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DIFFERENTIAL SUBORDINATION AND STRONG DIFFERENTIAL
SUBORDINATION FOR CONTINUOUS-TIME MARTINGALES
AND RELATED SHARP INEQUALITIES

BY GANG WANG
DePaul University

Let X and Y be two continuous-time martingales. If quadratic vari-
ation of X minus that of Y is a nondecreasing and nonnegative function
of time, we say that Y is differentially subordinate to X and prove that
IYl, < (p* = DIIX]||p for 1 < p < oo, where p* = pV q and q is the conju-
gate of p. This inequality contains Burkholder’s L?-inequality for stochas-
tic integrals, which implies that the above inequality is sharp. We also
extend his concept of strong differential subordination and several other
of his inequalities, and sharpen an inequality of Bafiuelos.

Introduction. Let (Q, %, P) be a probability space and & = {%,}.>0
be a nondecreasing sequence of sub-o-fields of %,. Let H be a Hilbert space
with norm |- | and inner product (-, ). Consider two martingales with respect
to F taking values in H: f = {f,},>0 and g = {gn}n>0. Then g is said to be
differentially subordinate to f if |e,| < |d,| for n > 0, where dy = fo,d, =
fn—fn-1for n > 1 and e, is defined similarly. Let ||f|l, = sup,.q|/fnllp-
Burkholder (see Section 12 of [5] for the case H = R and [7] for any real or
complex Hilbert space H) proved the following sharp martingale inequality:

THEOREM A. Let p* = max{p, p/(p— 1)}, where 1 < p <oo. If f and g
are martingales relative to the same filtration as above and g is differentially
subordinate to f, then

||g||p <(p*- 1)“f”p

and the constant (p* — 1) is best possible. If 0 < ||f|l, < oo and p # 2, the
above inequality is a strict inequality.

The proof is based on the existence of a special function satisfying appro-
priate conditions. Using approximation (see Bichteler [3]), Burkholder [5] ex-
tended the above theorem to stochastic integrals.

To state the theorem, we let (Q, %, P) be a complete probability space
and & = {F}:>0 be a filtration that is continuous on the right. Assume %
contains all %, null sets. Consider an adapted martingale M = {M,};>o with
respect to & which is continuous on the right with limits from the left (r.c.1.1.)
and two predictable processes U = {U;}s»0 and V = {V;}150. Let || M]|, =
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DIFFERENTIAL SUBORDINATION FOR MARTINGALES 523

sup;so || M;||, and denote the stochastic integral between a predictable process
U and a martingale M by U - M:

t
(U - M), =/O U,dM..

Under each of the two conditions (i) the processes U and V are H-valued and
M is scalar-valued and (ii) the processes U and V are scalar-valued and M is
H-valued, Burkholder (see Theorem 5.1 of [7]; for H = R, see [5]) proved the
following theorem.

THEOREM B. Let 1 < p < oo. If either condition (i) or (ii) holds and if for
all t >0,

Vil < U,
then
V- Milp < (p* = DIIU - M.
The constant p* — 1 is the best possible.

Using a different method, Bafiuelos [1, 2] obtained a result similar to The-
orem B when M; = B;, the d-dimensional Brownian motion. Let H be a d-
dimensional predictable process and let A = (A, Ag,...) be a vector of d x d
matrices. Let [JA||?> be the square of the largest eigenvalue of Y3, AiAiT,
which is assumed to be finite, where AT is the transpose of A;. Let X = H-B
and Y = ((HA,) - B,(HA3)-B,...) =(Y1,Yg,...). Then Bafiuelos proved ([2],
Theorem 2.2) the following theorem.

THEOREM C. For every 1 < p < oo, there exists a constant c, depending
only on p such that

1Y 1lp < cpllAll 11 X]lp-

Moreover, c, < cp for p>2andc, <c/(p—1) for 1l < p <2, where cis an
absolute constant.

Theorem C has applications to singular integrals. See a forthcoming paper
of Bafiuelos and Wang.
Theorems A and B give examples of

@D Y1l < (p* = DIIX]lp,

where X and Y are adapted r.c.l.l. martingales. Burkholder asked whether
this inequality always holds under the quadratic-variation condition

. (1.2) [X,X],—{Y,Y],>0 fort>0,

a condition which is satisfied in both Theorem A and Theorem B. Although
Burkholder’s question remains open, we prove here, among other things, that
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(I.1) does hold if the left-hand side of (I.2) is both nonnegative and nonde-
creasing in ¢. This allows us to show that the best constant ¢, in Theorem C
is also p* — 1.

Let (1, %, P) and filtration % be defined as before. For two adapted r.c.L.1.
semimartingales X = {X;};>0 and Y = {Y,};>o taking values in a separable
Hilbert space H with respect to &, we say Y is differentially subordinate (by
quadratic variation) to X if [X,X]; — [Y,Y]; is a nondecreasing and non-
negative function of ¢, where [ X, X]; and [Y, Y ]; are the quadratic variation
processes of X and Y, respectively. [Likewise, we say Y is subordinate (by
quadratic variation) to X if [X,X]; — [Y,Y]; > O for all £ > 0. See the re-
mark at the end of the paper.]

This definition is consistent with the analogue of discrete-time semimartin-
gales introduced by Burkholder [7] defined before. In fact, if f = {fp}ns0 =
{Xioditnz0 and g = {gn}n>0 = {I 1 oei}ns0 are two discrete-time martin-
gales, g is differentially subordinate to f if [ £, f1,—[ &, 81» = 37 o(Id;|?—|e;|?)
is a nonnegative and nondecreasing function of n or |e,| < |d,| for n > 0.

Similarly, suppose M, is a martingale and U, and V, are predictable pro-
cesses given in (i) or (ii). Let X; =(U-M); and Y; = (V-M),. Then Y is differ-
entially subordinate to X if |V;| < |U;| for all ¢ > 0 since [X, X ], —[Y,Y ], =
Jo(UsE = 1V2)d[ M, M],.

We shall prove the following theorem.

THEOREM 1. Let X and Y be two adapted r.c.l.l. martingales in H such that
Y is differentially subordinate to X. For 1 < p < oo,

Y1, = (p* = DIIXIlp

and the constant p* — 1 is best possible. Strict inequality holds when 0 <
[1X|lp < o0 and p # 2.

This theorem holds true for local martingales also provided the norm || - ||,
is replaced by the norm ||| - |||, defined by ||| X|||, = sup, || X"||,, where 7
is any bounded stopping time and the process X = {X7};50 = {X,nt}ss0.
In fact, if p > 1 and ||| X]|||, < oo, then the local martingale X is an L?-
bounded martingale and lim; .., X; = X, exists almost surely. Moreover,
Xl = 1 X1lp = 1| X sllp. Therefore, the inequality does not change.

Strict inequality is new even under the condition considered in Theorem B
provided H # R. The case H = R is contained in [6] by Burkholder.

Clearly, Theorems A, B and C are special cases of Theorem 1. In particular,
the best constant in Theorem C is p* — 1. This answers a question raised by
Bafiuelos.

The proof of Theorem 1 is based on the special function given in the proof
of Theorem A by Burkholder and Ité’s formula.

In the next section, we first give the proof of Theorem 1 for continuous-time
lo¢al martingales under differential subordination when the dimension of H
is finite. The proof of Theorem 1 when the dimension of H is infinite follows
from Proposition 1.
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In Section 2, we extend the concept of strong differential subordination in-
troduced by Burkholder [9]. Theorem 4 is the main result of this section. It
contains both (2.1) and (3.1) of [9]. The extension of the concepts of differen-
tial subordination and strong differential subordination makes possible the
extension of some of the other sharp inequalities proved in [5] and [7]-[9].

At the end of this paper, we attempt to reduce the differential subordination
condition in Theorem 1 to a weaker condition. In particular, we show the
following theorem as a special case of Theorem 5.

THEOREM 2. If X and Y are continuous path local martingales such that
1Yol < |Xoland [X,X]—[Y,Y] is a submartingale, then

NYllp < (p* = DIIXIlp
and p*—1is best possible. Strict inequality holds when p#2and 0< || X||, <oc.

Throughout the rest of the paper, H denotes a separable Hilbert space,
which in the proof can be taken to be /2, and all semimartingales are r.c.Ll.
and H-valued unless otherwise stated.

1. Continuous-time semimartingales and differential subordina-
tion. Consider two H-valued semimartingales X = (X,Xs,...) and Y =
(Y4,Y,,...).

