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QUANTUM OPERATORS IN CLASSICAL PROBABILITY
THEORY: II. THE CONCEPT OF DUALITY
IN INTERACTING PARTICLE SYSTEMS

By AIDAN SUDBURY AND PETER LLOYD

Monash University

Duality has proved to be a powerful tool in the theory of interacting
particle systems. The approach in this paper is algebraic rather than via
Harris diagrams. A form of duality is found which includes coalescing and
annihilating duality as special cases. This enables new results for the
branching annihilating random walk and the biased annihilating branch-
ing process to be derived.

1. Introduction. In a previous paper, Lloyd, Sudbury and Donnelly
(1993), we showed how results for an exclusion process on the complete graph
(the Bernoulli-Laplace model) could be derived using a fortuitous equality
between the infinitesimal generator for the process, @, and the negative of
the Heisenberg Hamiltonian for a ferromagnetic insulator, H = —@Q. In this
paper we turn our attention to the concept of duality, which has proved a
powerful tool in the stochastic theory of interacting particle systems [see
Liggett (1985) for examples]. Often the dual of a given stochastic process is
one that appears to be the original process, but “running backward in time,”
and with particles and holes (empty sites) interchanged. In quantum theory
this is called a CT transform, where C stands for charge conjugation (it takes
particles into antiparticles) and T stands for time reversal. Here, however,
our emphasis will be algebraic.

In this paper the stochastic processes can be taken as being ones in which
a set of particles occupy some or all of the N sites of a (crystal) lattice in
which each site has a well-defined set of nearest neighbors. Each site can only
be occupied by 0 or 1 particles at a time, and these occupations alter with
time by means of probabilistic nearest neighbor transitions.

The common theme underlying this series of papers is that the @-matrix
can be expressed as a sum of matrices or operators, each representing
interactions between a pair of sites. Further, each of these operators is a
quadratic function of single-site operators. In terms of such representations
for @, a duality relation is essentially an algebraic transformation of the
single-site operators.

In Section 2 we show how the @-matrix for several nearest neighbor
interacting particle systems can be expressed in terms of the single-site
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operators of quantum theory. In Section 3 we give an informal argument to
suggest that the defining equation for duality should be of the form

E( aglt*n Bl) = E(awf’m Aly,

When ¢ and ¢ are spin systems, this is a special case of (2.16) in Holley
and Stroock (1979).

Since 0* = 0 unless x = 0, the special case a = 0 becomes P(|{* N B| =
@) =P(l&8 N Al = @) and is the coalescing dual. The case a = —1 gives
annihilating duals.

In Section 4 we give conditions for duality expressing the transition rates
of one process in terms of the transition rates of the other. It is believed that
this formula covers all well-known duals [see (20)]. In Section 5 we use (20) to
derive these, as well as new duals for the biased annihilating branching
process and for the branching annihilating random walk.

2. Interacting particle systems in terms of quantum operators.
Although the methods we shall employ have been described by us elsewhere
[Lloyd, Sudbury and Donnelly (1993)], they are sufficiently unfamiliar for a
brief recapitulation here. The crystal lattice is represented by a graph G, in
which neighbors are connected by edges. There are 2!°! possible states on the
graph, the members of {0, 1}° = S. These states may either be referred to as
configurations or sets of occupied sites. We shall designate that the site i € G
is occupied by saying that the process has value 1 at that site. “Unoccupied”
will be represented by a value of 0. The members of S may be regarded as a
basis of a vector space. If A is a configuration, then we write the correspond-
ing vector |A), which in quantum mechanics is called a ket vector.

If |G| = 2, there are four possible basis vectors, which we write [11), |10),
|01) and |00). A natural representation of these four vectors is (1,0,0, 0)7,
0,1,0,0)7,(0,0,1,0)" and (0, 0,0, 1)7, which we shall designate 1, 2, 3 and 4.
A probability distribution on S is of the form ¥, . gP4|A), where 0 <P, <1
and Y P, = 1. Extending this to N sites, probability distributions would be
vectors in R!S! with basis states the 2V possible states of S.

