The Annals of Probability
1995, Vol. 23, No. 4, 1627-1643

ITERATED LAW OF ITERATED LOGARITHM

BY KrzYSZTOF BURDZY! AND JAIME SAN MARTIN?

University of Washington and Universidad de Chile

Suppose ¢ € [0,1) and let 6,(¢) = (1 — ¢)y/2tIngt. Let L? denote
the amount of local time spent by Brownian motion on the curve 6.(s)
before time ¢. If & > 0, then limsup,_,, L¢/\/2tlngt = 2¢ + o(¢). For & =
0, a nontrivial lim sup result is obtained when the normalizing function

V2t1Ingt is replaced by g(¢) = /¢/Ing tIng¢.

Introduction and statement of the results. Let (B;) be a one-
dimensional Brownian motion. If 6(¢) = +2tlnyt, the law of the iterated
logarithm (LIL) asserts that limsup,_ . (B;/6(¢)) = 1. A slightly stronger
statement may be obtained by applying Kolmogorov’s test (see It6 and
McKean [4], page 33), namely, for every ¢ > 0 (including ¢ = 0), (B;) will
hit the curve 6.(¢) d:f(l — £)0(t) i.0. as t tends to co. Our aim is to study the
behavior of (B;) on the curve 6.(¢) for £ > 0. How much time will (B;) spend
on 6,.? More precisely, we will study the local time (L?( B —6.))>0 of (B;) on
the curve 0., which is (by definition) the local time of the time-inhomogeneous
diffusion B; — 0.(t) at the level 0.

By abuse of notation, from now on, 6.(¢) will denote some fixed smooth
function equal to (1—¢&)+/2¢Ing ¢ for ¢ > 100 and equal to 0 for ¢ < 50. Brownian
motion accumulates only a finite amount of local time on 60.(¢) before time 100
a.s.

We will normalize the local time so that it is twice as big as that of [5],
page 203. As a result, the factor 2 disappears from the statements of Theo-
rem 6.2.23 and formula (6.3.17) of [5]. We shall prove the following result.

THEOREM 1. (i) For ¢ > 0,

t—o00 P A/ 2t lng t

(i1) Let g(t) = /t/IngtlIngt. Then a.s.

LOB-0) 3
hm su -t 7 = —\/5.
L 1) 2

=2g+o0(g) as

A well-known theorem says that if we take £ = 1 in Theorem 1, the lim sup
is equal to 1 (see [6] or Theorem 2.9.23 and (3.6.28) in [5]).
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1628 K. BURDZY AND J. SAN MARTIN

We would like to point out that it is easy to determine the asymptotic
behavior of the expectation of LY(B — 6,). If p;(x, y) stands for the Brownian
transition density, then

¢ t 1 —0.(s)?
EoL2(B-0,)~ | ps(0,0.(s))ds = exp( ) ds
1 fl /1 J2ms 2s

_ (1 —(1-¢) g —(1-¢)?
fl Zo=(ns) ds ~ K+/E(In¢)~ 0",
This asymptotic estimate holds for both positive and negative £ and has no
discontinuity at the critical value £ = 0. Note that L?(B —60,) grows to infinity
as t — oo for every fixed £ > 0, while L% (B —6,) < o a.s. for &£ < 0.

A calculation similar to (1) shows that E¢LY(B — f1) > E¢L%(B — f3) if
0 < fi(s) < fa(s) for all s < ¢. This does not necessarily imply that the
distribution of L?(B ~ f1) stochastically dominates that of L(B — f3). In fact,
there exist functions f; and f3 such that 0 < f1(s) < fa(s) for all s < ¢ and

Po(LY(B — f1) > x) < Po(LY(B - f3) > x)

for some t,x > 0. The example is not too hard but it would take too much
space and so we omit it.

PROBLEM. Determine for which functions f; and f2 satisfying 0 < f1(s) <
fa(s) for s € (0,00) we have

Po(LY%(B — f1) > x) > Po(LY(B — f2) > x) for all ¢,x > 0.
In particular:

(1) Does the inequality hold for f1 = 0., and f2 = 6,,, with &1 > &3?
(ii) Is it enough to assume that both functions f; and f3 are increasing?