For example, let B be d-dimensional Brownian motion and H = (H;,
H,,..)), K = (K1, Ks,...) be two sequences of d-dimensional predictable
processes. Then under proper boundedness assumptions on H and K,

X=(H1-B,Hy-B,...) and Y=(K;-B,Ky-B,...)

may be considered as martingales taking values in H. In particular, if H =
(H1,0,...), where H is a d-dimensional L? bounded predictable process, K; =
HiA;, where A = (A1, Asg,...) is a sequence of d x d matrices, then X and Y
defined above are the martingales considered in Theorem C by Bafiuelos.

Let |X| = (X2, 1X;*)2 and [X,X] = Y2,[X;, X;], where [X;, X;] is
the quadratic variation process (see [10], for example) of martingale X;, i > 1.
The processes |Y| and [Y,Y'] are defined similarly. Recall Y is differentially
subordinate to X if [X,X]; — [Y,Y]; is a nonnegative and nondecreasing
function of ¢. We now study some basic properties of differential subordination.

Since [ X, X]o = | Xo/?, the assumption that Y is differentially subordinate
to X implies |Yo| < | Xo|. Similarly, A[ X, X]; = |AX;|? implies that |[AY;| <
|AX;| for all ¢ > 0, where AX; = X;,— X;_. It is well known (see [10] or [12], for
example) that for every semimartingale X, there exists a unique continuous
local martingale part X°¢ of X such that for every ¢ > 0,

[X,X) = X0l +[XXTe+ Y IAX,
o : O<s<t
In fact, [ X¢, X¢]; = [ X, X]¢, the pathwise continuous part of [ X, X ];. There-
fore, Y is differentially subordinate to X if and only if [ X¢, X¢];—[Y ¢, Y°]; and
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Po<s<t 1AX 5|2 — Yo<s<¢ IAY ;| are nonnegative and nondecreasing functions of
t. The latter is equivalent to |AY ;| < |AX,| for all ¢ > 0.
We summarize the above statement as a lemma:

LEMMA 1. If X and Y are semimartingales, then Y is differentially sub-
ordinate to X if and only if [X¢, X¢]; — [Y*¢,Y*]; is a nonnegative and non-
decreasing function of t, the inequality |AY | < |AX;| holds for all t > 0 and
1Yol < [Xol-

We now state Theorem 1 again.

THEOREM 1. Let 1 < p < oc. If the local martingale X is differentially
subordinate to the local martingale Y, then

(1.1) MYl < (p* = DINXlp.

The constant p* — 1 is best possible. Strict inequality holds if 0 < || X|||, < 00
and p # 2.

Notice if || X|||, < 0o, then X is a martingale and ||| X||[, = || X|p.

We consider H = R? for some integer d first. In this case, the proof is an
application of Itd’s formula and Burkholder’s special function defined in [7],
"page 76.

PROOF OF THEOREM 1 WHEN THE DIMENSION OF H IS FINITE. Let x' = x/|x|
when |x| # 0. It is enough to consider the case ||| X|||, < co. We start the proof
by giving some standard reductions. First, by adding one more dimension to H
if necessary, we can find a point a in H which is orthogonal to the range of X
andY.Let X = X +a and ¥ = Y +a. Then | X;| and Ifftl are bounded away
from O for all ¢ > 0. If we can show (1.1) for X and 17, then by letting a — 0,
we have (1.1) for X and Y as well. Thus we may assume at the beginning that
|X;| and |Y;| are positive for all ¢. Second, since stochastic integrals preserve
the local martingale property, for the function U defined below we can find a
sequence of nondecreasing bounded stopping times T = {T',},>1 going to oo
almost surely such that for each n, (U,(X_,Y_)-X)» and (U, (X, Y_)Y)T»
are martingales, where X_ = {X;_}:.0 and Y_ = {Y;_};.o. Because for any
bounded stopping time and continuous function g, [X7,Y7] = [X,Y]" and
(g(X_,Y_)-X)T = g(XT,YT). X7, we may assume at the beginning that
X, Y, U(X_,Y_.) - X,Uy,(X_,Y_) Y are martingales, Y is differentially
subordinate to X and | X]|, |Y| are bounded away from 0. We need only to
prove for any ¢ > 0,

(1.2) 1Y ellp < (p* = DIIXellp-

I’I;{he mequahty (1.1) then follows by Fatou’s lemma. Third, by Theorem B, the
constant p* — 1 is sharp if we can prove (1 2), since it is already sharp in the
H = R case.
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Recall Burkholder’s special function U(x, y) defined on H x H to R:
U(x,y) = p(1 = 1/p*)P7 (13l — (p* — Dlx])(|x| + |y1)P~2.
Burkholder shows that function U satisfies the following properties [7]:

(@) |97 — (p* — D)P|x|? < U(x,y) and strict inequality holds if |y| #
(p*—=1)|x| and p # 2.
(b) For all x, y, h, k € H such that |k| < |h| and |x||y| # O,

Ulx+h,y+k) <U(x,y)+ (Us(x,y),h) + (Uy(x, ), k).
(c) For all x, y, h, k € H with |x||y| # 0,
(hU 22 (%, ¥), B) + 2(hU xy(x, ), k) + (RU 5 (x, 3), k)
=—cp(A+B+C+ D),
where
¢p=p(1-1/p*)P!
and A, B, C, D are defined by
A = p*(p — 1)(|R]2 = |E®)(|x] + |¥])P72,
B = (p* = p)(hI* = (h, 2")?) x| (x| + |y)P7E,
C={(p—1)p*— p}(I&P = (&, D)y (1%l + ly)P7Y,
D=(p-1Dl(p* - p)lyl+{(p—1)p* — p}ix|]
x ((h, ') + (R, ' )2(1%] + |¥1)P73.
(d) U(x,y) <0if [y < |x,

where U, and U, are first-order partial derivative vectors, U, stands for the
second order partial derivative matrix {Uy,,, s h<i,j<a and Uyy, U, are defined
similarly.

Since (1.2) is equivalent to E(|Y,|? — (p* — 1)?|X|P) < 0, by (a), it suffices
to show EU(X;,Y;) < 0. Because the function U has continuous second-order
derivatives when |x| > 0, |y| > 0 and by assumption, |X| > 0, [Y| > 0, we may
apply It6’s formula to U(X,Y). We have

t
U(X,,Y,) = U(Xo,Yo) + fo RUECHN AN &

t
+f (Uy(Xs—a Ys—),dYs)+Il/2+IZ,
0+ .

where

) t d d ;
.’II =[)+ZZ(Uxixj(Xs—,Ys—)d[Xf’X;]s

i=1j=1

+2U 1y, (Xom, Yo )AL XS, Yo1s + Uy, (X, Yo )Y, YED),
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12 = Z (U(XSa Ys) - U(Xs—’ Ys—)

O<s<t
- (Ux(Xs—a Ys—), AXs) - <Uy(Xs—, Ys—)’ AYS))

Here we have used the fact that [X,Y]° = [X¢,Y¢] for any pair of semi-
martingales X and Y. ,

Let x = X, ,y =Y, ,h = AX; and k& = AY. It follows from (b) that
each term in I, is nonpositive since |k|?2 < |h|?2 by Lemma 1. By (d) and the
martingale property, it suffices to prove I; < 0.

A easy calculation shows

I,=—c,(E+F+G+ H),

where

E=p(p-1 :<|Xs_| F 1Y, )P 2 ([ XC, X, — [Y°,Y°1,),
F=t-p i|Xs_|-1<|Xs_| 1Y, )P LA X, X, — [M, M1,),
G={(p-1)p*-p} /Oi 1Yo |71 (1 X 5o | + 1Y 5 )P1d([Y4, Y] — [N, NI5),

H=(p- 1)/0:[<p* )Yl 4+ {(p— 1)p* - p}IXs ]
X (1X o | + Yo )P~5 d[W, W],

and

t d .
Mo= [(3 Xio/1XeldXS, = [[(Xo/1X, |, X9,
i=1
t d ¢
Nt=/0 ZYi,s_/IYs_lde,F[o (Ys_ /1Y |,dYE),
i=1

t d
W, = /(; Z (Xi,s—/|X3—| ng,s + Yi,s—/|Y3_| dY‘l:',s)
i=1

=Mt+Nt.