We now define a particularly simple set of 2/¢! x 2!¢ matrices operating on
the vector space. They are the single-site operators which only change the
occupancy at one site of the graph. For example, consider the “raising”
operator S;. If site i is unoccupied, this changes the value at that site from 0
to 1 or, in other words, puts a particle there. If site i is occupied, it sends the
whole vector to the zero vector (not the state “all unoccupied”). So,

(1) S{1--) =0,  S{10-) =I[1-).

When there are only two sites, we have

Si=

SO OO
SO OO
SO O
SO =O
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(It should be noted that in this paper we are reversing the usual conven-
tion in stochastic processes; here A;; is the transition rate from j to i)
It is simple to check that this matrix gives the relations

SH11) =0,  S;10) =0,  S;l01y =[11),  S;{100) = [10). -

When |G| = 1, [1) = (1,0)T and |0) = (0, 1)7. Then all single-site operators are
linear sums of the following four arrays:

(1 0 _[(0 1 ~_ (0 o0 __(0 o
@ on=(5 o) =05} s-(F o) -0 1)
Here S~ is the “lowering” operator and S~ [1) =[0), S7|0) = 0; n is the
“number” operator and 7 is the “hole” operator; n|1) = [1), n|0) = 0, 7[1) =0
and 7[0) = [0).
For instance, the flip operator, which changes the occupancy at a site, is

_Q+ -_(0 1
(3) C=S"+8 ( 1 0 )

Although this representation as 2 X 2 matrices is useful, most of the time
it is simpler to think of the single-site operators as operators rather than as
261 % 2161 matrices. Such considerations make it immediate that

single-site operators on different sites commute.

Most interacting particle systems develop via interactions between neigh-
boring sites. If there are only two sites, the infinitesimal generator for the
interaction between the pair of sites can be expressed in terms of a 4 X 4
matrix, which it will be seen can be written in terms of single-site operators.
When 1 and 2 are neighboring sites on a graph G, that part of the infinitesi-
mal generator that gives the interaction between sites 1 and 2 has the same
form in terms of single-site operators, except that now they are 2/¢! x 2/6I
matrices. The infinitesimal generator of the whole process on the graph G is
the sum of the infinitesimal generators governing interacting pairs of sites.

To illustrate these principles, we shall give the infinitesimal generators on
a graph with just two sites for several well-known processes. (The symbol
above the arrow gives the rate of that particular transition.)

Biased voter model. Transitions

01511, 01500, 10511, 10500,

0 A A 0
0 —(1+2A) 0" 0
0 0 —(1+21) 0
(4) 0 1 1 0

= MS5n, —ngny) + M(nySy — nyny) + (S{ﬁl - nzﬁl)
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From now on, in order to highlight transition rates in matrices we shall
represent 0’s by ’s.

Annihilating random walk.

11500, 1001,
(5) ' 1 -1 = 2(S38{ — nyny) + (S5 S; —7iyn,)

+ (S;S;—_ n2’_11).
Coalescing random walk.

11501, 11510, 1001,

_2 .
1 -1 1
1 1 -1
(6) :
= (nyS; — ngny) + (Syny —ngny) + (S5 87— ngn;)
+(82_Si'—_ n2ﬁ1).
Contact process.
10511, 01511, 11510, 11501,
10500, 01500,
-2 A A
1 —(1+A)
1 . —(1+1)
(7 . 1 1

+(Sz—n1 - nznl) + (Sz_ﬁl - nzﬁl) + (ﬁ2Sl__ ﬁznl).

