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LARGE DEVIATIONS FOR INDEPENDENT RANDOM
WALKS ON THE LINE!

By TzonNG-Yow LEE

University of Maryland

For a system of infinitely many independent symmetric random walks
on Z let K,(x) be the number of visits to x € Z from time 0 to n — 1. The
probabilities of some rare events involving (K, (0), K,(1)) are estimated as
n — © and the corresponding large deviation rate functions are derived
for both deterministic and invariant initial distributions. The dependence
on the initial distributions is discussed. A simple method is used for
guessing at the rate functions. This method is effective for independent
random walks on the line and is worth exploring in more general settings.

1. Introduction. For a system of independent random walks on Z de-
note by ¢{,(x) the number of particles at x € Z at time n. Each random walk
is assumed to be symmetric and simple, that is, walking to the left or right
neighboring site with equal probability 1/2. We are interested in the occupa-
tion time at x before time n,

n—1
Ki(#) = T 2,

and the difference between two distinct sites x and y:
L(x,y) =K,(x) = K,()-
The case x = 0, y = 1 will be adopted throughout. The reader is referred to
Remillard (1990) and Lee and Remillard (1994) for ideas to generalize our
results to L, . ; V(x)K,(x) for a broader class of functions V.
A direct motivation comes from the work of Cox and Durrett (1990) and

Remillard (1990). For a deterministic initial configuration with asymptotic
density 1, that is,

k
lim (2k + DY (%) =1,

x=—Fk

let @ be the associated probability measure. They showed that

1 lim n~1/2-30/21og Q{K, > an'**} = —4(a/3)"?,
. n—x
a>0,60€(0,1),
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1316 T.-Y. LEE

1) lim n~1/2760/5 log Q{L, > an®*+°} = —(5/4)(2/3)"°b%/5,
b>0,0€ (0,5/4).

It can be checked that ¢,(x), x € Z, converges in distribution as n — » to
independent mean 1 Poisson random variables.

When {,(x), x € Z, are independent mean 1 Poisson random variables, let
us write P for the probability measure. It was proved by Cox and Durrett
[(1990), Theorem 4] that

(13) liminf(log n) 'n~1/27%log P{L, > bn®/**%} > —(1 + 20),
b>0.

Thus the deviations from a Poisson initial configuration are much more likely
than for a fixed configuration. They thought that (log n)n'/2*? might be the
right order of magnitude. One goal in this paper is to determine more precise
behavior of the processes P and @ in problems like (1.1)-(1.3). In this respect
our main result is the following theorem.

THEOREM 1. Statements (i) and (ii) hold.

() Let A, be a sequence such that A, = « and (log A,)/(logn) —> 6 > 0,
as n — ®, Then with respect to P, the system

(Artn 'Ky, Ay '(log n) ™/ *n=¥/4L,), A, (log n)"/*n'/?)

is a large deviation system with rate I?*°:

1/2 b
(20) a+—4 , fora>0,beR,
a

0, fora =0,b=0,
+ oo, otherwise.

IP:%(a,b) =

(i) With respect to Q, the system (n=°"1K,, n=5/473/4L ), n3%/2*1/2) js q
large deviation system with rate I9:

2
4.378/2¢8/2  — | fora>0,b€R,
4a

0, fora=0,b6=0,
+ o, otherwise.

I9(a,b) =

¥

. REMARK 1. As usual, statement (i) means (1.4), (1.5) and (1.6) as follows:

The set {(a, b): I?%(a, b) <1} is compact for each finite /.

