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LARGE DEVIATIONS FROM A HYDRODYNAMIC SCALING
LIMIT FOR A NONGRADIENT SYSTEM

By JEREMY QUASTEL
University of California, Davis

The hydrodynamic limit appears as a law of large numbers for
rescaled density profiles of a large stochastic system. We study the large
deviations from this scaling limit for a particular nongradient system, the
nongradient version of the Ginzburg-Landau model.

1. Introduction. This paper is an extension of the basic paper of Donsker
and Varadhan [2], on the large deviations from the hydrodynamic scaling
limit of the Ginzburg-Landau model, to the nongradient version of that
model considered in [5]. The setup in [5] is as follows: Let S denote the unit
circle 0 < 6 < 1 with 1 = 0 and, for an integer N, let S N denote the penodlc
lattice {i/N};_; . . The neighbours of a site i/N are i + 1/N and i — 1/N
with addition modulo 1. To each site i /N is assigned a variable x; € R which
is thought of as the charge at i/N. The vector x € RV evolves accordmg to
the system of stochastic differential equations

dx; = dzi—l,i - dzi,i+1’

(1.1) N2
Ziiv1 = '2_Wi,i+1 dt + Nya(x;, x;.,) dB;,

where

Wi i1 =a(x;, xi+1)(¢"(xi) - ¢I(xi+1))

(1.2) da da

- E(xi’ Xip1) + E(xi’ %iv1)s

a(x, y) is a function of R? which is assumed to have bounded continuous first
derivatives and satisfy

(1.3) 1/a* <a(x,y) <a*

for some a* < «, and ¢ € C? is assumed to satisfy

(1.4) [ ewar =1,

—
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LARGE DEVIATIONS FOR NONGRADIENT SYSTEMS 725

(15) | exp(Ax — p(x)) dx = M(1) <= forall A €R,

(1.6) [_w exp(ol¢'(x)l — ¢(x))dx <o forall >0

and 1/K < ¢" < K for some K < «. The B; are independent Brownian mo-
tions and the N? represents the diffusion scaling of time, corresponding to
the lattice spacing of 1/N.

When a = 1, the system is the standard Ginzburg-Landau model (see [3],
[2]) which is a gradient system, meaning that the microscopic current W, ; ,
can be expressed as the gradient 7i*!g — rig of the local function
g(x_;,..., x;). For such systems there is no net effect of fluctuations on the
diffusion coefficient. While this simplifies the proofs considerably, it is not a
natural condition. Many models, and in particular most stochastic lattice
gases, do not satisfy the gradient condition. The Onsager coefficient a is
introduced into the model to break the gradient structure.

The dynamics (1.1) can alternatively be described by the generator

N2 N
(1.7) Zy = o Y Py D 0y a(x;, x;,0) DI,
i=1
where D**! = 9/9x, — 3/dx,, ,, or, since %, is symmetric with respect to
@, (x) = exp — TN , ¢(x,), by the Dirichlet form

N
i 2
(18) In(F) =3[, L alx, 5,,2) (D) @y (x) da.
i=1
As initial distribution for x we take fy®,, where
N
(19)  £3(x) = exp ¥ K (mo(i/N))x; — log M(K (mq(i/N))),
i=1

where m(6) is a given smooth function on S and

(1.10) h(m) = sgp{/\m — log M(2)}.

Corresponding to the initial distribution (1.9), the evolution (1.1) and T < o,
we have a measure @y on C([0,T] —» RY). For each x € RN define a
measure on S by

1 N
(1.11) ru(d0) = = L %8/,
i=1

where §, represents the measure giving mass 1 to 6 in S. The probability
measure @, is carried by this mapping into a probability measure @, on
- X = C([0,T] - M[S]), where M[S] denotes the set of signed measures on S.
In [5] it is shown that under these conditions,

(1.12) Qn = Snir. 0)ass
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where 8,,; 4,4 denotes the probability measure on X whose mass is concen-
trated on the unique weak solution of the nonlinear diffusion equation

om J J
(1.13) — = ——|d(m(¢, 0))3—0h’(m(t, 6))], m(0,0) =my(0).

