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POISSON APPROXIMATIONS FOR EPIDEMICS WITH
TWO LEVELS OF MIXING

BY FRANK BALL1 AND PETER NEAL2

University of Nottingham and Lancaster University

This paper is concerned with a stochastic model for the spread of an
epidemic among a population of n individuals, labeled 1,2, . . . , n, in which
a typical infected individual, i say, makes global contacts, with individuals
chosen independently and uniformly from the whole population, and local
contacts, with individuals chosen independently according to the contact
distribution V n

i = {vn
i,j ; j = 1,2, . . . , n}, at the points of independent Poisson

processes with rates λn
G and λn

L, respectively, throughout an infectious period
that follows an arbitrary but specified distribution. The population initially
comprises mn infectives and n − mn susceptibles. A sufficient condition is
derived for the number of individuals who survive the epidemic to converge
weakly to a Poisson distribution as n → ∞. The result is specialized to the
households model, in which the population is partitioned into households
and local contacts are chosen uniformly within an infective’s household; the
overlapping groups model, in which the population is partitioned in several
ways and local mixing is uniform within the elements of the partitions; and
the great circle model, in which vn

i,j = vn
(i−j)modn

.

1. Introduction. This paper is concerned with Poisson approximation for the
number of survivors of a stochastic SIR epidemic in a finite population, in which
individuals mix at two levels, local and global. SIR closed-population epidemics
are by far the most studied class of stochastic epidemic models. In such models,
there are just three possible states for an individual, susceptible (S), infected (I )

and removed (R), and the only possible transitions are S → I (infection of
a susceptible) and I → R (removal of an infective). There are three classical
limit theorems for homogeneously mixing, stochastic SIR epidemic models as the
population size n → ∞: a branching process limit theorem for the early stages
of an epidemic [see, e.g., Whittle (1955), Kendall (1956) and Ball and Donnelly
(1995)], from which a threshold theorem governing whether an epidemic is able to
take off can be derived; a central limit theorem for the total number of individuals
who are ultimately infected by an epidemic that does take off [see, e.g., von Bahr
and Martin-Löf (1980)]; and a Poisson limit theorem for the number of individuals
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who remain susceptible at the end of an epidemic that is well above threshold [see,
e.g., Daniels (1967) and Lefèvre and Utev (1995)].

The above limit theorems all require that the population size n → ∞. However,
the assumption that a large population is homogeneously mixing is clearly
unrealistic for real-life epidemics and may lead to incorrect conclusions being
drawn. A striking example of considerable contemporary interest is the modeling
of emergency responses to a smallpox bioterrorist attack. Recent public debate
has focused on the relative merits of targeted vaccination, in which confirmed or
suspected cases are isolated and their contacts are traced and vaccinated, and mass
vaccination. Using a homogeneously mixing deterministic model for postrelease
spread of smallpox among a population of 10 million people, Kaplan, Craft and
Wein (2002) found that mass vaccination resulted in far fewer deaths and much
faster disease eradication over a wide range of parameter values. This contrasts
sharply with Halloran, Longini, Nizam and Yang (2002), who used simulations
of a stochastic model for postrelease spread among a structured population
of 2000 people and found that although timely mass vaccination could be
more effective than targeted vaccination in preventing and containing epidemics,
the difference was orders of magnitude smaller than that predicted by the
homogeneous deterministic model and, moreover, targeted vaccination prevented
more deaths per dose of vaccine than mass vaccination. These studies demonstrate
clearly the importance of correctly accounting for population structure when using
epidemic models to inform public health policy. Although the model of Halloran,
Longini, Nizam and Yang (2002) is clearly the more realistic of the two, it has the
disadvantage of being sufficiently complicated to be mathematically intractable.
The challenge for mathematicians is to find models that both adequately reflect
real-life epidemics and remain susceptible to mathematical analysis.

One way of introducing heterogeneities into an epidemic model (without
compromising tractability) is to assume that, aside from disease status, the
population is partitioned into different types of individuals, with individuals of the
same type behaving homogeneously. The above limit theorems can be extended
to this situation but they require that the numbers of individuals of different
types all tend to ∞, which again is unrealistic. Consequently, there has been
a growing interest recently in studying epidemics among populations whose
structure remains locally finite as their size becomes large [see Andersson (1999)
for a review]. An important model of this type, that reflects an important feature of
human population structure, is the households model, in which the population is
partitioned into a large number of small households, with uniform mixing within
households and, at a much lower rate, within the whole population [see, e.g.,
Becker and Dietz (1995) and Ball, Mollison and Scalia-Tomba (1997)]. Branching
process and central limit theorems have been developed for the households model
by Ball (1996) and Ball, Mollison and Scalia-Tomba (1997), respectively, and, in a
multitype setting, by Ball and Lyne (2001). In this paper a Poisson limit theorem is
developed for an extension of the households model, in which a typical individual,
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while infectious, makes global contacts, with individuals chosen independently
and uniformly from the entire population, and local contacts, with individuals
chosen independently according to a contact distribution (reflecting the underlying
population structure) associated with the infecting individual.

The above three classical limit theorems have two main uses. First, they
give insight into the behavior of the epidemic model for finite population
size n. Second, they can be used to obtain approximations to probabilities and
moments associated with the outcomes of a model; exact calculations are usually
extremely difficult, and indeed they are impossible for the models of this paper.
The branching process approximation holds for epidemics that fail to become
established. The central limit theorem provides an approximation to the final
outcome of epidemics that take off, provided that its threshold parameter Rn

0 (the
mean number of infectious contacts made by a typical infective in an otherwise
completely susceptible population; cf. Section 2.3) is finite in an asymptotically
large population. If Rn

0 → ∞ as n → ∞, then the proportion of the population that
is ultimately infected by an epidemic converges in probability to 1 and the normal
approximation breaks down. However, if Rn

0 = log(n/b) + o(n) as n → ∞, for
some b ∈ (0,∞), then the number of individuals who remain susceptible at the
end of the epidemic converges weakly to a Poisson random variable with mean b.
This can form the basis for useful approximations for epidemics that are well above
threshold, as illustrated by the following example which was drawn to our attention
by Sergey Utev.

Becker and Hasofer (1998) calculated the probability of a complete epidemic
(i.e., that infects everyone) for a homogeneous mixing Markov SIR epidemic, with
n = 100, 200, 600 and R0 = 1.5, 3, 6. When R0 = 6, the probability of a complete
epidemic, pC say, is as follows, with the Poisson approximation in parentheses:
n = 100, pC = 0.7888 (0.7805); n = 200, pC = 0.6216 (0.6091); n = 600,
pC = 0.2399 (0.2260). When R0 = 3, we obtain n = 100, pC = 0.0172 (0.0069);
n = 200, pC = 0.0003 (0.00005). For other choices of (n,R0), pC is negligible.
The Poisson approximations are remarkably good when R0 = 6, which for many
infections is not particularly high [see Anderson and May (1991), Table 4.1, which
reports several estimated values of R0 in excess of 10]. Moreover, the Poisson
approximations are extremely simple to calculate, while the exact probabilities
require extensive numerical computation. The Poisson approximation developed
in this paper is also very easy to apply; it depends only on knowing Rn

0 for global
contacts and the probability that a typical susceptible avoids local contact from
everyone else in the population.