(1.4) (Thus, the function I?'? is lower semicontinuous).
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For each closed F c R2,

lim sup A; *(log n) */*n~1/2

(15 neE B
) xlog P{()\;ln‘lKn, A, t(log n) 1/4n‘3/4Ln) IS F}
<~ inf I"%(a,b).
(a,b)eF
For each open G C R2,

liminfA; 1(log n) "/ *n=1/2

n—x

xlog P{()\; 11K, A, Y(log n) "V *n"%4L,) € G}

> — inf IP%(a,b).
(a,b)eqG

(1.6)

REMARK 2. An application of the contraction principle shows that if
(log A,)/logn — 6 > 0, then

lim A7 1(log n) "/*n~/2log P{K, > aA,n}
n—w

— — infIP%(c,b) = —(20)"%a fora >0,
bek

lim A;'(log n) "*/*n~'/2 log P{L, > bA,(log n)"/*n?*/%)
n— o

= — infI?%(a,c) = —(26)/*b forb > 0.
i<k
Thus problems like (1.1)-(1.3) can be resolved by using proper A,. For
example, if A, = n%(log n)~'/%, then the last equation becomes
lim (log n) "“/*n~1/2-%1og P{L, > bn®/**%}
(1.7) noo
= —(26)"*p, b>0.
The right order is therefore (log n)/*n'/2*°, instead of (log n)n'/**’. An
interesting feature of Theorem 1(i) is that it is not obtained by proving an
appropriate limit theorem for moment generating functions, and then invert-
ing. Instead, a certain direct probability estimation is done, which explains
what is “really” going on with the process.

REMARK 3. The following two statements can be deduced from Theorem 1:

lim lim A; '(log n)~'/?n=1/2

e=>0n—ox»

n

Ln
eE(ay, —&,a, + &
A (ax « +e) A, (log n)"*n3/4

(i) Xlog P

e(b—a,'b+e)} =0,
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where a, = 27%/%9~1/4b is the minimizer in inf, , , I"%(a, b);
lim lim n~39/2-1/2
e->0 n-ox

n
150/473/4

Kn
(ii) XlogQ{Fe(a* —&,a4 + &)

e(b—a,b+a)}=0,

where a* = 276/531/5p%/5 is the minimizer in inf, , , I%a, b).

If the sequence A, = n%%/*(log n)"'/* is used, then the two conditioning
events are identical, but the “almost sure” behavior of K, is different [K, is
on the order of n5¢/**1(log n)~!/* under P and of the order of n’*! under @].

This research was begun with the main goal of seeking an effective method
to guess at the right order of decay and prove the corresponding large
deviation result like (1.1)-(1.3). The guessing method that we used to foresee
Theorem 1 is simple. In order to demonstrate this method, we present
another large deviation principle for K,, L, as Theorem 2. The proof of
Theorem 2 is not difficult since we have the results of Cox and Durrett (1990)
and Kesten (1962) and references therein. We need some notation. Let 7,(s)
be the probability density function of the hitting time of the origin for a
Brownian motion starting from x € R:

7.(s) = lx[s3/% exp(—x%/2s), s>0.

Let f be the moment generating function of a truncated normal distribution:

® 2
(1.8) f(e) = j;) exp(cu) = exp(—u?/2) du.
Let

I (@, B) = f_oowj(‘)l[f((l - 8)"?(a+ B?)) - l]Tx(S) dsdx,

19 .
J9a, B) = /_ log{l + fol[f((l —5)"*(a+ B2)) - 1 n(s) ds} dx
and let J7, J9 be the Legendre transforms:

JP(a,b) = sup[aa + b8 — I(a, B)],
a, B .

(1.10) R
J9(a,b) = sup[aa + b8 — J?(a, B)].

, B

Then we prove the following theorem.

THEOREM 2. The system ((n 'K,, n~%/*L,), n'/?) is a large deviation
system for both processes P and @, with rates J* and J 9, respectively.
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REMARK 1. Since y > log(1 +y) for y > —1, we see that J"(a, )=
JUqa, B), for all «, B, and thus J7(a, b) < J%a, b), for all a, b. The follow-
ing properties are easy to check:

(i) We have J%(a, b) = J9a, b) = +
and J%a, b) are finite for a > 0, b € R.
(ii) For J = J? or J€,

J(a,b) =0 & (a,b)=(1,0)

fora < 0,b € R, and both J”(a, b)

and

J?(a,b) <J9a,b) for a>0,bec Rand(a,b) * (1,0).