Lemma 2 below shows that [ X¢, X¢]; — [M,M]; and [Y¢,Y¢]; — [N, N]; are
nondecreasing functions of ¢ or, in other words, M and N are differentially
subordinate to X¢ and Y*, respectively. Therefore F and G are nonnegative.
Since [W, W], is a nondecreasing function of ¢, H is nonnegative too. By as-
sumption, E is also nonnegative. Therefore, I; < 0 and
EU(X.Y;) <0.
This proves (1.2) and hence (1.1). Note that by replacing time 0 above by time
s < t, we have
E([U(X:,Y:) -U(X,Y,)]| %) <0.

This shows that U(X;,Y;) is a supermartingale.
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Strictness. Our proofis a modification of the strictness proof given in Theo-
rem 3.1 of [9] by Burkholder. Moreover, the proof works for the general Hilbert
space case provided U(X,, Y;) is a supermartingale.

Assume p # 2 and 0 < ||| X]||, < oco. Therefore, || X|[, = ||| X]|[, < oo and
Y1l = Y]llp < oo

Let V(x,y) = |yI? — (p* — D)?|x|?, U; = U(X,Y,), u(t) = EU; and
v(t) = EV(X,;,Y;). Then the above argument shows v(¢) < u(¢). By the
martingale convergence theorem, both X and Y have limits X, and Y, at
oo, respectively. Using Doob’s maximal function inequality, we see that v and
u are r.c.1.l. and have limits at infinity. Thus, strictness follows if we can show
v(o0) < 0.

If E|Xy|P # 0, then u(0) < (1 -1/p*)P(1 — (p* — 1)?)E|X|? < 0. Thus
v(¢) < u(t) <u(0) <0 for any ¢t > 0. Therefore, without loss of generality, we
may assume that Xo =Y, =0 and || X;|[, > O for all £ > 0.

It is enough to show P(|Y | = (p* — 1)| X |) < 1 since otherwise by (a),
v(00) < u(e0) < 0.

Suppose |Y o| = (p* — 1)| X o| almost surely. Then U, = 0. Since {U;, ¢ >
0} is a uniformly integrable supermartingale starting from 0, this implies
P(U; =0, for all ¢ > 0) = 1. Therefore, |Y| = (p* — 1)|X].

Let T, =inf{t > 0, |X;|+|Y;| = n}. Then |[X7,_| <nand|Y7,_| < n. More-
over, (X_-X)T» and (Y_-Y)T» are local martingales. In fact, Lemma 2 below
shows that Y% | (X;_-X;)T» is differentially subordinate to n(X1,..., X4)T» =
nX7T». Therefore, applying (1.1) to them, we see that ¥;.;(X;_ - X;)™ con-
verges in LP to (X_ - X)T». Thus, the latter is a local martingale. The same is
true for (Y_ - Y)T=. Using stopping times, we may further assume that they
are martingales. By the definition of quadratic variation, we have, for any
t>0,

0=Yr,nl? = (p* — 1| X1, 0el?
=2((Y_ - Y)p,n — (p* = D*(X_ - X)r,00)
+([Y, Y110 — (P* = D[ X, X]7,ne)
=2J, +.Js.

Observe that J; is a martingale, so EJ; = 0, and that EJ; is negative
unless we have E[ X, X ]r, .+ = 0. Taking expectation on both sides, we must
have E[ X, X ]7,.: = 0. Therefore, E|X,|? = 0. This contradicts that E|X;|? >
0 for ¢ > 0 as we assumed at the beginning.

This completes the proof provided we can prove the following lemma.

LEMMA 2. Let M = (M1, M,,...,My) be a semimartingale with finite

quadratic variation for almost sure paths and H and K = (K1, Ky, ..., Kq)
, be adapted r.c.Ll. processes such that |K |2 = Z:'i=1 |K;+|> < H; for all t > 0. If

t d t
(K_- M), = [0 S Ko dMi, = ]0 (Ko, dM,),
i=1
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then for any nonnegative measurable function f on R,

(1.3) /Ooof(S)d[K--M,K--M]sS/ooof(S)Hs-d[M,M]s,
almost surely.

PRrROOF. First observe

[K_-M,K_ M]t-/ZZKls_KJS_d[M,,M]s

i=1j=1
Thus
[ redtr- Mk = [ sz(s)K,s_K,s_d[M,,M]s
i=1j=1

When s < ¢t,1let [Z,Z]) =[Z,Z]; — [Z, Z]; for any semimartingale Z. Then
by the Kunita—Watanabe inequality,

IfF(OKisKji |[Mi, M;Y < f(£)| K- || Koo | (LM, M1)Y2([ M, M;1)Y2.
Consequently, by the Cauchy-Schwarz inequality,

d d
DY f(O)Kiy-K;u [M;, M1

i=1j=1

d 2
< f(t)( 31K (M, M,-];WZ)

i=1
< f@®IKe’[M,M]:

< f()H-[M,M];.

By a density argument, the above inequality implies (1.3). This completes the
proof. O

It is clear from the proof that the special function U having continuous
second-order derivatives on the range of X and Y plays an important role;
that is, the requirement to apply Ité’s formula to U(X,Y) on R%. Although
there is Itd’s formula for H-valued processes, the situation could become tricky
(see, for example, [11]). To prove Theorem 1 for infinite-dimensional Hilbert
space-valued martingales and to prove other sharp inequalities obtained by
Burkholder [7, 8], we need to make a little modification of the above proof and
consider the case when special functions are not C? in general. To this end, we
give an approximation lemma. In the following lemma and Propositions 1-4
given later, we shall consider functlon f(x, y) defined in H x H which satisfies
the followmg condition:

f((09 X1,%2,X3, .. -)9 (O, Y1, Y2, Y3, - ')) = f((xl,xz, X3, . ~-)9 (yl, yY2, Y3, ))

for x = (xlyx29 x3,~~') and y= (yl, Y2,%8,-. ) in H.
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LEMMA 3. Let f(x,y) be a continuous function defined on H x H such that
f is bounded on bounded sets, is in C' on H x H\ ({|x| = 0} U {|y| = 0}) and
isin C2on 8;, i > 1, where S; is a sequence of open connected sets such that
the union of the closures of S; is H x H. Suppose for each i > 1, there exists a
nonnegative measurable function c;(x, y) defined on S; satisfying the followzng
condition: for (x,y) € S; with |x||y| # 0,

(1.4) (hfx(,3), B) + 2(f zy(x, ), B) + (kf 3y (%, ¥), k) < —ci(x, y) (|AI* — |EI?)
for all h,k € H. Assume further that for each n > 1, there exists a function M,
which is nondecreasing on n and

supci(x,y) < M, < oo,

where the supremum is taken over all (x,y) € S; such that 1/n? < |x|2 +|y|? <
n? and then over all i > 1. Let X and Y be two bounded martingales with
bounded quadratic variations. If Y is differentially subordinate to X, then for
any t >0,

(1.5) Ef(X:,Y:) < Ef(Xo,Yo).

This lemma is essential to prove the following proposition.

PROPOSITION 1. Suppose f satisfies the conditions given in Lemma 3. As-
sume further that f. and f, are bounded on any bounded set that does not
contain 0, the origin of H x H, and for h,k € H,

(1.6) flx+hy+k)—f(x,y) — (fx(x,9),h) = (fy(%,9), k) <0

when |x||y| # 0 and |k| < |h|. For any local martingale Y that is differen-
tially subordinate to local martingale X, if for 0 < s < t and any sequence of
nondecreasing stopping times {T', },>1 going to oo,

E(f(X:,Y:) | %)
<limsuplimsup E(f((a, X1,nt), (@, YT,0¢)) | F5) a.e.

a—0 n—oo

(A1)

then
E(f(X,Y) | %) < f(X.,Y,) ae

for0<s<t.

The proof of Lemma 3 is based on the convolution argument and Ité’s for-
mula.

PrROOF OF LEMMA 3. Since X and Y are bounded martingales with
bounded quadratic variations, there exists 7 such that | X2 + |Y:? +
[X,X] + [Y,Y]; < 7is® for all ¢ and all paths. Given 0 < a < 1/2,
. chgose 7 > 7 such that 1/(i+2) < a. Let X; = (a,X;) € Rx H
and Y; = (a,Y;) € R x H. For ¢ > 0, let m,, be an integer such that

Zzzma_s(“[XuX oo + 1I[Y 4, Y ]llc) < &/(2M742). This is pOSSIble since
Zizl(”[xi, Xilllo +I[Y:,Yilllo) < I[X, XMoo + 1I[Y, Y ]lloo < nl < co.
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For m > 1, we denote
Xm = (¢, X1,...,X-1,0,...), Y” = (a¢,Y1,...,Y,1,0,...),
where
X =(X1,X,,...), Y=(Y1,Y9,...).