3. Dual processes. Suppose we have two processes on G, { and ¢,
which are governed by @-matrices, @, and @, respectively. We define

(8) 1£4) = exp(@,t)IAY,  |£F) = exp(Q,t)|B),

as the probability distributions at time ¢ of configurations starting from
initial occupied sets A and B, respectively.
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We say that ¢ and ¢ are dual processes if, for any graph,
(9) Ef({t“‘ ﬁB) =Ef(§tB ﬁA),

for some function f: S — R [see Liggett (1985), page 84]. Most usually f has
been of two forms:

) 1, ifB=o¢
1 1. B)y=<" ’
Coalescing dua f(B) { 0, otherwise.
el o1 1, if|Blisodd,
Annihilating dual: f(B) = { 0. if } B: is even

For example, the voter model { and the coalescing random walk ¢ are
coalescing duals since

(10) P({ANB=¢)=P(£fNA=09).

Now the relationship in (9) is to be true for all configurations A, B. These
may, therefore, be of any shape. For instance, if G is a lattice, A might be a
solid block of sites, whereas B might contain no sites that are neighbors.
Because of this, it is hard to see how (9) could be satisfied by an f(B) that
depended on the structure of the set B. For this reason we confine ourselves
to functions which only depend on the cardinality of the set. Then (9) would
require

d d
(11) -C—l—t-Ef(MtA N BJ) . =EZEf(|§tB N Al) Y

Suppose |A N B| = 1; then remembering (! = A, ¢2 =B, |{# N B
|¢8 N Al = 1. The changes in [{* N B| and |£2 N Al that can occur at ¢ = 0
are

A A
LA N BI52, 50,

A A
1EENAIS 2, S50,

for some A;, Ay, Ag, A,

Now consider the process on a “large” lattice. Let A; = T(A) and B, =
T(B) be translations of A and B such that A, NA=¢, A iNB=¢, Bj N
A =¢ and B, N B = ¢. Then, let A; = T'(A) and B; = T'(B), and suppose
the lattice large enough so that the only members of the 2n sets A;, B;,
i =1,...,n, that intersect are the pairs (A,, B;), i = 1,..., n. Then, putting

n n
A= J4,, B"=UB;, I{&"nB'=n and [¢&"NA"=n.
i=1 i=1
The possible transitions at ¢ = 0 are then
n niy nigy
(g NnBY-»n+1, »n—1,

n nnA3 niy
&g NA"-»n+1, >n— 1.
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Then (11) implies
MF(n+1) = f(n)] + [ f(n = 1) = f(n)]
= M f(n+ 1) = f(n)] + A[f(n = 1) = f(n)].
This is a linear difference equation with roots 1 and a, giving f(n) = C, +
C,a". (In fact, with annihilating models, transitions n - n — 2 are possible.)

When f is substituted into (9), the constants C, and C, are of no significance.
Thus we shall only consider duals of the form

(12) E(aNBl) = E(al€’ 0 A1),

except when either { or ¢ is an annihilating process (allowing 11 — 00), in
which case it may be possible to have a mixture of two different a’s.

4. Algebraic conditions for duality. Let A, B c S, so that |A) and
|B) are basis states. We define C to be the universal flip operator which flips
the occupancy at every site, that is, changes 0’s to 1’s and 1’s to 0’s. Then if
|B) is the basis vector corresponding to the set of occupied sites B, C|B) =
|B¢), where complements are wrt G.

We define the operator
(13) U=T](1+S;+aS]).

ieG

Now suppose A and B are configurations with corresponding basis vectors
|A) and |B). We designate the transpose of |A) as the “bra” vector { A| and
the usual scalar product is defined by (A|B) = §,5. Suppose now that
A(j) = B(j), j # i, that is, that the configurations A and B agree everywhere
except possibly at i. Then

] . ifAG) =B(i) = 1,
14 Al(1 + S;+aS7)CIBy = (% !
(14) (A|( i +aS;)C|B) {1, otherwise.

