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ON THE CLUSTER SET PROBLEM FOR THE
GENERALIZED LAW OF THE ITERATED
LOGARITHM IN EUCLIDEAN SPACE!

By UWE EINMAHL

Indiana University

In a recent paper by the author it has been shown that there exists
a general law of the iterated logarithm (LIL) in Banach space, which con-
tains the LIL of Ledoux and Talagrand and an LIL for infinite-dimensional
random variables in the domain of attraction to a Gaussian law as special
cases. We now investigate the corresponding cluster set problem, which we
completely solve for random vectors in two-dimensional Euclidean space.
Among other things, we show that all cluster sets arising from this general-
ized LIL must be sets of diameter 2, which are star-shaped and symmetric
about the origin, and any closed set of this type occurs as a cluster set for
a suitable random vector. Moreover, we show that if the random vectors
under consideration have independent components, one only obtains clus-
ter sets from the subclass of all sets, which can be represented as closures
of countable unions of standard ellipses.

1. Introduction. Let B denote a real separable Banach space with norm
II - || and topological dual B*. Denote for any sequence {x,} in B the set of its
limit points by C({x,}) and call it the cluster set of {x,}.

We assume throughout that X, X1, X,,... are iid B-valued random vari-
ables with 0 < E|| X|| < 00. As usual, set S, ;= X1 +---+ X,, n > 1, and put
Lt :=1log(tVve), LLt :== L(Lt), t > 0.

Using the separability of B and the 0-1 law of Hewitt and Savage, one can
show that for any sequence a, 1 oo with probability 1,

(1.1) : C({Sn/an}) = A,

where A is nonrandom and depends only on {a,} and the distribution of X.
[Refer to Lemma 1, Kuelbs (1981).] If {«,,} is a sequence such that S, /a, — 0
a.s., then of course it follows that A = {0}, and determining the cluster set is
a trivial task. This is no longer the case if one considers sequences {a,} such
that

(1.2) 0 < limsup ||S,||/a, <00 a.s.
n—>oo

The classical choice for {a,} in (1.2) is {~/2rnLLn}, and the corresponding
cluster set problem for that particular sequence has been studied by Good-
man, Kuelbs and Zinn (1981), Kuelbs (1981), DeAcosta and Kuelbs (1983) and
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818 U. EINMAHL

Alexander (1989a, b), among others. From the work of these authors it became
clear that the cluster set must be a subset of a canonical set D, which can be
described as the unit ball of a certain reproducing kernel Hilbert space deter-
mined by the covariance of the random variable X. Under suitable conditions
on the underlying Banach space, the cluster set A is always equal to D. This
is, in particular, the case if B is a Hilbert space or a Euclidean space. More-
over, in the latter case, the set D and consequently the cluster set A turns
out to be an ellipsoid. Alexander (1989a, b) finally showed that if B is an arbi-
trary separable Banach space, then the cluster set is either the empty set or
of the form pD, 0 < p < 1. He was also able to construct foreach0<p<1la
co-valued random variable so that the cluster set A in (1.1) is equal to pD. A
related example for a random variable, where the cluster set is empty, is due
to Kuelbs (1981).

Much less, however, is known about the possible cluster sets if one uses
different norming sequences in (1.2). Feller (1968) [see also Kesten (1972)]
and Klass (1976, 1977) found extensions of the classical Hartman-Wintner
LIL to certain (real-valued) random variables with possibly infinite variances.
These results, in particular, can be applied to random variables in the domain
of attraction to the normal distribution. Kuelbs (1985) and Einmahl (1989)
generalized the latter results to B-valued random variables in the domain of
attraction of infinite-dimensional Gaussian distributions. They also showed
_ that the resulting cluster sets are equal to the canonical sets determined by
the covariance of the limiting Gaussian distributions.

Recently, Einmahl (1993) has shown that there is a general LIL in Banach
space, which not only contains the LIL results of Ledoux and Talagrand (1988)
and Kuelbs (1985) as special cases, but also can be applied in many cases not
covered by the above results. To formulate this generalized LIL, we need some
further notation. Following Klass (1976) we associate with any real-valued
random variable ¢ satisfying 0 < E|£| < oo a function K(-) which is defined
as the inverse function of a further function G(-) given by

y
Gly) = 52/ ]0 El¢1{l¢) > uldu, y>0.

For any functional f € B* with E|f(X)| > 0, let K; be the K-function corre-
sponding to f(X), and set

(1.3) K(y):=sup{Ks(y): Ifl <1}, >0,
(1.4) Yn:=+2K(n/LLn)LLn, n>1.

THEOREM A. Let X be a mean zero r.v. with 0 < E||X|| < co. Then we have

(1.5) 1 <limsup ||Sxll/yn <00 a.s.

- if and only if
(1.6) {S./yn} is bounded in probability
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and
(1.7) > P{IX| > ya} < o0

It is natural now to ask what are the possible cluster sets in that situation.
One of the fundamental difficulties is that we can no longer assume that the
r.v. X has a covariance structure. This of course can also happen for random
variables in the domain of attraction to a Gaussian law, but in this case we
have at least a limiting distribution with a covariance structure, which deter-
mines the form of the cluster set. Having in general neither a finite covariance
for X nor a suitable limiting distribution, there does not seem to be any “nat-
ural” candidate for a canonical cluster set in connection with Theorem A.

The purpose of the present paper is to find all possible cluster sets if (B, ||-||)
is a Euclidean space. For convenience we will formulate and prove our results
only for two-dimensional random vectors. It is possible to extend our results
to d-dimensional random vectors, but this would make the proofs much more
technical. So let from now on X = (X1, X@) be a two-dimensional random
vector and let X, = (X 2“, X 512)) be independent copies of X. Set Sfll) =
X(ll) 4+ 4+ Xﬁll) and ng) = X(lz) +. 4+ ng), n > 1. Using Corollary 2 in
Einmahl (1993), Theorem A can be improved in this particular case as follows:

. THEOREM B. Let X = (X, X?) be @ mean zero random vector with 0 <
E|X| < oo. Then we have
(1.8) limsup |S,ll/vn =1 a.s.

if and only if
(1.9) Y P{XD| >y} <00, i=12

Setting.A = C({S./vs}), it follows from (1.8) that A is a subset of the unit
disk and, moreover,

(1.10) sup{|lx|l: x€ A} =1.

We will show that A must also be symmetric and star-shaped with respect
to the origin (see Theorem 3 below) and, somewhat surprisingly, it will turn
out that any closed set of this type will actually occur as a cluster set for a
suitable random vector X (see Theorem 4 below). This is a fairly large class
of sets and one might ask whether, under additional assumptions, one can say
more about the structure of the cluster sets. Indeed, assuming that

(1.11) X® and X@ are independent,

it will turn out that the cluster sets will be from the subclass of all sets which
can be represented as closuresof unions of (at most) countably many standard
ellipses. Here we call any (possibly degenerate) ellipse, which is centered at
the origin and whose axes are parallel to the coordinate axes, a “standard
ellipse.” .
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2. Statement of the main results. We first formulate the results for the
independent case. Let for any 0 < a,b < oo,

&(a,b) == {(x1,%2): (x1/@)? + (x2/b)® < 1}
and set
(f(a,O) = [_a,a] X {0}, f(o, b) = {0} X [-b,b], a,bv_>_ 0,

which we consider as degenerate ellipses. Write cl(M) for the (topological)
closure of a subset M of 2-space.
Further, put

o1 :=limsup |SY)/y,
n—oo

and

g2 = lim sup IS;Z)I/’YYH

n—oo

and observe that we have o1 v o3 < 1.

THEOREM 1. Let X be a mean zero random vector satisfying conditions (1.9)
and (1.11). Then we have for suitable sequences 0 < a,, < 01, 0 < b,, < o9,

(2.1) A=&(01,0)U&(0,02)Uc1( D (f(am,bm)).

m=1

Note that (2.1) in particular implies,
(22) 6’)(0'1,0)UG’)(0’0'2) CAC 6(01’02)0

Recalling (1.8), we see that we must have o1 VvV 02 = 1. Our next result shows
that any set as in (2.1) occurs as a cluster set.

THEOREM 2. Given 01,09 > 0 with o1V os = 1 and sequences 0 < a,, < 01,
0 < b,, < g9, one can find a symmetric random vector X satisfying conditions
(1.9) and (1.11) such that we have (2.1) for the cluster set A.