Now let m > m, . and let g be a C* nonnegative function on R™ x R™ such
that g has support inside the unit ball and assume

| [ g@ydzdy=1
R™ Rm
Such a g exists. In fact, we can choose g such that it is a radial function:

g(x,y) = g(|x* + |yI?).
Let  be a positive integer such that 1// < a and 1/I < v/2a — 1/(7 + 2).
Define for x, y € R™,

fi(x, ) = f f flx—u/l,y—v/l)g(u,v)dudv.
Rm Rm

In the above, we use the notation f(x,y) = f((%,0,...),(y,0,...)) for x,y €
R™.

Since X and Y are bounded and f is continuous and bounded on bounded
sets, by the dominated convergence theorem we have

1.7) Ef(X,Y,) = lim lim lim Ef{(XP, 77").

When |x| > a and |y| > a, because f is continuous and in C! on HxH\({|x| =
0} U {|y| = 0}), using integration by parts, we get

Pt = [ [ Fala—u/lyy - v/ g(u,v) dudv,

Rm Rm

Fae) = [ Fale—uit,y - v/g(u,v)dudy,
R™ Rm

Fro@ ) = [ [ Frle—u/ly-v/)g(w,v)dudv.
Rm Rm

Therefore, by (1.4), when |x| > a and |y| > a,
(1.8) (Af%,(x,¥), k) + 2(hfL, (%, 9), k) + (kfL, (%, ¥), k) < —c(x, y) (A% — |k[?),
where )
- e(x,9) =% [[ cite—u/t,y - v/)g(u,v) dudv
i R,
and R; = {(u,v): (x,y) — (u,v)/l € S;}.
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Let {h{ } and {k{ } be two triangular sequences elements of R™ such that
supZ |kf'|2 <oo and supz lhljl2 < oo.
J o J o

Using (1.8), we then have
lim Y () fL.(x, ¥), b)) + 2(R] FL,(x, ¥), k)

(1.9) . , . )
+ (k] fL(x, 9), k])) < —c(x, y) lim S (B2 - 1B 1?)

for all |x| > a and |y| > a. o o )
Now let sp < s; < ¢t Replace x,y by X™,Y™ and h/,k] by Xns
. i+1
X '7’,‘3“, Y';fi T Y’T',‘:?, respectively, where for each j, {T{ h<i<i; is a sequence of
nondecreasing finite stopping times with T{ = so and Tfj = s; such that

lim;_, o max;<i<;;—1 |T{+1 — Tfl = 0. Then the above inequality (1.9) gives

m m _ _ ! B a a _
> Z(fiixj(XZ;_, Yo LXpe, X7l +2fh,, (Xn Y X7, Y7L
i=1j=1

+fl (Xm ,Ym

YiYj So— So—

T, Trele)
So—?

< —e(X7_,¥m )Y (X7, X7l — (Y7, Y7eI5).
i=1

This implies, by differential subordination,

m t
2 /(fiij(Xé"-’YZ‘-)d[X,’-’“,XS""]s
i=1 j=1 g o o
+2fL, (X0, Y1) d[ X7, Y],
l xXm ym irme yrme
(1.10) +fyiyf(Xs_,Ys_)d[Yi ,¥7e,)
t
<=3 [e®n, Ty &pe, &PeL ~ (975, 7740,)
=1 g4
< My 3 (LXF, X5+ Y5, YD)

since 0 < c(X'g"_,Y;"_) < M2 because +/2a < /| X™ |2 + Y™ |2 <7y + 1.
For x,y,h,k € R™, where |x| > a and |y| > a, and ¢ € [0, 1], define
G(t) = f'(x + th, y + tk).

Thén by the mean value theorem and (1.8), there exists ¢y € (0,1) such that
for xo = x + toh and yo = y + Lok,

G(1) — G(0) — G/(0) = G (to) < —c(x0, y0)(IhI? — [KI2).



534 G. WANG
Letx=X",y=Y", h=AX" and k = AY™. Then we have
fl(X;n,Y;n) - fl(X;n—9 Y;n—)
—(FLXP,Y7),AXD) — (fL (X, ¥™),AYT)

1.1D) < —c(X™ +tAR™, T™ 4 toAT™(AXTE — |AT™P)
< Miyz ) (A[X;, X;1s+ ALY, Yi],).

The last inequality is from differential subordination and c¢(X™ + toAX m,
Y™ +tgAY™) < M;,s since +/2a 5\/|X;n_+to AXmZ4|Y7" 1t AY™2 <
ny+ 1. _ _

Applying It6’s formula to f/(X™,Y™), by (1.10) and (1.11), we have

Ef{XP,Y7) - Ef(XF,Y]) < MapE) ([X;, X1 +[Y;,Y]) < e

i>m

Thus, by (1.7), we get Ef(X;,Y;:) < Ef(Xo,Yo) + . This completes the
proof by letting £ — 0. O

PrOOF OF PROPOSITION 1. It is sufficient to prove E(f(X: Y:) | %) <
f(Xo,Y). For notational simplicity, we use E to denote E(-|%). Let T, =
inf{¢t >0, | X?+|Y?+[X,X]:+[Y,Y]); <n}. Then T, is a stopping time
and X7» and YT are local martingales. Moreover, XT»~, YT»— [X, X]T~
and [Y,Y]7"~ are bounded. Checking the proof of Lemma 3 carefully, we
have that given any n, for ¢, a, [ and m defined there, the following holds: For
each m, there exists a sequence of finite stopping times {7 ;}i>1 = {Tnm,i}izl
such that T,; 1 T, as i 1 oo, (FL(X™,Y™). X™)Tni, (fL(X™,Y™) . Y™)Tni
are martingales and

PR Y0 )

t/\Tn,i -

<SFUXEYE) + Mase > ([ X3, Xilenra— + (Y3, Yiliar,—)

i>m

t/\T,,,i— _ _ _ t/\T,L,i—— _ _ _
+ / (FLXm,Fm ), dX™) + / (FLRm, T ), dF™)
0+ 0+
- - t/\Tn,i - - -
< FURDP, Y + e+ [0 (FLX™, ¥™),dX™)
+
t/\T,L,,' - - - — — —
+ /0 R PR, — (AR, Vi, AR, )

- (fé(XﬁTn’i_’ Y;'/L\T,,,i—)’ AY;'/L\TM)'

Taking the conditional expectation of the above and letting i — oo, we have,
by the dominated convergence theorem,

EfN(Xpg, Yig, ) < FURE,YE) - E(FL(X g, Vi, ), AX )
—E(fY (X, Yiar, ) AY kg, ) + &
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Let [ - oo, then m — oo and then ¢ — 0. By the dominated convergence
theorem again, we have

Ef(Xint,-r Yirr,-) + E(fo(Xiaz,—, Yiar,-), AXia1,)
+ E(f y(Xinto=r Yerr,-), A 1a1,) < F(Xo, Y0).
From (1.6) and differential subordination,
F(Xint,, Yerr,) = F(Xinto—, Yinroo) = (Fe(Xintues Yent,=), AXint,)
—fy(XenTy=> YeaT,=), AY 1a1,) < 0.
Therefore, combining the above two inequalities, we have
(1.12) Ef(Xinr,, Yiar,) < [(Xo, Yo).
Next letting n — oo and @ — 0, condition (A1) and continuity of f imply
Ef(X:,Y:) < f(Xo,Yo).

This completes the proof. O

. Now we return to the proof of Theorem 1 when H is infinite dimensional.
Note that (1.12) implies that

NY iar,llp < (p" — DI Xar,llp < (P* — DIIX¢llp.
By Fatou’s lemma, we have
Y ¢llp < (p* = DIIXlp.

This proves (1.1). For the strictness, by Proposition 1, we need to show U sat-
isfies condition (A1l). However, from the above inequality, Holder’s inequality
and Doob’s maximal function inequality, we have

lim lim EU(X:, Y1) -~ U((@, X1,n0), (@, Y7,00))) = 0.
This implies (Al). The proof of Theorem 1 is then complete. O
Go back to Theorem C. Now we have the following corollary.