Poisson approximations for closed-population, homogeneously mixing SIR
epidemic models have a long history dating back to Daniels (1967). Daniels
considered the general stochastic epidemic, in which a typical infective makes
contacts at the points of a homogeneous Poisson process throughout an infectious
period that follows a negative exponential distribution. Successive contacts are
with individuals chosen independently and uniformly from the whole population
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and a contacted individual is infected if and only if he or she is still susceptible;
otherwise nothing happens. Daniels showed that under certain conditions the
number of survivors of the epidemic is approximately Poisson. The first rigorous
proof of an asymptotic Poisson limit for the general stochastic epidemic is due
to Sellke (1983). Subsequently, asymptotic Poisson limit theorems have been
established for a wide range of homogeneously mixing models. In particular,
Ball and Barbour (1990) used the Stein–Chen method to derive a Poisson
approximation, with an order of magnitude for the error, for the Martin-Löf (1986)
epidemic model; Lefèvre and Utev (1995) obtained a necessary and sufficient
condition for a Poisson limit theorem to hold for an extension of the general
stochastic epidemic in which a typical infectious period follows an arbitrary
but specified distribution; and Lefèvre and Utev (1997) derived a necessary
and sufficient condition for weak convergence of the number of survivors of a
collective epidemic [Picard and Lefèvre (1990)] to a mixed Poisson distribution.
The general strategy for proving each of these three results was the same. First,
a (mixed) Poisson limit law was established for the number of uncontacted
individuals, Xn(n) say, when all n individuals are allowed to make contacts. Then a
coupling argument was used to show that the number of survivors of the epidemic
has the same limit law as Xn(n). The same approach is adopted in this paper,
though the details are markedly different.

The contents of the paper are as follows. The general two-level-of-mixing
epidemic model is presented in Section 2, along with three specific examples.
These are the households model outlined above; the overlapping groups model,
an extension of the households model in which the population is partitioned in
several ways (e.g., according to household and according to workplace), and
mixing is uniform within the elements of the partitions, with rate dependent on
the partition; and the great circle model, in which individuals are equally spaced
around a circle and local mixing is spatial. Section 2 also contains a heuristic
explanation of our main Poisson limit theorem that gives insight into why the result
holds and the strategy for its proof. The general theory is presented in Section 3
and this splits into three main parts. First, the collection of indicator random
variables, describing which individuals avoid contact from all n individuals in the
population, is shown to be positively related in the sense of Barbour, Holst and
Janson (1992), Definition 2.1.1. This facilitates the second part of the proof, in
which a Poisson limit theorem is established for Xn(n). Third, it is shown that the
number of survivors of the epidemic has the same limit law as Xn(n). This leads
to a simpler proof, via a lower bound branching process, of a key result of Lefèvre
and Utev (1995), Section 4, which is presented in the Appendix. In Section 4, the
general theory is specialized to the three examples outlined in Section 2, leading
to considerable simplification in the sufficient condition for a Poisson limit law to
hold. Finally, some brief concluding comments are made in Section 5.
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2. Models and heuristics.

2.1. General model. We consider a sequence of epidemics (En) indexed by
the population size n. The individuals are numbered 1 through n. Assign to each
individual, in the population of size n, independent and identically distributed life
histories, Hn = (Q, ξn, ηn), where Q is the infectious period, whose distribution
is assumed to be independent of n, and ξn and ηn are homogeneous Poisson
point processes of times, relative to an individual’s infection, at which global
and local contacts are made, respectively. The elements Q, ξn and ηn of Hn

are assumed to be independent. Let ξn and ηn have rates λn
G = nβn

G and λn
L,

respectively. Each global contact is with an individual chosen independently and
uniformly from the n individuals in the population. Each local contact made by
individual, i say, is with an individual chosen independently according to the
contact distribution V n

i = {vn
i,j ; j = 1,2, . . . , n}, where vn

i,j is the probability that
individual i on making a local infectious contact does so with individual j . We
assume that, for all i, n ≥ 1, vn

i,i = 0 and
∑n

j=1 vn
i,j = 1. At the end of his or her

infectious period, an individual becomes immune to further infection and plays no
role in the remainder of the epidemic. If an infected individual makes contact with
a susceptible individual i, at time t , say, then the susceptible individual becomes
infected and makes local contacts at the points of t + ηn

i and global contacts at the
points of t + ξn

i , before becoming immune at time t + Qi .
We assume that there are initially mn ≥ 1 infectives and hn = n − mn suscep-

tibles in the population, with Un denoting the set of initial susceptibles. (For our
results, the actual set Un turns out not to be important, except for its cardinality
hn = |Un|.) The epidemic ceases as soon as there are no infectives in the popula-
tion. Let Sn be the number of individuals who are still susceptible at the end of
the epidemic En, so Tn = n − Sn is the total number of infectives in the epidemic,
that is, the total size of En. The aim of the paper is to develop a Poisson limit the-
orem for Sn. Before presenting some heuristics that motivate our main theorem,
we describe some important special cases of the general model, in which the local
contact distribution is specified more explicitly.

2.2. Special cases.

2.2.1. Great circle model. This model is a generalization of the great
circle model of Ball, Mollison and Scalia-Tomba (1997). For each n ≥ 1, the
epidemic En is among n individuals located in one-dimensional space. Consider
the case where each individual has one neighbor on each side; to avoid boundary
problems, it is convenient to take the space to be the circumference of a circle.
The individuals are numbered sequentially around the circle 1 through n, so
that individuals 1 and n are neighbors. Each local contact is with an individual
chosen independently from a distribution {wn

i ; i = −[n−1
2 ],−[n−1

2 ] + 1, . . . , [n
2 ]},

where wn
i is the probability individual k on making a local infectious contact does
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so with individual (k + i)mod n, so vk,(k+i)mod n
= wn

i . The model considered by
Ball, Mollison and Scalia-Tomba (1997) assumed that local contacts are nearest
neighbor, and it was motivated by the spread of infection between pigs in a line of
stalls.

2.2.2. Overlapping groups model. The second model under consideration is
the overlapping groups model; compare Andersson (1999). We assume that there
are two types of groups, A and B , with all groups of type A (B) being of size
mA (mB). For example, the two types of groups could represent mixing within
households and within workplaces in a human population. We again consider
a sequence of epidemics (En), indexed by the population size n; however, we
only consider those n divisible by lcm(mA,mB), where lcm denotes lowest
common multiple. In the epidemic En, the individuals are separated into mutually
exclusive homogeneously mixing groups of type A. Similarly, the population
is also partitioned into mutually exclusive mixing groups of type B . Then, by
superimposing the two group structures, we obtain a network of overlapping
groups. In this model, it is natural to split the local infection into within
group A infectious contacts and within group B infectious contacts. Therefore,
let ηn

A and ηn
B be the independent homogeneous Poisson point processes of times,

relative to an individual’s infection, at which the individual makes infectious
contacts within his or her group of type A and within his or her group of type B ,
respectively. Let ηn

A and ηn
B have rates λn

A = (mA − 1)βn
A and λn

B = (mB − 1)βn
B ,

respectively. The individual contacted by a type A (B) local contact is chosen
uniformly from the other mA − 1 (mB − 1) individuals in the infective’s group.

2.2.3. Households model. The last model under consideration is the house-
holds model of Ball, Mollison and Scalia-Tomba (1997), where the individuals are
separated into mutually exclusive homogeneously mixing groups, called house-
holds. For all i, j, n ≥ 1, j �= i, let vn

i,i = 0, let vn
i,j = 0 if individuals i and j be-

long to different housholds and let vn
i,j = 1

k−1 if individuals i and j belong to the
same houshold of size k. (Note that for individuals who belong to households of
size 1 the local infectious process is redundant.) The sequence of epidemics (En)

is now constructed according to the general model of Section 2.1.