Theorem 2 in particular implies that there exists a random vector X for
which the cluster set A is equal to the cross &(o1,0) U £(0, 02). (Set a,, =
b, = 0.) This is also the smallest possible cluster set in that situation. If X is
in the domain of attraction to a Gaussian distribution, we obtain the largest
possible cluster set, namely, the ellipse € (o1, 02). These are the two extreme
cases, and there are many other possibilities, for instance, sets which can be
represented as finite unions of standard ellipses. An interesting example of
sets which can only be generated by infinitely many standard ellipses, is the
class of generalized l,-balls &,(01,032), 0 < p < 2, where we set

(2.3) &p(01,02) = {(x1,%2): |x1/01|P + |x2/02|P < 1}, p>0.
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If p > 2, it is obvious that & ,(01,02) cannot be among the possible cluster
sets, since then relation (2.2) would not be satisfied. One can even show that
if one chooses a constant 0 < p < 1 so that

(2.4) p&p(0o1,02) C &(01,03),
it is still impossible to find a representation (2.1) for the set
A = £(01,0)U £(0,02) U p& (a1, 09).

In view of Theorem 1 this means that there is no random vector satisfying (1.9)
and (1.11), for which the cluster set A coincides with A. From the subsequent
Theorem 4, however, it will follow that A is among the possible cluster sets
for random vectors where X() and X are dependent.

We now turn to the general case.

THEOREM 3. Let X be a mean zero random vector satisfying (1.9). Then we
have for the cluster set A = C({S,/vn}),

(2.5) A is symmetric about the origin,
(2.6) A is star-shaped with respect to the origin
and

2.7 sup{||x|l: xe A} =1.

Our last theorem finally shows that any closed set of this type occurs as a
cluster set.

THEOREM 4. Let A be a closed set satisfying conditions (2.5)—(2.7). There
exists a symmetric random vector X satisfying (1.9) such that with probabil-

ity 1, C({Sn/')'n}) = A

The proofs of Theorems 1, 2, 3 and 4 will be presented in Sections 3, 4,
5 and 6, respectively. The starting point is an infinite-dimensional version
of a general criterion for clustering, which goes back to Kesten (1970) (see
Lemma 1 below).

If assumptions (1.9) and (1.11) are satisfied, we can use a truncation argu-
ment in combination with a nonuniform Berry—Esseen type inequality and an
exponential inequality for the tail probabilities of the normal distribution to
prove that a point (x1,x2) belongs to the cluster set if and only if a certain
series condition is satisfied (see Proposition 1). We then can infer that the
cluster set must be a closure of a (countable) union of standard ellipses, and
we get Theorem 1.

The proof of Theorem 2 is probably the most delicate part of the present
péber. We first show that the criterion for clustering can be further simplified
if the random variables X and X® are in the domain of attraction to the
normal distribution. It will turn out that in this case the clustering behavior
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can essentially be described in terms of the truncated second moment func-
tions corresponding to these random variables (see Proposition 2). Making
appropriate use of this observation, we will be able to construct for any given
closed set A of the form (2.1) discrete random variables XM and X® with
the above property so that the cluster set of X is equal to A.

The proof of Theorem 3 is similar to (but much easier than) that of Theo-
rem 1. We now employ a truncation argument in combination with a multidi-
mensional Berry—Esseen type result of Kuelbs and Kurtz (1974) to establish
a criterion for clustering in terms of certain Gaussian random vectors. Using
the symmetry and another property of Gaussian random vectors which goes
back to Anderson (1955), we obtain Theorem 3.

The proof of Theorem 4 is based on the fact that any closed star-shaped
set can be written as a closure of line segments. We start with a random
vector where the cluster set would be a single line segment. We then change
the coordinate system (infinitely often) so that we also obtain the limit points
from the other line segments.

3. Proof of Theorem 1.

3.1. A necessary and sufficient condition for clustering. We first formulate
a general criterion for clustering in Banach space, which can be proved by
a modification of the proof of Theorem 3 in Kesten (1970) [see also relation
(6.37) of Kuelbs (1985) for a slightly weaker version of Lemma 1].

LEMMA 1. Let X1, Xos,... be iid B-valued random variables and let a,, 1 0o
be a sequence such that

(8.1) a,/+/n is eventually nondecreasing
and
(3.2) ay/n is eventually nonincreasing.

Assume that
(3.3) {S,/a,} is bounded in probability.

Then the following are equivalent:

(3.4) x e C({Sn/an}) a.s.
and
(3.5) Zn‘lP{HSn/qn — x| < &} =00, e>0.

'We next note that Lemma 1 can always be applied in the context of Theo-
rem B. To see this, recall that by relations (2.3) and (2.4) in Einmahl (1993),
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the sequence {v,} satisfies conditions (3.1) and (3.2). Moreover, by relation
(2.4) and Corollary 3 of Klass (1977) we have
(3.6) liminfy,/E|f(S.)| >0,  fe B,

from which we readily obtain (3.3) if (B, | - ||) is finite dimensional. We thus
have the following lemma. '

LEMMA 2. Let X, X1, Xs,... be as in Theorem B. Then we have

(x1,%2) € C({Sn/7vn}) a.s.
if and only if for any & > 0,
(8.7) > nT P{lISn/n — (1, %2)|| < £} = 0.

We now turn to random vectors satisfying conditions (1.9) and (1.11). It is
obvious that if X¥) and X® are independent, then (3.7) is equivalent to

(3.8) Y. n'P{SV/yy — x1] < e} P{IS?/yn —x2l < £} =00,  &>0.
The purpose of this subsection is to show that (3.8) can be significantly

simplified for random vectors satisfying (1.9). .
- Let K;(-) be the K-function corresponding to X® and set o2, =

Var(X®1{|X®| < K;(n/LLn)}), i = 1,2. As usual, let x, := x v 0. Then we
have the following proposition.

PROPOSITION 1. Let X be a mean zero random vector satisfying (1.9) and
(1.11). The following are equivalent:

(3.9) : (x1,%2) € C({Sn/yn}) as,
(3.10) ' Zn—l(Ln)—Bﬁ,l(leI—s)i—ﬁ,z,,z(lle—s)i = o0, >0,

where Bn; = vn/(2nLLn)Y20,; > 1, i =1,2.

PROOF. (i) We first show that (3.8) [and consequently (3.9)] is equivalent
to
(8.11) Y n'P{SY) /yn — x1] < e} P{ISE)/yn — %2l <8} =00,  £>0,

where weset for L <k <n,i=1,2,and n > 1:
@ . g g(i)
Snik = Snl,k - Esnl,k
, and .
_; LI .
89, = JZ_;XE”I{IX?N < Ki(n/LLn)).



824 U. EINMAHL

To that end we prove

(3.12) Y ntP{SY - SY) | = eya} <00, £>0,i=12.
n

Using the trivial inequalities
P{ISY) /yn — x; < &} < P{ISY) /yn — x| < 26}
+ PSP — 89| = eya}, i=12,
it is easy to see that (3.11) implies
Zn‘lP{ISS)/yn — x1] < 28} P{|1SP /vy, — xa| < 2¢} = 00, e >0,
n
which of course is equivalent to (3.8). A similar argument shows that (3.8) in

combination with (3.12) implies (3.11).
In order to prove (3.12), we first note that by Lemma 5(b) of Einmahl (1993)

and (1.9),

(3.13) S P{XD| > 8ys} <00, 86>0,i=1,2,

which in turn via Lemma 7 in Einmahl (1993) implies

(3.14) EIXD1{|XD| > 8y,} = o(yn/n) asn— oo, i =1,2.
Setting

@) ._ i) (i)
Tn,k = Tn,k - ETn k>

. k . .
TV, =Y X UKi(n/LLn) < |X"| < 8yn}, 1<ks=n,i=12
Jj=1

where & > 0 will be specified later, we readily obtain, from (3.14),
(315 P{ISY — 89| 2 eva} < P{ T 2y }

+nP{|X(L)| >87n}7 i=12,
Recalling (3.13), we see that (3.12) follows, once we have proved

(3.16) Zn-IP{|T§;; > o ,,} <00, €>0,i=12.

Letting 6 = ¢£/16 and using the Hoffmann—Jgrgensen inequality [see, for
instance, Proposition 6.7 of Ledoux and Talagrand (1991)], we can reduce the
- proof of (3.16) to proving ’

' 2
(3.17) Zn [max 1T, > 'yn} <00, i=1,2.
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Next a straightforward application of Kolmogorov’s maximal inequality
yields for i = 1,2,

(@) € - i n i € -
P{gngn,kl > §yn} <64s2nE(X ))21{Ki(fL—n‘> <|XW| < 1—67n}7n2,

which by the Holder inequality is less than or equal to
64572 n(E1 XV I{|X?D| > K;(n/LLn)})YVX(EIXDPL|XD| < y,})Y2y72.