Let us mention some results related to ours. In a recent paper, Chan [2]
studies the behavior of t~1/; 1 (Buo/ZysTmns) ds (see also an older article by
Strassen [13]).

A theorem of Erdos and Révész [3] says that if £(¢) = sup{s < ¢: B(s) >
0(s)}, then there exists a constant do such that, for any d > dy and ¢ big
enough,

é«(t) > tl—d1n3 t(lng t)‘l/z.
If d < dy, then the opposite inequality is true for infinitely many large ¢.
Shao [11] has determined that do = 3/7.

Preliminaries. For a given function h: [a,00) — R and ¢ > a we denote
by h; the function A;(u) = A(t + u), u > 0. Also we will write iLt(u) = h(t+
u) —h(t), for u > 0. Hence, 6, ,(t) = 0,(u+t)—0.(u), for £ > 0. We will use K
to denote a constant which may take different values from one line to another.
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LEMMA 1. () Ify= 0 ,(¢), then
Po(LY (B~ 6,,) > x) < e™™.

(i) Let y = 6, ,(¢) and A = exp(—3 [3(8, ,(s))? ds). Assume that x,t > 0,
xy>2and —Mx+ yt > 0, for some M > 1. There exists K = K(M) such that

Po(LY(B — 0,.) > x) > KA exp(y?t/2) exp(—xy).

PROOF. (i) The first part of the proof will use excursion theory. The stan-
dard version of excursion theory deals with excursions from a fixed set, that
is, from a set which does not depend on time or w. We want to consider ex-
cursions of B from 5€,u( s), that is, excursions from a set which changes with
time. In order to be able to apply this version of excursion theory, we will
consider space-time Brownian motion X. The state space of X is R x [0, o).
The process X is Markov. Given the starting point (x, s;), the distribution of
X is that of {(x+ Bg, s;+s),s > 0}, where B is the standard Brownian motion
staring from 0. We will consider excursions of X from the set I' = {((;g,u(s), s),
s > 0} which is nonrandom and which does not depend on time.

Here are some elements of excursion theory for X we will need in our proof.
In order to keep the proof reasonably short, our review will be quite sketchy.
We are using the results of [7]. For various presentations of excursion theory
see [1], [5], [9], [10] or [12]. For (x,s) € I', an excursion law H®**% is a o-
finite measure on the space of paths ¢ which take values in R x [0, 00), are
continuous until a death time ¢ and then remain in a coffin state A. The
measure H** is supported on the set of paths which start from (x, s), do not
intersect I' until { and approach I" at /—. The measure H** is strong Markov
with respect to the transition probabilities of X killed upon hitting T'.

An “exit system formula” given below involves excursion laws H**5) and an
additive functional L, the local time of X on I'. Let u(v) = inf{s > 0: L, > v},
Ny = inf{s > v: X(s) eT'} —v and

X(v+s), ifs<mn,and X, €T,
A, otherwise.

evfo) - |
Here is a special case of an exit system formula found in [7]:

E®9 3 Z,f(e,) = E®Y f " Z,HXW(f)dL,
0

O<v<oo

— E(x.S)/ Z”(U)HX(#(U))(f) dv,
0

for all (x,s) € R x [0,00), all positive predictable processes Z and positive
measurable functions f defined on ¢ which vanish on paths equal identically
to A.
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Next we are going to discuss the normalization of Ls; and excursion laws
H®9)  Excursions of X from I' correspond to excursions of B from (;g,u(s) and
these in turn correspond to excursions of B(s) — 58,u(s) from 0. The processes
B(s) — (;E,u(s) and B(s) have mutually absolutely continuous distributions on
every fixed finite interval. Hence, the local time of B(s) — ésyu(s) at 0 has
the same representation in terms of small excursions as that for the local
time of B at 0. We now normalize the local time L; of X on I' so that it is
equal to the local time of B(s) — 5€,u(s) at 0. Recall that our local time is
twice that of [5] and note that Theorem 6.2.23 of [5] deals with excursions of
reflected rather than standard Brownian motion. If we take this into account,
we see that according to Theorem 6.2.23 of [5], the number of excursions of
X from T which hit T's = {(8,.(s) — 8,5), s > 0} before time u(v) is equal
to v/(28) + 0(1/8). This and the exit system formula imply that the H=)-
measure of paths which hit I's must be 1/(28) + 0(1/8).

