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DECOUPLING INEQUALITIES FOR THE TAIL
PROBABILITIES OF MULTIVARIATE U-STATISTICS

By VicTor H. DE LA PENA! AND S. J. MONTGOMERY-SMITH 2

Columbia University and University of Missouri, Columbia .

In this paper we present a decoupling inequality that shows that
multivariate U-statistics can be studied as sums of (conditionally) inde-
pendent random variables. This result has important implications in
several areas of probability and statistics including the study of random
graphs and multiple stochastic integration. More precisely, we get the
following result: Let {X;} be a sequence of mdependent random variables
on a measurable space (5’ S) and let {X{)}, j=1,...,k, be k indepen-
dent copies of {X;). Let f;,...;, be families of functlons of k& variables
taking (S X :-- X 8) into a Banach space (B, |- ]|). Then, forall n > & > 2,
t > 0, there exist numerical constants C, depending on % only so that

P( Yy fiyoa( X0, XD, zt)

1<iy#ig# = #ip<n

Y fiyr (XD, XD, ..., X))
1<iy#ig# - #ip<n

The reverse bound holds if, in addition, the following symmetry condi-

tion holds almost surely:

sckp(ck

1112 lk( iy? lz’ ) flwu)lw(z) lar(h)( inqy? i‘rr(2)"“’Xiw(l¢))’

for all permutations = of (1,..., k).

1. Introduction. In this paper we provide the multivariate extension of
the tail probability decoupling inequality for generalized U-statistics of order
2 and quadratic forms presented in de la Pefia and Montgomery-Smith
(1993). This type of inequality permits the transfer of some results for sums
of independent random variables to the case of U-statistics. Our work builds
mainly on recent work of Kwapieh and Woyczynski (1992) as well as on
results for U-statistics from Giné and Zinn (1992) and papers dealing with
inequalities for multilinear forms of symmetric and hypercontractive random
variables in de la Pefia, Montgomery-Smith and Szulga (1992) and de la Pefia
(1992). It is to be remarked that the decoupling inequalities for multilinear
forms introduced in McConnell and Taqqu (1986) provided us with our first
exposure to this decoupling problem. For an expanded list of references on the
subject, see, for example, Kwapienr and Woyczynski (1992).
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2. Main result.

THEOREM 1. Let {X;} be a sequence of independent random variables on a
measurable space (%, S) and let {X{)}, j =1,...,k, be k independent copies
of {X.}. Letf; ;,...;, be families of functions of k variables taking (S X --- X S)
into a Banach space (B,||-|). Then, for all n >k >2, t >0, there exist
numerical constants C,, C, depending on k only so that

Pl 1)
1)

1 2 k
oz fir (XD, XD, ..., XB)
1<iy#ig# - #ip<n
If, in addition, the following symmetry condition holds almost surely,
fi1i2 vee ik(Xil’ Xiz, ey Xik) = fiqr(l)in(z) e i,,(k)(Xi”(l), Xiw(z)’ . Xi"(k))’

for all permutations = of (1,..., k), then
> t)

g
L f(X X0, XD)

1<ij#ig# - #ip<n

h firo (XD, XD, XD)

1<iy#ig# - #iz<n

< ckp(ck

Z f.il' . 'ik(Xi(ll)’ Xl(22)’ DY Xt(kk))

15i1¢i2¢ o *ikaén

1)

Note. In this paper we use the notation {i, # i, # - #i,} to denote
that all of i,,..., i, are different.

sékp(ék

3. Preliminary results. Throughout this paper we will be using two
results found in earlier work. The first one comes from de la Pefia and
Montgomery-Smith (1993). For completeness we reproduce the proof here.

LEMMA 1. Let X,Y be two i.i.d. random variables. Then

2t
(1) P(IX| = ¢) _<_3P(|IX+Y||2 ?).

ProoF. Let X,Y, Z be ii.d. random variables. Then
P(IXIl = ¢)
=P((X+Y)+(X+2)-(Y+2)|>2t).
<P(IX+Yl=>2t/3) + P(IX + ZIl = 2¢/3) + P(IlY + Z|| = 2¢/3)
. =8P(IX+Yl=2t/3). o

'The second result comes from Kwapieh and Woyczynski (1992) and can
also be found in de la Pefia and Montgomery-Smith (1993).
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PROPOSITION 1. Let Y be any mean zero random variable with values in a
Banach space (B, |- |)). Then, for all a € B,

@) P(lla + Yl llal) = 7,

where k = inf, . g (E|x'(Y))?/E(x'(Y))?). (Here B’ denotes the family of
linear functionals on B.)