Since by the definition of the function K;(-) [see relation (3.23) in Einmahl
(1993)]

EIXP11{1x9| > Ki;(n/LLn)} < K;(n/LLn)LLn/n,
we find that the last term is less than or equal to
64e 2 n (B XDPLIXD| < v V22, i=1,2.

The last bound in combination with Lemma 5(a) in Einmahl (1993) immedi-
ately implies (3.17).

(ii) Now let (x1, x2) be a point with |x;| A |x3| > O and let Y be a standard
normal r.v. If £ < (|x1]| A |x2|)/2, we can infer from a well known nonuniform
bound on the rate of convergence in the central limit theorem [see, for instance,
Theorem 13 on page 125 in Petrov (1975)] and the c,-inequality,

|P{ISE) /vn — xil < 8} — P{(1%:| — £)yn < vH0ni Y < (%] + &)yn}l/n
<C.v;’EIXY %, i=1,2,
where C,; > 0 is a constant depending on &.

Using once more Lemma 5(a) in Einmahl (1993), we find that (3.11) is
equivalent to -

Y n T P{(1x1] — £)yn < OaavR Y < (Jx1] + ) y2)
(3.18) n
x P{(|x2| — &)yn < 0n2v/nY < (|x2] + &)yn} = 00, e>0.

(iii) Relation (3.18) trivially implies

Y n P{(|x1] — £)¥n < Tpav/R Y}
(3.19) n
X P{(|xg| — &)yn < 0n2/nY} =00, &£>0,

which by a standard exponential inequality for the tail probabilities of normal
random variables is the same as (3.10). Thus, in order to finish the proof for
points (x1,x2) with |x1| A |x2| > 0, it only remains to show that (3.19) also
‘implies (3.18). We use the following inequality, the easy proof of which is
omitted:

(3.20) P{Y>t}<2P{t<Y <t+B}, B=tl t>0.
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Observing that by definition of the function K; [see also relation (3.22) in
Einmahl (1993)]

(3.21) no?; < K¥(n/LLn)LLn, i=1,2,
it is easy to see that if |x;| > 0 and ¢ < |x;|/2, we have for large enough r,

2€7n/~/ﬁ On,i = ‘\/ﬁo'n,i/(|xi| - S)Yna
which implies via (3.20),
P{(Jx;| — &)yn < */ﬁo'n,iY}
< 2P{(|x;| — &)yn < Vnon Y < (Ixil + &)vn}, i=12.

It is now evident that (3.19) implies (3.18), thereby completing the proof of
Proposition 1 for points (x3,x2) with |x;1| A |x2| > 0.

(iv) If (x1, x2) is a point with |x1| A |x2| = 0, we have either (x1, x2) = (0,0)
(Case 1), (x1, x2) = (x1,0), where |x1| > 0 (Case 2) or (x1,x2) = (0, x2), where
|x2| > 0 (Case 3). Observing that S,/y,—> 0 [use, for instance, Lemma 6 in

Einmahl (1993)], it is clear that we always have (0,0) € C({S,/y»}) a.s.

Since ¥, n~! = oo, this is consistent with (3.10). To prove Proposition 1 in
the second case, we can use the fact that Sflz)/ Yn—> 0 to show that (3.8) is
then equivalent to

(3.23) Y ntP{SY /yn — x1l < £} =00,  &>0.

(3.22)

Combining relations (3.12) and (3.22) with the nonuniform bound for the con-
vergence speed in the central limit theorem used in part (ii), we see that this
happens if and only if

(3.24) S n i Ln) Palal=h — 0o, >0,
n

which again is consistent with (3.10).
Finally, one obtains Proposition 1 in Case 3 from Case 2 by symmetry.
Recalling (3.21), we find that B,; >1,i=1,2. O

3.2. Conclusion of the proof. We set for s1,s2 > 0,
Iy(s1) :={n: Bn1 < s1},
Io(s2) :={n: Bn2 < s2},
and
J(s1,82) = I1(s1) N Io(s2).
;:elt {ti,,: m > 1} be an enumeration of the rationals in [1,00) and set for
=1,
Sy = sup[8 >0 ). n~YLn) % = oo},
ned (Er,t1)

where sup@ = 0.
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Put E;; := &(8r,1/tr, 61,1/t1), k, 1 > 1. We claim that with probability 1,
o0
(3.25) A = C{Sn/yn}) = &(01,0) U £(0, ) U cl( ) Ek,z),
k=1

which of course implies the assertion of Theorem 1.
Since A as a cluster set must be closed, (3.25) follows once it has been
proven that

(3.26) A’ c &(01,00U&(0,02)U | Eny,

k=1
3.27) &(01,0)U&(0,02) C A,
(3.28) E, CA, kil>1,

where A’ := {(x1,x2) € A: (px1,px2) € A for some p > 1}. Notice that by
Proposition 1 we have A = cl(A’).

We first prove (3.26). From the definition of the two quantities o; and o9 it
is plain that if (x;,x2) € A is a point with |x1| A |x2| = 0, then we must have
(x1,x2) € €(01,0) U £(0, 02). Therefore, in order to prove (3.26) it is enough
to show that if (x1, x2) is a point of A’ with |x;| A |x2| > 0, then one can find
indices k,! > 1 such that

(3.29) (x1,%2) € Epy.
To that end, we first note that one can infer from Proposition 1 that for any
point (x1, x2) with these properties, there exists some 0 < n < 1/2 such that

(3.30) 3 nN(Ln) OB o
n

Set t' :=inf{t > 1: ¥ ,c1,0) n~N(Ln)~THELA4E%) — 0} and observe that
the above set is nonempty. To see this, simply let £ := 2/|x1|,/1 + 1. Then we
have

Z n—l(Ln)_(lf")(ﬂz»lxyﬂ'ztﬂxg) < X:n_l(Ln)‘4 < 00.
ngly(§) n

This of course implies

(3.31) Z n—l(Ln)—(l+n)(ﬂﬁ,1xf+ﬁﬁ,gx§) = oo.

nell(f)

Otherwise, the series in (3.30) would be convergent, which is impossible.
Since ' < f is finite, we can find a & > 1 such that

(3.32) £i=(1—n/2)2, <t <ty
By the definition of ¢ we have '
(3.33) 3 N (Ln) W ELEHELD) < oo

nel1(¢)



828 U. EINMAHL

and

(3.34) Z n_l(Ln)_(1+1’)(B'2',1x%+ﬂ?’»2x§) = 00,
nely(ty)

which of course implies

2

(3.35) 3 (L) W EE D) — oo,

nEIo

where I := I;(t) — I1(%).
Noting that for n € I,

1+ 0)(B2 1%} + B2 ,x3) > (1 +1)(1 —n/2)t52% + (1 + ) B2 53
> t23 + (14 1) B} %3,
we readily obtain, from (3.35),
(3-36) Z n—l(Ln)—tixf—(Hn)ﬂizxg - oo,

neli(t)
Next, set
t = inf{t > ) n_l(Ln)_"‘7:"21)_(1“’)'3?:,2ch = oo].
ned(tg,t)

" Using essentially the same argument as above, we can infer from (3.36) that
t” is finite. Picking an ! > 1 such that

(8.37) (1—n/2)24 <t <ty
we can show by an obvious modification of the proof of (3.36) that
(3.38) 3 n Y (Ln) "W = .

’ ned (tr,t;)

However, by the definition of 83, this implies t2x2 + t2x3 < 6%’1, which means
that (x1,x2) € &(8r,1/tk, Or,1/t1) = Ep,, thereby completing the proof of (3.26).

We now turn to the proof of (3.27). Observe that using the same arguments
as in the proof of Proposition 1, one can infer from Lemma 1 that

(3.39) x; € C(Sff)/yn) a.s.

if and only if

(3.40) Zn‘l(Ln)_ﬂi»i(]xi]_s)i = 00, e>0.
n

By definition of o; we have
(841) —0; € C({8W/y,}) .as. or ;e C{SY/y,}) as.,i=1,2,
which in combination with (3.40) implies

(3.42) [-0i,0:]C CE{SY/va}), i=1,2
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Arguing as in part (iv) of the proof of Proposition 1, we readily obtain (3.27)
from (3.42).