Recall ¢ and u from the statement of Lemma 1(i). Fix some (x,s) € I', s < ¢,
and consider the process X under H*%), We will find a lower bound for the
H®s).measure of the paths that do not return to I' before ¢. We will apply the
strong Markov property at the hitting time of I's by X, say, v. If-v > ¢, then
of course the excursion does not return to I' before ¢.

Suppose that v < ¢. Note that the derivative of 6, is a decreasing func-
tion. A straight line M passing through the point (v, 56,,,( v)) with slope equal
to y lies below the graph of 58,u on the interval [v, ¢]. The probability that a
standard Brownian motion starting from the point és,u(v) —§ attime v € [0,¢)
will not hit the graph of ., before time ¢ is not less than the probabil-
ity that it will never hit M. This and Exercise 4.3.13 of [5], page 265, im-
ply that this probability is bounded below by 1 — e~2%7, The strong Markov
property applied at v implies that (1 — e 2%7)(1/(28) + 0(1/8)) is a lower
bound for the H**)-measure of the paths that do not return to I' before
t. Since § > 0 can be taken arbitrarily small, y is a lower bound for this
quantity.

Let U be the starting time of the first (and only) excursion of X from T’
which approaches I' at its lifetime after time ¢. A standard application of
the exit system formula shows that w(U) is an exponential variable and the
probability that w(U) is greater than or equal to x is less than or equal to
exp(—xv). This is equivalent to saying that the probability that the Brownian
excursion from the graph of 6,, straddling ¢ starts after the time when the
local time L%(B— ég,u) accumulates x units, is less than or equal to exp(—xvy).
This in turn is equivalent to the statement of Lemma 1(i).

(ii) If F: C[0,t] — R is a bounded measurable function, then, by Girsanov’s
theorem,

EX(F(B—6,,)) = E?(exp(—/t 6. ,(s)dWs— %/t(é;u(s))z ds)F(W))
0 ’ 0 ’

—E2 (A exp(— /Ot 8, .(s) dWs> F(W)),
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where under Q, W is a Brownian motion starting from 0. This and integration
by parts yield

Po(L{(B - 6,,) > x)

(Aexp( [o (s)dWs); L?(W)zx)

E?(Aexp(—wto’ (t)+f W, (s)ds) L?(W)zx)

=E

o

(2)

> E?(A eXp(—Wté;u(t) +/ Wségu(s)ds); LYW)>x; W, < 0).
, b ,

Let U be the last zero of W before ¢. By the reflection principle, the distri-
bution of {W;, 0 < s < U} is symmetric given the value of U and the amount
of local time at zero at time U. Note that 6, .(s) < 0. Hence, the distribution

of fOU Wség’u( s)ds is symmetric and f{, Ws(;g,u(s) ds is nonnegative assuming

W; < 0. Thus the probability that Jj Wség,u(s) ds is positive is at least 1/2
given the event that W; < 0. It follows that (2) is not less than

(1/2)Eg (A exp(=W.6. ,(2)); LAW) > x; W, < 0).

Recall that y = é’s,u(t). Karatzas and Shreve [5, page 420] give an explicit
formula for the joint density of the Brownian motion and local time. We use
this formula and the substitution v = (a — b + yt)/+/t to write

]P)O(L?(B - ée,u) > x)

oo 0 _ 2
> ( A/;C . exp(—ya)—bzwt3 exp( (b 2a) )d db
( a—b+yt)2)dadb

)i
A/xoo exp(—by + {)/_ bﬂt)N— vt -t exp(_v )«/Zdvdb
)

0o 23

/' (=b+yt)/VE

Y

ex dvdb
e} V2’7T p( 2 )
/( b+7t)/«/_ v

—o0 V2t

2
A xwexp(—b7+%2t> /;oobﬂt)/f\/;/_wexp( 22)dvdb
( 5 )/ Fexp<_v2)dvdb
M B e

exp( )dv db
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Now assume that M > 1, —-Mx + yt > 0 and xy > 2. Then —b + y¢ > 0 for all
belx,Mx] and so