2.2.4. Remark. The models described above, and especially the great circle
model, are very similar to “small world” models; see, for example, Watts (1999),
Watts and Strogatz (1998) and Barbour and Reinert (2001). The most frequently
asked question concerning “small world” networks is the distribution of the
distance between a randomly chosen pair of individuals i and j , say. However, we
ask (and answer) a different question which is not just relevant to disease spread
but also to the dissemination of information over the network. In particular, we
are concerned with the distribution of the number of people who fail to become
infected by a disease (hear a rumor/news) passed over a network with both local
and global infectious contacts (communication of the information).
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2.3. Heuristics. In this section, we give a heuristic explanation of the Poisson
limit theorem, which involves introducing some basic notation that is required
later in the paper. A key concept for understanding the final outcome of the
epidemic En is that of a susceptibility set. For 1 ≤ i ≤ n, construct individual
i’s local epidemic (sometimes called its local infectious clump) Cn

i by allowing
local infectious contacts in a population where initially i is infective and everyone
else is susceptible (global infectious contacts are ignored). Let Cn

i be the set
of individuals ultimately infected in Cn

i . For 1 ≤ i ≤ n, let Sn
i = {j : i ∈ Cn

j } and
call Sn

i the susceptibility set of individual i in En. Note that i ∈ Sn
i . Note also

that an individual, i say, is ultimately infected in En if and only if his or her
susceptibility set Sn

i contains at least one individual who is either an initial
infective or who is contacted globally.

Suppose that n is large and let zn denote the mean proportion of individuals
in the population who are ultimately infected in the epidemic En. Then the
probability that a given individual avoids global contact throughout the course of
the epidemic is approximately e−Rn

0zn , where Rn
0 = λn

GE[Q] is the mean number
of global contacts made by an infectious individual. Moreover, given that the
epidemic takes off, as n → ∞, distinct individuals avoid infection independently
of each other. Thus,

P (i avoids infection in En) ≈
n∑

k=1

P (|Sn
i | = k)e−kRn

0 zn, i ∈ Un,

and the mean number of initial susceptibles who are ultimately uninfected in En is
approximately given by

E[Sn] = ∑
i∈Un

n∑
k=1

P (|Sn
i | = k)e−kRn

0zn.

Now, E[Sn] = n(1 − zn), so

1 − zn = 1

n

∑
i∈Un

n∑
k=1

P (|Sn
i | = k)e−kRn

0zn.(2.1)

The above heuristic argument can be made fully rigorous as n → ∞, given that
the epidemic takes off, by generalizing the embedding argument of Scalia-Tomba
(1985); see Ball and Neal (2002).

We wish to develop a Poisson limit theorem for Sn, so let bn = E[Sn] and
suppose that bn → b as n → ∞, where b ∈ (0,∞). Then setting zn = 1 − bn

n

in (2.1) yields

bn ≈ e−Rn
0 hng(n) + ∑

i∈Un

n∑
k=2

P (|Sn
i | = k)e−kRn

0 ,(2.2)
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where g(n) = h−1
n

∑
i∈Un

P (|Sn
i | = 1) is the probability that an individual chosen

at random in Un has a susceptibility set of size 1. Now

∑
i∈Un

n∑
k=2

P (|Sn
i | = k)e−kRn

0 ≤ hne
−2Rn

0 = (
e−Rn

0 hng(n)
)2

/hng(n)2.

Suppose that hng(n)2 → ∞ as n → ∞. Then letting n → ∞ in (2.2) suggests
that a necessary condition for Sn

D−→ Po(b) as n → ∞, where Po(b) denotes the
Poisson distribution with mean b, is

Rn
0 − loghn − logg(n) + log b → 0 as n → ∞.(2.3)

Note that, under the above assumptions, if (2.3) holds then Rn
0 → ∞ as n → ∞,

so the probability that the epidemic takes off tends to 1 as n → ∞.
The standard homogeneously mixing SIR epidemic is obtained by setting

λn
L = 0, so P (|Sn

i | = 1) = 1 (1 ≤ i ≤ n). Hence, logg(n) = 0 and (2.3)
reduces to the usual necessary condition for a strong Poisson limit theorem
to hold [see Lefèvre and Utev (1995), Corollary 2.6]. Thus, the term log g(n)

in (2.3) modifies the usual condition to take account of local mixing. For the
homogeneously mixing model, Rn

0 is the mean of the offspring distribution for
the approximating branching process, obtained by assuming that all infectious
contacts are with susceptibles and hence result in the spread of infection. Thus,
Rn

0 is a threshold parameter for such models. For the model with two levels of
mixing, the appropriate approximating branching process describes the spread
of local infectious clumps [see Ball and Neal (2002)], so the relevant threshold
parameter is Rn∗ = Rn

0E[|Cn|], where E[|Cn|] = h−1
n

∑
i∈Un

E[|Cn
i |] is the mean

size of the local epidemic emanating from an individual chosen uniformly in Un.
For many models, symmetries imply that, in obvious notation, E[|Cn|] = E[|Sn|],
so the threshold parameter and the Poisson limit theorem depend on different
aspects of the distribution of the size of a typical local susceptibility set.

For each n ≥ 1, construct a random directed graph Gn from the epidemic En

as follows. For 1 ≤ i, j ≤ n, let a directed edge exist from vertex i to vertex j

in Gn if and only if in the epidemic En individual i would contact individual j , if
individual i were to become infectious. A vertex, i say, in Gn is called isolated if
there is no directed edge leading into it. Thus, the isolated vertices in the set Un

of the graph Gn correspond to those initial susceptibles in En who would not be
contacted if we were to make everybody infectious in En.

The above informal argument suggests that, under the limiting regime (2.3),
Sn has the same limiting distribution as the number of initial susceptibles whose
susceptibility sets are not contacted globally by any individual in Gn. If, in
addition, hng(n)2 → ∞ as n → ∞, the number of such susceptibles having a
susceptibility set of size greater than 1 converges in probability to 0 as n → ∞.
Thus, under these conditions, it is highly plausible that Sn has the same asymptotic
distribution as the number of isolated vertices, Xn(n) say, in the set Un of Gn.
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Finally, the above argument also suggests that E[Xn(n)] → b as n → ∞. Thus,
the limiting distribution of Xn(n) is likely to be Po(b), provided that the events
that different vertices are isolated are only weakly dependent, which, subject to
mild conditions on the distribution of a typical infectious period Q, will be the
case when local mixing is not too extensive.

3. Generic theory.

3.1. Statement of main theorem. Before stating our main theorem, it is
necessary to impose some mild technical conditions on Q [cf. Lefèvre and
Utev (1995)]. First, we require that E[Q] < ∞. Second, note that if mn = 1,
P (Sn = n − 1) ≥ P (Q = 0) and a Poisson limit for Sn requires P (Sn =
n − 1) → 0 as n → ∞. Therefore, we require that P (Q = 0) = 0. Finally, let
h(x) = ∫ x

0 P (Q > y)dy, j (x) = ∫ ∞
x P (Q > y)dy and φ(x) = E[e−xQ]. Then we

require that

h(x) is a slowly varying function (in Karamata’s sense),(3.1)

x logx

h(x)
P (Q > x) → 0 as x → ∞,(3.2)

j (x) logx → 0 as x → ∞.(3.3)

It is straightforward using Markov’s inequality to show that (3.1), (3.2) and
(3.3) hold if there exists β > 0 such that E[Q1+β] < ∞. Note also that (3.1),
(3.2) and (3.3) are required in Lefèvre and Utev (1995) for the strong Poisson
limit theorem, Corollary 2.6, which is the homogeneously mixing equivalent of
Theorem 3.1.