It remains to prove (3.28). Since by (3.27), (0,0) € A, we only need to prove
(3.28) for indices k,1 > 1 with 6;; > 0. Also note that all points (x1,x2) in Ep;
with |x1] A|x2| = 0 are in &(01,0) U& (0, o2). We thus can focus on the points
in Ej; with |x;| A |x2] > 0. In view of Proposition 1 it is enough to show

(343)  Yon M (Ln)Palalmel=Balal=of _ o0 0 < s < |x1| A l2al.
n

Since ¢2(|x1| — £)% + t2(|x2| — £)% < 82, (x1,%2) € Ep;, we can infer from the
definition of 6 ; that
(3.44) > n~Y(Ln) - tml-er-ti(xl-0)* _ o 0 <& < |x1| A |x2].

ned (tr,tr)

Observing that B,1 < ¢ and B,2 < ¢, n € J(t,t;), we readily obtain (3.43)
from (3.44). This completes the proof of Theorem 1. O

4. Proof of Theorem 2.

4.1. Preliminaries. We will show that one can obtain all possible cluster
sets for symmetric random vectors X = (X®, X®): O — R? satisfying the
additional assumption

(4.1) X is in the domain of attraction of the normal distribution, i = 1,2.

The purpose of this part of the proof is to further simplify the criterion for
clustering in that case.

Set H;(t) = E(X®)21{|X®| < ¢}, t > 0, i = 1,2. Then the following is
well known [see, for instance, the equivalence lemma on page 264 in Hahn
and Klass (1980)].

FAct 1. (a) H;(t) is slowly varying at infinity, i = 1,2.
() M;(t) := E|IXD1{|XD| > ¢t} = o(H;(t)/t) as t — o0, i = 1,2.

Let ¢; := inf{¢t > 1. H;(¢) > 0}, x; := t?/Hi(ti) and set a;(x) := inf{¢ >
t;: Hl(t)/t2 < 1/x}’ X = X, i= 1’2

LEMMA 3. (a) a;i(x) < Ki(x), x > x;, i =1,2.
(b) Under assumption (4.1) we have, as x — oo,
(42) a,-(x) ~ K,-(x), i = 1,2.

PrROOF. Recall that K;(x) is the inverse function of

y . .
Gi(y)=5"/ [ EXOIIXO|> u}du, i=12.
0

Using integration by parts, we find that
(4.3) Gi(y)=y*/(Hi(y)+ yMi(y)), i=12,
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from which we readily obtain
(4.4) Hi(K;(x))/Ki(x)? <1/x, i=1,2,

and consequently (a).
The second part of Lemma 3 is an immediate consequence of Fact 1(b). O

LEMMA 4. Under assumption (4.1) we have, for i = 1,2:
(a) a;(x)//x, x > x; is nondecreasing.
(b) Given & > 0, there exists a constant a, > x1V xg such that

(4.5) a;(z)/ai(y) < (1+¢&)z/y, 2>y >a,.

PROOF. We only prove (4.5). On account of Lemma 3(b) we can find an a,
so that

(46) ai(y) > (1 + 8)_1Ki(y), y = a,, i= 1’2’
which enables us to conclude that
(4.7) ai(2)/a;(y) < (1+&)Ki(2)/Ki(y), z2>2y>a, i=12

Recalling that K;(x)/x is nonincreasing [see relation (2.3) in Klass (1976)],
we get (4.5) from (4.7). O

LEMMA 5. (a) For any t > t;, the inequality t2/H;(t) > x implies t > a;(x),
i=12

(b) If a, is defined as in Lemma 4 and x > a,, the inequality t?/H;(t) < x
implies t < (1+ &)a;(x), i =1,2.

PROOF.. We only show (b). Note that in this case we have #2/(H;(t) +
tM;(t)) < x and consequently ¢ < K;(x), i = 1,2. Recalling (4.6), we obtain
(). O

The next lemma will be crucial for the proof of Theorem 2. It shows that if
X® and X@ are independent, then there is an explicit formula for K(x) in
terms of a;(x),i =1,2.

LEMMA 6. Let X be a mean zero random vector satisfying conditions (1.11)
and (4.1). Then we have, as x — oo,

(4.8) K(x) ~ a1(x) Vv ag(x).

'PROOF. We first note that by Lemma 3(a),

(4.9) K(x) > a1(x) v az(x),. x> x1V Xo.
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Let now 0 < & < 1/2 be fixed. Using Fact 1(b) along with (1.11) it is easy to
see that for y = (y1, y2) € R? with y2 + y2 < 1 and large ¢,

Hy(t) = E(31 XM + 32 X2)21{|y1 XV + 3, X@| < ¢}
< 2(P{XP| >t} + P{IXP| > t})

+E(51 XD + 5 X@)P21{| XD v | XP| < ¢}

Le(Hy(t) + Ha(t)) + y2H1(t) + y3Ha(t)

+2y1y: EXV1{|XV| < }EXP1{|XP| < ¢}

(1+2&)H(¢) + 2tE| X®|1{|1X®| > ¢}

< (1+38)H(),

where H(t) := Hq(t) v Hy(t), t > 0. Moreover, we have for y € R? with
y% + y% <1 and large ¢,

My (t) == tE|y1 XD + y2 XP1{]51 XD + 5. XP| > ¢}

2t(E|X(1)|1[|X(1)| > %} +E|X(2)|1[|X(2)I > %})

IA

IA

IA

IA

& —
) ZH(t),
where we use Fact 1(b).
Setting G, (¢) := t2/(H,(t) +tM,(¢)), t > 0, we see that for large enough ¢,
(4.10) Gy () = /(1 + £)H()

provided that y% + y2 < 1.

Let K, be the inverse function of G,, which as in (4.3) is equal to the K-
function corresponding to y; X + y, X @ It then follows from (4.10) that for
large x,

(4.11) x(1+¢) > K2(x)/H(K (x)).
Recalling Lemma 5(b), we can infer that for large enough x,
Ky(x) <(1+¢&)ai((1+&)x) or =<(1+e&)az((1+¢&)x)
according as I?(Ky(x)) = H1(K,(x)) or = Hy(K 4(x)). Noticing that
K(x) =sup{K,(x): yi+53<1}, =20,
it is now plain that
(4.12) K(x) < (1+&)(ai(x(1+ £)) v az(2(1 + #))),
which in view of (4.5) is bounded above by
: (1+ £)*(a1(2) v az(x))

provided x is large enough.
This implies, in conjunction with (4.9), the assertion of Lemma 6. O
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We are now ready to prove the following proposition.

PROPOSITION 2. Let X be a mean zero random vector satisfying (1.9), (1.11)
and (4.1). Then we have (x1,x2) € C({Sn/yn}) a.s. if and only if

(4.13) Zn—l(Ln)—ﬁ,z,,l(lel—é‘)i-ﬁig(lle—ﬂi = oo, £>0,
n

where ﬁn,i :=(a1(n/LLn) Vv as(n/LLn))/a;(n/LLn), i = 1,2.

PROOF. In view of Proposition 1, Lemma 3(b) and Lemma 6, we only need
to show that as n — oo,

o2, =Var(XV1{]X¥| < K;(n/LLn)})
~ K%(n/LLn)LLn/n, i=1,2.

To see this, note that we have by the definition of the K-function [see also
(4.3)],

o2, = Hi(Ki(n/LLn)) - (EX"1{|X"?| < K;(n/LLn)})?
=n"'K%(n/LLn)LLn — K;(n/LLn)M;(K;(n/LLn))
— (EXY1{|X¥| < Ki(n/LLn)})?
> n‘lK?(n/LLn)LLn —2K;(n/LLn)M;(K;(n/LLn)), i=1,2.
Recalling Fact 1(b), we see that for any given £ > 0 and large enough n,
o-,zl’i >n"'K%(n/LLn)LLn — eH;(K;(n/LLn))
>(1- s)n‘lK?(n/LLn)LLn, i=1,2.

Combining the last inequality with (3.21), we obtain (4.14) and Proposition 2
has been proved. O

(4.14)

4.2. Construction of the random vectors. We need two further auxiliary
results.

LEMMA 7. Let X be a mean zero random vector satisfying (4.1) and
(4.15) H;(t) < Cexp((LLt)*), t>0,i=1,2,

where C>0and 0 <a <1
Then we have

Y P{IX|l > yn} < co.
n

PROOF. We show that (4.15) in conjunction with (4.1) actually implies a
slightly stronger statement, namely,

(4.16) > P{IX®9| > a;(n/LLn)LLn} <oo, i=12,



CLUSTER SET PROBLEM 833

which by relation (4.4) of Kuelbs (1985) is equivalent to
(4.17) E(X02/H;(1X9)/LLIXP|)LL|XP| < oo,

where H;(t) =H;(t)vli=12.

Using the Karamata representation [see, for instance, Theorem 1.2 in
Seneta (1976)] of H;(¢), which is slowly varying at infinity on account of
Fact 1(b), we have for any 0 < 7 < 1 and large enough ¢,

(4.18) Hi(t) <2H;(¢/LLt)(LLt)", i=1,2.
Therefore, it is enough to show that for some 0 < 7 < 1,
(4.19) E(XDY?/H(1XO)LLIXP))" <00, i=1,2.