A simple-minded guess for Theorem 1(i) is obtained by wishfully thinking
that Theorem 2(i) holds also for a = @, = «, b = b, — »; roughly speaking,

(1.11) —log P{K, ~a,n, L, ~b,n%* ~n'/2jF(a,,b,), n- o

Then we estimate the asymptotic behavior of J* (a,, b,), using the fact that
f(c) — exp(c?/2) —» 0 as ¢ — =, as follows:

jp(an,bn) = sup[ana +b,B —Jp(a,B)]
a, B

9 2
~ sup [ana +b,B8— exp(M)]
a, B 2

2
~a,(2loga,)"? + ———4; ,

n

n — x©,

The choice a, = aA,, b, = bA,(log n)*/* makes the two terms of the same
order A,(log n)'/? and suggests that Theorem 1(i) might hold. Of course, this
heuristic is far from a proof because a statement like (1.11) in general does
not hold when one merely assumes a large deviation principle as given in
Theorem 2. However, we think that the processes P and @ are “regular”
enough to warrant this heuristic argument for many sequences (a,, b,), as
n — o,

It would be interesting to see some sufficient conditions worked out for the
heuristic (1.11) to give correct results. Of course, it would be especially nice if
these sufficient conditions hold and are easy to verify for independent random
walks and more complex systems of infinite particles. We think that this kind
of heuristics makes correct predictions for many infinite particle systems. It
is also instructive to understand various limitations of the prediction. Some
. limitations are easy to detect and some are obscure; for example, the predic-
tion must fail for § > 1 in Theorem 1(ii) because in this case @-probability is
0 for sufficiently large n. However, it is not clear whether (1.11) would predict
correctly for more general sequences of (a,, b,), for example, a, =a > 0,
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b, = » as n —» . We think the answer is in the negative and hope to clarify
it in the future.

In Section 2 we shall establish some auxiliary results (seven lemmas). In
Section 3 we then employ them to prove Theorems 1 and 2. Many ingredients
for proving our result can be found in the references. When this is the case
and only simple modification is required, we shall give the references and
omit some details.

2. Auxiliary results. The first lemma is concerned with the behavior of
the principal eigenvalue of perturbed discrete Laplacian operators.

LEMMA 1. Let V(x) = a&’x(x) + Be( xo — x1)(x), where x, is the indi-
cator function of y and a+ B2 > 0. For small & there exist 0= 6, > 0,
A =A_>0 such that 0 = (a + B%e? + O(&®) as & = 0, and the function

e, forx <0,
2.1 =
(21) (=) {Ae"’(x'l), forx > 1,

satisfies the equation

flx+1)+f(x—-1)

(2.2) 5

= (cosh 6)exp(-V,(x))f(x), x€Z.

Proor. Clearly any function f in the form of (2.1) satisfies (2.2) for all x
except maybe x = 0, 1. For x = 0 or 1, equality (2.2) becomes

-0) +A
M = (cosh 9)exp(—as® — Be),
1+A -0
* e;(p( ) = (cosh 0)exp( Be) A,

respectively. That is,
A = (2cosh 0)exp(—ae® — Be) — exp(—0)
= exp(—ae? — Be)[exp(9) + (1 — exp(ae? + Be))exp(—0)],
A~! = (2cosh 0)exp( Be) — exp(—0)
= exp( Be)[exp(0) + (1 — exp(—Be))exp(—0)].

Let y =e?% > 1. The product of these two equations_yields the quadratic
equation in vy,

’ v2—By+C =0, vy>1,

where

B=exp(ac?) +exp(—pPe) +exp(as® + Be) —2=1+(2a+B%)e®+0(&?),
C = (1-exp(as®+ Be))(1 —exp(—Be)) = —B%>+0(&%), &-0.
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The root v,, v, > 1, is
= i[B + (B - 40)"7

= %[1 +(2a+pYe’+ (1+2(2a+B?)e” + 4B282)1/2] +0(&?)

=1+2(a+ B2+ 0(&?).
This then yields easily the behavior of 6, as ¢ —» 0. O

Let S, denote the position of a symmetric simple random walk on Z' at
time n. Lemma 1 is important to our large deviation study because
n—1
(cosh 6,) " [exp Y Ve(Sm)]f(Sn) is a martingale.
m=0
Using this family of martingales, the argument of Cox and Durrett can be
slightly modified to prove the next lemma.