The function d(m) is given by a variational formula which we now describe.
Consider Q = [1° R with product measure m,, = I'T;_ _.exp{h'(m)x; — ¢(x,)
— log M(K'(m))} dx;. By a local function we mean a function on { which
depends on only finitely many coordinates. Let T' be the shift operator on ()
defined by (Tx), = x,, ;, and for functions g on (, let 7'g(x) = g(T"x). For a
local function g we can write the formal sum

o

(1.14) &L= Y g

j=—

Although this is purely formal, the derivative D'%, is well defined. The
variational formula for 4(m) is

(1.15) a(m) = ing"m[a(xl, x25)(1 - Dlzfg)Z],

where the infimum is taken over all smooth local functions g.

In the present article we are concerned with the large deviations from the
scaling limit described above. Let (f, g) be the usual inner product on
L2(S, d0). Define, for functions m(0), f(8) on S,

Laie(m()) = [ (A(m(8)) = h(mo(6))
—h (mo(8))(m(8) — mo(0))) do,

J 2
(1.17) ”f”.z.l,ﬁ(m(.)) = sup {2<J, f> - [S&(m(O))(Z—o(O)) dO}

JeH(S)
and for a function m(¢, 6) on [0,T'] X S,

1 7|l om 190
Idynamic( m(" )) -‘2-";)

(1.16)

at 2 06

(1.18) .

dt.

—-1,d(m(t,-)

d
X(c’i(m(t,o))%h’(m(t,e)))
We will need as well the form I,(u(:,-)), which is defined as follows:
I(u(:,+)) = « unless u(t,d6) = m(¢, 6) d for each ¢t € [0, T'], in which case
T 4 2
1 ) = a(m)| — (¥ .
@19 n(ae) = [T a5 sm)| dodr

* We can now describe the rate function I and X. If I(u(-,+)) = =, then
ICu(-,-)) = . Otherwise, u(t, d8) = m(t, 6) d6 for each ¢t € [0,T] and

(]"20) I( ,LL(’, )) = Istatic( m(O’ )) + Idynamic( m(" ))
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The main result of this paper is that @, has the large deviations property
with rate function I. In particular, let M‘[S] be the set of signed measures on
S with total variation at most I. The space M![S] with the topology of weak
convergence is metrizable. Therefore X' = C(0,T] —» M'[S] can be given
the topology of uniform convergence. Finally, X = U X' is given the d1rect
limit topology. For any closed set C c X,

1 A
(1.21) limsup —log @y(C) < — inf I(u(-,"))
Now N u(,)eC

and, for any open set U Cc X,

1.
1.22 lim inf —1 > — inf I( u(-,*)).
(1.22) im in Nlog@n(U) = nt (mr(-»4)

2. Upper bound. To prove the upper bound (1.21) we will produce a
family of functionals FJ G, s, s{ M(:,)), depending on certain parameters
J, G, &,, &5, for which we can prove the following lemmas.

LEMMA 2.1. For each fixed J and G,

(2.1) hm0 lim sup lim sup —ﬁlog EQN[exp NFJ G, sy, 52] <0.

e,-0 N-ow
LEMMA 2.2. For each u(:,-) € X for which I,(u(:,)) < @
(2.2) I(pu(+,+)) < lim limsup supﬁ'J’G,shsz( u(-,).
€2—’0 6‘1—>O J,G

In addition we will show the following lemma.
LemMMA 2.3. IfI(u(:,-)) = © on a compact K C X, then

1 A
(2.3) limsup —log Qy(K) = —.
N-oow N

The upper bound for compact sets will follow by the exponential Chebyshev
inequality. These are essentially standard arguments in large deviations (see
[4], [2D. To extend this to arbitrary closed sets, we need the following
exponential tightness estimates whose proofs can be found in [5].