COROLLARY 1. Under the condition of Theorem C, -

(o) 1/2
» (£)"
i=1

The constant p* — 1 is best possible. Strict inequality holds if p # 2 and
0 < || X]lp < o0

< (p" = DIAI 1 X]]p.
p




536 G. WANG

REMARK 1. Let S be a closed set satisfying the following: (a) If (x,y) € S
and |x| = |%], |y| = |¥], then (%, ) € S and (b) for any 0 < r < 1, there exists
d, > 0 such that rS + d,O0 c S°, where O is the open unit ball and S° is
the interior of S. If S contains the range of the martingale (X,Y), replacing
H x H by S and condition (A1) by

E(f(X:,Y:) | %)

<limsuplimsuplimsup E(f(a,rX1,r),(a, 7Y 1,n:)) | &) a.e.
a—0 rtl n—oo

(A2)

for any sequence of nondecreasing stopping times {7',},-1 going to oo
and 0 < s < t in Proposition 1, then the same conclusion holds. The
proof is the same except for one change in the argument: replace X™ by
(a,rXy,...,rXn_1,0,...) and Y™ accordingly, where a < d,/2.

REMARK 2. When function f is nonnegative, condition (A1) follows from
Fatou’s lemma. It is easy to verify that for all the special functions used in the
proofs of norm inequalities in [7, 8], conditions required in Proposition 1 or its
modification given in Remark 1 above are met. Therefore, we can generalize
them to the continuous-time differential subordination setting. For weak type
inequalities (Theorems 3.5, 8.1 and 9.1 in [8]), the special function found there
by Burkholder is not C1, but is piecewise C'. Therefore, Proposition 1 is not
applicable in those situations. We give the following variation of Proposition 1.
As before, for S c H x H, denote S° to be interior of S and O the open unit
ball of H x H.

PROPOSITION 2. Let f be a function defined on HxH such that f is bounded
on bounded sets, is in C1 on S\ ({|x| = 0} U {|y| = 0}), is in C2 in S;, where
the union of the closures of S; is S, and S is a bounded closed set of H x H
satisfying (a) (x,y) € S, |x| = |%|, |y| = |¥|, then (x,5) € S, and (b) for each
0 < r < 1, there exists d, > 0 such that rS+d,O c S°. Assume for (x,y) € S;,
lxllyl # 0, h, k € H,

(Bf xx(x, y), h) + 2(hfxy(x, y), k) + (kfyy(x’ y)» k)
< —ci(x, y)(|hI* — |E[?),

where c;(x, y) is a measurable function nonnegative on S; satisfying for each
O<r<l,

(1.13)

sup sup ci(x,y) <M,
i (x,y)eS;nr8S
|21l y1#0

for some n(;ndecreasing sequence M. Assume further
(14 flat by k) = F(x,y) — (Fx(x, ), k) (Fy(x,5),k) <0

when (x,y) € S, |x||y| # 0 and h,k € H, Let X and Y be two local mar-
tingales such that Y is differentially subordinate to X. If for any sequence of



DIFFERENTIAL SUBORDINATION FOR MARTINGALES 537

nondecreasing stopping times {T'; },>1 going to oo,

Ef(Xr,Yr)
(A3) <limsuplimsuplimsup Ef ((a,r Xr,A7), (@, rY 7,AT)) a.e.,
a—0 rtl n—oo
then

E(f(X7,Y7) | %) < f(X0,Y0) ae,

where T =inf{t > 0: (X;,Y;:) ¢ S}.

ProoF. By Remark 1 and the arguments given in Lemma 3 as well as
Proposition 1, we may assume that H is finite dimensional, f is of C2 in S°
and there exists a nonnegative continuous function ¢ such that

(hf 2x(2, ¥), B) 4+ 2(hf (%, ¥), k) + (kf 4y (x, ¥), k) < —c(x, ) (|A* — |EI?),
for (x, y) € S. This implies, by differential subordination,
T—
| Fa (X, Yo AL X, X5,
0+ i,j

+2f iy, (Xo, Yo )AL XS, YE,
(1.15) + Fyiyy(Xs-, Y ) dIYE, Y5 1s)

T—
<- / (X, Y,) d([ X, X], — [Y°,Y¢],)
0+
<o,

since the range of (X7~ YT ) is inside S. Similarly, by differential subordi-
nation and (1.14),

(X7, Yr) < f(Xr_, Y7 )+ (fx(X7-,Y7_),AXT)
+ (fy(XT—, YT—)’ AYT)

T
(1.16) = F(Xr Yo )+ [ (Fu(Xoe, ¥o),dX))
! X, ,Y,),dY |
+‘/T“_<fy( 88— s—/s S)'

Apglying It6’s formula to f(Xr_,Y r_) and using (1.16), we have

(1.17) (X7, Yr) < f(Xo,Yo)+I1+1p+ I3,
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where

T T
I = f Fo(Xoo, Vo), dXs) + f (fy(Xoo, Yoo),dYs),
0+ 0+
T—
oI, = /0 X (F e (Xamy Yon) ALXG, XL 2 (X, Yoo LXK, Y5,
i,j .

+ Fyiy)(Xom, Yoo ) ALY, Y5 L),

I3 = Z (f(Xs,Ys)— f(Xs-,Ys) — (Fe(Xs-,Ys-),AXs)
0<s<T

- (fy(Xs—, Ys—), AYs))'

Without loss of generality, I; is a martingale, so E(I; | ¥¢) = 0. By (1.15),
Iy < 0. Finally, by (1.14) and differential subordination, each term of I3 is
nonpositive. Consequently, E(f(Xr,Yr) | %) < f(Xo,Y ). This finishes the
proof. O

Checking the proof of Theorem 8.1 of [8], we see that Proposition 2 can be
applied to Sl = Do, Sz = Dl, Sg = D2 and S4 = D3, where Do,...,D3 are
defined there. We then have the following corollary.

- COROLLARY 2. Let X and Y be H-valued local martingales such that Y is
differentially subordinate to X and || X|| < 1. Then for A > 2,

Plsup(IY[? - |X[?) 2 A% - 1} < e?/4e™
¢
and the constant e?/4 is best possible.

Since

P{sup|Y|; > A} < P{sup(IYI? —1X12) > A% - 1],
t

Corollary 2 shows, under the same condition,
P{sup|Y| > A} <e®*/4.

This will lead to the proof of the analogue of Theorem 8.1 of [8] for the
continuous-time setting.
The example given in the Theorem 8.1 of [8] shows the constant in Corol-

lary 2 is best possible.
The proof of Theorem 9.1 is similar. This time, we need the following propo-

sition.

. PROPOSITION 3. Let f be a function defined on H xR such that f is bounded

on bounded set, of C! on S\ {|x| = 0} and bounded on bounded set, of C2 in
S;, where the union of the closure of S; is S, and S is a bounded closed set
of R x H satisfying (a) (x,y) € S, |x| = |X|, then (%,y) € S, and (b) for each
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0 < r < 1, there exists d, > 0 such that rS+d,O C S°. Assume for (x,y) € S;,
x| 20, heH, keR,

(hfxx(x’ y)’ h) +2(fxy(x; y), h>k+ k2fyy(x, y) =< —Ci(x, y)(|h|2 - kz)’

where c¢;(x,y) is a measurable function nonnegative on S; satisfying for each
O<r<l, .
sup sup ci(x,y) <M,

i (x,y)eS;nrS
|x|#0

for some nondecreasing sequence M ,. Assume further

when (x,y) € S, |x| #0and h € H, k € R. If X is an H-valued local martingale
and Y is a R-valued local martingale such that Y is differentially subordinate
to X and f satisfies (A3), then

E(f(Xr,Yr) | %) < f(X0,Y0) ae,
where T =inf{t > 0: (X, Y;) ¢ S}.

The proof is like that of Proposition 2. We may assume that f is of C2 and
H is finite dimensional by using the argument given in the proofs of Lemma 3
and Proposition 1 with Y™ being replaced by Y.

Similarly, when X is real-valued and Y is H-valued, the analogue of the
result of Proposition 3 holds too. We omit the details.

Back to Theorem 9.1 of [8]. Let S; = D; and Sy = D2, where D; and D»
are defined there. We then have the following corollary.

COROLLARY 3. Let X and Y be H-valued and R-valued local martingales,
respectively, such that Y is differentially subordinate to X and || X[l < L
Then for A > 1,

(1-V/A=1/2)2, ifl<Ar<2,

P[S‘}lp(Yt—|Xlt).>_‘)‘_1}_<_[ez_)‘/4’ iFA>2,

and the bound on the right is sharp.

This will lead to the analogue of Theorem 9.1 of [8] in the continuous pa-
rameter setting.