LEMMA 2. Let y, > «, y,n '/* > 0 asn - ©and y € Z. Then:

@) lim, ., v, * log Efexpla(y,n"*)?K, + By, n~ V4L = (e +
B2),)?/2, where c,=c V 0 and E, means the expectation wzth respect to a
symmetric random walk initially at y. Throughout this paper, K, and L, will
be used to remind us that only one particle is being considered.

(ii) lim sup,_, v, * log max,_, ., Efexpla(y,n *?K, + By,n"'/*

LI} <(a+ B2)?/2, for a, B such that a + ,82 > 0.

(111) With respect to P,, the system ((y;*n"'/?K,, v;°n"" ‘L), v isa
large deviation system with rate function S:

a2 b2
S(a,b) = E-FZE, fora>0,b€eR,
00, otherwise.

REMARK 1. Via the Gartner—Ellis theorem [cf. Ellis (1985)], statement (iii)
follows from (i) and the fact that
2
a+ B2
S(a,b) = sup|aa + bB — [—(——S—M—
« ’ B

REMARK 2. The proof of Theorem 1(i) (for the process P) will require only
the case vy, = (log n)"/* of Lemma 2, whereas that of Theorem 1(ii) (for the
process Q) will use y, = n%*, 0<0< 1.

ProoF. For the detail of the proof of (i) for @ + B2 > 0 and that of (ii), the

. " reader is referred to the proof of Cox and Durrett [(1990), Lemma 1]. To prove

(i) when a + B2 < 0, note that the limit is increasing in « for fixed 8. Thus

lim sup v, * log Ey{exp[a(*ynn‘l/“fl?n + B'ynn‘l/“f,n]} <0.

n—o
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For the lower bound, a simple computation shows that [see Lemmas 2.1 and
2.3 of Lee and Remillard (1994)]

E(K,} <cen'?, EJ|L,l} <E(I? * < cn'/4 for some ¢ > 0.

)
An application of the Jensen inequality then yields
1i;r_1£1fy,:4 log Ey{exp[ a(ynn“1/4)21?n + ,Bynn“l/“z,,]}
> 1irrlrii0101fy,:4Ey{ayfn_1/2I?n + B’ynn‘l/“’in}
> lilrllliorolf'y,:“(Ial'yf +1Bly,)e = 0.

The proof is complete. O

LEMMA 3. As in Lemma 2, let v, - « and y,n"'/* - 0 as n » . Then
for each a,B such that o+ B2 >0 and for each positive & there exists
ny =n.(a, B, &) such that

log Ep{exp[a('ynn‘l/“)an+Bynn‘1/4Ln]} <nl/? exp{yn4(a+B2)2(1+a)/2}
forn>n,.

PrOOF. Let A be a finite subset of Z. It follows from an elementary
property of the Poisson distribution that the numbers of particles entering A
first at site y and time n > 0 are independent Poisson variables with mean
My y» 1 =0,y €A It is known [see Lee and Remillard (1994), Lemma 2.8, for
a proof] that

n—1

. _1 2 — Ly

7}1_1)1; n~t% % Y M, =c, apositive constant.
m=0 yeA

Let A = {0, 1}. Since
log EP{exp(ay’n~'/?K, + By,n"*/*L,)}

n-1 1
(2 3) ZO ZO Mm,y(Ey{exp(aYnzn_1/2I?n—m + B’Ynn_l/4En—m)} - 1)
. m=0y=

IA

n—-1 1

=0 y= <k
m=0y=0 y=0,1

- the present lemma follows fromr Lemma 2(ii). O

Denote by [5] the integer part of b. Let {,(x) be the number of particles at
x € Z at time n which are initially in Z\ {1 — [#'/2],...,1,2,...,[nY2]}. Let
K, and L, be defined as in the first paragraph of this paper, through ¢,
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instead of {,. Similarly, define ¢,(x), K, and L', for those particles which are
initially in {1 — [nY/2],...,[nY2]}. Note