ProoF. Note first that if ¢ is a random variable for which E¢ = 0, then
P(¢>0) > 1/4((E|£)?/E(£2)). From this we deduce that P(x'(Y) > 0) >
1/4((E|x"(Y)D?/E(x'(Y))?). The result then follows, because if x’ € B’ is
such that ||x'|| = 1 and x'(a) = ||lal|, then {lla + Y || > |||} contains {x'(a + Y)
>x'(a)l ={x'(Y)=0}. O

LEMMA 2. Letx,a;,a;;,..., @;; ...; belong toa Banach space (B, |- ).
Let {&;} be a sequence of symmetric Bernoulli random variables. Then

P x + E E ail"'irgil"'eir

r=11<iy#iy# - #i,<n

> IIxII) >c; !

’for a universal constant 1 < ¢, < © depending on k only.
k 8

PROOF. Suppose that x, a;, a; ;,,..., @;;,.;, arein R. Then since the &’s
are hypercontractive, by (1.4) of Kwapieh and Szulga (1991) and the easy
argument of the proof of Lemma 3 in de la Pefia and Montgomery-Smith
(1993), for some o > 0, we get

. 4) 1/4

k

E Z a;, ...; 6 " &

1/4
k 4H v
=|E Z Z bil---i,.gilrgi,.
r=11<i;< - <i.<n
1/2
k 2\
~k
<ot E X )» bi,...i,6;, 7 &,
r=11<i;< - <ip<n
' 1/2
& 2
= ok
oM El X ) )y ai,...;, & & )
R r=11<iy,# - #ip<n

where b, ..., =X, .5 @

) and S, denotes the set of all permutations
of{1,...,r} ‘

i1r(1) e iqr(r
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Next, observe that ||£|ly < o7 2||£|l, implies that [|£llz < o™ *lI£]l;. Take
x' € B’ so that ||x’'ll = 1 and x'(x) = ||x|l. Then
> IIxII)

k
x+ ) ) a; ...;& &

r=11<i,#is# - #i,<n

X ,
>Plx'(x) + ) Y x'(a;...; )& & zx’(x))
r=11<iy#ig# - #i,<n
B B SRR SR O P >o) S
r=11<iy#ig# - #i,<n

NoTE. Throughout this paper we will use ¢, and C, to denote numerical
constants that depend on % only and may change from application to applica-
tion.

4. Proof of the upper bound. Our proof of this result is obtained by
applying the argument used in the proof of the upper bound in the bivariate
case plus an inductive argument. Let {o;} be a sequence of independent
symmetric Bernoulli random variables; that is, P(o; = 1) = 3 and P(o; =
—1) = 1. Consider random variables (Z{, Z(z)) such that (Z, Z(z)) =
(XD, X®) if 0, =1 and (ZP, Z®) = (X(z) X(l)) if ;= —1. Then (1 + 0;)
and (1 — o;) are either 0 or 2 and these random variables can be used to
transform the problem from one involving X’s to one involving Z’s. Let us
first illustrate the argument in the case that 2 = 3:

23F, (Z<1) Z®, ZP)
iyigig ’

= {1+ )1+ )1 + 7)) Friyi ( XD, XD, XD)
+(1+ Ui;)(l +0;,)(1 = 0;,) Fryigis XD, XD, XD
+(1+0,)1-0;,)(1+ Ui3)ﬁ1i213(X(1) X, X®
(3) +(1 = 0,) (1 + 0,) (1 + 0,) [, X2, XD, X2
+(1+0,)1-0;,)(1— Ui3)fi1izz3(X(l) X®, X®
+(1-0)(1+0,)(1 - 03),311.213()(512), X, x®
» (1= 0) (1= 0,) (1 + 03 i )
M fisini

+(1 - o-il)(l - Uiz)(l - Oy filizla X(Z) X(Z) X(l) }’

X(2) X(2) X(2

iigiy

)
)
)
)
)
)
)
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where the “+” sign is chosen if the superscript of X, agrees with that of Z;
and “—” otherwise. Next, set

T, 3= P {filigia(Xz(ll), X,(Zl), X(z)) + flllzla(Xt(ll)’ X(l) X(l))

1<ij#ig#ig<n

flllgls(X(l) X(2) X(Z)) + lezzza(Xz(lz)’ Xz(;)’ X(2))

1 ?