REMARK 3. The function used in the proof of Theorem 3.5 of [8] is so special
that we can give the following theorem.

THEOREM 3. Assume X and Y are local martingales such that for any stop-
ping time T, |AY 7| < |AX 7| and

E(X%_-Y% )xir-0; =0,
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where x a is the indicator function of A. Then for any A > 0,

AP{sup(1X,| +|¥+)) = A} < 201 X1
The constant 2 is best possible.

Note if Y is subordinate to X, then [X,X]r_ —[Y,Y]r_ > X;-Y2>0
for any stopping time T' when T > 0. Consequently, the assumption of the
theorem is satisfied. When X and Y are Brownian motion, Burkholder gave
the proof of this theorem in [4].

PROOF OF THEOREM 3. It is enough to prove the inequality for A = 1. Let
T =inf{t > 0: |X;|+|Y;| > 1}. Then |[X7|+|Y 7| > 1 and | X+ 1Yy <1 for
t < T. Define for x,y € H,

_[-2|x],  when |x|+|y| <1,
Vix,y) = {1 —2|x|, when |x|+|y| > 1,

and

_ [y —Ix2, when |x|+ |yl <1,
Ulx,y) = {1 — 2|x|, when |x| + |y| > 1.

It is clear that V(x, y) <U(x, y). Thus we need only to prove EU(X7,Y 1) <O.
Let 6;; be 1 if i = j and 0 otherwise. It is easy to check the following (see
Burkholder [7]):

Usiz;(%,y) = =28y,
(1.18) Usiy;(x,9) =0,
Uy.y; (2, 5) = 28,
for |x| +|y| < 1,
a1g UEHhy+d —U(x,9) — (Ua(x, 3),b) — (U, (x, %), k)
=—(|h? - k%)
when |x|+|y| <1and |x+ Ah|+ |y + k| < 1 and
Ulx+h,y+k)—U(x,y) — (Us(x, ), h) — (Uy(x, ), k)
(1.20) = (AP = |&®) = (|ly + & — (1 — |x + h|)?)
< —(|hf> - k%)

wheti |x| + |y| <1 and |x +A| + |y + & > 1.
Therefore, using the idea in the proof of Proposition 2, we have on {T > 0},

U(Xr,Yr)=U(Xo,Yo)+ 11 + Iy + I,
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where, in this context,

T T
I= / (Ue(Xo_,Ys ), dX,) + / (Uy(X,-,Y,_),dYs),
0+ 0+

I2 = [Y’ Y]T— - [X’ X]T—,
Is=U(X7,Yr)-UX7p_,Y7r_) — (Up(X7_,Yr_),AX,)
- (Uy(XT—,YT—)’AYT),

and I; is a local martingale. We may assume it is a martingale without loss
of generality. Otherwise, use the stopping time argument. By (1.18)—(1.20),

Iy+ 13 <[Y,Y]r- - [X,X]r_.
Since U(Xo,Yo) = Y3 — X2 < 0 because |Xy| + |Y,| < 1, we have
(1.21) UX7,Yr) <Ii +([Y,Y]r- - [X,X]7)
on {T > 0}. On {T = 0}, because |Xo| + |Yo| > 1 and | X,| > Y|, we have
U(X7,Y7r)=U(X0,Y0) =1-2|X,| <0.
Together with (1.21), this gives
UXr,Yr) <Ii +([Y,Y]r- = [X, X1r-) X750}

Now apply expectation to the above argument and we get the result. O

REMARK 4. In most cases (see [7]-[9]) inequality (1.4) is proved along with

when |k> < ||%. For discrete martingale or stochastic integrals satisfying
condition (i) or (ii) in the Introduction, however, the above condition alone does
guarantee the right result. We give the following analogue of Proposition 1 for
purely jump martingales and stochastic integrals:

PROPOSITION 4. Let f, f1 and f2 be three functions defined on H x H such
that

for |k|?2 < |h|2 and |x||y| # 0. Let X and Y be two pdrely Jjump martingales
such that Y is differentially subordinate to X or let X and Y be stochastic
integ('als satisfying condition (i) or (ii) in the Introduction. Then for any t > 0,

Ef(X:,Y:) <Ef(Xo,Y0)
provided that f satisfies condition (Al).
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The proof of Proposition 3 is simple. Let X = (a, X) and Y = (a,Y) for
a # 0. Differential subordination and (1.22) imply

f(Xs’ Ys) - f(Xs—: Ys—-) - (fl(Xs-—, ?s—), AXS) - (f2(Xs-—,?s—), AYS) =< 0.
Write
_ - - - t - - _ t _ _ -
f(X:,Y:) = f(Xo, Yo)+/ fl(Xs-,Ys—)dXs+/ fa(Xs-,Ys)dYs
0+ 0+

+ Z (f(Xs, Ys) - f(}—(s—, Ys—) - (fl(}_(s—a Ys—), AXs)

O<s<t
_(f2(Xs—, Ys—), AYS) )

By the martingale property, stopping time argument and condition (A1), we get
the result for the purely jump martingale case. Using a theorem of Bichteler
[3], we can approximate the stochastic integrals with discrete-time martin-
gales such that the differential subordination structure is also preserved. We
omit the details. When f is U defined in Theorem 1, the above argument can
be found in [7] given by Burkholder.

REMARK 5. The condition
supc;(x,y) < M, < 00

in Lemma 3 and Propositions 1, 2 and 3 are only needed when the dimension
of Hilbert space H is infinite. When H is finite dimensional, it is easy to verify
the argument given in Lemma 3; hence Propositions 1-3 will go through if we
only require nonnegativeness of ¢;(x, y). In fact, if there exists a sequence of
integers m, going to oo, such that the subordination structure is preserved
by X™» and Y™, then Lemma 3 and Proposition 1 hold true if c;(x, y) > 0.
This is the case when Y and X are stochastic integrals satisfying condition
@) or (ii).

2. Continuous-time semimartingale and strong differential subor-
dination. When H = R, if X is a sequence of integrable functions, then
Doob’s decomposition implies that there exist a unique martingale M, with
M, = 0 and a predictable process A, with Ay = 0 such that

X,=Xo+M,+ A,.

In fact, M, =37 ,(di — E(d; | Fi-1)) and A, =Y ", E(d; | %_1), where d =
{d.}n>0 is the difference sequence of X: do = X¢,d, = X, — X,-1, n > 1. For
continuous-time sub- or supermartingale X, the Doob—Meyer decomposition
assures a similar result:

X:=Xo+ M+ A,

whei‘e M is a local martingale with My = 0 and A is a predictable FV process
with Ag = 0 defined as follows: An adapted, r.c.Ll. process A is FV if almost
surely the path of A is of finite variation on any compact interval of [0, 00).
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We denote |A|; to be the total variation of A on [0, ¢]. Such a decomposition
is also unique.

For general semimartingale X, such decomposition is possible if A is not
required to be predictable, see [12], for example. That is, there exist a local
martingale M = {M,};>o with My = 0 and an FV process A = {A;};>¢ with
Ag = 0 such that i

(2.1 Xi=Xo+M,+ A,

The above decomposition may not be unique in general.

All the above results can easily be generalized to H-valued semimartingales
by applying the R-valued result coordinatewise.

Burkholder [9] introduced the concept of strong differential subordination
for a sequence of adapted integrable functions as follows. Consider two se-
quences of integrable functions f = {f,},>0 and g = {gn}n>0- Let d and e be
their difference sequences. Then g is strongly differentially subordinate to f
if le,| < |dn| for all n > 0 and |E(e, | Fn_1)| < |E(d, | Fn-1)| for all n > 1.
The following two theorems are proved in [9]:

THEOREM D. Let 1 < p < oo. If a sequence of adapted, H-valued integrable
functions g is strongly differentially subordinate to a nonnegative submartin-
gale f, then

l1gllp = (™ = DIIfllps

where p** = max{2p, p/(p—1)}. Strict inequality holds if 0 < ||f||p, < oo. The
constant p** — 1 is best possible.

THEOREM E. Let 1 < p < oo. If X is a continuous-time nonnegative sub-
martingale and Y is the stochastic integral of H with X where H is an adapted
predictable H-valued process bounded by 1, then

Ylp < (p™ = DIX]|lp.
Strict inequality holds if 0 < || X||, < oo. The constant p** — 1 is best possible.