L) = &i(x) + £ (%),
K, =K, + K,
L, =L, +L,.
LEMMA 4. Ifa,n"'/? - ©as n — «, then
lim P{|L,| <a,} = 1.
n—o

ProOF. It was proved in Theorem 1 of Lee and Remillard (1994) that

cu?
lim E{exp(un~'/%L,)} = exp(—) ,

n—o 2

where ¢ is a positive constant. Among other things, this implies that, with
respect to P, the sequence n~!/2L, converges in distribution to a Gaussian
distribution and that

E{L%} < (¢ + 1)n forlarge n.
Since E{L,} = 0, the Chebyshev inequality then yields that
P{L, > a,} < E{(L’n)z}/aﬁ <E{L’}/a < (c+1)n/a2 >0 asn -,

where the second to last inequality uses the independence of random walks.
O

LEMMA 5. For each a > 0 and finite subset A of Z,

Ey{exp(ozn_l/2 Y I?n(z))} is bounded iny € Z, n € N.

z€A

ProoF. Let 7" be the k-step transition probabilities of a symmetric
simple random walk, | A| be the number of elements of A and

= (k) (ko—ky) ... o (k,—k, 1)
bj,n Z Z Tyy, Ty152 Wyj-lejJ :

The sequence b; , is increasing in n for fixed j. Let

aj’n=bj’n_bj’n_1, aj’0=0.
Clearly,
Ey{exp(an_l/2 Y I?n(z))}
z€A

R A (LY A0 el

0 J! J

[«

- J
b, ,(an~12)",

10

J
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It is easy to check that there exists ¢ > 0 such that

J

e, , < (1- e ) Hsup ¥ X ey
(25) n=0 YEZ 2€A n=0

<(1—-e*) " 'sI/2(clAl) for0<s<1,

and

oo

n o
(26) b,,= La,<e" ) ea,=e"(1-e*) ) e b ,.
k=0 k=0 E=0

Combining (2.6) and (2.5), we get

by, < (_inf ens/2)(clA) = ( inf eni/2)(clAnt’?)’.
1 0<y<n

57 Vo<s<

This inequality, together with (2.4), implies

Ey<exp(an'1/2 Y I?n(z))} < E( inf e”y'jﬂ)(aclAI)j
zeA j=0'0<y<n

0

< exp(4( aclAI)Z) Y. 277 = 2exp(4( aclAI)2)
j=0
for n > 4( aclAl)%,
where the last inequality uses y = 4(ac|AJ)%. The proof is completed. O
LEMMA 6. Foreach B € R, E,{exp( Bn~/%L )} is boundediny € Z,n € N.

ProorF. We shall reduce the present lemma to Lemma 5 via a martingale
technique. Let

o0 = 2 = {75 i
Since

E{G(S))} — G(¥) = —=(xo = x1)(9);
we have ‘

. (2.0 M, = G(S,) — G(S;) + L, is a zero mean martingale.
‘ForucRa simple computation shows that

E {exp( uM,)} = exp(g,(y)),
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where
e?* +1
log - u, for y = 0,
8.(y) = e 24 4+ 1
ogT +u, fory=1,
0, otherwise.
Therefore,

1
2.8) ¢, ,=exp(uM,— Y, g,(2)K,(2))is a positive, mean 1 martingale.
z=0

The function g, is nonnegative and
2

u
(2.9) gu(y)~—2—+0(u3), fory=0,1lasu — 0.