Thus, at every site occupied in both A and B, the operator scores a, whereas
all other sites score 1.
From (14) we see that if A and B are basic vectors,
(A|UC|B) = a/BN 4l
and thus

E(al%'"Bl) = E(({AUCIBY)
= (AIexp(Q{Tt)UCIB),

since | £*) = exp(Q, t)|A) by (8).
The dual ¢ has @-matrix @, so the equation (12) expressing duality
becomes

(15)

(AIexp(Q{Tt)UCIB) = (BIexp(Q?t)UCIA)
= (AICTUT exp(Q;t)IB).
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Since we wish this equation to be true for arbitrary |A) and |B), we
require

(16) exp(Q7t)UC = CTU" exp(Q;t).

At t = 0, this requires UC to be symmetric; C is symmetric and it is simple
to check from (8) that S*C = n and S™C = 7; n and 7 are symmetric, so UC
is also.

For (16) to be true for all ¢, we require

(17) QTUC = CTUTQ, = UCK;.

We note that since UC is symmetric, so is the dual relationship between ¢
and é.

When interactions only occur between neighboring sites, we have seen that
@ is a sum of @-matrices that only act on two sites. A sufficient condition for
(17) to hold is that, for every neighboring pair (i, j), the two-site @-matrices
satisfy

Q{(U) ij l] [Jijcing(ij)’

or
(18) Q?(ij)[]z‘j: Uij(Cing(ij)Cij) = Uing(ij),
where for any 4 X 4 matrix M, M is M with subscript 1 swapped with 4 and
2 swapped with 3.

We shall drop the ij subscript for the next part of the development. U has
matrix form

1 a a a?
1 1 a a
1 a 1 a
1 1 1 1

Since @, and @, are stochastic, Q? has rows adding to 0 and Qg columns
adding to 0. Thus, if 1 is the 4 X 4 matrix which has every element 1,
QZ'I = 0 = 1Q;. We thus find (18) equivalent to

Q/(1-U)=(1-U)8,,

where
1 1 l+a
(19) 1-U=Q1-af - 1 1

Now, if the transition rate from / to k£ in @, = A;;, and in @, = u;;, and we
put A, =X, ., A, and u, = X, sy, (19) implies

- ’\-1 )‘21 )‘31 )‘41

-1 1 1+4+a
Q (1 B U) Az —Ag Azg Ago .1 1
¢ (1 a) A3 Aygg —Ag Agll- 1 - 1

A14 /\24 A34 - A-4
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Ao — Ay TAyn Ay TAy —ady
_ At Azg —Ag — Ay T Ay taldg
—Ags — Ay Azt Az —Ag talg
Ay + Agy Ag t Agy alyy + Ay
Remembering Qé is @; with1 & 4and 2 & 3,
(1-U)_ 1 1 1+a My _,U«43 Mg Mgy
- -1 1 M3y Mg M3z M31
l-a 1 1 Moy Moz T Mg M1
Mg M3 Mg T Mg
Mgt apyy gyt Ay TRy T ARy TRy T Ay
| Mast My Moz T M3 32 T Mgp T Mg T M3y
Mg t Mg ~ Ma3 T M43 M3g T Mg — Mg1 — Moy

Equating first columns shows w4 = uyy = pzy = 0. Equating last rows
shows Ay = Ayy = Ay, = 0. Thus there is no “spontaneous creation.” The
unique solution is below. It should be noted that a = 0 represents the

coalescing dual and a = —1 represents the annihilating dual (for simplicity
the diagonal terms have been left out):
1
Q= l-a
Mg+ Agg Ag + Agg
—Agp — Ay —Agg ~ Agg
+A3 + Ay +Ay + Ay

Agg + adyy — ady —a( Ay + Agy)

—aAg; — (1 +a)ry + g5 + Ayg
(20) —akyy — a’Ay —Ay T Ay
X
Agg + adyg —aldg —a( A3 + Ags)
_aAZI - (1 + a)A41 +/\32 + A42
—ak —aAy —A31 — Ay
a®(Ayg + Agg) Agp + Ay Agp + Ay