Theorems D and E give examples of
(2.2) 1Y, <= (p™ = DIIX]|p

when X and Y are semimartingales. We would like to broaden Burkholder’s
examples. To this end, we introduce the following definition. For two semi-
martingales X and Y, we say Y is strongly differentially subordinate to X
if (i) Y is differentially subordinate to X and (ii) there exist FV processes A
and B, where A is in the decomposition (2.1) for X and B is similarly defined
for Y, such that |A|; — |B|; is a nondecreasing function of ¢. [Y is strongly
- subordinate to X if (i) Y is subordinate to X and (ii) |A|; > |B|; for all ¢ > 0.]
.Since any adapted sequence of integrable functions can be thought of as a
continuous-time semimartingale, our definition is consistent with that given
by Burkholder in [9]. In fact, for two adapted sequences of integrable functions
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f and g, (i) is satisfied if |e,| < |d,| for all n > O since [f,f]. — [&, &l =
> o(Idi|? — |ei|?). By using Doob’s decomposition, we see (ii) is satisfied if for
alln > 1, |[E(es|Fn-1)| < |E(dn|Fn-1)| since |Al, —|B|n, = Z?:l(IE(dzl‘Z—l)l -
|E(e;| Fi-1)1).

Similarly, |H;| < 1 assures that Y = H - X is strongly differentially sub-
ordinate to X when X is a nonnegative submartingale. To see this, note (i)
is satisfied since [X,X]; — [Y,Y]; = fy(1 — [Hs*)d[ X, X];s. Let A be the
unique predictable FV process of X in the Doob—Meyer decomposition. Then
B can be H - A. Consequently, |[A|; — |B|; = A; — |Bl; = [{(1 — |H;|)dA; is a
nondecreasing function of ¢. So (ii) is satisfied.

We now prove the following extension of Theorems D and E.

THEOREM 4. For 1 < p < oo, if X is a nonnegative local submartingale
and Y is a semimartingale taking values in H and strongly differentially sub-
ordinate to X, then

(2.3) MY, < (™ = DINXlp

and the constant p** — 1 is best possible, where p** = max{2p, p/(p—1)}. The
inequality

Y1l < (p™ = DIIXIIp

is strict when 0 < || X]||, < oo.

When X is a nonnegative local submartingale and p > 1, ||| X]||[, < o©
implies that X is a nonnegative submartingale and || X ||, = ||| X||[p.

The proof is again based on the special function found by Burkholder in [9]
and It6’s formula. It follows the same line as that of Theorem 1.

PROOF OF THEOREM 4 WHEN THE DIMENSION OF H IS FINITE. Similar to the
reduction given in Theorem 1, we assume without loss of generality that X
is a positive submartingale and |Y| is a positive semimartingale. In addition,
we may let X; = Xo+ M;+ A;and Y, =Yo+ N;+ B;, where M and N are
martingales such that for the function U defined below, U,(X_,Y_)- M and
U,(X_,Y_)-N are also martingales and A and B are FV processes such that

A; — |B|; is a nondecreasing function of ¢. It suffices to show
2.4) NY¢llp < (™ = DI Xellp

for any ¢ > 0.
Let x' = x/|x| for the nonzero element x of H.
Recall Burkholder’s special function U(x, y) mapping R, x H to R:

U(x,y) = p(1—1/p™)PL(|y| — (p™ — Dx)(x + |y])*~L.

. The function U satisfies the following properties as shown by Burkholder
[91: " 3

(a) |y|? — (p*™* — 1)PxP < U(x,y) and strict inequality holds if |y| #
(p** = Dx. .
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(b) For all x,h e Rand y,k € H such that x > 0, x+ A > 0, |y| # 0 and
|kl < |Al,
U(x+h,y+k) < Ux,y) + Us(x, )b+ Uy, ), k).
(c) For all x,hcR and y,% € H such that x >0, |y|#0and x+ h > 0,
U ox(2, )12 + 200 1y (2, 9), k) + (RU 4y (%, ¥), k) = —cp(A+ B+C),

where ¢, > 0 is a constant that depends only on p and A, B and C are defined
by

A=p*(p— DB - k) (x+ 1y)P72,
B={(p-1)p* — pHIE® — (&, ¥y (= + 1y)P,
C=(p-D[(p*-plyl+{(p-1)p* — plxl(k+ (k,¥))*(x + |y)P~2.

) U(x,y) <0if [y| < x.
(e) [Uy(x,y)| < —Ugx(x,y) for all x > 0 and y € H,

where U, and U y are first-order partial derivative vectors and f]xx, f]x,y and

U,, stand for the second-order partial derivative matrices.
Since (2.4) is equivalent to E(|Y;|? —(p** —1)?|X|?) < 0, by (a) it is enough
to show EU(X,,Y;) < 0. Itd’s formula gives

~ ~ t .
U(X.,Y:) = U(Xo,Yo) + ]0 Uu(X,, Y, ) dX,
+

t .
+ fo (U ,(Xoo, Yoo),dY ) + 1172 + I,
+
where

t d _
I =/0 (U X5, Y )d[ X, XN +2)_ Usy (X, Y )d[ X, Y s
+ i=1

d d _
+ 33 Uy (X Y)Y, YD),
j=1
I2= (~(Xs, Ys)"f](Xs—aYs—)—f]x(Xs—,Ys—)AXs

— (U (X, Y5 ),AY ).

Let x =X, ,y=Y, ,h=AX, and k = AY ;. It follows from (b) that each
term in I, is nonpositive since |k2 < |h|? by Lemma 1. Similarly, following
the exact argument as in the proof of Theorem 1, we can show that I; is
nonpositive by using the assumption that Y is differentially subordinate to
‘X . By (d) and the martingale property, it suffices to prove

¢ . t 4.
[ OuXo Yoy dA+ [ Uy (Xn, ¥io)dBiy <0,
0+ 0+iz1
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This follows from the Cauchy—Schwarz inequality, property (e) and the fact
that A; — | B|; is a nondecreasing function of ¢:

t d t .
|/ S Uy(Xo, Yo ) dBy| + [ UulXeo, Y0 dA,
0+i=1 0+

t [ 2
< / U (X, Y,_) d|Bls + / Uu(Xoo, Y, ) dA,
0+ 0+

t
< [0 Uu(Xe, Vo) d(As = |BL)

<0.

This proves (2.4) and then (2.3).

Strictness. This is similar to that part of Theorem 1 and Theorem 3.1
of Burkholder [9] with slight changes. The argument given here also works
when H is infinite dimensional provided that U(X,, Y,) is a supermartingale.
Assume 0 < || X]|, < oo.

Let V(x,y) = |yI? — (p™* — 1)?|x|?, 0(t) = EV(X,,Y,), Ur = U(X:,Yy),
and @#(t) = EU,. Then the above argument shows that 9(¢) < @#(¢) and U is
a supermartingale. We want to show that both X and Y have limits X, and
Y.

By the submartingale convergence theorem, it is clear that X has limit X,
since || X||, < oco. To see Y has a limit too, we need a lemma given below.
However, first we introduce some notation. Given £ > 0, let 79 = inf{¢ >
0: |Y > ¢} and

Tip1 =inf{t > 7;: |Y; - Y| > ¢}
The number of ¢-escapes of Y as defined by Burkholder [8, 9] is
| C.(Y) = max{i: 7; < oo}.

It is clear that Y has limit Y, if and only if P{C,.(Y) = oo} = 0 for all
£>0. )

LEMMA 4. Suppose X is a continuous-time nonnegative submartingale and
Y is an H-valued continuous-time semimartingale such that Y is strongly dif-
ferentially subordinate to X. If 1 < p < oo and ||X||p < oo, then for all i > 1,

P{C.(Y) = i} < [(p* = DIIX]lp/(siV*)]P.

Lemma 4 is proved in a similar way to Theorem 5.2 of [9]. The only dif-
ference is to use Chebyshev’s inequality and (2.3). We omit the details. This
shows Yo, exists.

Observe that the maximum function of Y is bounded even though Doob’s
maximal function inequality does not apply here. To see this, note that X
has limit X, implies that M and A have limits M, and A.. Also ||Mll,
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and ||Ax||, are finite since || X||, = ||Xwllp is. Therefore, by strong dif-
ferential subordination, B has limit By and ||Bwll, < ||Axllp < oo. Fa-
tou’s lemma and (2.3) imply ||Y ||, < oo. Therefore, N has limit N, and
INoollp < 1Y s0llp + ||Bsollp < 00. Consequently, the maximum function Y* =
SUPg<t<o0 |Y¢t| has finite L? norm since both N* and | B| do. Here we use Doob’
maximal inequality for N, which is a martingale.