Using v = 2Bn"1/4, (2.7) and (2.8), an application of the Schwarz inequality
yields

Ey{exp( Bn_1/4fn)}

- fen(22)

= Ey{exp[gMn - ;(G(Sn) - G(So))]}
1

1 _ u
= Ey{qoi,/f exp| 5 ;Ogu(z)Kn(z) - E(G(Sn) - G(So))]}

1 1/2
<E[ qou,n}l/zEy{exp[ L g.(2)K,(2) — u(G(S,) - G(So))]}
z=0

1 1/2
< 1-Ey{exp( > gu<z)z?n(z))} explul

z=0

i 1/2
< E'y{exp[(ZBn_l/“)2 Y K,(2) } exp(1), forlarge n,
z=0

where the last inequality uses (2.9). Lemma 5 then implies the present
lemma. O \

LEMMA 7. Let fand J*,J9 be as given in (1.8) and (1.9). The following
. four properties hold:

(i) With respect to P,, y € Z,
(K,n'2,L,n"Y*) =,(U,V) asn -,
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where the joint distribution of (U,V') is uniquely characterized by

uZ

fu(U)=(;2;)l/zexp(——2—), u>0,

fV,U(v)=(47Tu)_1/2exp(—:—u), v eR.

(ii) }i_l)l}oEy<exp(aI?nn_l/4 + ;Enn-l/‘*)} =f(a+ B2).

(ili) lim n~'/2log EP{exp(aK,n"'/% + BL,n"'/*)} = J¥(a, B).
n—o z

(iv) lim n~'/2log E?{exp(aK,n /% + BL,n"'/*)} = J9(a, B).
n—o

ProOOF. Statement (i) is a special case of Kesten’s Theorem 2 [Kesten
(1962)]. The convergence of the marginal distributions K,n~'/% and L,n~/*
can be found in Dobrushin (1955) and Darling and Kac (1957).

To prove (i) first note that the expected value of ¢*Y*#V is f(a + B2).
Given (i), we only need to show that Ef{exp(aK,n”'/? + BL,n"'/*)} is
bounded in n, which follows easily from Lemmas 5 and 6 and the Schwarz
inequality.

Let A={0,1} and u, ,, n > 0, y € {0, 1}, be as in the proof of Lemma 3.
Then [cf. (2.3)],

log EP{exp(an~'/?K, + pn~'/*L,)}

(2100 _ 21: "Z‘:l ,Lm,y(Ey{exp(an'”an—m + Bn‘1/4fn-m)} - 1)'

y=0m=0
Let [c] be the largest integer which is no greater than c¢. For 0 < ¢ < 1 it is
not difficult to see that
1 [tn]

(2.11) Y Y By, ~nt? fw [ta'x(s) ds, n - .
—’0

y=0m=0
Also, it follows from (ii) that, for y =0or 1,0 <s <1,

lim Ey{exp(an‘l/zfn_[sn] + Bn'l/“l_ln_[sn])}

n— o

2.12) = lim E {exp(a(1l —s)"’m 2K, + B(1 —s)"*m V'L,
m— o y m

= (A=) (a+ B?)).
By (2.10), (2.11) and (2.12) one anticipates statement (iii) which is proved as
in Lee and Remillard [(1994), Lemmas 2.8, 2.9 and 2.10].
, The proof of (iv) begins with

log E9{exp(an~/?K, + Bn"'/*L,)}
= Y ¢(2)log Ez{exp(an‘lﬂl?n + ,Bn‘l/“f/n)}.

zeZ
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Observe that, for x € R,
E[n-l/zx]{exp(an'l/zl?n + ,Bn'l/“I_Ln)}

N [:Zx(s) ds + [OITx(s)f(a —5)/%(a + p2))ds

—1+ [ol[f((1 — )% (a+ B?)) - 1r(s) ds.

Since, by the definition of @,

12y] y

h {0(z)~n1/22y=n1/2f dx, n— o, fory>0,
-y

2]

[n

z=-[n

statement (iv) is anticipated. We refer the reader to the proof of Theorem 2 of
Cox and Durrett (1990) for more detail. O