THEOREM 3.1. Suppose that there exist α > 0, 0 < δ < 1
2 and b > 0 such that

λn
Ln−α → 0, nδg(n) → ∞ and λn

GE[Q] − log(hng(n)) + logb → 0 as n → ∞.
Suppose, in addition, that there exist ε > δ + α, 0 < c,d < 1, n0 ∈ N and, for
all 1 ≤ i ≤ n, a set of individuals Ln

i in En such that, for all n ≥ n0 and for all
1 ≤ i ≤ n, i ∈ Ln

i ,
∑

j /∈Ln
i
vn
j,i < n−ε,

∑
j /∈Ln

i
vn
i,j < n−ε, |Ln

i | ≤ nc, |Mn
i | ≤ nd and

hnn
−(d+2δ) → ∞ as n → ∞, where Mn

i = {j :Ln
i ∩ Ln

j �= ∅}. Then Sn
D−→ Po(b)

as n → ∞.

Theorem 3.1 is proved in Sections 3.2–3.4, but first we introduce some more
notation, give an overview of the proof of Theorem 3.1 and indicate the role played
by each of the conditions of the theorem in its proof.

For 1 ≤ i, s ≤ n, let θn
i (s) = 1 if individual i avoids an infectious contact

from the first s infectives to become infected in the epidemic En and θn
i (s) = 0

otherwise. Therefore, θn
i (mn) = 1 if and only if individual i avoids an infectious

contact from the mn initial infectives. For 1 ≤ s ≤ n, let Xn(s) = ∑
i∈Un

θn
i (s) be
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the number of initial suscpetibles who avoid contact from the first s infectives
in En. Then Tn, the total number of individuals who are ultimately infected by
the epidemic En, is given by Tn = inf{s ≥ mn : s + Xn(s) = n}. Note that we have
allowed s > Tn in the definitions of θn

i (s) and Xn(s), and we label the individuals
who do not become infected in En as infectives Tn + 1, Tn + 2, . . . , n. Note also
that vertex i is isolated in Gn (see Section 2.3) if and only if θn

i (n) = 1, so the
number of isolated vertices in the set Un of Gn is given by Xn(n).

The proof of Theorem 3.1 can be outlined as follows. We first show (Lemma 3.2)
that {θn

i (n)} = {θn
i (n); 1 ≤ i ≤ n} are positively related in the sense of Barbour,

Holst and Janson (1992), Definition 2.1.1. This enables us to bound the total vari-
ation distance between the law of Xn(n) and Po(b), which together with Lemmas
3.5 and 3.6, which show, respectively, that the mean and variance of Xn(n) con-

verge to b as n → ∞, yields (Theorem 3.7) that Xn(n)
D−→ Po(b) as n → ∞.

Finally, we show (Lemmas 3.8–3.11) that P (Xn(n) �= Sn) → 0 as n → ∞, and
the required Poisson limit theorem follows. A key tool in the final step is a lower
bound branching process for the epidemic En (see Lemma 3.9).

The roles of the different conditions in Theorem 3.1 can be described informally
as follows. For 1 ≤ i ≤ n, the individuals in Mn

i can be interpreted loosely as
individual i’s locality. Then the conditions |Ln

i | ≤ nc (1 ≤ i ≤ n) and |Mn
i | ≤ nd

(1 ≤ i ≤ n) ensure that individual i’s locality is sufficiently small in relation to
the total population size when obtaining the mean (Lemma 3.5) and the variance
(Lemma 3.6) of the Poisson limit, respectively. The condition

∑
j /∈Ln

i
vn
i,j < n−ε

(1 ≤ i ≤ n) [∑j /∈Ln
i
vn
j,i < n−ε (1 ≤ i ≤ n)] (see Lemmas 3.5, 3.6 and 3.11)

ensures that individual i is unlikely to make [receive] a local infectious contact
with [from] an individual outside his or her locality. This is important in allowing
us to study the global and local infection separately. Then, since we can consider
the global and local infection separately, we are able to establish the Poisson limit
theorems in terms of hn, λn

L, g(n) and λn
G. The conditions on λn

L and, in particular,
g(n) (see Lemmas 3.5, 3.6 and 3.11) are necessary to ensure that the local infection
does not play too important a role in the spread of the disease, while the condition
that hnn

−(d+2δ) → ∞ ensures that the locations of the initial infectives (and hence
also of the initial susceptibles) are not important (see Lemma 3.11, in particular).
The above conditions ensure that λn

G → ∞ as n → ∞, which is necessary to form
a useful lower bound branching process in Lemma 3.9.

3.2. Positive relatedness. It is straightforward to see that θn
i (n) = 1 if vertex i

is isolated in the graph Gn and θn
i (n) = 0 otherwise. Therefore, Xn(n) =∑

i∈Un
θn
i (n) is the number of isolated vertices in the set Un. We now show

that {θn
i (n)} are positively related. For n ≥ 1 and each 1 ≤ j ≤ n, let {χn

i,j ; i =
1,2, . . . , n} be random variables satisfying

L(χn
i,j ; i = 1,2, . . . , n) = L

(
θn
i (n); i = 1,2, . . . , n|θn

j (n) = 1
)
.
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LEMMA 3.2. For n ≥ 1, the random variables {θn
i (n)} are positively related;

that is, for each 1 ≤ j ≤ n, the random variables {χn
i,j ; i = 1,2, . . . , n} and

{θn
i (n); i = 1,2, . . . , n} can be defined on a common probability space (�,F ,P )

such that, for all i �= j , χn
i,j (ω) ≥ θn

i (n)(ω) for all ω ∈ �.

PROOF. Consider fixed n and j such that 1 ≤ j ≤ n. Let E
j
n be the epidemic

in a population of size n, where we know that θn
j (n) = 1. Let G

j
n be the graph on n

vertices constructed from the epidemic E
j
n in the natural way with θn

j (n) = 1. For

i �= j , let χn
i,j be the indicator function of whether vertex i is isolated in G

j
n. We

give an alternative construction for the graph Gn and couple G
j
n to Gn in such a

way that, for all i �= j , χn
i,j ≥ θn

i (n).
Consider the description of the epidemic En given in Section 2.1. For

1 ≤ i, k ≤ n, let ζ n
ik be the point process of times, relative to individual i’s infection,

at which individual i makes infectious contacts with individual k. Then ζ n
ik (1 ≤ i,

k ≤ n) are independent and, for 1 ≤ i, k ≤ n, ζ n
ik is a homogeneous Poisson process

with rate γ n
ik = βn

G + vn
i,kλ

n
L.

Let Q̃i
D= Qi |θn

j (n) = 1, Q̃ = (Q̃1, Q̃2, . . . , Q̃n) and Q = (Q1,Q2, . . . ,Qn).
We say x ≤ y (x < y) if, for all 1 ≤ i ≤ n, xi ≤ yi (xi < yi). We proceed by
showing that Q̃ ≤st Q. For i = 1,2, . . . , n, let Wi be the time of the first point
in ζ n

ij . Then W1,W2, . . . ,Wn are independent. Let W = (W1,W2, . . . ,Wn) and fix
0 ≤ t = (t1, t2, . . . , tn). Then

P (Q̃ ≤ t) = P (Q ≤ t|Q < W) = P (Q ≤ t,Q < W)

P (Q < W)
.