Po(LY(B = 0s4) > x)

KA [T by + LE) [T "\ qvab
> — - _
KA exp( YT )foo me"p( 2 ) ’

Mx )/Qt
> KA/ exp(—by—i-?)ydb
x

2
= KA exp(%) exp(—xy)(1 — exp(—(M — 1)xvy))

2
> KA exp(%t) exp(—xvy). a

PrROOF OF THEOREM 1. We shall divide the proof into four sections which
are more or less independent. Throughout the proof of Theorem 1 we shall
assume 0 < £ < 1/2. )

The lower bound for the curve 6.. We start by introducing a number of
parameters whose values will be chosen later in the proof. We will consider
x>1,q9=x/e,2e(0,9%/(1—¢)) C (0,18x) and @ = A+q. In this proof, v and
v will be related by v = ug/a and we will typically assume that u € (o, a™t1).
Let x = Bes/2ulng u, with B = A(1—¢)/(4x). Let F; be the o-field generated
by {B;,0 < s < t}. Since the local time is a nondecreasing process, the Markov
property implies that

Jn 4 ]P’o(ﬂ u e (", a™): Lg(B —6,)>xor Lg(—B+0€) > x| g'a,l)
Pig.(Fue(a®,al): LY (B—0,m)>x

u—a®

v

or LY (=B +0,4)> x| Far)lBoni<ans

where a, = (1+ £)v/2a™Inn.
Let T, =inf{t > 0: |By| = 6,4:(¢)}. If T), < a™®(q — 1), then T,a/q < a1
The strong Markov property applied at T, gives

3 Jn 2 1iBnizanEiBon (17, <an(q-1)1B(1,)20Po( LY, o1, (B = 0,.7,) > %))

+ 1’Ba”|fan]E’Ba'l|(lTnfa”(q—l)lB(T,l)SO]P)O(L(])‘na/q_Tn(_B +0.1,) > x)).

In our estimates below, we will assume that v € (0,2"(q — 1)) and u = va/q.
We can think about v as a generic value of T, and hence we can combine our
estimates with (3).

First we are going to deal with the local time term. Let y = 6’,(x). We would
like to have

4) —Mx+y(u—v)>0
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for some M > 1 in order to apply Lemma 1(ii). For every fixed b > 1 and
sufficiently large s we have

Iny s 1n2 s

6)) (1-¢) % <0.(s)<b(1-¢)

Inequality (4) will hold if

—MpBev2ulngu +(1—¢) h;iu(u —v)>0.
This is equivalent to each of the following inequalities:

—MBevV2+ (1 -¢)/1/2(1 - q/a) > 0,
—MBevV2+ (1—&)y/1/2er/(x + £)) = 0;
B<(172M)(1—&)A/(x + &A);
[(1-&)/(4x)]A < (1/2M)(1 = &)A/(x + &));
1/(4x) < (1/2M)/(x + &A);

M <2x/(x + €A).

(6)

The last inequality is satisfied for every fixed y > 1 and M = 3/2 when £ > 0
is sufficiently small.

Let A = exp(—— _”(5;,0(3))2 ds). If (6) and (4) are satisfied, then we obtain
from Lemma 1(11)

2 _
o Po(LO_, (B —6,,) = %) = KA exp(l—(ﬁz——”)) exp(—7).

For all x > Owehavelnx < x—1soIn(a/q) < (a—¢q)/q. Choose a constant
b > 1in (5). For any b, > b% and large n,

A= exp(—% fou_v(t‘};yv(s))2 ds)

(- -f (@ (s))zds>
( f b%(1 — £)%(Iny s/4s)ds)

IV

(8)

IV

exp( —b%(1 — s)zlnzufu(ds/4s)ds)

exp(—%bQ(l — £)?Ing uln(u/v))
—16%(1 - £)®Inz uIn(a/q))
exp(—16%(1 — £)%((a — q)/q)Inz u)

> exp(—(1/(4x))b1(1 — &)*cAInn)
— pb1(1-e)er/(4x)

v
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Next we bound the second factor in (7):

exp(y3(u —v)/2) > exp((Ing u/2u)u(l — q/a)/2) = nle-a)/(4e)

— peM4(x+eN]