LEMMA 2.4. For each T < », £ > 0 and smooth function J on S,

1
(2.4) lim lim sup —log QN( sup llu(t)ll = l) = —oo,
o2 Now N 0<t<T

’ i 1
(2.5) 11m lim sup —log QN( sup K, u(2)) = {J, n(s)l = a) = —oo,
10 Now N olssjltssr :

s—tI<
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We now describe the functionals FA‘J’G, e e L (5 ). Let J(¢, 6) be a smooth
test function on [0,7T'] X S and let G(6) be a smooth test function on S. For
g, > 0, let m;* be the average density in an &; neighbourhood of 6: m;: =
2e) (60— &,,0+ &]. For &, &, > 0, let

By .00 e W) = [[log MR (mo(6))) ~ log M(G(6) + K (mo(0))) 0
+/J(T, 0)u(T,do)
S
= [(7(0,0) = G(6)) (0, 0)

J
(2.6) _/()Tfs%?(tﬁ)#(t,dO)dt

1 .7,.0d .
—§f0 fsg(t,@)a(mﬁ‘)

[l M)
28,

—%[T[s(a—'](t,a))zﬁ(mgl) do dt.

We will now begin the proof of Lemma 2.1, which depends on several
preliminary lemmas. Before we start, it is worth making a remark. Let Py be
the equilibrium process, by which we mean the measure on C(0,T] —» R¥)
corresponding to taking the invariant measure ®,(x) dx as initial distribu-
tion. Suppose that for some sequence of functionals Fy we can prove a
superexponential estimate which says that for any a > 0,

1
(2.7 li? sup -N—log EPv[exp aNFy] < 0.

Then, by Hélder’s inequality, this estimate extends to @, :

1
lim sup —log E9[exp aNFy ]
N-oow N

1 1+y
< lim sup lim sup ———1log E*~|(f$
(2.8) v10 N oo (1 + y)N [( N) ]

[

Y (L+7)
+ lim sup lim sup ————1log E*v [exp————
yl0 N-oow (1 + 'Y)N Y

aNFN]

<0.
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Now let g(x_;,..., x;, m) be a smooth function on R?**? with bounded
first derivatives and for =L _.7'g, let
2 ~
(2.9) A(g,) = E"’m[a(xl, x5)(1 - D%,) ] —da(m).
For £ > [, let
1 1y z > k/N
V= 2 .ZIJ 2 N [Wi,i+1 - (‘-(Zg)(xi—l""’xi+l’mi/N )]
iz
1 X i H(mfy..,) —H(miy_,.)
.10 +— t, = |a(mg A 2
(2.10) 2Ni§1J , N)a(m,/N)( 22,

.2
i
_ HV_,-=1 (J(t, ﬁ)) A(g, méyy).

Here 52 represents the generator, without the N2 scaling, acting only on the

variables x_; through «x,.
The main point in our proof is the following estimate which is due to

Varadhan.
LEMMA 2.5. For each a > 0, g and J,
lim lim sup lim sup lim su ! lo EPN[ex NfTVl(t (1)) dt]
— a , X
(211) g9 0 gl—)op k—)oop N—)eop N g P 0
<0.

ProOOF. This is Theorem 7.1 of [5]. O

LEMMA 2.6. For any £> 0 and C <, we can find a smooth function
g(x_q,...,x;,,m) on R*'*2 with bounded first derivatives such that

(2.12) sup A(g,m) <e¢
) Im|<C
and
(2.13) supA(g,m) < a*.
m

PROOF. Let £, p be the set of smooth g of the form g(x_,,..., x;) with
liglle < B and lldg/dx,ll. < B fori= —1,...,1, and let

’ 8€Z, p
The quantity A, z(m) is upper-semicontinuous in m, nonincreasing in ! and
B and, for each m, lim, , ,limy A, g(m) = 0. Therefore,

lim lim sup A, z(m)=0.
Io@ Bow 10041
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Thus we can find /,B and, for each |m|<C + 1, g(m) €%, so that
A(g(m), m) < /4. For |m| > C + 1 take g(m) = 0. Of course this g is not
regular in m, so we will smooth it out. Let &), = {x2,,,; + - +x3,.3 < M}
and let M be large enough so that for all g € &, ,

&
(2.15) I:IuSpCE"'"[a(xl, x)(1 - D%, ) 14| < 7

and let 1 > & > 0 be small enough that if [m| < C + 1 and |m' — m| < §, then
la(m') — 4(m)| < ¢/4 and

2 16 d’ﬂ'm/ 1 &£
. _— <1+ .
(2.16) ?;5 dm, 4a*
-21+1,..., 21+3
Then for |m| < C and |m' — m| < 8,
A(g(m), m')