3. Proofs of Theorems 1 and 2.

ProOOF OF THEOREM 1. First we prove (ii). Recall from Lemma 2(i), with
¥, =n%%,0 <0< 1, that

lim n~? log Eo{exp(an"/2'1/2l?n + Bn"/“'l/“in)}

n-—w

(213) [(a+,32)+]2
BT T

We refer the reader to Cox and Durrett [(1990), Lemma 2] or Remillard
[(1990), Theorem 1.1] for a proof of the following extension of (2.13):

lim n~? log Enl/z+o/zy{exp(an0/2_l/zl?n + Bn9/4'1/41_'4n)}

- —((“fz)*) ~(atBY), |

+

and for the exchangeability of lim, _, ., and integration described below:

lim n=3¢/2-1/2 1og EQ{exp(an9/2'1/2Kn + Bn0/4_1/4Ln)}

n—o
= ’}i}gn—wn—l/z [_wlog E[x]{exp(an"”‘l/?l?n + Bn”/4‘1/4f,n)} dx
(2.14) _ foo lim = log E[na/.z-l/zy]{exp(an"/z‘1/2I?n + ﬁn0/4_1/4fn)} dy
o —oon—>®
2 3
® a+ B2 o+ B2
=f_ [(—ZL] — (a+ B%),lyl|ldy = (—_7_)1
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Via the Gartner-Ellis theorem, statement (ii) follows from the limiting
formula (2.14) and the following Legendre transform formula:

(a+32)i 4-373/20%/2 + b%2/4a, fora>0,b R,
aa+bB— ———| = fora=0,b6=0,

otherwise.

sup
a, B

We now prove (i). Note that the Legendre transform of the rate function is

bZ 2 1/2
T =sup[a+,8 - (20) ]a

a>0

sup {aa + Bb — [(2(77)1/2
a>0,b

0, fora+ B%<(260)"?
o, foroz+Bz>(2(77)1/2

So we should not use the Gartner-Ellis theorem for a proof. For the upper

bound we use Lemma 3, with the special choice y, = (log n)'/*; that is,
log EP{exp(a(log n)"*n~12K, + B(log n)"*n~V*L
215 18 E{exp(alloen) » + B(log n) )

< pll+la+ B2+ e/ 2

The Chebyshev inequality, together with (2.15), implies for closed sets F' in
R? that

log P{(Kn)t;ln—l, L,A;Y(log n)—1/4n—3/4) IS F}

< log P{exp[a’(log n)l/zn—1/2Kn + B(log n)1/4n—1/4Ln]

> eXp([(all?f (aa + bﬁ)]An(log n)"*n 1/2)}

< pli+(atp?’a+en/2 _ [ inf (aa+ bB)]/\ (log n)Y?*n'/2.
(a,b)eF "

Since (log A,)/log n — 6 as n — «, the second term dominates the first term

as n — o for a, B such that o + 82> 0 and (a + B%*(1 + £)/2 < 6; for

example, for (a, B) e H={(a+ B2 + &) = (20)'/2}. We conclude that

limsup A, *(log n) */*n~ 1% log P{(Kn/\;ln‘l, L, A, (log n)_1/4n‘3/4) eF}

n—o

< — sup inf (aa+bB)=—
(a,B)eH (a,D)eF’

Since K, is a nonnegative random variable, it suffices to consider ¥ C [0, )
X R.Let A, B> 0and F' =F N {a < A} N {|b] < B}, which is compact. Since
-FcF'Uf{a>A}U({|b| > B},

FZmin{supinf(aa+bB),sup inf (aa + bB), sup inf (aa+b,8)}.
g F H a>A H 1b1>B
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Because F' is compact, a standard argument [see Donsker and Varadhan
(1975), for example] shows that the order of sup and inf is exchangeable.
Thus,

(20)1/2
1+ ¢)

sup inf(aa + bB) = infsup(aa + bB) = infsup(a - ,BZ) + bﬁ)
H F F' g F' g

(20)%a b2 PR
——1? + E > (1 + 8) llgfI (a, b)

= inf
2

>(1+s)! ir;fIP"’(a,b).

The following two estimates are easy:

0)1/2

-1 1/2
+b-0] =(1+ A
. b 0) (1+¢&) (20) ,

(20)"* o —(20)"* }

sgpalgi(aa+ bB) > all;lﬁ(a 1

+b

SRS a7
(1+.6)? (1+ )2

sup inf (aa +bB) > inf max{a'O +b
H |bI>B |]>B

(1+ ¢) **(20)"*B.

