”
second order differential operator which is the generator of a diffusion on E.
Denote by (P,) the corresponding semigroup of transition. Assume . is
hyperelliptic. Thus by Hérmander’s well known theorem, P,(x, dy) < m and
its density p,(x, y) is C* and strictly positive. Then it is hyperbounded by
Theorem 4.12 in Wu (1991b).

Let f be a C” real function on E such that I'(f, ) > 0 on S = {f = 0},
where I' is the associated square field operator. The local time L,(S) of the
diffusion (X,) can be written by

dL,(S) =T(f,f)""(X,) dLi(f).
It is clear that all the assumptions in Corollary 2.7(c) are satisfied. Thus we
get CLT and MD for L,(S).

3. Systems of infinite interacting particles. In the book by Liggett (1985),
there are several examples of systems of infinite interacting particles which
have an exponential convergence in L? to their equilibrium measures, such
as the stochastic Ising model (due to Holley). Liggett (1985), Chapter 1,
Theorem 4.1] also gives a very general condition which ensures the exponen-
tial convergence, but only for a class of functions (not for all f € L? as we
require in Theorem 2.1). Nevertheless if the systems is reversible, we have
the following proposition.

PROPOSITION 2.9. Let m be a reversible probability measure of (P,). As-
" sume that there is a dense subset & of L*(m) such that 3y> 0,V f€2,3 a
constant, C(f): |P,f — m(fllzimy < C(f)-e~"'. Then 1 is an isolated and
simple eigenvalue of P, and the distance of 1 from the rest of the spectrum is
larger than e™".

PrROOF. Let .# be the generator of (P,) on L*(m). It is self-adjoint and
negative definite. So it admits a spectral decomposition .Z= — [“A dE,. We
show now E,f = E,f = m(f) for A € (0, y). In fact for any such A fixed, we
have V f €9,

IP(BLf = m(£))lz = eIy f = m(£)llz,
which implies [|E,f — m(f)llz =0 for f €2 and then E,f= m(f) by our
assumption. O .
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REMARKS. (i) By Proposition 2.9 all reversible systems verifying the con-
ditions of the Theorem 4.1 of Liggett [(1985), Chapter 1] satisfy the condition
of our Theorem 2.1(c). In particular, our results in this section are applicable
to the systems associated to Gibbs fields at sufficiently high temperature.

(ii) For nonreversible systems, we do not know whether Proposition 2.12
still holds. Nevertheless we can do something in the spirit of analytic pertur-
bation. To be more precise, let us use the framework of Liggett (1985). The
space of configurations E = W7 (W is compact and T is countable). For
f € C(E), define

Ap(z) = sup{lf(n) — f(€)l; m(Jj) = £(Jj) forall j #iin T},
D(E) = {feC(E);Ifl= T &P < +=).

ieT

The generator () of a system of infinite interacting particles is given in
Proposition 3.2 in Liggett [(1985), Chapter 1]. We have the following proposi-
tion.

PROPOSITION 2.10. Under the condition of Theorem 4.1 in Liggett (1985),
let m be the unique invariant measure. Then for f € D(E), {L,(f) — m(f),
t — «} satisfies the CLT and the MD as in Theorem 2.1.

In fact, by Lemma 3.7 in Liggett (1985), we can show easily that the family
of closed operators {) + zf; z € C} acting on (D(E), |-|) is analytic. By
Theorem 3.9 in Liggett (1985), the semigroup (P,) (associated to Q), acting on
D(E) has a gap near 1 in its spectrum and 1 is a simple eigenvalue. Thus we
can apply the analytic perturbation theory as in the proof of Theorem 2.1.

3. Applications to statistical mechanical systems. In this section,
we begin by recalling some notions of statistical mechanics on Z¢, such as
interaction potentials, pressure functionals, Gibbs states (or measures) and
so forth. We shall see that.the Cramér functional A introduced in Section 1 is
just the pressure functional and then the C2-regularity becomes a property of
thermodynamical limit procedure. We shall explain why part (a) of Theorem
1.6. becomes the Lee-Yang theorem and indicate how to apply Theorem 1.6(b)
to monotone functionals of FKG systems. We shall realize in detail for the
ferromagnetic model, based on the previous works of Newman (1980) and
Ellis (1985). Finally we shall give some discussions on several other models to
which the results of Section 1 are applicable.