—a(Ag + Ay — Ay; — Agy)
+(1+a)ry

+a(Az + Ags)
—a(Azy + Aygg)

+a(Ap + Agg)
—a(Ays + Ay3)

These results have been derived for processes on a finite graph. They do,
however, naturally extend to an infinite lattice when either A or B is finite.
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Suppose ¢ and ¢ are processes on G = {0,1}2". Fix t. Let A be finite and
let {* be a process which is a.s. finite. Essentially this requires that
unoccupied sites cannot flip without interaction with an occupied site. We say
that a site x interacts with A by time ¢ if there is a sequence of times
0<t, < - <t, <t and of sites x = x,, x5,..., x, € A with |x; —x, 4| =1,
i=1,...,n — 1, such that ¢(x,) flips at time ¢;.

If ¢ has a maximum rate of interaction at a site, then the set of sites of G
that can interact with A by time ¢ is a.s. finite.

Let R(e), A C R(¢) C G, be a finite set with the property that the proba-
bility that any member of G/R(¢) interacts with A by time ¢ is less than e.
Couple a process ¢2(e) on R(e) to ¢2 in such a way that whenever &2,
s < t, flips at site x € R(e) due to interaction with a set of sites T' c R(sg),
£B(&) also flips at site x if its values at x,T are identical to those of £2. We
then have

P(¢PnA+£f(e)nA)<e.
Thus,
|E(a$# 0 41) — B(a$F 04N | < g]a]4l,
Define ¢2(¢) in a similar way. Then, since R(¢) is finite,
E(am‘(a)n Bl) = E(aw?(s)n A1,

As £ — 0 the r.h.s. > E(alé” " 4l). The equation above shows that the Lh.s. is
uniformly bounded by max(1,|al4), and since ¢* is a.s. finite as & — 0,
R(g) - G and we obtain

E(a4 "By = E(alé "4,

THEOREM 1. Suppose G is a finite graph or {0, 1}2°. Let { be an interacting
particle system on G with the following transitions between neighboring sites:

A A A
11510, 11501, 11- 00,

A21 A31
103;2301, 10)L—4>200, 10)‘—4)300.
32
Then if the transition rates given by (20) are nonnegative and ¢ is a
nearest-neighbor interacting particle system on G with those transition rates,
E(d" "By = E(a " 4))
for any sets A, B with either A or B finite.

When the transition rates are isotropic, that is, do not depend on the
orientation of the interacting sites, (20) can be considerably simplified.
Isotropy is equivalent to the transition rates being unaffected by swapping
the labels 2 and 3, so that, for example, A;, = A5, Ay3 = A3, and so on.
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Equation (20) then becomes

1

Q§ - l1-a
Ag + Agy Mg+ Agy
+Agn — Agg +Ay — Ay
(1 +a)(Agg = Ayy) . (1 —a)rgy —aly,
(21) —2ady; —a(l + a)Ay, Fhg = Agp — Ay
X

(1 +a)(Age — Ag1) (1 —a)rg —aly,
—2aly; —a(l +a)rp, A — Ay — Ay

2a’A1; — 2a( Az — Agy) Aoyt Ay Aol + Ay
+(1 +a)ry Tady —aldy Tadp —adg

5. Examples of dual processes. In these examples we shall give the
Q-matrices of two-site interactions. We shall omit the diagonal terms. The
columns must add to 0. As before, 0’s have been replaced by -s.

The biased annihilating branching process (BABP) introduced by
Neuhauser and Sudbury (1993)].

A A
_lr -
Q; T
(22) : 1+ 1+ A
1 | -2a—-Xa+a?) . —ar—1
Qf_l—a —2a - Ma+a?) -ar-1
2a2\ + 2a 1+aA 1+aA

The BABP is self-dual when a = —1/A.