= E"'"’[a(xl, x2)(1 - Dlzfg(m))2] —a(m')

217) < E[a(x;, 2;)(1 - D%, (m))'1a, | + 2 —&(m')

&
< (1 + 1o )E"’m[a(xl, x5)(1 - Dlzgg(m))ﬁgu] + Z — &(m')

< &.
Let ¢ be a smoothing kernel with support in (— 3§, 8) and let

(2.18) g(x_;,..., %, m) = fqo(m’ -m)g(x_;,..., %, m')dm'.
Clearly 9g/dm is bounded and by (2.17) and convexity,

2
(2.19) A(Z(m),m) < (fgo(m’ - m)(A(g(m),m))"* dm’) <e

for |m| < C. Finally, if g =0, A(g, m) = E™[a(x,, x,)] — @&(m) < a*, so by
(2.19), for |m| > C, A(g(m), m) <a*. O

The next lemma allows us to control the difference between the corrector
term which appears in (2.10),

N
Z J(t,i/N)(-?g)(xi—l’”" Xit1s mf//ll\y)

i=1
(2.20) N i+k-1
= Y J(t,i/N) ) -7”J+lg(xi—l»---?xi+l’m?//ll\}’)’
i=1 Jj=i-k

where Zi*1 = ®y1D " 1dy a(x;, x;, )C**!, and the “derivative” term,

©a N i\ %
(2'21) ZJ(t’N)(Wg)(xi—l"n,xi+l’m?//1<1v)‘
i=1

The difference is in the action of the generator on the local averages. It is
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given by

N
(2 22) — 'ZIJ(t’ i/N)(_c‘/i+k,i+k+l +-c/i—k—1,i—k)
N

k
Xg(xi_l,...,le,mi//N )
LEMMA 2.7. For any a > 0,

(2.28) limsup limsup —log EPN[exp aNf V2(t,x(t))dt] <0.
k> N-oow N

PrOOF. Let g’ denote g(x; ;,...,x;,;, m{/{). By Schwarz’s inequality,
for any f

N
j‘ Zyi+k,i+k+1gifq)N dx
i=1

= _f Z a(xwka t+k+1)D’+k H'IH'lg’DHk ’+k+1f¢> dx
i=1
(2.24) N t+k i+k+1

= _f Y a(Zipps Xiper) DRI g \/_ VF —— &, dx
i=1

N 1/2
< |J Zatsion st o (7))

There is of course an analogous estimate for (X, Z "%~ Li~kgif® dx. Also,

s . . . 1 Jg
(225) D1+k,1+k+1 i— _pi-k-Li kgl = ﬁ am( ie l,,..,xi+l,m?//1€',)~

By the spectral theorem and (2.24) and (2.25),
L 1og EPY NfTﬁJ(t i)
—lo exp a , —
log paN| LI\t
X (Fitheithtl g gizh-Lizkygi dt]
<fT_1_ sup aNfZJt _._(yt+kt+k+1+.c/tk 1,i— k)
“J N N
(2.26) Xgif®y dx — NZ.@N(W)} dt
c A
]_V- { f Z a(ka, z+k+1)

x[(Di+k,i+k+1gi)2 + (Di—k—l,i—kgi)2] fdy dx}
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0g2

am
This completes the proof of Lemma 2.7. O

< Ca?k™?

3

ProoF OF LEMMA 2.1. For a smooth function g(x_,,..., x;, m) on R%*2
with bounded first derivatives, let
N o 9 z k/N
(227)  £%(1) = T ot |8(weci(8)s s min(8), mA/ (1))
i=1
and let
F(x(")) = [slog M(K (mq(0))) — log M(G(6) + K (m,(6))) d6
1 N i 1
_ i D _ ___gN
+Ni=Z1J(T’ N)x,(T sz (T)
1 i i 1
— —_| = —_ . 4 —gN
2 £ o 2] -of )0+ st
71 N (3J i
(?.28) —fo I_V_El(—? t,N)xi(t))dt
rl N d2J i
+ A —ZEI tae(t,N)g(xi_l(t),...,xi+l(t),mf/,’$’(t))) dt

N d
N XN o1 i N N
)2 ) J(t,l"'z—v‘) —J(t,ﬁ) VVi.i+1_'J'V—2§ (¢)at
13

1
rl N
_fo ‘2—N’i§1“(xwxi+1)
N|J|¢t,i+ 1) J(t i) + DN 2dt
8 ((‘ N ’N) ‘

The functional exp NF(T') is a martingale under @, so

1
lim sup —log E%[exp NF(T)]
N-oow N

1
lim sup —log E%*[exp NF*(0)]
N-ox N .