2 2 1
+fi1i2i3(X(1) X( ) X(l)) + fl;lzts(Xz(l)’ Xz(2)$ X(l))

iy 2
2 2 2 2 2 1
lezzza(Xz(l)’ X®, X{ )) + filizia(Xx(l)’ X®, X{ ))}

Letting &, = o(X®, X®, i =1,...,n) we get

To=2 L E(fu(20.20.20)19,).

1<iy#iy#iz<n
More generally, for any 1 < /;,...,[, < 2, one can obtain the expansion
24, (200, ZW)
4 .
(4 = Y (1ta)(1ta)f. (XG0, ..., XGV).

lﬁjly...,jkgz

The appropriate extension of T, ; is

T, ), = h Y fiya( XG0, XOP).

1<iy# - #ip<n 1<jy,...,Jp,<2

Again,

From Lemma 1 we get

A

T,.=20 ¥ E(fy..(Z0,...,Z0) 1 %,).
Lo fuen(XD XD)

1<iy# - #ip<n
= t)
1<iy#ig# - #ip<n

Z {fif"ik(Xi(ll)""’Xi(kl))‘

1<iy# -+ #ip<n
> Zt)

< 3P(3

+1, ~ih(Xz(12 )y, X2))
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T, , + Yy fiyeoif( XD, X)

1<iy# - #ig<n

= 3P(3

2 2
oy XD, XY = T, | = Zt)

(5)
< {3P(8IT, Il = t)
+3P|3 h Y fien (X9, X0 >t
1<iy# - #ip<n 1<jj,..., Jp<2
not all j’s equal
< (3P(8IT, ,ll = ¢)

=),

(Recall that C,, ¢, are numerical constants that depend on % only and may
change from application to application.)

Observe also that using (4) and the fact that the o’s are independent of the
X’s, Lemma 2 with x = T, , gives for any fixed 1 </,,...,[, <2,

Y fia(XGD,, XGP)

1<iy# - #ip<n

+ Y CkP(Ck

1<ji,..., Jr<2
not all j’s equal

T (29, Z)

1<iy# = #ip<n

> |IT;, mz) > L.

(6) P(zk

Integrating over (|7, .l >t} and using the fact that {(X, X®): i=
1,..., n} has the same joint distribution as {(Z{", Z®): i = 1,..., n} we obtain

that
. t)

S fyn(2,., 20)

1Si1¢ o #iksn

Z ﬁ1-~~ik(Xilll),~-°,Xi(,,lk))

1<iy# - #i,<n
7
(7 =P(2k

> ¢;'P(IT, 4l = t).

(2

g

.It is obvious that the upper‘bound decoupling inequality holds for the case
of U-statistics of order 1. Assume that it holds for U-statistics of orders
2,...,k — 1. Putting (5) and (7) togethep with 1 <1,,...,7, <2, not all I’s
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y

equal, we get

d

Y (X0, XD)

1<iy# - #ip<n

< {8PQ3IT, Il > )

T iea(E e X)

1<iy# -+ #i,<n

g
y

+ Yy CkP(Ck

1<ji,..., Jr<2
not all j’s equal

Z f‘il"'ih(Xi(ljl)""yXi(l;jk))

1<iy# - #ip<n

where again, the last line follows by the decoupling result for U-statistics of
orders 2,...,k — 1 of the inductive hypothesis. Since the statement “not all
J’s equal” means that there are less than % j’s which equal, the variables
whose j’s are equal can be decoupled using (conditionally on the other
variables) the decoupling inequalities for U-statistics of order 2,...,k — 1. O

IA
N

CkP(Ck

1<jy1,..0» Jr<2
not all j’s equal

Y fiyoif( XD, XB)

1<iy# - #iy<n

< CkP(Ck

Next we give the proof of the lower bound.