Now, since the W1,W2, . . . ,Wn,Q1,Q2, . . . ,Qn are independent, we have that

P (Q < W) =
n∏

i=1

P (Qi < Wi)

and

P (Q ≤ t,Q < W) =
n∏

i=1

P (Qi ≤ ti ,Qi < Wi).

Therefore, P (Q̃ ≤ t) = P (Q ≤ t|Q < W) = ∏n
i=1 P (Qi ≤ ti |Qi < Wi), and to

show that Q̃ ≤st Q, it suffices to show that, for all i, Q̃i ≤st Qi . We therefore
require that, for all 1 ≤ i ≤ n and ti ≥ 0, P (Qi ≤ ti ) ≤ P (Qi ≤ ti |Qi < Wi) or,
equivalently, P (Qi < Wi,Qi ≤ ti ) ≥ P (Qi < Wi)P (Qi ≤ ti ). The latter holds,
since P (Qi < w,Qi ≤ ti ) ≥ P (Qi < w)P (Qi ≤ ti ) for all w, ti ≥ 0. Thus,
Q̃i ≤st Qi (1 ≤ i ≤ n), so Q and Q̃ can be defined on the same probability space,
(�,F ,P ) say, such that Q̃(ω) ≤ Q(ω) for all ω ∈ �. Augment (�,F ,P ) to
carry independent Poisson processes ζ n

ik (1 ≤ i, k ≤ n). Construct G
j
n by setting
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θn
j (n) = 1 and using Q̃ and ζ n

ik (1 ≤ i, k ≤ n, k �= j) and construct Gn by using

Q and ζ n
ik (1 ≤ i, k ≤ n). Since Q̃(ω) ≤ Q(ω) for all ω ∈ �, it is immediate that

χn
i,j ≥ θn

i (n) (i �= j), as required. �

3.3. Isolated vertices in Gn. The proof of a Poisson limit for the number of
isolated vertices in the set Un requires the following simple, well-known results.

LEMMA 3.3. For any nonnegative random variable X and for all a, b ≥ 0,

E[Xa+b] ≥ E[Xa]E[Xb](3.4)

and

E
[
exp

(−(a + b)X
)] ≤ E[exp(−bX)].(3.5)

PROOF. Inequality (3.4) follows directly from the fact that cov(f (X),

g(X)) ≥ 0 for any functions f,g that are monotonic in the same direction [see
Hardy, Littlewood and Pólya (1934), page 168], and inequality (3.5) is trivial. �

We now prove three useful consequences of the conditions of Theorem 3.1 in
the following lemma.

LEMMA 3.4. Under the conditions of Theorem 3.1,

λn
GE[Q] − log(hng(n)) + log b → 0 for some 0 < b < ∞ as n → ∞(3.6)

implies that

nt(βn
G) − log

(
hng(n)

b

)
→ 0 as n → ∞,(3.7)

hng(n)φ(βn
G)n → b as n → ∞(3.8)

and

n{φ(2βn
G) − φ(βn

G)2} → 0 as n → ∞,(3.9)

where t (x) = 1 − φ(x) (x ≥ 0).

PROOF. Since nδg(n) → ∞ and hnn
−2δ → ∞ as n → ∞, we have that

g(n)hnn
−δ → ∞ as n → ∞. Hence, for all sufficiently large n, nδ ≤ hng(n) ≤ n,

and therefore there exists n0 ∈ N such that, for all n ≥ n0,

δ logn − log(2b)

nE[Q] ≤ βn
G ≤ logn − log(b/2)

nE[Q] .(3.10)

It follows from (3.10) that

βn
G = O

(
logn

n

)
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and

log((βn
G)−1)

log n
→ 1 as n → ∞,(3.11)

so, from (3.10), (3.11) and (3.3), we have that

nβn
G

(
E[Q] − h

(
1

βn
G

))
= nβn

Gj

(
1

βn
G

)

= nβn
G

log((βn
G)−1)

log
(

1

βn
G

)
j

(
1

βn
G

)
→ 0(3.12)

as n → ∞.

Therefore, it follows from (3.12) that (3.3) and (3.6) together imply that

nβn
Gh

(
1

βn
G

)
− log

(
hng(n)

b

)
→ 0 as n → ∞.(3.13)

Then, from Lefèvre and Utev (1995), (6.20),∣∣∣∣t (βn
G) − βn

Gh

(
1

βn
G

)∣∣∣∣ ≤ (βn
G)2

∫ 1/βn
G

0
P (Q > t)t dt + 1

e
P

(
Q >

1

βn
G

)
.(3.14)

We now show that

n(βn
G)2

∫ 1/βn
G

0
P (Q > t)t dt + n

e
P

(
Q >

1

βn
G

)
→ 0 as n → ∞.(3.15)

From (3.13), we have that, for all sufficiently large n,

n ≤ c1
log(hng(n))

βn
Gh((βn

G)−1)
(3.16)

for some constant c1. Since hng(n) ≤ n, it follows from (3.11) and (3.16) that, for
all sufficiently large n,

n ≤ c2
log((βn

G)−1)

βn
Gh((βn

G)−1)
(3.17)

for some constant c2. Now put xn = (βn
G)−1. Then, by (3.2),

n

e
P

(
Q >

1

βn
G

)
≤ c2

e

xn log(xn)P (Q > xn)

h(xn)
→ 0 as n → ∞.

Also, Proposition 6.5 of Lefèvre and Utev (1995) holds under conditions
(3.1) and (3.2), so, by (3.17) and Lefèvre and Utev (1995), (6.25), we have that

n(βn
G)2

∫ 1/βn
G

0
P (Q > t)t dt ≤ c2

log(xn)

xnh(xn)

∫ xn

0
P (Q > t)t dt → 0 as n → ∞.
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Hence, (3.15) is proved, and so (3.7) follows from (3.13)–(3.15).
Now, for all sufficiently large n,

∞∑
i=2

1

i
t (βn

G)i ≤
∞∑
i=2

t (βn
G)i = t (βn

G)2

1 − t (βn
G)

≤ 2t (βn
G)2(3.18)

since, by (3.7), t (βn
G) → 0 as n → ∞. In particular, t (βn

G) ≤ 1
n

log(2n
b

) for all
sufficiently large n, and so, for such n,

2nt(βn
G)2 ≤ 2

n

{
log

(
2n

b

)}2

→ 0 as n → ∞.(3.19)

Therefore, it follows from (3.7), (3.18) and (3.19) that

−n log φ(βn
G) − log

(
hng(n)

b

)
→ 0 as n → ∞,

and (3.8) follows.
Now, from Lefèvre and Utev (1995), (6.16),

n|2t (βn
G) − t (2βn

G)|

≤ 2
{
n(βn

G)2
∫ 1/βn

G

0
P (Q > t)t dt + n

e
P

(
Q >

1

βn
G

)}
.

(3.20)

Therefore, by (3.20) and (3.15),

n{2t (βn
G) − t (2βn

G)} → 0 as n → ∞.(3.21)

Now

n{φ(2βn
G) − φ(βn

G)2} = n{2t (βn
G) − t (2βn

G)} − nt(βn
G)2,

and the lemma follows from (3.21) and (3.19). �

LEMMA 3.5. Under the conditions of Theorem 3.1, E[Xn(n)] → b as
n → ∞.