9

The last factor in (7) may be estimated as follows using (5):

Inau
2u

(10)  exp(—xy) > exp(—Bs\/2u Ing ub(1— &) ) = p~Bebl=e),

Combining (7)—(10) gives
Po(LY_,(B—6,,) > x) = Kn™%,
where
P = by(1— £)2eA/(4y) — eA/A(x + £1) + Beb(1 — &).
Observe that, on the set {|B.:| < a,},
Ps

(T, <a™(g—1); By, =0)

1
= <§>]P|Ban|(Tn <a"(g-1))

an |

> (%)Po(sgn(Baananq — Bu) = 0.(a"q))

_ (%)Po(Bl > (1+ O(ﬁ»(l— &) q2_ql

Kn—(1-¢)?q/(g=1)

(11)

lnn>

Now we choose the parameters. Fix arbitrary B < B1 < B2 < 2. Find x so
large that

Inn

&
X — €

(12) (1—8)2—q—=(1—a)2(1+

qg-—1

)<1—ﬁ28

for sufficiently small . Next we choose b,b; > 1 so that # < Bie for small
£ > 0 and so we have

PO(LlOt—U(B - ée,v) > x) > Kn_Ble.
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This, (3), (11) and (12) imply that, for small ¢ and large n,

Kn-(1—(B2=B1)e)
JIn 2 ———F=—=—1iBuriza,-
Inn

The standard LIL implies that |B,»| < a, eventually. Since 1 — (82— B1)e < 1,
we deduce, using a generalized Borel-Cantelli lemma (see Neveu [8], page 152,
Corollaire VII-2-6), that, for infinitely many n,

Lg(B —0.)>x=Bev2ulnsu

or

Lg(—B +6,)>x=Bey/2ulngu,

from which we have

limsu M >
t—)oop «/2tln2t

or

lim sup LB+ 02)
t—o00 P A/ 2t 1n2 t

An easy argument based on the symmetry of the Brownian motion allows us
to deduce

> Be.

lim su M>Ba a.s.
t—>oop V2tIng t

for every B < 2 and ¢ < &¢(B).

The upper bound for the curve 0.. First we outline the idea of the proof of
the upper bound. We start with an estimate of the probability that Brownian
motion will hit 6, between times a” and o”t!. This estimate is used to find
an upper bound for the probability that the local time increments over several
consecutive intervals [a"t#~1 o"**] are large (the precise meaning of “large”
will be made clear below). An application of the Borel-Cantelli lemma shows
that, starting at some random N, the increments are not too large. It turns
out that the sum of the increments is sufficiently small to yield the upper
bound in Theorem 1(i).

Take some a > 1 and define T, = inf{¢ > a™: B; = 0,(¢)}. Then

Po(LYu1 (B — 0, )—L0 (B—6;) = x)
=Po(Tn < ™ L2, (B—0,) — LY (B—-9,) > x)
=Po(T» < a”“; IP’o(Lam_T”(B —b.r1,) > x| I1,)).

First we will estimate Py(7T, < a™*!). To this end, take an integer M > 2«
and consider g; =1+ (i —1)a/M fori =1,...,M + 1. Let I, = [q;a", qiz1a"].
Recall that

/:o \/21_77_ exp<_23;2> dy < z://—t_ exp(_Z2>
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for z > 0. We have

M M
Po(Tn < ™)=Y Po(Tr e I;) < ZIF’O( max B;> OS(Qian)>
-1

i=1 i 0<t<q,y10"

IA
.Mg

(..
Il
—

2P0(Bql+la” > oa(qian))

IA
.ME

[
)

g Vgir12" exp(_ (Og(qz'a”))2)
0,.(q;an)/2m 2qin1a"

it -(1-2Pq/q
gilnn

IA
M
~

Il
—

l

Take an arbitrarily large & < 1 and fix a large integer M so that q;/q;11 > b
for all i < M. Then

Po(T, < o) < Kn~ 17970,

where K depends only on b.
Let v, = 6.(a"*!) and x = ¢cv/2a"Inn. Lemma 1(i) implies that, for every
se[a”, a"1], b <1 and large n,