B M(G(8) + K (my(6)))
=~ LB mat0)))

2.29
(2.29) 46

1 N i
: —_ AN — | x.
+ hgljgp NlogE ‘ [expiglG(N)xl]

=0.
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By bounding the last term in (2.28) in terms of the bound on the derivatives
of g, it is not difficult to show that

1
(2.30) lim sup lim sup — log E% [exp(1 + y) NF!] < 0.
710 Nowo N
Consider the functional F(u(-,-)) defined in (2.6). For each N a mapping
x — u is given by (1.11) and F(u(-,-)) pulls back through this map to a
function F(x(-)) on C([0,T] - RY). By Hélder’s inequality, for any y > 0,

1
Nlog E%[exp NF]

(2.31) log E®~[exp(1 + y) NF?]

={@+7)N

1+
log EQN[exp yN(F—Fl)].

L
(1+vy)N
To prove Lemma 2.1 it therefore suffices to show that for any a > 0,

1
(2.32) inf lim limsup lim sup lim sup ﬁlog E®[exp aN(F — F1)] <.

g &3—0 £,-0 k—o N-ow

We break it up as follows: F — F! = [T(V? + V* + V®) dt + o(1), where

T o

El=1
1 N 9J i N
4 _ N
\4 2 =Z 0( N)‘Vl i+1 sz
1 N 9J i
—N§ ( N)
2.33 , ,
(2:33) xa(ms) W(minse,) = B (miN-.,)
/N 2¢, ’
1 N . ad [ i 2
5 _ + Di+EN
V 2N; la(xwxz+l)( (90( N) D lf )

1 XN ad [ i)\®
— Y a(mo ) —=It, = || -
NEla(m‘/N)( ae( N))
By (8.8) of [5] there is a constant C < = such that, for any a > 0,

1 T,
— P 3
~log E N[exp aNfO V3(x(t),t) dt]

s sk R (6ol ) ol )

adJ , i)zdt
ae(’N ’
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the right hand side being o(1). Now let a« > 0 and & > 0 and choose C < = so

exp2a2f l‘_;( ( i))z

Xa*1(|m‘,?}N|>C) dt] <e¢

1
lim sup lim sup —log EPv
g,—-0 N-oow N

(2.35)

and, for this C, choose g(m) as in Lemma 2.6 so that A(g(m), m) < a* and

ad

1
2.36 sup A(g(m),m) < —ea”%|—
(2.36) s A(s(m),m) = great| T

-2

By Schwarz’s inequality,

N [ 3J i\)\2
exp « [ L; (—G(t’ﬁ) A(g(mf}N)7mf}N)dt]
J

2 N J . 2
a T 14 _9
2T Jo Z (t’N)) o

—log EP~

ad

-2
dt]
0 o0

1
2.37 ——1log EP¥ —_—
( ) szNog exp 1%
1 T oJ i 2
+2—N‘10gEP”[eXP2“2£) .Zl(%(t»‘ﬁ)) a*l(lmfl/N|>C)dt],
im

the latter terms each being less than ¢/2. Together with Lemmas 2.5 and 2.7
this shows that

(2.38) gl:ino hin _S)l(.)lp hrkp_)s;lp 11? fgp —ﬁlog EFPv [exp aN [ V4(x(t),t) dt]

<eé.