From the definition of the functions H;, i = 1,2, it is easy to see that for any
6>0,

(4.20) E(X)YH,(XONLH(XD)H <00, i=12,
which in combination with (4.15) implies
(4.21) E(X9D)2/H,(|XD|)LLI XD+ < 6o §=1,2.

Choosing 6 small enough, we obtain (4.19) and consequently (4.16). O
LEMMA 8. Let {cV}, i = 1,2, be two nondecreasing sequences satisfying,

for some 0 < a < 1,

(4.22) 0<c) <exp((Ln)*), n=>1,

and as n — oo,

(4.23) D 51, i=1,2

One can find a symmetric random vector (X, X?) satisfying (1.9), (1.11),
(4.1) and

(4.24) H;(t) = c(‘) . exp(n) <t<exp(n+1), n>1,i=12.

PROOF. Set p,; := l(c(’) (‘) 1) exp(—2n), n > 1, where c(’) =0,i=1,2,
and let X&), i =1,2, be zndependent random variables satlsfymg

(4.25) P{X® =exp(n)} = P{X® = —exp(n)} = ppy, n=1,
and
(4.26) P{X®Y=0}=1-2Ypn;, i=12

- It is easily checked that (4.25) and (4.26) imply (4.24). Moreover, we get from
(4.23),

(4.27) limsup H;(et)/H;(t) =1,
t—o00



834 U. EINMAHL

which means that H; is slowly varying at infinity, { = 1,2, or, equivalently,
4.1).
Finally, X satisfies condition (1.9) by Lemma 7. O

We are now ready to carry out the construction of the desired symmetric
random vector for which the cluster set A = C({S,/vx}) is equal to a given
set A which has the form

(4.28) A =&(01,00U&€(0,02)U cl( G rf(am,bm)),

m=1

where 01 Vog =1and 0 < a,, < 01, 0 < b,, < 03, m > 1. Without loss of
generality we can and will assume that 01 Aoy >0and o1 = 1. [If o1 < 1,
construct a random vector X, for which the cluster set A is equal to &(o2,0)U
&(0,01) Ucl(UZ_; €(bm,an)), and consider X := (X@, XMV ]

Let {6}, {mm} C[0,1] and {s,}, {¢tm} C [1,00] be sequences such that

o0 00 =
(4.29) U &(am,bm) = U am(ﬂﬂ(s;Lla 1Hu U M (1, t,_nl),
m=1 m=1 m=1

where 1/00 := 0.
Set, for & > 6,

Ly:={1<j<2k s;<2%2 §;>1/k}, I :=#Ly,
Li={l< j<2k t; <2%2 5; > 1/k}, , i=#L}.
Further, if I, > 1, let 7} be a permutation of {1,...,2%} such that

(4.30) Smp(1) < 00 < Smp(ly)
and
(4.31) {sj: jeLe}={sm): 1< Jj <UL}
Likewise, if I}, > 1, let 7r"k be another permutation of {1,...,2*} such that
(4.32) tr,1) < <lz,@)
and
(4.33) {tj: je Lyt ={tz: 1= j=<l}
To simplify our notation, we set

Skl = Skmu(l)» 8y = Ormw, 1<Il<U,
) thi = tha,s  MRL=Mhaw, LI,

Shig+l == €2, Spp41 =09,

. k+1)/2 - w— ,—k/2
tk,l’k+1 1= elF+D)/ , Spo =10 :=e k/2
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Further define
mpo == my =4, M1 i=mp + k5 + 4% *
ngii=mpg+ k2, 0<I<l,
Mpo := Mpl,+1, Mpii1 = Mpy + K3 + 47’2"+1k4, 0<l< l/k —
Ry =M+ k3, 0<i<ly, Mg +1 7= Mps1.
Next introduce two sequences { c(l)} and {c?} as follows:
cfll) =0, 1<n<mg,
and set for & > 6,

el := exp(k?), my < n < Myy,

) =15 exp(R? + k+log(eh 1/t k), 0<j<k, 0<l<l,
cfll) = t%e,l+1 exp(k2 + k), gy <n <M1, 0= l< l/k'

Likewise, define

c®:=0, 1<n<mg,
a1:1d set, for £ > 6,
ngm =5}, exp(k® +log(s} /55 ) k),  0<j<Fk,0<l<l,
¢ = s}, exp(k?), ey <n<mpip1, 0<1 =<1y,
c?) := exp(k? + k), Mpo <N < Mpi1.

It is easy to see that we have for the two foregoing sequences

(4.34) 0 < c) < exp((Ln)'/?)
and .
(4.35) f:ll/c(‘) —-1 asn—> o0, i=12.

We can apply Lemma 8 and we obtain a symmetric random vector X satisfying
(4.1) and the assumptions of Theorem 1 such that

(4.36) Hi(t)=c?, exp(n)<t<exp(n+1), n>1i=12

From (4.36) and the definition of the two sequences {c(l)} and {c?} we can
infer

' (4.37) Hy(t)/Hy(t) =s3,, exp(npi_1) <t<exp(mpy), 1<I<L+1,
_ ki ,

(4.38) Hy(t)/Hs(t) =12, exp(fri-1) <t <exp(Mp;), 1<l<l+1
&l : 3
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4.3. Conclusion of the proof. We now use (4.37) and (4.38) to get some
information about the sequences {8,;}, i = 1,2. To that end, we need three
further lemmas. The first one is an immediate consequence of Lemma 5.

LEMMA 9. Suppose that H1(t) = c2Hy(t), t € M, where M C (tl,oo) and
¢ > 0. Then we have
az(xc?) < a1(x) < (1+ &)az(xc?)

whenever a1(x) € M and xc? > a,, which is defined as in Lemma 4.

The next lemma gives us precise information about how close az(xc?) is to
cas(x).

LEMMA 10. If we define X® as above, we have for large k, e *% < ¢ <
e*t1/2 gnd any x satisfying az(xe %) > exp(my_1),
(4.39) exp(—3/k) < as(xc?)/cas(x) < exp(3/k).
PROOF. We show that for large %, 1 < d < e!*+1/2 and y satisfying as(y) >
exp(m-1),
(4.40) as(yd?)/das(y) < exp(3/k).

We then obtain the upper bound in Lemma 10 for ¢ > 1 by setting y = x,
d = ¢ and the lower bound for ¢ < 1 by setting y = xc2, d = 1/c. If ¢ > 1, the
lower bound in (4.39) follows from Lemma 4(a); so does the upper bound in
4.39)if e < 1.

In order to prove (4.40), observe that

(4.41) a3(yd?)/a3(y) = d®Hs(as(yd?))/Hz(az()).
Moreover, by Lemma 4(b) we have, for large enough y,

(4.42) Hj(as(yd?)) < Hy(2d%as(y)).

Next note that by the definition of { c(2)}, we have, for large &,
(4.43) Hj(et)/Hs(t) < exp(3k~2), t > exp(mp-1).

Setting f(d) := min{j: e/ > 2d?} and noting that f(d) < 2k since d? < e**1,
we get

(4.44) Hj(az(yd?)) < Ha(efPas(y)) < exp(6/k),
which in combination with (4.41) implies (4.39). O

The subsequent lemma prov1des a sufficient condition for (4.39) in terms of
the function a;.

LEMMA 11. For large enough k, the inequality ai(x) = exp(my) implies
az(xe*) > exp(mp-1).
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PrOOF. Observing that Hq(¢)/Ha(t) < e*, t < exp(mp_1), we can conclude
that if ag(xe %) < exp(mp—1), we have

xe~t = aj(xe™*)/ Ha(az(xe™)) < efaf(xe™)/ Ha(as(xe™)),
which implies, via Lemma 5(a),
(4.45) a1(xe ) < ag(xe™*) < exp(mp-1).
Using Lemma 4(b), we obtain, for any x satisfying x > are?®,
(4.46) ai(x) < 2¢**a;(xe2*),
which by (4.45) implies, for large &,
(4.47) a1(x) < exp(myg).
If x < aye®*, (4.47) easily follows from the fact that a1(x)/x | Oas xtoo. O

We need some further notation. Set for n > 1, @(n) := ai1(n/LLn) and let,
for £ > 6,
= {n: exp(mpg1) <@(n) <exp(ngi-1)},  1=lsh+l,
In; = {n: exp(n;_1) < @(n) <exp(mpy)}, 1=l=lp+1,
1= {n: exp(Mpi-1) < @(n) < exp(Frr-1)},  1=<i= I,+1,
Jhy = {n: exp(figi—1) < @(n) <exp(Mpy)}, 1=<I=<l+1

Combining the three previous lemmas, we can conclude that forany 0 < @ <1
there exists a k, such that for 2 > k&,,

(4.48a) (1—a)sgs < Bni < (1+ a)suy, nelp, 1<l<lL+1,
(448b)  (1—a)tes <fna<(l+a)tr, nedy, 1sI<l+1
After these preparations we are finally ready to show that A=A

PART 1. (A D A). Since A as a cluster set is closed, it is enough to verify
that

(4.49) AD &£(1,0),

(4.50) A D &(0,02),

(4.51) AD8,&(sy,, 1), m=1,
and

(4.52) A>np&(L,t), m=>1
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We will apply Proposition 2. Observe that, for large enough &,

(4.53) Son Ttz tmpi—npi),  1=<Ii<h+1,
nely;
(4.54) on > i(mp —Apge1),  1<I<I+1
neJk_l
To see (4.53) we note that, by Lemma 4(b),
(4.55) a(z)/a(y) <2z/y, zzy=am,

which enables us to conclude that, for large &,
> a7t > log((df, + 1)/(iay — 1) — 2

nelu

> log(a(i},; +1)/a(ips — 1)) —log2 -2

1
> 5(mpg —npi-1), 1<l

where iy :=minl;; and i}, :=maxlp;, 1 <l <l k=1 The proof of (4.54)
is similar.