5. Proof of the lower bound. In order to show the lower bound we
require the following result.

LEMMA 3. Let 1 <1 < k. Then there is a constant C, such that

Pl 1)

Z ﬁl---ik(Xi(ll), Xi(zl)’°--’Xi(:))

1<iy#ig# -+ #ip<n

z r

1<iy#ig# - #ip<n 1<jp,..., Jp=l

> C,;lP(

> th).

firo (XS0, X2, .., XW)

" ProoF. Let {8}, r =1,...,1, be a sequence of random variables for which
P(6,=1)=1/land P(§,=0)=1-1/l,and T'_,8,=1.Set 6, =6, — 1/1
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for r = 1,..., 1. Then it is easy to see that there exists o; > 0 depending only
upon ! such that for any real number x, and any sequence of real constants

{ai},
l
(8) +oit Xoae,
4 r=1
One can also use the results of Section 6.9 of Kwapieh and Woyczynski

[(1992), pages 180 and 181] to assert this since the &’s satisfy Conditions 1
through 3 stated there. O

l
Xy + Z a.g,

r=1

HER
2

Let {(8;1,..., 8;;), i = 1,..., n} be n independent copies of (8,,..., §;). As
before, we define
1
(9) aij=6ij_ 7.

Since the vectors &, = (g,4,..., &) are independent, by an argument given in
Kwapiefr and Szulga (1991) for i = 1,..., n, for all constants x,, a;; in R,

n
x0+zza1rtr x0+o-llzzazr8

i=1r=1 i=

ey
~

[y
1)

l
4 =
l

Z,,

r= 2

(10)

50[

n M;;

and recentering, we obtain

(11) £ g s

Next we use the sequence &, i = 1,..., n, in defining the analogue of the
Z’s used in our proof of the upper bound.
For each i, let Z;, = X if 8,; =1 Then {Z, i = 1,...,n} has the same
joint distribution as {X®, i = 1,...,n} and
fil'“ik(zil""’zih) - . Z 8il.jl Sikjkfil"'ik(Xi(ljl)"”’Xi(l;ih)).
1<ji,J2s-0» Jr=l
The fact that E§; ; = 1/1 for all i,, j, gives

1\* . .
E(fil'“ik(zil’”"zih) I'?l) - (7) Z ﬁl"'ik(Xi(fl)""’Xi(:k))’

1<ji,..., Jnsl

™=
MN

a;, 6

r%ir
1 2

< o7 txe +
4 i

1r

Where ‘?I = U((Xl(l), ceiy Xl(l)), i = 1, ceey n).

Let
Un = Z f;ll2 l,,(Zl vy Zik)
! 1<iy#ig# -+ #iy<n
B Z E 61'1,1'1 Sikjk fil T ik(Xi(ljl)’ R Xi(,{k))-

1<iy#ig# - #ip<n 1<jy,...,Jp <1
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Let 9, = (§;4,..., 8,;). Since the 2’s are independent of the X’s, if we let

gil--«zh( ig2°e )

= Z 8i1j1 aikjkﬁ1"'ik(Xi({1)””’Xi(:h))'

1<ji,.+es Jest

then, since
fil e ik(Xil’ tte Xik) = fi(w(l)) e i(ﬂ(h))(Xiw(l)’ ter Xin(k))’

we have that

8, ih(gil’ cee gik) = iy i(,,(,,»(gi,m, T 91',,(;,))'

Therefore, the two-sided decoupling inequality in de la Pefia (1992) can be
applied and for every convex increasing function ®, every ?,—measurable
function 7' and every set of 2 independent copies 9(’), r=1,...,k, of 9,
there exist numerical constants A,, B, so that

o

<E <I>(”T+ Y g1 (ZD,..., 2P) )Iz’,)

1Siy#ig# - #iy<n

E(CI)(A,, T+ p & .i(Dipr D

1<iy#ig# - #ip<n

<E <I>(Bk T+ Y &, ...i(Dis D) ) |?,).
1<iy#ig# - #i<n
This result with (11) shows that, conditionally on &,
—k Bk
(12) | 1T, = Tyl < o7* 21T, = Tyl
k
where
Tn = E(Un I ?l)
1\* '
= (...) Y Y fii (Xi(jl), XU9,..., Xi(jlc)).
D) yciymigt - wigsn 1<jy,desl : '

[See also the proofs of Lemma 2 and Lemma 6.5.1 of Kwapien and
Woyczynski (1992).]
Thus we have that

(13) P(IUN 2 T, &) = ;"

This follows from the use of (12) and Proposition 1 witha = T, and Y = U, —
T,. We also use the fact that for any random variable ¢ and positive constant
c, II§II4 < cll£ll; implies that || £]1> < c?[|£|l; (see also the proof of Lemma 2 for
the approach to transfer the problem from one on Banach space-valued
random variables to one on real-valued).’