3.1. Notations and ideas. Let E (state space) be a Polish space, a(dx) be
a probability measure on E and Q = EZ° be the space of configurations. A
statistical mechanical system with configurations in  is determined by its
potentials of interaction, denoted by ® = (¢ )Vﬂnitein ,o- @ is always assumed
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to satisfy:

1. ¢y is Fy-measurable, where F, == o{w = wy}.

2. ¢y 0; = ¢y, ;, where 6; is the shift on Q, that is, 6,w(j) = 0@ + )).
3. ZOEle¢Vllw < oo,

For Vc Z? finite, the Hamiltonian on V with boundary condition Ny is
given by
HV(wVInV") = Z ¢w(wv’77v")

wwnNv+Jd
and the formal sum H = ¥ ¢y is called Hamiltonian. A probability measure
n on () is called a Gibbs state (or measure) associated to ® if its conditional
distribution on EV subject to the boundary condition ny., w(dwy | FyNnye), is
given by
-H ¢ Y ;
(3.1) Wv(wvlﬂvc) — exp( v(oyiny ))l—[zeV (dw;) ,
Zy(nve)

where Zy(ny.), the normalization constant, is called a partition functional
in V. The set of all Gibbs states of ® will be denoted by G(®P).
Let F € Cb(.Q) It is known that the limit of

IVllogj exp[ Y F OJWV(deInVc) = Py (®, F;ny)

as V increases to Z¢ in Von Hove’s sense [see Ruelle (1969)], exists uniformly
on 7 (in this section, when we say V — Z4, it is always taken in the Von Hove
sense). This limit is the so-called pressure functional, which is denoted by
P(®, F). Consequently for u € G(¢), we have

P(®,F) = VlinzldPV(duF;u)

(3.2)
Let Ly =Q1/IVDL;.y8§,, be the emplncal ﬁeld The LD of u(Ly € -) on
M(Q) as V=V, ={i e 74, il = max(iy,...,iz) < n} > Z% has been ob-
tained by Comets (1986), Follmer and Orey (1988) and Olla (1988). Here we
shall discuss the corresponding CLT and MD estimations.

Considering a (formal) correspondence [V|™! — ¢ and taking u, as the law
of Ly(F) under u for such &, we have the following identifications:

(3.3) A(t) = Py(®,tF;u) and A(t) = P(®,tF).

Having these identifications, we see that Theorem 1.4(a) becomes the
Lee—Yang theorem (well known in statistical mechanics). For Theorem 1.6(b),
notice that the convexity of ¢ — PV(<I> F; w) [or of —P,(®, F; w)] is implied

by

3

FPV(q)’tF; ;L) >0 (OI’ < 0),
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which is the so-called GHS inequality for monotone functions of attractive
systems (i.e., FKG systems). Then to apply Theorem 1.6(b) to this class of
models, the main question that remains to be checked is

Jim Py (@, F; w)li=o = PY. (@, F) < +eo.

Finally notice that in the present case A’(0) (if it exists) is the susceptlbzl-
ity of the observable F of the system.

3.2. The ferromagnetic model. Let Q = {+1, —1}* and define the formal

Hamiltonian by

H"w) =X - J(i —j)w,0; + Lho,,
where J: Z¢ - R* verifies ;. y¢J(i) < +. This is the so-called ferromag-
netic model. We denote by G( 8, k) the set of Gibbs states associated to BH,
where B = 1/kT is the inverse temperature.

Considering the spin variable F(w) = wy, wehave L, .y F o0, = L, .y o, ==
Sy. In this paragraph we shall discuss the limit behavior of S, as V
increases to Z¢ in Von Hove’s sense. We begin by recalling the well known
structure of G( 8, h).