IP)O(IJQrHrl__S

(B—0,:) > x) < exp(—xyn)
Inn
< exp| —cbv2a"Inn(l —g)y/ ——
2qn+1

< n—(1-&)eb/Va

Fix some integer j > 1 and suppose that 81, Ba,...,8,; > 0. Let 8 = Zi:l Br
and x; = xx(n) = Brey/2a"*1In(n + k — 1). By applying the strong Markov
property at T, Thy1,..., Tt j—1 We obtain

J
PO( m {Lgn+k(B - 06‘) - Lgm—kAl(B - 0&) > xk})
k=1

J -
<Po(T» = arH—l) l—[ max ]P)O(LgnM_S(B - Oa,s) = xk)

k lse[a””“l,a”k]
—(1-¢)2 -
< Kn (1-¢) bn .9?’
where

j ~
R =) (1—¢)Breb/v/a=(1-¢c)Beb/Ja.
k=1

Fix some small 6 > 0 and 8 > 2. If

L0, (B—6,) - L%W(B—0,) = Bey/2am+1In(n + j — 1),
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then there must exist nonnegative integers i, < /8 such that

L00u(B=0,) = L% s(B—06,) = Brey/2ani-tIn(n + j— 1) = x,

Br=ird,for k=1,...,j,and B > B — jé. The probability of

3&.

(L% (B—0:) = LYuis(B = 0,) = x2)

k=1

for every such j-tuple (Bi,...,B;) is bounded by Kn~(1-"tn~%# with # =
(1—&)(B— j&)eb//a. The restriction i, < /8 implies that there are only a
finite number of j-tuples (B1,...,8;) and so

Po(LL.., (B~ 0.) = L(B = 6.) = Bey/20"/ 1 In(n +j ~ 1)
< Kn~(1-obp—%,

with Z = (1—¢)(B — jb)eb//a, for large n. Now take any a > 0. Recall that
B > 2. One can find @ > 1, b < 1 and small § > 0 depending on j so that, for
small £ > 0,

n-(0-e)by—-# - gp-l-a
Let y, = Be+v/2a” In n. The Borel-Cantelli lemma now implies that
AJS L, (B—0:) = L%W(B=0,) < ynij-1
eventually. In particular, for j = 1 we obtain
Ay S LY. (B=0,) = L%W(B = 0,) < y

eventually. We let N = inf{n: A, < y, and Ai < yp V k> n}. Then, for some
by > 1, all a1 <t < @™/ and sufficiently large n > N, we have

n—-1
LOB—0,) < LOW(B—0,) + [Z L0 (B—6,)— L0\ (B — o,.,)]
k=N

+ Lgn+J(B - 08) - Lg"(B - 06‘)

n
< L% (B=0:)+ Ynij-1+ D Yk
k=N

n
= LgN(B —0:) + Yntjo1+ Z Yk
k=0

<L°(B-0,)+ Bs\/za”ﬂ‘—lln(n +j—1)+Bev2Inn i(ﬁ)k
k=0
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<L%(B-6,)+ ,38\/201””—1 In(n+j—-1)+ Beva v2a"Inn

Ja—1
<L%(B-6,)+ (1 + Ma—f/z)ﬁa,/ztlnz t.
“ Ja—-1
Since j may be taken arbitrarily large, we deduce that
LB -9,
lim sup (B~ 6.) < Be,

t—00 A/ 2t 1112 t

where 8 can be an arbitrary number greater than 2 and ¢ < &o(B).

The lower bound for the critical curve 6. We are going to use a result of Erdés
and Révész [3]. For that matter consider £(¢) = sup{s < ¢, Bs; > 6(s)}. Then,
for large ¢: &£(t) > t1-dIna )™ 5 o "where d is a large positive constant. Let
a > e B> e and ¢ > 0 be fixed numbers and consider

n(2/3+8)
t, = af
In this way

(2/3+¢)
" 1

Int, =B

a?
Ingt, = n?3*9 In B+ 1Iny @,
2 1
Ingt, = (§ + e)lnn+ln2B+ln(1+ ———12—9—).