We return to the proof of (4.49). In view of Proposition 2 it is obviously
enough to show that

© (4.56) 3 (L) s = co.

Using the trivial fact that 3,1 A Bn2 = 1, it is clear from (4.48) that for large
k,

(4.57) Bri=1, nedi,

which in combination with (4.54) implies

(4.58) > T Ln) P Y - g )4 2 L
ned LA

Since the sets J;; are disjoint, we readily obtain (4.56) from (4.58).
In order to show (4.50) it is by Proposition 2 enough to prove,

(4.59) Y Ln)y P =00, 0<a<oy.
n

Using the same argument as above, we find that for n € I;;, .1 and large &,
(4.60) Bz =1,
from which we can infer via (4.53) that

'(4.61) Z n—'l(Ln)—azﬁ;’;’z > 4o‘§k4_a2(k+1)4/2’

neli, 1

where the last term goes to infinity if @ < o2. This establishes (4.50).
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We next prove (4.51). We only need to consider points (x1, x2) in 8, & (s}, 1)
with |x1] A |xg| > 0. [If |x1| A |x2| = 0, it already follows from (4.49) and
(4.50) that (x1, x2) belongs to A.] If such a point exists, we trivially must have
8n, > 0 and s,, < oo, and we can find for large enough %2 a unique index
1 < r(k,m) <l such that

(4.62) Ok,r(k,m) = Om, Sk,r(km) = Sm-

Set In(m) := I (k,m) 8nd let 0 < & < |x1| A |x2| be fixed. Recalling (4.47), it is
easy to see that we have, if 5,, > 1,

(4.63) Bri1 < (1+ &)sm, Br2 =1, n e Ix(m).
Moreover, if s,, = 1, we obtain from Lemma 9 for large enough £,
(464) Bn,l \% Bn,2 =< 1 +e&, ne Ik(m)

Combining (4.63) and (4.64) and using the obvious fact that |x1| Vv |x2| < 1,
it follows that

,é?.,l(|x1| - 3)2 + 3,21,2(|x2| - 6‘)2 <(1- 6‘2)2(33,‘-"5% + x%)
<(1-¢%7%82,
which in turn implies that as 2 — oo,
Y Y Ln) Pralml=eP=Bly(ml=e)" 5 g8, (K -+141-) 19 5 o,
nely(m)

Using Proposition 2, we get (4.51). The proof of (4.52) is similar.

PART 2. (A C A). Employing a similar argument as in the proof of (4.53)
and noticing that @(x)/x!/3 is eventually nondecreasing, we get for sufficiently
large &,

(4.65) Y nT < 4(npgor —mage1),  1<I<hLi+1,
nel’u
(4.66) 3. n7t <4(mpy — nagar), 1<l<l+1,
nely; .
(4.67) Y nl<4(Apgo1 - Mpg1),  1<IsU+1,
neJ’“
(4.68) Y 7l < AW — Agg-), 1<l<l+1
nedpy

In particular, we have for any 6 > 0,
(AARS!

- (4.69) Xy Y al(Ln)?<oo,

k =1 nel), ,UJ',,

where we set I, =@, 1 >l + 1 and J) =3,1>1l,+1
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We show that if (x1,x2) is a point outside A, it cannot belong to A. There
are three possible cases: x; = 0 (Case 1), x3 = 0 (Case 2) and |x1] A |x2| > 0
(Case 3).

Case 1. If (0,x2) € A, we must have |x2| > g2. We show
(4.70) Zn_l(Ln)_Eilpz < 00, p> o,
n

which via Proposition 2 implies (0, x2) ¢ A.
Since Br,2 > 1 and §,, < 02, m > 1, we can infer from (4.66) that for large
k,
S U Ln) P <440 DK 1 cl< 1
neIk,, :
Since I < 2%, we readily obtain
lp+1

(4.71) Z Z Z n_l(Ln)_ﬁz-Z"2 < 00, p > os.
k1

=1 nelyy
Next choose @ > 0 small enough so that
(1-a)?p? = 05(1 +a/2).
" Then we get from (4.48) for n € J3; and k& > k&,
Brap® = o3t (14 a/2),
which in turn is
> n2,(1+ a/2).

Here we have used the fact that o2 > 7 k,lt;,} which follows from the definition

of g9.
Recalling that n;; > 1/k, 1 <1 < l),, we can infer that for 1 <[ < l'k and

large &,
. Z n'l(Ln)”Bin"’2 <4 x 27,
ned,

Moreover, by (4.48) we have for n € J kL +1 and large enough &,

Bi,2p2 = 29
whence

Y X ntEm e <o

k ned Bl +1

. It is now plain that
l+1 o
(4.72) 3 Y i Ln) P <00,  p> 0o
ko1 '

=1 neJ),,l
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Combining (4.69), (4.71) and (4.72), we get (4.70).
CASE 2. If (x1,0) ¢ A, we must have |x1| > 1. However, in this case (x1,0)
cannot be among the limit points of {S,/v.}, since this would imply

(4.73) limsup ||S,|/Yn = |x1] > 1 a.s.,

n—>oo

which would be in contradiction to Theorem B.
CASE 8. We need a further lemma, the easy proof of which is omitted.

LEMMA 12. Let (y1, y2) be a point in R

(a) If E =6&(s71,1), where 1 < s < oo and dist((y1,y2), E) > & > 0, then
2y 4+ y3 > (8+¢)%

(b) If F =n&(1,t71), where 1 <t < oo and dist((y1, y2), F) > & > 0, then
yi+t2y3 > (8 +&)2

Let now (351, x2) be a point outside A with |x1| A |xg] > 0. Set p :=
dist((x1, x2), A)) and choose 0 < £ < (|x1] A |x2])/2 so small that
(4.74) (1-2)%(lxil —8)* = % /(L+p), i=12
Weé show for any & satisfying (4.74),
(4.75) Z n—1(Ln)—ﬁﬁ,l(lm|—6)2—[§?,,2(Ile—s)2 < 00,
n
which by Proposition 2 implies (x1,x2) ¢ A.
Observe that we have by Lemma 12, if s, < oo,
(4.76) §2.4% +x% > (8p + p)2.
Applying (4.47) with a = &, we obtain from (4.74), for large &,
(4.77) Bii(1x1] — 8)* + Bho(lxal —)* 2 (1 +p)8;;,  nelp, 1<i<l.
Recalling (4.66) and the fact that 6,; > 1/k, we get for large &,

478) Y nN(Ln) Pralmimel-Balal=ef < gy gk 1<l

nel;,,z
Further, note that since £ < |x1|/2, we also have for large enough &,
(4.79) Bi,1(|x1| - 6‘)2 > Bilx%/‘i > 2, nedpgq.
Combining (4.78) and (4.79) we find that

h

L+l 52 2_ 2 2
(4.80) Z Z Z n—l(Ln)-Bn_l(lxll—e) —Bra(lxel=6) _ o
k

=1 nelk,l
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A straightforward modification of the proof of (4.80) yields

U+1 : i
(4.81) Z Z Z —I(Ln)—B,Z,,l(lxll—e)z—Bi,z(lxzn-e)z < oo

I=1 nedy,;

provided £ > 0 has been chosen as in (4.74). Recalling (4.69), we see that (4.75)
holds true, thereby completing the proof of Theorem 2. O

5. Proof of Theorem 3. We first note that by an obvious modification of
part(i) of the proof of Proposition 1 one can show that if X is a random vector
satisfying (1.9), one has (x1,x2) € C({S,/y.}) a.s. if and only if

(5.1) Y n P{ISnn/yn — (x1,%2) <} =00, £>0,
n

where S, , := S,, — ES,, and S,, = 1 X;1{IX,ll < K(n/LLn)}. To
further simplify criterion (5.1), we need a lemma which is implicitly con-
tained in Theorem 2 in Kuelbs and Kurtz (1975). [See also Lemma 5 in Ein-
mahl (1991), for the special case x = 0.] Though we need this result only
for finite-dimensional random vectors, we give a general version for Hilbert
space-valued random variables.