Annihilating /coalescing random walk (A/CRW). Particles perform in-
dependent random walks, but when they meet they coalesce with probability
J¢ or annihilate each other with probability Jy, J, + J; = 1:
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Jo+2d, Jg+2J,

1 —2(a +dJy) . —a —dJ,
T1-a|-2a+d,) -a-d,

2a+dy)  de+2d, Je+2d,

Q;

This requires @ = —¢J,, giving the voter model (VM) with matrix
1 1

1 1
It is well known that the VM and the CRW are coalescing duals (a = —Jj
= 0) and that the VM and the ARW are annihilating duals (a = —J, = —1).

Branching annihilating random walk (BARW) [see Bramson and Gray
(1985)]

(23)
AA
Q=1 , * |
2 . . .
1
Q‘5=1—a
. 24+ A 24+ A
—(a+a®>)r—2(a+1) . —a(A+1) -1
—(a+a®)A—2(a+1) —a(A+1)-1
202\ + 2(a + 1) 2+ al

Thus the BARW is self-dual when a = —2/A. This is believed to be a new
dual.

Branching coalescing random walk (BCRW) [ see, e.g., Durrett (1988) and
Sudbury (1993)]

A A
1 - op -
Q{= 1 M . N
1
(24) Q=74
1+ 1+
—2a — Aa(1 +a) : —ad -1+ (1 -a)p

x —-2a-2(l+a) —-ar-1+4+(1-a)u

2a(aA + 1) 1+aa 1+al
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When a = —1/A, the BCRW is self-dual. When a = 0, we have

1+A 1+
mw—1
25 =
( ) Q§ n—1 .
1 1
This is the biased voter model when w = 1. With w > 1, we have the
biased voter model with neighbors allowed to swap positions at rate u — 1.

The exclusion process

N
l-a|- (1-a)

Q; = ) 1 s Q.g =
Thus the exclusion process is self-dual for all a.

Biased voter model (BVM)

AA
Q;=: :>
11
: A-1  A-1 -
(1+a)(1-ad) . 1—ar - 1
Q=|(1+a)(1-al) 1-ar : AT

2a(ai — 1) a(A—1) a(A-1)

a = 1/) makes the BVM self-dual. This is the only dual so far discovered
with a > 0.

6. Some results for the branching annihilating random walk
(BARW). The BARW was described via its @-matrix in Section 4. Particles
perform independent random walks on a finite graph or Z¢ and when they
meet they annihilate each other. However, they are also able to branch onto
or create a new particle at neighboring sites. The rate at which a particle
moves to a particular neighboring site is 1 and the rate of branching is A. It
has been shown that the BARW survives when A is large, but not when it is
small in low dimensions. Survival always occurs in high dimensions.

If we designate the configuration for the BARW as 1, we have

o )

As is usual in the theory of interacting particles, (26) is true for random
sets. In this section we shall take B to be the product measure 1, 5. ,, on the
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graph, but we shall abbreviate this to v. Our aim is to show that 1 has a
limiting measure.

If IpAl=r=0, then [n2 N vl ~Bin(r,A/(2+1)).

Then
E(s"’fA“”')=( + s)r=0 when s = —E.
2+A2 2+ A A
This implies
9\ il
(27) E((—;) )=P(|n,A|=o)=1—sA(t>,

where s,(¢) means the probability that the system survives to time ¢ with
initial set A. Since s,(¢) is nonincreasing in ¢, s4(¢) = s,, the probability of
nonextinction. Equation (27) then implies that, for all finite sets A,

9\ mfnvl
(28) E((_X) )—>l—sA ast — o,

We consider (27) for the special cases A = {1} and A = {1,2}. We define
P.(m) = P(n)(1) = m) and P,(m,n)=P(n/(1) =m, n/@2)=n), m,n=0,1.
Equation (27) then gives

2
(29) - XPt(l) +(1- Pt(l)) =1- 3(1)(t),

4 2
(30) Fpt(l’ 1) - x[Pt(l,O) + P,(0,1)] + P,(0,0) = s 5(¢).