n2/3+a In ’3

It is not hard to check that &¢(¢,.1) > ¢, for large n. Therefore, for ¢ large
enough there is an s in the interval I = [¢1~@1ns ¢(Inz 07 ] for which B, > 6(s).
In a similar way we will have that there is an ' in the same interval for which
By < —0(s’). Thus there exists an instant u € I, where B, = 6(u). Hence,
letting T',, = inf{¢ > ¢,, B; = 0(t)}, we have, for large enough n,

Tn < tpt1.
Fix some M > 80 and let A(z) = Mulnsu/Ing u. We have
Po(Tn < tust, LY wpir,)(B—0) — LY, (B—0) = cg(Ty) | F7,)
=1r,<t,., H(Ty),

where H(u) = ]P’O(L?l(u)(B —6,) > cg(u)). Now, for ¢, < u < t,y1 and large n
we have
Mulnsu

~20g(u) + 6/(u + h(u))h(u) = ~20g(u) + 30'(w) ]
No U

Ingu Mulngu
> -2 1 —_
= e Ing u D3 U+ 2u 2Ilnsu

This quantity is nonnegative if n is large enough, for any fixed ¢ < 10 < M /8.
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Let A = exp(—%/;‘"Lh(“)(@’(s))2 ds) and y = 0'(u + h(u)). We obtain from
Lemma 1(ii),

(13) H(u) > KAexp(y*h(u)/2) exp(—cg(u)y).
We have
u+h(u)
Aamw%wwm=em(ﬁ/’ W@P—%nw)
> exp(—(1/2)h(w) max (0'(s)? - )

u<s<u+h

> exp(—(1/2)h(u)(8' (u)? — ¥?)).

Note that
0(w)? — o = 1n2u( )2_ Ing(u + h(u))
lnulngu 2u(l1+ MIngu/Ing u)
1 2
( + ln(u+h(u))ln2(u+h(u)))

( y_ Ins(u + h(u))
lnulnzu Ingu(l+ MIngu/Ingu)

1 2
X(Lﬂmu+mwnmw+hw»)}

where the expression in the square brackets approaches 0 as u goes to infinity.
Hence, for arbitrary b > 0 and large u,

2
v2h(u) 1 Mulngu lngu) . ( Mb) )
(14) Aexp( 9 )zexp( zmb o ) = €XP 1 Ingu .

As for the last factor in (13), we have, for arbitrary by > b; > 1 and sufficiently

large u,
vl o D)
z exp( <\/§)ln3 u)

This combined with (13) and (14) yields
H(u) > K exp(—(Mb/4 + bac/~/2) Ing u)
> K exp(—(Mb/4 + bac/v2) Ing t,11) > Kn~Mb/4+b:c/V2)(2/3+e),

For an arbitrary ¢ < ﬁ(% + &)~ we can find b > 0 and b9 > 1 so that
(Mb/4+bac/vV2) (2 + &) < 1.
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Then
Y Po(Tw < tni1, LY per, (B —0) — LY (B—0) > cg(T») | Fr,)

n even

=00 a.s.

Since T, + W(T,) < Tpy2 and T, + h(T,) is a stopping time, we get
from the generalized Borel-Cantelli lemma [8, page 152] that {T), < t,.1;
L(%,,+h(T,,>(B —0) > cg(T,)} occurs i.o.

Given that (T, + h(T,))/T, — 1 as n — oo, we deduce that

Lg‘n+h(Tn)(B - 0)

W SUp o (T + A(T,)) = ¢

and, therefore,

LY(B-6) _

lim su
P T g

Since the inequality holds for all ¢ < \/§(§ + &)~ ! and & > 0 is arbitrarily
small,

. L%B-06) 3
limsup —4——— > /2.

The upper bound for the critical curve 6. We proceed as in the case 6.. Let
a>1land T, =inf{¢ > a": B; = 6(¢)}. We have

Po(L%1(B—6) — L, (B - 0) > x)
=Po(Tn < ™ Po(LYus_q (B— fr,) = x| I1,)).