PROOF. Note that by Lemma 3.4 the conditions of Theorem 3.1 imply that
hng(n)φ(βn

G)n → b as n → ∞. Therefore, to prove the lemma, it is sufficient
to show that, under the conditions of Theroem 3.1, as n → ∞, E[Xn(n)] → b if
and only if φ(βn

G)n
∑

i∈Un
P (|Sn

i | = 1) = hng(n)φ(βn
G)n → b. Now E[Xn(n)] =∑

i∈Un
E[θn

i (n)] = ∑
i∈Un

∏n
j=1 φ(βn

G + vn
j,iλ

n
L). Therefore, by (3.4),

E[Xn(n)] ≥ ∑
i∈Un

n∏
j=1

φ(βn
G)φ(vn

j,iλ
n
L) = φ(βn

G)n
∑
i∈Un

P (|Sn
i | = 1).
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Now, for all n ≥ n0 and for all 1 ≤ i ≤ n by (3.5),

E[θn
i (n)] =

n∏
j=1

φ(βn
G + vn

j,iλ
n
L)

≤
{ ∏

j∈Ln
i

φ(vn
j,iλ

n
L)

}{ ∏
j /∈Ln

i

φ(βn
G)

}
(3.22)

≤
{ ∏

j∈Ln
i

φ(vn
j,iλ

n
L)

}
φ(βn

G)n−nc

,

since there are at least n − nc terms in the latter product in (3.22). For 1 ≤ i ≤ n, let
Hi

n = ∏
j /∈Ln

i
φ(vn

j,iλ
n
L) and take d(n) ∈ N such that 2d(n)−1 < n ≤ 2d(n). We show

that, for all n ≥ n0 and 1 ≤ i ≤ n,

Hi
n ≥ (1 − 2−d(n)λn

Ln−εE[Q])2d(n)

.

Now, for each n and i, let c
n,i
1 ≤ c

n,i
2 ≤ · · · ≤ c

n,i
n−|Ln

i | be the variables {vn
j,i; j /∈ Ln

i }
ordered, so Hi

n = ∏n−|Ln
i |

j=1 φ(c
n,i
j λn

L). For j = n−|Ln
i |+1, n−|Ln

i |+2, . . . ,2d(n),

let c
n,i
j = 0. Then, since φ(0) = 1, we have that Hi

n = ∏2d(n)

j=1 φ(c
n,i
j λn

L). Then, by
applying the Cauchy–Schwarz inequality 2d(n)−1 times, we get

Hi
n ≥

{ 2d(n)−1∏
j=1

φ
(1

2 (c
n,i
2j−1 + c

n,i
2j )λn

L

)}2

.

We repeat this process to obtain Hi
n ≥ φ(2−d(n)Ki

nλ
n
L)2d(n)

, where Ki
n =∑

j /∈Ln
i
vn
j,i < n−ε. Therefore, for all n ≥ n0 and for all 1 ≤ i ≤ n,

Hi
n ≥ φ

(
2−d(n)Ki

nλ
n
L

)2d(n)

≥ (
1 − 2−d(n)Ki

nλ
n
LE[Q])2d(n)

≥ (
1 − 2−d(n)n−ελn

LE[Q])2d(n)

.

Let Hn = min{Hi
n; i ∈ Un}. Then, for all n ≥ n0, Hn ≥ (1 − 2−d(n)n−ελn

L ×
E[Q])2d(n)

. Since λn
Ln−ε → 0 as n → ∞, we have that Hn → 1 as n → ∞.

Let Jn = φ(βn
G)n

c
. Then, for all n ≥ n0,

1 ≤ E[Xn(n)]
φ(βn

G)n
∑

i∈Un
P (|Sn

i | = 1)

≤
∑

i∈Un
({∏j∈Ln

i
φ(vn

j,iλ
n
L)}φ(βn

G)n−nc
)

φ(βn
G)n

∑
i∈Un

P (|Sn
i | = 1)

(3.23)
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= φ(βn
G)−nc ∑

i∈Un
P (|Sn

i | = 1)(H i
n)

−1∑
i∈Un

P (|Sn
i | = 1)

≤ (HnJn)
−1.

For each n, let bn = φ(βn
G)n

∑
i∈Un

P (|Sn
i | = 1), so bn → b as n → ∞. Then

log(φ(βn
G)) = −1

n
log

(
1

bn

∑
i∈Un

P (|Sn
i | = 1)

)

and for all sufficiently large n, bn ≥ b
2 and

∑
i∈Un

P (|Sn
i | = 1) ≤ hn, so

1

bn

∑
i∈Un

P (|Sn
i | = 1) ≤ 2hn

b
.

Therefore, for all sufficiently large n,

exp
(
−1

n
log

(
2hn

b

))
≤ φ(βn

G) ≤ 1.(3.24)

Thus, Jn = φ(βn
G)n

c → 1 as n → ∞. The lemma follows since HnJn → 1 as
n → ∞. �

LEMMA 3.6. Under the conditions of Theorem 3.1,∑
i∈Un

∑
j∈Un\{i}

cov
(
θn
i (n), θn

j (n)
) → 0 as n → ∞.

PROOF. Assume n ≥ n0. Then, for all j �= i, using (3.5),

E[θn
i (n)θn

j (n)] =
n∏

k=1

φ
(
2βn

G + (vn
k,i + vn

k,j )λ
n
L

)

= ∏
k /∈Ln

i ∪Ln
j

φ
(
2βn

G + (vn
k,i + vn

k,j )λ
n
L

)

× ∏
k∈Ln

i ∪Ln
j

φ
(
2βn

G + (vn
k,i + vn

k,j )λ
n
L

)

≤ φ(2βn
G)

n−|Ln
i ∪Ln

j | ∏
k∈Ln

i ∪Ln
j

φ
(
(vn

k,i + vn
k,j )λ

n
L

)
(3.25)

≤ φ(2βn
G)n−2nc ∏

k∈Ln
i ∪Ln

j

φ
(
(vn

k,i + vn
k,j )λ

n
L

)
,(3.26)

since |Ln
i ∪ Ln

j | ≤ 2nc. Suppose that Ln
i ∩ Ln

j = ∅. Then, by (3.5) and (3.26),

E[θn
i (n)θn

j (n)] ≤ φ(2βn
G)n−2nc

{ ∏
k∈Ln

i

φ(vn
k,iλ

n
L)

}{ ∏
k∈Ln

j

φ(vn
k,j λ

n
L)

}
.(3.27)
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Then, by the proof of Lemma 3.5 and letting An = φ(2βn
G)2nc

, we have by (3.27)
that

E[θn
i (n)θn

j (n)] ≤ A−1
n H−2

n φ(2βn
G)nP (|Sn

i | = 1)P (|Sn
j | = 1).(3.28)

Suppose that Ln
i ∩ Ln

j �= ∅. Then, by (3.5) and (3.26) and the proof of Lemma 3.5,
we have that

E[θn
i (n)θn

j (n)] ≤ φ(2βn
G)n−2nc

{ ∏
k∈Ln

i

φ(vn
k,iλ

n
L)

}

(3.29) ≤ A−1
n H−1

n φ(2βn
G)nP (|Sn

i | = 1).

Now, since

n−d
∑
i∈Un

P (|Sn
i | = 1) = n−dhng(n) = {hnn

−(d+δ)}{nδg(n)} → ∞ as n → ∞,

we have that, for all sufficiently large n,
∑

i∈Un
P (|Sn

i | = 1) ≥ 2nd . As in the proof
of Lemma 3.5, log(φ(βn

G)) = − 1
n

log( 1
bn

∑
i∈Un

P (|Sn
i | = 1)), where bn → b as

n → ∞. Therefore, for all sufficiently large n, 1
bn

∑
i∈Un

P (|Sn
i | = 1) ≥ nd

b
. Hence,

φ(βn
G)n ≤ exp

(
− log

(
nd

b

))
= b

nd
→ 0 as n → ∞.