LEMMA 13. Let X,,...,X, be independent mean zero random variables
taking values in a separable Hilbert space H satisfying E||X;||® < oo, 1 <
J < n. Let x be a point in H and let a, 1 oco. If Y1,...,Y, are independent
Gaussian mean zero r.v.’s with cov(Y j) = cov(X ), 1 < j < n, we have for any

>0,
(a) [ZX/an—x <3}<P{ ZY/an—x <2a]
J=1 Jj=1
+Aa-3a;3ZE||Xj||3,
Jj=1
n n
(b) P[ D Yi/an—x <3}5P{ Y Xj/an—x <2a}
Jj=1 Jj=1
+As 303 Y EIX;I3,
j=1

where A > 0 is an absolute constant.

Recalling Lemma 5(a) in Einmahl (1993), we now can infer that (5.1) holds
true if and only if

(5.2) D P{lvn Y, — yu(x1,%2)ll < e¥n} =00, &>0,

where Y, is a sequence of two-dimensional mean zero random vectors with
cov(Y,) =cov(X1{|X| < K(n/LLn)}),n > 1.
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Since Y, has a symmetric distribution, we immediately get property (2.5)
from (5.2).

To prove (2.6), we use another well-known property of Gaussian random
vectors which follows from a classical result of Anderson (1955).

FACT 2. Let Y be a two-dimensional normal mean zero random vector and
let z = (21, 22) be a point in R% Then we have forany 0 <t <1, § >0,

P{|Y — ¢tz < 8} = P{|Y — 2| < 6}.

Fact 2 in conjunction with (5.2) implies that whenever (x1, x2) € C({Sr/¥x})
a.s., we must have (¢x1,¢x2) € C({Sn/y»}) a.s., 0 <t < 1, which means that
A has to be star-shaped. O

REMARK. The reader might have noticed that the above proof can be ex-
tended to Hilbert space-valued random variables when using a slightly more
complicated argument for proving (5.1) such as that employed in the proof
of Lemma 8 in Einmahl (1993). This means that the cluster set is also star-
shaped and symmetric about zero in this case. Property (2.7), however, will
not be satisfied, in general [see Theorem 4 in Einmahl (1993)].

6. Proof of Theorem 4.

6.1. The construction. We first observe that any closed set A satisfying
(2.5)~2.7) can be written as a closure of (at most) countably many line seg-
ments; that is, we have

(o)
(6.1) A:cl(U/,-),

j=1
where . = {(tcos6j, tsin6;): |t| < o}, j = 1, for suitable sequences
0 <6 <27 and 0 < o; < 1. Without loss of generality, we assume that
o1 = 1. Then the sets Ly := {1 < j < k: o > 1/k}, k > 1, are nonempty and
we can write

(6.2) Ly = {j1(k),..., jn ()},
where ji(k) <--- < ji,(k) and lp :=#Lp > 1, k > 1. Set

Okl = Ojp(k)> 1<l<lp—-1, Ok, '=01.
Likewise,

Oy :=6j,,.(x)> 1<l=<ly—-1, Or1, = 01.
Further, define for 2 > 1,

, mg = 4’“4, My := My,
Mp gy = My + k3 + 4%k® O0<l=<lp-2,

Ny i=mp;+ k3, 1<l<liy-—1, My, = Mpy1.
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Let Z be a symmetric random variable such that the truncated second
moment function

H(t) := EZ?1{|Z| < t}, 0<t<oo,
satisfies
(6.3) H(t) = cy, exp(n) <t <exp(n+1), n>1,
where
cn:=0,0<n<my,

and for & > 4,

Cm, = exp(k?),

Cmy+i = exp(K® + 1k + j/k?), 0<j<k3,
cm = exp(k2 + (1 + 1)k), Npi <m < mpiq1, O0<l<l-2,
Cmpgyatj = €xp((8K% + 4k + 1 — k) jE 3 + k(L — 1)+ &%), 0<j<k®,

cm = exp((k + 1)3), Rpl—1 <M < Mpy, = Mpg1.

The existence of such a random variable follows by the same argument as

in Lemma 8.
_ Define the two-dimensional random vector X = (X, X)) by

oo I
XM =33 "cos(0:) Z1{exp(mp-1) < |Z| < exp(ms,)},
k=1 =1

oo I
X® =3 "sin(0s1) Z1{exp(ms -1) < |Z| < exp(mp,)}.
k=1 I=1

For a similar construction in a different context, refer to Example 4 in Hahn
and Klass (1980).
We now claim that if we define X as above, then we have almost surely

(6.4) A= C({Sn/7:}) = A.
To prove (6.4), we need some auxiliary results.
6.2. Preliminaries. Since the above function H(t) is slowly varying at in-

finity, the random variable Z is in the domain of attraction to the standard
normal distribution and we can infer the following lemma from Fact 1.

LEMMA 14. We have as t — oo:

(a) E|\Z|1{|Z) > t} =: M(¢t) = o( H(t)/t).

() P{IZ| > t} = o(H(2)/8).

L'et K be the K-function corresponding to Z and set
¥ :=+~2K(n/LLn)LLn,n > 1.
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Then arguing as in the proof of Lemma 7 and using Lemma 5(b) in Einmahl
(1993), we find that

(6.5) Z P{|Z| > 6¥,} < o0, 6> 0.
n=1

Next set for any —o0 < 6 < oo,
X(6) := (cos )X + (sin ) X®

and observe that

oo U
(6.6) X(0)=3)" Y cos(0— 6041)Z1{exp(mp_1) < |Z| < exp(mp;)},

k=1 1=1
from which we readily obtain,
(6.7) 1 X(0)| < 1Z].
Letting K4 be the K-function corresponding to X(6), we obviously have
(6.8) Iz'(x) = SI;.p Ky(x), x>0,

and we find that
(6-9) Yn < Yn, n>1

" We next need upper bounds for ¥,/ys, n > 1. Set for —co < 6 < oo and
t>0,

Hy(t) := EX*(6)1{| X(0)| < t},
Hy(t) := EX*(0)1{|1Z| < t},
My(t) := E|X(6)11{|X(6)| > ¢}

and observe that as in (4.3), K, is the inverse function of #2 J(Ho(t)+tMo(t)) =:
Go(t).

Using the above definitions and (6.7), and recalling Lemma 14, one can
easily prove the next lemma.

LEMMA 15. We have:

(a) Hy(t) < Hy(t), t =0, —00 < 6 < 00.

(b) Ho(t) < Ho(t)+2P{|Z| > t}, t >0, —00 < 6 < 00.
(c) supytMy(t)/H(t) - 0 as t — oo.

From formula (6.6) and the definition of the function H, we get the following
lemma. :

LEMMA 16. We have for 1 <] <l and k > 1:
(a) Ho(t) > cos?(0 — 6x,1) H(t)(1 - e7*) and
‘(b) Hy(t) < cos?(0 — 0,)(H(t) — H(exp(mp,;-1))) + H(exp(mp,;_1))
provided that exp(ng;-1) <t < exp(myg;).
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We are now ready to prove a further lemma which will be crucial for the
proof of Theorem 4.

LEMMA 17. (a) There exists a sequence 8 | 0 such that
(6'10) Yn < (1 + 8k)7n’ ne Jk,ly 1 =< l = lk’

where J}; := {n: exp(n;-1) < K(n/LLn) < exp(mg;)}.
(b) limsup,_, o ¥n/¥n < 2.

ProoF. By Lemma 16(a) we have for a suitable sequence 6;; | 0 and
1 =< l =< lk’ k = 17

(6.11) Hy, (t)> (1~ 8,1)H(¢),  exp(nii-1) <t < exp(ms,),
which of course implies via Lemma 14 and Lemma 15(a),
(6.12) Hy,,(t) = (1 — 8p2)(H(2) +tM(t)),  exp(ngu-1) <t < exp(mpi),

where 612 | 0.

We now can infer from (6.12),
(6.13) Gs,,(K(n/LLn)) < (1 - 842)"*G(K(n/LLn))
' =(1-06x2)"n/LLn, nedJdy,,

where G(t) := t2/(H(t)+tM(t)) is the inverse function of K(x) [refer to (4.3)].
Using the fact that Ky, ,(x)/x is nonincreasing, we get from (6.13),
(6.14) K(n/LLn) < (1 - 8k2) ' Ko, (n/LLn),  nedu,,

which proves (a).