To deal with V°® we use Theorem 4.1 of [3], which says that if v(x_,,..., x;)
is bounded and continuous and J(8) is smooth, then, for any a > 0,

1
lim sup lim sup lim sup —
£,—0 k- N-ow N

ZJ( )t = B )

where v' = v(x;_,,..., x;,;). It is true that the theorem was only proved in
[3] for the case a = 1 but the proof extends to the general case by means of
-the inequality

N
(2'40) 2y(f) =z "II/ )y (Dii~+1f)2¢1v dx.
a7 i=1

(2.39)
dt] <0,

X log EPN[exp a/
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From (2.37) and (2.39) it is easy to see that

1
(2.41) 812iin0 liilll _s)tgp lil:l_)sgp li;vn fgp N,log EPv [exp aN j(') TV5( x(t),t) dt]

<eé.

To complete the proof of Lemma 2.1, we remark that (2.32) follows from
(2.34), (2.38) and (2.41) by another application of Hélder’s inequality. O

ProoF orF LEMMA 2.2. First note that
Istatic( m(o’ ))

(2.42) = sup {fSG(f’)m(o’ 0) o+ [ log M(k'(mo(9)))

~log M(G(8) + h’(mo(o)))do}.
By assumption, I,(u(:,+)) < and therefore mgi(¢) —» m(t, 6) for almost

every ¢t and 6. Suppose that Iy .., (u(, ) > M Let £> 0 and choose
J(t, 0) so that

M- asfsJ(T,O)p,(T,dO) —[SJ(o, 0) u(0, d6)

—fo a—J(t,O)p,(t,dO)dt
(2.43)
2f f (t 6)a(m(t, 0))—h’(m(t 9)) do dt

T
- = —(t, 0 q t,0)) dodt.
S L[ 0] aonte.on
By the bounded convergence theorem, since 4 is bounded and continuous,

ffj(i—j(t,@)) a(mg) de dt

(2.44)
f f(—(t 0)) a(m(t,0)) dodt.

Since Io(u(:,+)) < =, we have that
h’(m9+82) h’(mo 82)

2&,

)d@dt—>0
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as g, is sent to zero, followed by ¢,. By a straightforward application of
Schwarz’s inequality and the fact that 4(m) is continuous and bounded away
from both 0 and «, we see that as ¢, and then &, go to zero,

( (i) =~ H(mite,) ) dodt - 0.
2g, :

7, 0d . . .
(248) [*[ Z-(a(m) - a(mi))
Therefore, for £, and ¢, sufficiently small,

M-2¢e< [SJ(T,e)p,(T,do) —LJ(O,O);L(O,dO)
J
—j()TLi—t(t,o)u(t,de)dt

(247) 1 .7, 0d B(mg, )~ K(m
+§[()T[g—aa(t,e)a(mgl)(( )~ H(ms

)) dodt

2¢,

Lire(99, 4 " a(me do dt
Eofs(?e_(’ ))a(mo) .

Comparing with (2.6) we see that Lemma 2.2 follows. O

ProOOF OF LEMMA 2.3. For smooth test functions J(¢,0) on [0,T] X S and
£, €9 > 0, consider the family of functionals given by

ﬁJ,sl,sz(,‘L(.’.))
KW(mgi,,) — W (m
(2.48) =z[0T/SJ(t,e)( (mite,) =R (mite) | 4 4

2¢,

— [T[ It 0)a"(my) dodt,
0’s
so that for each u(:,-),

(2.49) Jim Tim sup supFy .. ( () = To( k().

2—0 £,—0

in the sense that if the right-hand side is infinite, then the left-hand side is as
well. Let

FJ,EI,EZ,N(x('))
oL )(hf(m,mm) B(mi )|
JZ

ZJ 284

=1
N

(2.50)
)

i
t,—)d—l mey ) dt,
(e 57 mirm)

Tl
II'5.
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so that F; , .  differs from the image of FJ ey, ¢, Under the mapping x — u
by o(1). To prove the lemma it is therefore enough to show that for each fixed
J,

(2.51) lim lim sup lim sup Nlog EP¥[exp NF; ,, ., ]| <0.

g0 e,—0 N-ow»

This follows from Theorems 4.1 and 6.7 and Lemmas 7.2, 7.3 and 7.4 of [5]. O

3. Hydrodynamic limit for system with weak driving forces. We
introduce a configuration dependent weak driving force into the system by
changing the generator to