Now, using (3.5), for all 1 ≤ i ≤ n, E[θn
i (n)] ≤ φ(βn

G)n. Therefore,

max
1≤i≤n

E[θn
i (n)] ≤ φ(βn

G)n → 0 as n → ∞.(3.30)

Since {θn
i (n)} are positively related,∑
i∈Un

∑
j∈Un\{i}

E[θn
i (n)θn

j (n)]

≥ ∑
i∈Un

∑
j∈Un\{i}

E[θn
i (n)]E[θn

j (n)]

= ∑
i∈Un

∑
j∈Un

E[θn
i (n)]E[θn

j (n)] − ∑
i∈Un

E[θn
i (n)]2

≥
( ∑

i∈Un

E[θn
i (n)]

)2

− max
1≤j≤n

E[θn
j (n)]

( ∑
i∈Un

E[θn
i (n)]

)
.

Since, by (3.30), max1≤i≤n E[θn
i (n)] → 0 as n → ∞ and

∑
i∈Un

E[θn
i (n)] =

E[Xn(n)] → b as n → ∞, we have that( ∑
i∈Un

E[θn
i (n)]

)2

− max
1≤j≤n

E[θn
j (n)]

( ∑
i∈Un

E[θn
i (n)]

)
→ b2 as n → ∞.
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Now, for n ≥ n0, we have that |Mn
i | ≤ nd (1 ≤ i ≤ n). Therefore, by (3.28) and

(3.29), for all n ≥ n0,∑
i∈Un

∑
j∈Un\{i}

E[θn
i (n)θn

j (n)]

= ∑
i∈Un

∑
j∈Un\{i},Ln

i ∩Ln
j =∅

E[θn
i (n)θn

j (n)]

+ ∑
i∈Un

∑
j∈Un\{i},Ln

i ∩Ln
j �=∅

E[θn
i (n)θn

j (n)]

≤ ∑
i∈Un

∑
j∈Un\{i}

A−1
n H−2

n φ(2βn
G)nP (|Sn

i | = 1)P (|Sn
j | = 1)(3.31)

+ ∑
i∈Un

|Mn
i |A−1

n H−1
n φ(2βn

G)nP (|Sn
i | = 1)

≤ ∑
i∈Un

∑
j∈Un

A−1
n H−2

n φ(2βn
G)nP (|Sn

i | = 1)P (|Sn
j | = 1)

+ ∑
i∈Un

ndA−1
n H−1

n φ(2βn
G)nP (|Sn

i | = 1).

Note that 1 ≥ An = φ(2βn
G)2nc ≥ φ(βn

G)4nc → 1 as n → ∞ by (3.24). Thus,
since Hn → 1 as n → ∞, the right-hand side of (3.31) has the same limit
as φ(2βn

G)n{∑i∈Un
P (|Sn

i | = 1)}2 +ndφ(2βn
G)n{∑i∈Un

P (|Sn
i | = 1)} as n → ∞.

Since we have established a lower bound for
∑

i∈Un

∑
j∈Un\{i} E[θn

i (n)θn
j (n)],

which converges to b2 as n → ∞, to prove the lemma, it suffices to show that

φ(2βn
G)n

{ ∑
i∈Un

P (|Sn
i | = 1)

}2{
1 +

(
n−d

∑
i∈Un

P (|Sn
i | = 1)

)−1}
→ b2

(3.32)
as n → ∞.

Now n−d
∑

i∈Un
P (|Sn

i | = 1) → ∞ as n → ∞, so φ(2βn
G)n{∑i∈Un

P (|Sn
i | =

1)}2 and the left-hand side of (3.32) have the same limit as n → ∞. Now
φ(2βn

G)n{∑i∈Un
P (|Sn

i | = 1)}2 → b2 as n → ∞ if and only if{
φ(βn

G)n
∑
i∈Un

P (|Sn
i | = 1)

}2{(
1 + φ(2βn

G) − φ(βn
G)2

φ(βn
G)2

)n

− 1
}

→ 0

(3.33)
as n → ∞.

Now φ(βn
G)2 → 1 as n → ∞ by (3.24), so (3.33) holds, since n{φ(2βn

G) −
φ(βn

G)2} → 0 as n → ∞ by Lemma 3.4. Thus,
∑

i∈Un

∑
j∈Un\{i} E[θn

i (n)θn
j (n)] →

b2 as n → ∞, and the lemma follows. �
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THEOREM 3.7. Under the conditions of Theorem 3.1, Xn(n)
D−→ Po(b) as

n → ∞.

PROOF. To prove the theorem, it is sufficient to show that dTV(L(Xn(n)),

Po(b)) → 0 as n → ∞, where dTV denotes total variation distance [see Barbour,
Holst and Janson (1992), Appendix, for details]. Since {θn

i (n)} are positively
related for each n ≥ 1, it follows, using Barbour, Holst and Janson (1992),
Corollary 2.C.4, that

dTV
(
L(Xn(n)),Po(b)

)
≤ 1 − e−b

b

(
var(Xn(n)) − b + 2

∑
i∈Un

E[θn
i (n)]2

)

≤ E[Xn(n)] − b + ∑
i∈Un

∑
j∈Un\{i}

cov
(
θn
i (n), θn

j (n)
) + ∑

i∈Un

E[θn
i (n)]2,

since 1 − e−b < b for b > 0. Thus, by (3.30),

dTV
(
L(Xn(n)),Po(b)

)
≤ E[Xn(n)] − b + ∑

i∈Un

∑
j∈Un\{i}

cov
(
θn
i (n), θn

j (n)
)

(3.34)

+ φ(βn
G)nE[Xn(n)].

Now Lemma 3.5 and (3.30) ensure that E[Xn(n)] − b → 0 and φ(βn
G)n ×

E[Xn(n)] → 0 as n → ∞. The theorem then follows from (3.34) since Lemma 3.6
ensures that

∑
i∈Un

∑
j∈Un\{i} cov(θn

i (n), θn
j (n)) → 0 as n → ∞. �

3.4. Poisson approximation for survivors of the epidemic. We return to the
epidemic En. Let ψn

i (t) = 1 if individual i’s susceptibility set avoids global
infection from the first t infectives in a population of size n and ψn

i (t) = 0
otherwise. Let Yn(t) = ∑

i∈Un
ψn

i (t). Clearly, for all t ≥ 0, ψn
i (t) ≤ θn

i (t) (1 ≤
i ≤ n). Note that, for Tn, none of the Tn infectives in the epidemic infects
any of the remaining Sn susceptibles either locally or globally. Since this is the
case, none of the Tn infectives belongs to the susceptiblity set of a remaining
susceptible. Therefore, θn

i (Tn) = 1 implies that ψn
i (Tn) = 1, so ψn

i (Tn) = θn
i (Tn).

Then Yn(Tn) = Xn(Tn) and to show that Sn
D−→ Po(b) as n → ∞, it is sufficient

to show that dTV(Yn(Tn),Xn(n)) → 0 as n → ∞. Also, note that both Xn and Yn

are nonincreasing in t .
Let 0 < δ < 1

2 be as in Theorem 3.1, let Rn be the set of individuals who remain
susceptible during En and let Wn be the set of initial susceptibles who avoid global
infection from the first n − [nδ] infectives. Then, if Tn ≥ n − [nδ], we have that
Rn ⊆ Wn. Let An = {∃ i, j ∈ Un : i, j ∈ Rn, i �= j, j ∈ Sn

i }, Bc
n = {the individuals

in Rn fail to infect each other globally if they were to become infectious} and
Dn = {∃ i, j ∈ Un : i, j ∈ Wn, i �= j, j ∈ Sn

i }.