Integrating (13) over the set {||T,|| > t}, we get

A
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)y fiooo (XD, X, XP)

1<iy#ig# - #ip<n

=p( T (2, z,.z,...,z,.k)”y)

1<iy#ig# - #ip<n
> c;lP(Ck

)y X

1<iy#ig# - #ip<n 1<j;,...,jp=l

fivo i XG0, XS, ..., XGw)

y

The end of the proof of the lower bound follows by using induction and the
iterative procedure introduced to obtain the proof of the lower bound multi-
variate decoupling inequality in de la Pefia (1992). We give a different
expression of the same proof, motivated by ideas from de la Pefia, Mont-
gomery-Smith and Szulga (1992). We will use S, to denote the set of
permutations of {1,..., k}.

The Mazur—Orlicz formula tells us that for any 1 <ji,...,j, <k,

and Lemma 3 is proved. O

k—8,— -8
Z (___1) 1 h8j1 8jh

0<8;,...,8,<1

is O unless j,,...,j, is a permutation of 1,..., k, in which case it is 1. Hence
T (XD, XT®)
‘n'eS,, N
k=8 =5 ; ;
_ Z (-1 ™ b Z ajl...ajk f}l--'ik(Xi(lh)’“"Xi(kjk))'

0<8y,...,8,<1 1<ji,-.-,Jx<k

By the symmetry properties of f,

Z f‘il"'ik(Xi(ll)””’ Xl(kk))

1<iy# - *ihsn

z L (-pfre

1

=

) k' lsilaﬁ-“#iksn 0561,...,8h51
X

Z 311 oo ajhf‘il“'ik(Xi(ljl)""’Xi(,;ik))‘

1<jy,.. ., Jask
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y

)y )y

1<iy# - #ip<n 1<jy,...,Jp<k

Therefore,

r|

h firooif( XD, XEP)

1<iy# -~ #i<n

< Y Pr(

0<6,,...,8,<1

8, 8jhﬁ1"ih(Xi(ljl)""’Xi(,;ik)) > k!t/2k)
k 3 | |
- Z (l)Pr( , z ) . > ' fil...ik(Xi(l‘ll),,..,Xi(:k))
l=l 15’1*"’*1;‘,571« 15]1»-”,];,5[
> k!t/2’“),

and this combined with Lemma 3 is sufficient to show the result. O

REFERENCES

DE LA PERA, V. H. (1992). Decoupling and Khintchine’s inequalities for U-statistics. Ann.

Probab. 20 1877-1892.
" DE LA PERA, V. H., MONTGOMERY-SMITH, S. J. and SZULGA, J. (1992). Contraction and decoupling

inequalities for multilinear forms and U-statistics. Preprint.

DE LA PEFA, V. H. and MONTGOMERY-SMITH, S. J. (1993). Bounds on the tail probability of
U-statistics and quadratic forms. Preprint.

GINE, E. and ZINN, J. (1992). A remark on convergence in distribution of U-statistics. Preprint.

KWAPIEK, S. and SzZULGA, J. (1991). Hypercontraction methods in moment inequalities for series
of independent random variables in normed spaces. Ann. Probab. 19 369-379.

KwaPIEN, S. and Wovczynskl, W. (1992). Random Series and Stochastic Integrals: Single and
Multiple. Birkhéuser, Boston.

MCcCoONNELL, T. and TaQQU, M. (1986). Decoupling inequalities for multilinear forms in indepen-
dent symmetric random variables. Ann. Probab. 14 943-954.

DEPARTMENT OF STATISTICS DEPARTMENT OF MATHEMATICS
CoLUMBIA UNIVERSITY MATHEMATICAL SCIENCES BUILDING
NEW YORK, NEW YORK UNIVERSITY OF MISSOURI

CoLUMBIA, MISSOURI 65211