Next, by the dominated convergence theorem, both 0(¢) and i(¢) are r.c.l.L
Strictness of (2.3) is then implied by

(2.5) o(¢—) <O, 0(t) <0 and ¥(oc0) <O.

In fact, by right continuity of ||Y;||, and 0 < || X]||, < oo, there exists ¢ > 0
such that

Y ellp < (p* = DIIX]lp — €
for t < &. Let 8 = —sup,,, U(¢). Then & > 0 by (2.5). Therefore, for ¢ > &,
Y412 = (p* — DPIIXNIE +5(2) < (p* = VP X ~

We give a detailed proof of #(c0) < 0. The proofs of #(¢—) <0 and ¥(¢) <0
for ¢ > 0 are similar.

If E|Xo|? # 0, then 2(0) < (1 —1/p*)?(1 ~ (p*™* — 1)P)E|Xo|? < 0. Thus
O(t) < #(t) < @(0) < O for any ¢ > 0. Particularly, 0(oco) < @#(0) < 0. Therefore,
we may assume without loss of generality that Xo = Yo =0 and || X{||, > 0
for all ¢ > 0.

It is enough to show P(|Y | = (p** — 1) X&) < 1 since otherwise by (a),
D(00) < it(00) < 0. B _

Suppose |Y o] = (p** — 1) X o, almost surely. Then Uy, = 0. Since {U;, t >
0} is a uniformly integrable supermartingale starting from 0, this implies
P(U; =0, for all ¢ > 0) = 1. Therefore, |Y| = (p* — 1)X.

Without loss of generality, assume X_- M and Y_ - N are martingales. By
the definition of quadratic variation, we have for any ¢ > 0,

=Y, —(p™ - 1)2X2

t
=2 Y. ,dY,)—(p*™* -1 2X3_dXs
26 [0+<< )= (p™ — 1) )

+[Y, Y] - (p* - 1’[X, X
=2J1 + Ja.

Since |Y| = (p** — 1)X and p** > 2, by strong differential subordination,
we have

t oL
. dy= [ (Yoo, dN,) — (p™ — 1)2X,_dM,)
, 0+

t
+ / ((Y,_,dBs) — (p™ — 1) X,_dA,)
0+
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t
< martingale + / (IY._|dIBls — (p™ — 1)2X,_ dA,)
0+
< martingale.

Note that EJ; < 0 and EJ: is negative unless E[ X, X]; = 0 because
p** > 2 and because of differential subordination. Taking expectation on both
sides of (2.6), we must have E[ X, X |; = 0. Therefore, E| X ;|2 = 0 for any ¢ > 0.
This contradicts that E|X;|? > 0 for ¢ > 0 as we assumed at the beginning.
This completes the proof. O

Note here that the strictness is only for [|Y||,. It is interesting to know if
strictness holds for |||Y|||,.

Like the proof of Theorem 1, that function U7 is of C2 and H has finite
dimension play an important role. When the special function is not C2%, but
is of C1, continuous on H x H, and of piecewise C2, then the same proof can
go through by using convolution and approximation. We give the analogue of
Proposition 1 below. The proof is similar. One needs to modify 7', in the proof of
Proposition 1 to be T, = inf{¢ > 0: | X;|+|Y | +|Al:+|Bl:+[ X, X +[Y,Y]; <
n}. We omit the details of the proof.

_ PROPOSITION 5. Let f(x,y) be a function continuous on R, x H, bounded
on bounded sets, in C' on Ry x H\ ({x =0}U{|y| =0}) and in C?0on S;, i > 1,
where {S;};>1 is a sequence of open connected sets such that the union of the
closures of the S; is Ry x H. Assume that for i > 1, there exists a nonnegative
function c;(x,y) on S; and

fxx(xs y)h2 + 2<hfxy(x’ y)’ k) + (hfyy(xa y)’ k) =< —Ci(x, y)(h2 - 'klz)

for h € R, k € H, and x|y| # 0. Assume further that for (x,y) € S;, it > 1, and
x|yl #0,

Ify(x, 2] <= =Fx(x,y) [or |fy(x, )] < fa(x,5)]
and. for each n > 1, there exists M, which is nondecreasing on n satisfying
supci(x,y) < My < oo,

where supremum is taken over all (x,y) € S; and 1/n% < x2 + |y|2 < n? and
all i > 1. Also assume that f, and f, are bounded on bounded set that does

not contain 0 and for any x|y| # 0 and |k| < |h/|,
fx+h,y+k)—f(x,9) = fz(x,y)h = (fy(x,9), k) <O0.

For any nonnegative submartingale (or supermartingale) X and semimartin-
" gales Y with Y being strongly differentially subordinate to X, if f satisfies
condition (Al), then for 0 <s <,

E(f(X:,Y:) | %) < f(X,Ys) ae
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Proposition 5 implies Theorem 4 when H is infinite dimensional.

It is easy to verify that conditions given in Proposition 5 are satisfied for the
special functions found in [9] used in the other norm inequalities. For weak
type inequalities proved in [9], we need to use the analogue of Proposition 3.
In fact, all the remarks at the end of the previous section are also applicable
in this section. We omit the details.

3. Concluding Remarks. The above arguments show that once the spe-
cial function is found for the finite-dimensional discrete-time case, the same
function can be used to produce the same result for the infinite-dimensional
Hilbert space-valued continuous-time case with the help of Itd’s formula and
convolution arguments. Therefore, when working on sharp martingale in-
equalities, the finite-dimensional discrete-time case is more challenging and
more interesting.

It is also clear from the above proofs that differential subordination
and strong differential subordination play an important role. Motivated by
Burkholder’s conjecture given in the Introduction, we ask whether strong
subordination implies (2.3). Although we cannot solve either of the above
questions, we would like to make the following observation.

Conditions required in Theorems 1 and 4 can be weakened. For semimartin-
gales X and Y, we say that Y is in a weak sense differentially subordinate to
X if (a) [ X¢, X¢]—[Y¢, Y] is a local submartingale and (b) |Y,| < | Xo| and
|AY ;| < |AX;| for all ¢ > 0. For semimartingales X and Y, Y is in a weak
sense strongly differentially subordinate to Y if (a) Y is in a weak sense differ-
entially subordinate to X and (b) |A|; — |B|; is a local submartingale, where
X=Xo+M+Aand Y =Yy + N + B are defined in (2.1). When X and Y
have continuous paths, Y is in a weak sense differentially subordinate to X
if [X,X]—-[Y,Y]is a local submartingale and |Y| < | X|. This condition is
very easy to verify.

By checking the previous proofs carefully, we can see that all the above
theorems remain valid when (strong) differential subordination is replaced
by, in a weak sense (strong), differential subordination. The only change is to

"decompose the integral

- /(;t C(Xs—y Ys—) (d[Xc, Xc]s - [Yc’ Yc]s)’ /(;t fx(Xs—, Ys—-) d(As - IBls)
into

¢ ¢
- | X Yoazt- [ (X, Y, )dCh,
3.1) 0+ | t0+
[ FeXe Yoy dZ2+ [ fu(X,o Y )dCE,
where [X,X]—[Y,Y]=X2-Y2+Z'+C', A—|B| = 2%+ C?, Z',Z?2 are
local martingales and C!, C? are predictable nondecreasing processes as given
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in the Doob—Meyer decomposition. Note in (3.1) that each of the two sums
consists of a local martingale term and a nonnegative term. This ensures that
the proofs of all our previous theorems go through. Therefore, all Burkholder’s
sharp inequalities hold for continuous-time semimartingale setting under, in
a weak sense, differential subordination or strong differential subordination.
As a special case, we have the following theorem.

THEOREM 5. If X and Y are local martingales such that Y is in a weak
sense differential subordinate to X, then

MYy < (p* = DINXIIlp

and constant p* — 1 is best possible. Strict inequality holds if p # 2 and
0 < |lIX|llp < oo. Similarly, if X is a nonnegative submartingale and Y is a
semimartingale such that Y is in a weak sense strongly differentially subordi-
nate to X, then

Y e < (p™ = DINXIIp
and the constant p** — 1 is best possible. When 0 < || X||, < oo,

”Y”p <(p™ - I)HX”p

We note that the conditions of the theorem do not imply (1.2). Therefore,
even if the above two conjectures are true, Theorem 5 is still a new result.
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