Equation (29) gives
A A
(31) P(1) = g s(t) = 535w

and since v is translation and reflection invariant, expressing P,(1,1) and
P,0,0) in terms of P/(1) and P/(1,0), (29) and (30) give

2 A
mpt(l) - P(1,0) = ('m) [3{1)(t) - 3(1,2)(t)]-

Since a particle at 1 cannot be annihilated until it has produced a birth at a
neighboring site, s;(¢) — s 5(t) > 0 as ¢ > , and so

(32) P,(1,0) 24
,0) > ———=s,,.
! 2+r0)> "
We now proceed by induction to show that P(n/(x,) =i, l=1,...,r),
i, = 0 or 1, also converges. Suppose this has been demonstrated for all sets of
sites x,,...,%,,, m <r. Now consider P(n/(x;) =i, L =1,...,r + 1). Put
A ={xy,..., x,,1). Then from (27),

2 i
(33) 1-s()= X P(m”(xl)=i,,l=1,...,r+1)(—x) ,
(il 777 ir+1)
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Now the probabilities on the right-hand side of (33) can all be expressed in
terms of P(n/(x,) =1,1=1,...,r + 1) and probabilities on subsets of A of
size r. Since we have assumed that the latter probabilities converge as ¢t — o,
it follows from (33) that P(n/(x;,) = 1,1 =1,...,r + 1) converges, and thus
that P(n/(x;) =i,,l =1,...,r + 1) converges for all possible values of i,.

We thus have the following theorem.

THEOREM 2. If m is @ BARW on a finite set of Z%, n}»/@+» converges to a
limiting measure. Further,

A
P(n/ven(0) = 1) = 5——P(nf” # ¢)

where P(n%' + @) is the probability that the BARW starting with one particle
does not die out. When this probability is 0, 8, is the limiting measure. Also,

P ne+n(1) = 1lntesn(Q) = 1 X
(nven(1) = Lnsven(0) = 1) > =—

It should be noted that , ;. ) is not an equilibrium measure.

7. Results for the biased annihilating branching process (BABP).
The process, designated by B, allows breeding onto vacant neighboring sites
at rate A and murdering of neighbors at rate 1. The @-matrix is given in (21);
Y+ 1S an invariant measure for this process on any graph. Neuhauser
and Sudbury (1993) showed that on Z the only two invariant measures were
% ,a+a and 8,. Mountford (1993) used thelr results to show that if the initial
occupied set A C Z is finite and A > 1, then B/ tends to s +r When
A =1 on Z%, Sudbury (1990) and Bramson, Ding and Durrett (1991) showed
that v,,, was the limiting measure. We explore now some consequences
when the initial measure is v,, 0 <p < 1.

Theorem 1 implies

(34) E((_l/)l)m,"pﬂ{l}l) =E((—1/A)|B§l)m"’|),
When | B =r, the r.hs. of (384) equals (1 — (1 + A)p/A)". Using the
notation P,(1) = P( B/?(1) = 1) in the same manner as before, (34) gives

(1+)\)p)r,

1+ A @
(35) 1-——P() = EIP('B}”I = r)(l S

r = 0 being impossible as the BABP cannot die out. When1 — (1 + M)p/A > 0,
the r.h.s. of (35) is less than 1 — (1 + M)p /A, giving P,(1) > p.
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When 0 >1—(1+ AM)p/A > —1, the first term on the r.h.s. is negative
and thus the r.h.s. is less than (1 — (1 + M) p/A)?, giving

Pt(1)>p2—(1—+/\)‘—)—p
THEOREM 3.
A
D, for0<p<m,
P(B»(1) =1) > (1+\)p A 21
p|2= = | foryy<P<i -

Theorem 3 gives results for arbitrarily small A. It shows that for all A the
particle density remains bounded away from 0, even with arbitrarily small
initial densities.
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