Let wg 5, (resp. g ) be the high (resp. low) Gibbs state. There is a critical
inverse temperature B, such that
G( B, h) is asingleton for (B,h) € # = {(B,h); h # 0} U {(B,0); B< B},

Mg n* Mg, for B> B, and h =0.
THEOREM 3.1. Set m(B,h, +) == fwo dug = {wg)g,n, + The limit
(3.4) (B, h, +) = |V|<[SV IVI-m(B,h, +)]*)

exists always as an extended real number. Under the assumption that
a2(B,h, +) < », we have

1 .
(35) W[Sv

If moreover (8, h) € %, then as V — 7%, the family of measures

—IVI-m( B, k, +)] SN, s?(B, h, +)) asV - 7%

1
Sy~ IVI-m(B,k,+)] €
satisfies LDP with speed A~2(|V|) and with rate function I(t) = t2/ (2 o (B,
h, +)).

ProorF. We begin with the case ~ # 0. In this situation the Lee-Yang
theorem holds [see Glimm and Jaffe (1981), Theorem 4.6.2, page 68] and it
affirms that P, ( BH", zF) tends to P(BH", zF) uniformly for z € B(0, §) in
C, .as V increases to Z¢ in Von-Hove’s sense. Then we have as V - Z¢,

2

d? d
(S = V1 m( B, b, )] = 3 Py(BHAtF)| S5 P(pHA )
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So (3.4) is valid and the CLT and MD follows from Theorem 1.6(a).
We treat now the situation where A = 0. Recall first some known results.

LEMMA 3.2. Set

1
Ay 2(8) = flogfexp| T tF ()| i
ie

Then we have:

@) [A{B(B)], is concave on t € [0, + ).
(i) (8.4) is valid and oc%(B,0,+) = c%(B, +) = L, c 7¢{ @y, ®; ), +-
(iii) Note AP(t) = lim A #(t). Then [APD]i_o, = o2(B,+).

PROOF. Part (i) is a direct consequence of GHS inequality [see Ellis
(1985), pages 167—168]. Part (ii) is deduced from FKG inequality [it is valid
for any monotone function of FKG systems; see Newman (1980)].

(iii) Ellis [(1985), Lemma V.7.4] has shown it for ( 8, h) € #. Now we show
it in the general case.

For ¢ > 0, by the Lee-Yang theorem, we have o%(B,t, +) = c%(B,t) =
[AB(#)]". So for proving (iii), it is enough to show that as ¢ decreases to 0,

a?(B,t) = X wg, w0p,:~ 2 {wy, w5+

iez? iez?
by the result in (ii). To show this, recall that as ¢ decreases to 0,
(wq, wy,)g,: decreases to {wg, w, g, +.

Thus the desired result follows from Fatou’s lemma. O

By this lemma, under the assumption o%(B, +) < +, the family of
measures { ;L,;“ /vDSy, e ), Vc 7%} will be right C2%-regular by Theorem
1.6 as V - Z¢ in Von Hove’s sense. So the CLT (3.5) follows. For the MD,
notice that u*? = u># = uP for B < B,. Then by symmetry, { u,(1/IV)Sy,

. €4), Vcz% will be also left C%regular. Thus Theorem 3.1 is a direct
consequence of the results in Section 1. O

REMARKS. (i) The CLT has been obtained by Newman (1980). The MD in
Theorem 3.1 is new, but its proof, as the reader should see clearly, lies still on
the results and the techniques already developed by Newman, Martin-Lof
and Ellis, among others.

Gi) If A # 0, then o2(B,h) < += by Lee-Yang theorem. In the case
where h = 0, whether o2(B,0, +) < » for all B # B, is a very interesting
open question. .

Assuming B, as a normal critical point, Simon proved that for any 8 < 8,
{wy, w, ) has an exponential decay as |k| - « and then o %(8, +) < .
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Even in the situation of phase transition, Martin-Lof (1973) showed for B8
sufficiently large (i.e., at low temperature), (AP(¢)){"),, exists for all n € N.
In this way, we rediscover the CLT in Martin-Lof (1973).

Notice however that for the Ising model in dimension 2, the question
above has a positive response by the well known Onsager explicit formula.