N
(3.1) yN,H,f =‘?N + N/2 Z H(t, i/N)a(xi, xi+l)(1 + Di,i+]§f)Di,i+1,
i=1

where H(¢, 0) is a continuous function on [0,T'] X S, f(¢,0,x_,,...,x,)is a
smooth function on [0,T] X S X R?"*! with bounded first derivatives and
& = N At 0,x;_,,..., %) The & term does not affect the hydrodynam-
ics, but it allows us to obtain the correct lower bound in Section 4. Let m(68)
be a smooth function on S and let fy = expL) W' (m(i/N)x; —
log M(k'(m(i/N))). Corresponding to the generator %y 5 , and initial distri-
bution fNCI)N, we have probability measures @y g ; on C(0,T] - R") and

THEOREM 3.1. For each continuous H and smooth local f,

(3.2) Qn,H,f = Onet,0)do>

where 8, 4,49 1S the probability measure concentrated on the unique weak
solution of

(33) —=—a—(d(m5(%h'(m)+ﬂ)), m(0,0) = m(0).

ProoF. For dQy y ;/dPy we have the following Cameron-Martin-
Girsanov formula:

d N
S —fN(x(O))exp{ L H (t, Tif)(l o PValws 5i) B
, ! N i=170 .
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Using this formula it is quite easy to show that there exists C < o so that for
all y > 0,

(3.5) EPv

( dQy,u, s

aP, ) ] <exp(Cy(1+ y)N).

Therefore, as discussed in (2.8), by Hdlder’s inequality superexponential
estimates for Py extend to @y p ;. In particular Qy p , has a weak limit,

Qp, ;- Let

N N 1 .7,.90d Al s
(36) FfG,sl,sz = FJ,G,sl,ez + -2__/(‘) _/:970_(1" o)a(mol)H(t’ 0) dodt,
where FA'J,G, e1, 5, 18 defined in (2.6). We claim that for each fixed J and G,

1 A .
(3.7) lim 1im sup lim sup —log E.n.r[exp NEFG , .| <o0.

-0 £ 50 N-ox

To this end note that exp NF?(T) is a martingale under Qy y ;, where

3.8) FX(T)=FNT) + Tl%“(t i)H(t i)i t)) dt + o(1
(88) FAT) =FX(T) + ['5 X 5|t 7 JH| b 7 |V/(x(0)) di + o(D).
Here F! is defined in (2.28) and
(3.9) vi=a(x;, x;,1) (1 + D>g) (1 + DY),
where ¢ is given by
N

(3.10) & = ._Elg(x,--z,---,xi+z»m?/N)~
Let

1N o[ i iy,
(3.11) V6=Ni§17(t,ﬁ)ﬂ(t,ﬁ)(vl—a(mi}N))'

Let > 0, £ > 0 and choose C < « as in (2.35) and g(x_,,..., x;, m) with
I > r such that A(g(m), m) < a* and

-1

ad
(3.12) sup A(g(m), m) < ea”|—
Iml<C 90 |-
Let g*(x_,,..., x;, m) by the minimizer of A(g, m) among functions of x_,;

through x;. We can assume in addition that

-2

aJ

a0

I(3.13) sup E"M[a( %y, xz)(Dlzgg* —‘D12§g)2] < el ?

Im|<C

[
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and that E™[a(x;, xz)(Dlzf )?] and E""[a(x,, 2, D'%,)?] are bounded by
some M < «, Since g* is the minimizer, we have

(3.14) E™[a( %y, %5)(DY%; — D'%,)(1 - D'%,:)] =

By Schwarz’s inequality, we have for |m| < C,

aJ|| ™t
Al (1+\/4M)

(3.15) E™[vi] —4(m) < ea™!

and for |m| > C,

(3.16) E”"'[ Vi] —d(m) <M.
Then
1 N 9J i i
6 —_— — —_— I l_ ‘n'mi & i
T
N
(3.17) + N 21 ( )”H( )‘Mldm fInl>C)
i=
1 NJod i Hl: i adl|l”
T ae( N’) (N)

So, by Schwarz’s inequality, if we take the limit superior as N — o, followed
by & — o, then &, — 0, we get

lim sup lim sup —log EPN[exp aNf Ve(x(t),t) dt]
£,—0 N—>°° N
k— o

< lim sup lim sup ——log EP~
£,—-0 N-ow» 2N
k>
2N§Jthii"’”-idt
X|exp2a o \oN N (v —e™mimn[v'])