To see (b), let £ > 5 and assume that ¢ € (exp(mp;-1), exp(mp;)],
where 1 < ! < [;. Then we have either H(t)/H(exp(mgp;-1)) > 2 or
H(t)/H(exp(mp,;-1)) < 2. In the first case, we obtain from formula (6.6),

(6.15) Ho,, (t) = H(p)/2.

As for the second case, let 03 = 0p1-1,2 <l <}, and 6} ; := Op-1,,,. Using
the monotonicity of H 01, We can infer from Lemma 16(a),

(6.16) Ho, (¢) = H(exp(mp,-1))(1 - e™**).

Recalling that in the second case, H(exp(mp-1))/ H (t) = 1/2, we can infer
from (6.15) and (6.16) that

" (6.17) liminf sup Ho(t)/H(t) > 1/2.
' —>00 ]

Arguing as in the proof of (a), we readily obtain assertion (b) from (6,17). O
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Using Lemma 17(b) in conjunction with relations (6.5) and (6.7), we get
o0
(6.18) > P{IX| > 8yn} < o0, §>0.
n=1

We now can argue as in part (i) of the proof of Proposition 1 to conclude
that we have (x1, x3) € C({S./v»} a.s. if and only if

o0
(6.19) > 7 P{(ISnn/yn — (21, %2)[ < £} =00,  £>0,

n=1

where S,,, == Y7, X;1{| Xl < K(n/LLn)}.
Using Lemma 13, it follows that (6.19) in turn is equivalent to

(6.20) Y T P{Y, = (%01, %n2) < Yn/a/A} =00,  £>0,
n=1
where Y, are two-dimensional Gaussian random vectors with mean zero and
cov(Y,) = cov(X1{||X|| < K(n/LLn)}), %n,; := xiyn/s/n, i = 1,2.
6.3. Conclusion of the proof We first show A D A. Since A is a closed set,
_it is enough to prove
(6.21) ZLicA, j=1

Recalling (6.20), this can be accomplished by showing for ¢ > 0, |¢| < o7},
J=1,

(6.22) Y nT P{||Y, — tyn/+/n(cos 6;,sin 6;)|| < £yn//n} =00
which after an orthonormal transformation becomes

(6.23) Y n T P{I(Y n(6)), Y r(6)) = (yn/v/1,0)l < £yn/+/n} = 00

where Y,(0) := (cos )YV + (sin0)Y? if Y, = (YL, Y?) and ¢ = 6 + w/2.
Next observe that

P{”(Y,,(OJ-), Yn(o}))__ (t')'n )" E’yn

> P[0 - Z2| < 3 22, |Yn(03)|<§%}
, 2 p{[va0) - 2| < 222} plivaopnz 5 22

Further note that if 2 is large enough and o; > 0, we can find an index
1 < ri(j) < I; such that Orr(j) = 0j. Setting J1(Jj) = Jpr() where J}; is
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defined as in Lemma 17, it is easy now to see that (6.23) follows once it has
been proven that as & — oo,

(6.24) -IP[ ) - 2n 57—} :
nG;k:(J) ‘/— 2‘/_ -
and for large &,
(6.25) P[lme;)l_;;"_} 1 {Yn(o,o 2| < gj_} n e Ji(J).

We first prove (6.24). Observing that | X|| = |Z|, we get for any 6,
(6.26) Var(Y,(8)) = Var(X(6)1{|Z| < K(n/LLn)}) = Hy(K(n/LLn)),

where by Lemma 16(b) and Lemma 17(b) the last term is less than or equal
to

H(K(n/LLn)) = O(y2/(nLLn)).

Assuming that |¢| > 0j/2 > &, we can use the same argument as in part (iii)
of the proof of Proposition 1, and we find that for large enough n,
£ Yn }
TRl T2

1 Yn
Using (6.26) and Lemma 16(a), we get for n € J k( Jj) and large &,
Var(Y,(6;)) = H(K(n/LLn))(1 - 8,),

which by the definition of the function K, Lemma 14 and (6.9) is greater than
or equal to

(6.27)

(1-8),5)v2/(2nLLn),

where &; | 0, i = 1,2.
Combining the last bound with (6.27), we get for 0;/2 < [t| < 0j, n € ()
and large enough &, ’
tYn & ’)’n } > (Ln)—t2

(6.28) P{ Ya(6) - | <572

Using a 1-dimensional version of Fact 2, we can infer that for any ¢ with
lt| < oj, n € Ji(j) and large k&,

tyn

Tn

Ya(6)) - & n } > (L),

(6.29) [ <3 Tn

where 8 > 0 depends on ¢£. -
' A similar calculation as in (4.54) yields for large &,

(6.30) Y ol 4Me,
ned(Jj) )



CLUSTER SET PROBLEM 849

Combining (6.29) and (6.30), we readily obtain (6.24). We now turn to the proof
of (6.25). In view of (6.29) it is enough to show that for large %,

(6:31) P[|Yn<e;>|z§% <(Ln)y?  nedi()).

To see (6.31), simply observe that by (6.26) and Lemma 16(b),
(6.32) Var(Y,(6;)) < H(exp(mpi-1)),  n € Jr(J).
By definition of the function H the last term is less than or equal to
e *H(exp(my,)) = e *H(K(n/LLn)),
which in turn is less than or equal to
e *y2/(2nLLn).

Using the last bound and Lemma 17(b), we immediately get (6.31). This com-

pletes the proof of the inclusion A > A.
3 To prove the other inclusion, we show that if (x1, x2) is a fixed point outside

A, it cannot belong to A._
Set B := dist((x1,x2), A) > 0 and & := B/2. In view of (6.20) it is enough to
prove that

(6.33) Y a7 P{IY n — (2,1, 2n2)ll < £Yn/+/R} < 00.

To establish {6.33). we first note that
(6.34)  P{IYs — (21, %n2)ll < £¥n/v/n} < P{dist(v7 Yu/7n, A) = B/2}.
Moreover, it is easy to see that if n € J};, we have
P{dist(v/n Y»/vn, A) > B/2}
< P{dist(vn Yn/vn, Lr1) = B/2}
< P{IYn(6k2)| = (0k1 + B/4)¥n/1n} + P{IY n(6},)] = Byn/4v/n},

where £ := {t(cos0r;,sin0;): |t| < opy}, 1 <1 <1, k>1. Asin (6.31) we
have for n € J3;, 1 <1 <1; and large &,

(6.35) P{IY n(6},))| = Byn/4v/n} < (Ln)72,

and we can infer that
oo U

(6.36) Y3 3 ntP(IYa(6h)l = Bya/av/n) < co.
k=1 I=1 neJu

* Recalling (6.26), Lemma 16(b) and Lemma 17(a), it is easy to see that for
ne€ Jk,l, 1< <l and large &,

(6.37) P{IY (01| = (0ks + B/4)yn/v/n} < (Ln) Tk P17,
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As in (4.69) we have for 1 </ <[, and large &,
(6.38) > Tl <4(mpy—npgoa).

nedp

Combining (6.37) and (6.38), we find that

oo I
(6.39) Y3 Y nT P{IY (60| = (0ki + B/4)Yn/v/R} < 0.
k=1 l=1 nedy;
In view of (6.36) this means that
oo I
(6.40) Z Z Z n_lP{”Yn - (xn,l, xn,2)" < €7n/*/ﬁ} < o0,
k=1 l=1 nedy;

It remains to show that

oo I
(6.41) Z Z Z nIP{|Y, - (20,1, 2n,2) 1l < &Yn//n} < 00,
k=1 =1 nGJ’U
where J), ; := {n: exp(mp,;-1) < K(n/LLn) < exp(ns;-1)}, 1<l<l, k> 1
By the definition of {m;} and {n:;} we obviously have

oo I

" (6.42) Y3 Y nl(Ln)P?<oo, >0,
k=1

=1 neJ’k’l

and we can complete the proof of (6.42) by proving that for large n and a
suitable 6 > 0,

(6.43) P{lIY — (%n,31, %n2)ll < &¥n/~/n} < (Ln)~°.

Observing thalt [[(x1,x2)|| > B, which follows from the facts that 0 e A and
dist((x1,x2), A) > B, we get

P{IYn — (2n,1, %n2)| < £¥n/v/n} < P{IYull = Bya/24/n}

and we obtain (6.43) by using a standard exponential inequality for normal
random vectors in conjunction with (6.26). This completes the proof of Theo-

rem 4. O
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