Let v, = a"/Inn and consider q; = ((i — 1)v,)/a" + 1 for i = 1,...,snd=f

[(@™(a—1))/v, ]+ 2. If I, =[a"q;,a"q;41],

Sn Sn
Po(Tn < @™1) =Y Po(Tpe ;) < Y Po( max B, = 6(qia"))
1 i=1

i=1 0<t<gip1a"

Sn
= 2Po(Bg,an = 6(q;a™))

i=1

Sn ; L) )2
<Y g VI exp<_<_0<iz_>)_)

i1 0(qia™)V2m 2gi1a™

K 9it+1 n-9i/%in
1 qi Inn

n_l_n_]-/qZ
Vinn
VInn-n™?t

w
B

IA
™

~.
I

IA

Ks
K
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Let v, = 0(a™!) and x = ¢\/a"/Innlng n. Lemma 1(i) ilﬁplies that, for
u € [a", a™*1] and an arbitrary b < 1,

Po(LY1_, (B —6,) > x) < exp(—xy5)
<K exp( —beyar/Innlng ny/(In n)/(2a”+1))
< K exp(—bclng n/v2a) = K(In n)=b/V2,

Fix some integer j > 1 and suppose that 81, B2,..., 8 > 0. Let B = ZLI B

and
an+k—1 1 L
xp = xp(n) = By m ng(n+k—1).

By applying the strong Markov property at T, Tr41,..., Thyj—1 We obtain
J
Po( (ML8s(B=0) = Lo (B=0) = 4]
k=1

j i
<Py(Th <o) [] max  Po(L2.i_(B—0;) > xp)

b1 se[an+k—1’an+k]
< K+vInn-nYnn) %,

where

R = i bB1/vV2a = bB/v2a.
k=1

Fix some small § > 0 and B > 3/2/2. If

L%, (B-0)—L%(B-6)>8 Lj_llnz(n+j—1)
ant+J « - ln(n+]—1) ’

then there must exist nonnegative integers i, < /6 such that

anti-1

L°..(B—6)—L° - S
an+k( 0) an+k—1(B 0) Z Bk ln(n + j — 1)

Ing(n+ j—1) = x,
Br=1id,for k=1,...,j,and B > B — j6. The probability of
J
ﬂ {Lgn+k(B - 0) - Lgn+k—1(B - 0) e xk}
E=1

for every such j-tuple (Bi,...,B,) is bounded by KvInn - n~Y(Inn)~%# with
R = b(B — j&)/v2a. The restriction i, < B/6 implies that there are only a
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finite number of j-tuples (B4, ..., B;) and so

anti-1

P( 0 (B—0)—L°%(B-6)=>p It =1

Ing(n + j — 1))
<KvInn-n'(Inn)#

with # = b(B — jb)/v2a, for large n. Now take any a > 0. Recall that
B> 3v2/2.Onecanfinda > 1,5 < 1 and small § > 0 depending on j so that,
for small £ > 0,

Inn-nYlnn)* < Kn~Y(Inn)1-°.

Let y, = By/a"/Innlny n. The Borel-Cantelli lemma now implies that

AJEL,. (B—6)— L% (B - 0) < ynij1
eventually. In particular, for j = 1 we obtain

AELY. (B—0)—L%(B-6) <y,

eventually.

Find k¢ such that Iny ky//In kg < 1 and Ing n/+/In n is a decreasing function
for n > ko. Let N = inf{n > ko: A} < y; and A} < y; ¥V k > n}. Then, for
large m,

m m/2—-1 m/2 ln2(m/2) m
< + <Y Ve
k=ZN e k—zko e k_zm/z Th= kzko \/1 (m/2) ka:/z
m/2+1 m/2+1 1
R = (OB

KL (1 0(L))

Suppose that @™/~ < ¢ < o™t/ Let A = L%, (B—9). For large m we have

m—1
LYB=6) < A+ |3 Liu(B-0)~ LB - 0]
k=N

+L0.,(B—0)— L% (B—0)

m
SAA4Ymij1+ Y. Y
k=N

SA+'B‘,ln(m+] )lng(m+J 1)+ \/_‘/ lngm
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Ve i ot :
§A+<B+Kﬁ_1a > 1n(m+j—1)ln2(m+]_1)

Ve e\ [t
§A+<B+Kﬁ_1a ) mlngt.

Since j may be an arbitrarily large integer, we obtain

_ LYB-#9)
limsup —4———

nSR e =P

for every B > 34/2/2. O
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Note added in proof. Burgess Davis (private communication) has shown
by an example that the answer to Problem (ii) is negative.
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