Putting together these three estimates yields
r> min{(l +2)  infI™(a,b), (1+ £) (20)7 A, (1 + s)‘l/z(ze)”‘*B}

for all A, B, & > 0. The upper bound of probability (lower bound of I') follows
from letting A, B — © and then ¢ — 0.
To prove the lower bound, note that the event

(K./(A\n) € (a—&,a + &), L,/(A,(log n)*n¥/*) € (b — &,b + &)}

contains the event described in (i)—(iv) as follows. Let u, 8 be positive
numbers and [c¢] denote the integer part of c.

() ¢o(x) = a, = [ur,(og n)V2/2] for 1 — [n'/?] <x <[n'/?].
(ii) All particles which are initially located in {1 — [n1/2],...,[n'/2]}
(2[n'/%]a, of them) pay their first visit to site 1 before time A(Sn).
(i) K" /(u " 'n'?(og n)¥?) € (a - &/2,a + &/2) and L,/ (u"'n'/*
(log n)¥’*) e (b — £/2,b + &/2).
Giv) K. /(\,n) < /4 and |L |/(A,(og n)*/*n®*) < g/4.

" For the definition of K,, L,, K, and L) see the paragraph preceding
Lemma 4. Due to independence, we have

P{(i), (i), (iii) and (iv)} = P{(§)} P{(i)} P{(iii)} P{ (iv)} .
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Since K|, < K, and E*{K,} = n, the Chebyshev inequality implies that

. K, ¢
lim P < —)=1 forall > 0.
n-—o An 4

This and Lemma 4 show that
(2.16) lim P{(iv)} = 1.
n—-o

Next we determine the logarithmic lower bounds of events (i)—(iii). Since
{o(x) are independent Poisson mean 1 random variables and log A, /(log n)
—> 0asn— oo,

P{(i)} = P{{y(x) = a, for 1 — [n'/?] < x < [n1/2]}
< exp(—2n"%, log a,)
< exp(—u6\,n'/?(log n)l/z),
where “x ” means logarithmic equivalence; that is,
(2.17) Tim A7 tn~1%(log n) " ?P{(i)} = —ub.

Because P;_ |12 {visiting 1 before time 8n} — c; = [{7(s)ds > 0 as n — o,

P{(ii)} = exp(2[n'/?]a, log ¢;) < exp(n'/?u)\,(log n)~ % log cs);
hence,
lim A;'n~12(log n) /% P{(ii)}

n—-o
(2.18) ~ (log cs)ur,n'/?(log n)~*/?
> lim 73 =0.
n—o A,n’?(log n)
Notice that
P((iif)} = (g5,,)""" 1,

where

95,,=  inf  P(K,/(u'n¥2(logn)"’’) € (a - /2,0 + £/2),

(1-8n=sms<n
L,/(u"'n'/*(log n)3/4) e(b-¢/2,b+ 8/2)>.
If 6 is sufficiently small, then
ds.n = inf P1<Km/(u_1m1/2(log m)1/4) €(a—¢/4,a + g/4) and

(1-28)n<m=<n
L,/(u"'m'/*(log m)3/4) €(b—-¢e/4,b + a/4)>.
It now follows from Lemma 2(iii), with vy, = (log n)'/4, that
liminfA; 'n~2/2(log n) ~/*log P{(iii))

n—wx

(2.19) > liminf u(log n) "'log g, ,
n-—wx

> —uS(aut, bu™t).
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Combining the four bounds (2.16), (2.17), (2.18) and (2.19) and noting that
u > 0 is arbitrary, we conclude that

liminfA; 'n~12(log n) "**log P{K,/(A,n) € (a - &,a + &),

n-—w
L,/(A(log n)*n¥4) € (b — &,b + &)}
sup(—u6 — uS(au"',bu""))

u>0

%

ub +

— inf
u>0

a’u?! b2
+ —
4a)

bZ
—((29)1% + E) = —IP%a,b). O

PROOF OF THEOREM 2. In view of Lemma 7(iii) and (iv), an application of
the Gartner—Ellis theorem yields the result. O
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