(3.18) 1
+ lim sup lim sup -z—log EPy

£,-0 N-oow N
el o

koo
- +s(1+\/4_114‘)[0 [S|H(t,e)|dodt

< 0 [by (2.39)] + & (for sufficiently large C) + const. &.

exp2aNj;
i=1
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If FV is the image of F¥ under x — pu, then

H_ (FI(T) + I;T%ié(J(t,i + %) —J(t,]\il,))
(3.19) XH(t —) i(x(2)) dt)

+(F - F') — ([OTVGdt) +0(1).

So (3.7) follows by Hélder’s inequality and (2.32). If I,( u(:,-)) < , then as in
Lemma 2.2 we can calculate limsup, .. _ o sup J,GlﬁfG’ o &u(;)) > 0 un-
less m(t, 8) is a weak solution of (3.3). Therefore, QAH,f is concentrated on
such solutions. It only remains to prove uniqueness for weak solutions of
(3.3). It is shown in [5] that 4 is continuous in m. A general result for
equations of the form (3.3), whose coefficients are only known to be continu-
ous, can be found in [1]. O

4. Lower bound. For a smooth m(-,:) we can find a continuous H so
that m is a weak solution of (3.3). We can also assume that for each
0<t<T,

(4.1) f&(m(t, 0))H(t,6)do = 0.

For each smooth local f we construct QN u,r Which by Theorem 3.1 con-
verges weakly to the probability measure on X concentrated on m(:,-). By
the Cameron—Martin—Girsanov formula,

1 lo dQy 11 fN(x(O))
ngN H,f N fN(x(O))

N
(4.2) +-2Wi lfTH( ]—V-)(1+D”+]§) a(xi,xi+1) dBi
Zf Hz( )a(xz’xz+1)(1+D”+]§)
Let
(4.3) ap(m) = B[ a(xy, 2;)(1+ D%)’.
Then
dQy
' 11_120 IOg— = _Istatic( m(o’))
(44) N Qs

1
—ngTdef(m(t, 9))H2(t,0) do dt
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in @y, g, s—probability. Call the right-hand side —I f(u(-, ). This provides us
with a family of lower bounds: For each open U C X,

1 A
45 lim inf —1 U)= - inf If(pu(-,")).
(4.5) iminf log Qy(U) = ot (n(-,4)

By the following lemma we obtain the lower bound (1.22) by optimjzihg 4.3)
over f.

LemMMA 4.1, I(u(, ) = inf, I7(u(, ).

ProoF. Let & > 0. Since m(¢, 8) is bounded, we can choose
¢, 0,x_,,...,x,) so that

a(m(¢,0))
(4.6) ].Zm >1—-¢

Since H is continuous and [jGdHd6 = 0,
1.7, R
§fo fSH (t,0)d,(m(t,0)) dodt

1 3
(4.7) = sup{EfOT[SH(t,O)d(m(t,e));%(t,0)dedt

Lire(de N, a(m(t, 0))
3 IS0 amee, o 2 avar .

Since m is a weak solution of (3.3),

1 .7 15}
- 4 H—d6d
2[()La(m) 6 0dt

T
(4.8) = - [medo

1 .7 dh' d¢
—Z (Tam)Z=Z q6 ar.
2 J, 4™ 55 2

Therefore,
T A
Liynamie(m(+57)) < 3 [ [ H*(2,0)d,(m(t,0)) do dt

< (1 - 8)_11dynamic(m(".))'

Since & > 0 is arbitrary, this proves the lemma. O
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To complete the argument it remains to show that for any u(-,-) with
I(u(,-)) < © we can find a sequence of smooth functions w*(-,-) = u(:,-)
with I(u*(-,-)) > I(u(-,-)). To do this we first approximate m(t, 8) by
mC(t,0) = —C VvV m(¢,6) A C. Then we convolute with a smoothing kernel
¢,(t, 0) and use the fact that for |m| < C, b(m) = 4(m)R"(m) is continuous
and bounded away from both 0 and .
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