Of course the most striking situation is at the critical point B = B,. In this
critical case, only very few results are known [see the discussions of Ellis
(1985), Chapter 5]. It is widely believed that the CLT would be broken. With
the same analysis as in Chapter 5 of Ellis (1985), the MD estimation in
Theorem 3.1 should change its form (the speed and rate function).

By the method of explicit calculus (but difficult!), Ellis and Newman
(1978a) found the weak convergence theorem of the Curie-Weiss model at
B = B.. Their results have been extended in many respects by many authors,
but always restricted to the class of mean field models.

In our previous work [Wu (1991a)], the LDP of u; as B — + is estab-
lished.

3.3. Other statistical mechanical systems.

3.3.1. One-dimensional situation. For one-dimensional statistical me-
chanical systems, the pressure functionals are usually very regular. We
present now some typical situations.

Assume

(3.6) Ar > 1suchthat ), rV! [yl < +co.

oeVv
Then for F € C,(E), which depends only on a finite number of variables, it is
shown in Ruelle (1978) that the Lee—Yang theorem holds, that is, Py (¢, zF)
tends to P(®, zF') uniformly for z in a neighborhood of 0 in C. We have then
CLT and MD of X}_ _,(F-6,-{F),) under u, where u is the unique Gibbs
measure corresponding to ®.

In the Ruelle (1978) book, he presented many dynamical systems which
are isomorphic to the models above, such as expanding mappings on a
compact metrisable space, Anosov diffeomorphisms or, more generally, Smale
mapping. However, there is one thing worth notice. The CLT and the MD
above are valid only for the functions F depending on a finite number of
variables, and we do not know which functions of the dynamic system could
be transformed as such functions under the isomorphism above. Fortunately
the Lee-Yang theorem is known to hold for a large class of functions of
dynamical systems, such as the Hélder-continuous functions of the Smale
mappings; see Ruelle (1978).

3.3.2. High temperature case. In the framework of Section 3.1, let F €
C,(E), which is #;-measurable for some finite subset V in Z¢. Then it is well
known that the Lee—Yang theorem holds for B sufficiently large, that is,

-Py(B®P, zF) —» P(BD, zF) uniformly for z in a neighborhood of 0 in C, and
G(B®) = { ). Thus by Theorem 1.6(a), we have CLT and MD for the limit
behavior of ;. /[ F ° 6, — {(F),], as V increases to Z°.
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3.3.3. Discrete Euclidean field model. Let Q = RZ’ and a(dx) =
Z~'e P® dx, where P(x) = Ax* — ux? with A > 0, 4 € R, Z is the normal-
ization constant. The formal Hamiltonian of the discrete Euclidean quantum
field model is given by

HYw)= Y - w; ;.
li—jl=1
Consider Sy, := ¥, _, w;. Since the FKG and GHS inequalities hold and the
Lee-Yang theorem holds under the same condition as for the ferromagnetic
model, we have a similar result as that of Theorem 3.1.

3.3.4. Continuous statistical mechanical systems. In the continuous sta-
tistical model (i.e.,, on R?), the space of configurations will be Q = {T, 8.,
(denumerable sum); x; € R%}. The readers can consult Ruelle’s (1978) book
for the language below.

Let u? be a Gibbs measure associated to a potential ® = {¢; V c R¢
bounded} and to the inverse temperature 8. Let N; be the number of
particles contained in V [i.e., Ny(w) = «(V)]. The LD of Ny, can be obtained
under the assumption that the pressure functional is differentiable (in fact,
this is a direct consequence of Proposition 1.1).

For the superstable and temporal potentials, it is shown that the Lee-Yang
theorem holds at sufficiently high temperature. Therefore by Theorem 1.6,
the CLT and MD hold in this case. This phenomena occurs also in the hard
rod models.

3.3.5. Other models. The Lee-Yang theorem is a general phenomenon at
high temperature. However, the FKG and GHS inequalities are the special
properties of systems. It is known that these two inequalities hold for many
other models besides those discussed above. For example, it is valid for XY
model with two or three components, even for :¢*: Euclidean quantum field
model and so forth; see Glimm and Jaffe [(1981), Chapters 5, 18 and 20] for
such discussions and also Ellis and Newman (1978b).
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