POISSON APPROXIMATIONS FOR EPIDEMICS 1187

LEMMA 3.8. Suppose that there exists 0 < δ < 1
2 such that nδg(n) → ∞ as

n → ∞. Then, for all n ∈ N,

P
(
Yn(Tn) �= Xn(n)

) ≤ P
(
Yn(Tn) > [nδ]) + P (Dn) + (

1 − φ([nδ]βn
G)[nδ]).(3.35)

PROOF. First, note that

P
(
Yn(Tn) �= Xn(n)

)

≤ P
(
Yn(Tn) > [nδ]) +

[nδ]∑
k=1

P
(
Xn(n) �= k|Yn(Tn) = k

)
P

(
Yn(Tn) = k

)
.

Since Tn = inf{t ≥ mn : t + Xn(t) = n}, the events Tn = n − k and Xn(Tn) = k

are equivalent. Then, since Yn(Tn) = Xn(Tn) = Sn, for each k,

P
(
Xn(n) �= k|Yn(Tn) = k

) = P (An ∪ Bn|Tn = n − k)

≤ P (An|Tn = n − k) + P (Bn|Sn = k).

Now the probability that an infective fails to infect globally any set of k individuals
is simply φ(kβn

G). Therefore, if Sn = k, the probability that none of the individuals
in Rn infect each other globally, if they were to become infectious, is φ(kβn

G)k ,
since the Qi ’s are independent. Thus, P (Bn|Sn = k) = 1 − φ(kβn

G)k . Since, for all
0 ≤ k ≤ [nδ], Rn ⊆ Wn, we have that

P (An|Tn = n − k) ≤ P (Dn|Tn = n − k).

Therefore,

[nδ]∑
k=1

P (An|Tn = n − k)P
(
Yn(Tn) = k

)

≤
[nδ]∑
k=1

P (Dn|Tn = n − k)P
(
Yn(Tn) = k

)

=
[nδ]∑
k=1

P (Dn,Tn = n − k) ≤ P (Dn),

so

[nδ]∑
k=1

P
(
Xn(n) �= k|Yn(Tn) = k

)
P

(
Yn(Tn) = k

) ≤ P (Dn) + (
1 − φ([nδ]βn

G)[nδ]),
as required. �

We now proceed by showing that each of the terms on the right-hand side
of (3.35) converges to 0 as n → ∞ and then Theorem 3.1 follows.
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Let Ẽn be the homogeneous mixing epidemic in a population of size n, where a
typical individual, i say, is infectious for a time Qi and makes infectious contacts
at the points of ξn

i . Let S̃n be the final number of susceptibles in the epidemic Ẽn.
Clearly, Sn ≤st S̃n, since the epidemic Ẽn can be constructed from En by simply
ignoring local infection.

LEMMA 3.9. Under the conditions of Theorem 3.1, for all a ∈ (0,1),
P (S̃n ≥ an) → 0 as n → ∞.

PROOF. The lemma is proved for the case mn = 1. The proof extends readily
to the case mn > 1. Let T̃n = n − S̃n be the final size of the epidemic Ẽn.
Therefore, to prove the lemma, it is sufficient to show that, for all a ∈ (0,1),
P (T̃n ≤ (1 − a)n) → 0 as n → ∞.

For each n, let ξn
1 , ξn

2 , . . . be independent and identically distributed copies
of ξn. Let U be uniformly distributed on (0,1). For i ∈ Z and j ≥ 1, let {Ui,j }
be independent and identically distributed copies of U . For each a ∈ (0,1), we
couple a point process ζ

n,a
i to ξn

i as follows. The j th point of ξn
i is a point on ζ

n,a
i

if and only if Ui,j ≤ a. Therefore, ζ
n,a
i is a homogeneous Poisson process with

rate aλn
G. Note that hng(n) → ∞ as n → ∞, so λn

G → ∞ as n → ∞.
For fixed n ≥ 1 and a ∈ (0,1), let (Q0, ζ

n,a
0 ), (Q1, ζ

n,a
1 ), . . . be independent and

identically distributed copies of (Q, ζn,a) and construct the branching process Bn,a

as follows. Assume that a typical individual, i say, lives for time Qi and
reproduces at the points of ζ

n,a
i . Assign to the initial ancestor the life history

(Q0, ζ
n,a
0 ) and assign life histories to individuals in the branching process

sequentially from (Q1, ζ
n,a
1 ), (Q2, ζ

n,a
2 ), . . . . Let Z

n,a
i be the number of offspring

that the ith individual has in the branching process. Then Z
n,a
1 ,Z

n,a
2 , . . . are

independent and identically distributed copies of a random variable, Zn,a say, and
P (Zn,a = z|Q = x) = 1

z!(aλn
Gx)ze−aλn

Gx (z = 0,1, . . . ).
Let Cn,a be the branching process constructed as in Bn,a , except that no

individual has more than two offspring. This is achieved by ignoring all offspring
of an individual after the birth of his or her second offspring. Let Y

n,a
i be

the number of offspring that the ith individual has in Cn,a . Let qn,a and
rn,a be the extinction probabilities of the branching processes Cn,a and Bn,a ,
respectively. Then, clearly, rn,a ≤ qn,a . Now P (Y

n,a
i = 0) = P (Z

n,a
i = 0) =

E[e−aλn
GQ] and P (Y

n,a
i = 1) = P (Z

n,a
i = 1) = E[aλn

GQe−aλn
GQ]. For k = 0,1,2,

let y
n,a
k = P (Y

n,a
i = k). It is well known that the extinction probability of Cn,a is

min(y
n,a
0 /y

n,a
2 ,1). Then, since P (Q = 0) = 0 and aλn

G → ∞, it follows from the
proof of Lefèvre and Utev (1995), Lemma 4.5, that y

n,a
0 → 0 and y

n,a
1 → 0 as

n → ∞. Therefore, for all a ∈ (0,1), qn,a → 0 as n → ∞.
We follow Kendall (1994) in the construction of the epidemic process Ẽn. Let

the initial infective have infectious life history (Q0, ξ
n
0 ) and assign sequentially

to individuals as they become infected infectious life histories (Q1, ξ
n
1 ), (Q2, ξ

n
2 ),
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. . . , (Qn−1, ξ
n
n−1). Now individual i makes infectious contacts at the points of ξn

i

while infectious.
Suppose there are S susceptibles remaining when the j th infectious contact

by individual i is made. Then we construct the epidemic such that this in-
fectious contact is with a susceptible individual if and only if Ui,j ≤ S

n
. Let

Vn,a be the total progeny of the branching process Bn,a . Then we have cou-
pled Ẽn and Bn,a such that, if the epidemic Ẽn does not infect more than
(1 − a)n of the initial susceptibles, every birth in Bn,a has a corresponding in-
fection in En. Thus, for all a ∈ (0,1), P (T̃n ≤ (1 − a)n) ≤ P (Vn,a ≤ (1 − a)n).
Now P (Vn,a ≤ (1 − a)n) ≤ rn,a , so, for all a ∈ (0,1), P (T̃n ≤ (1 − a)n) → 0 as
n → ∞, as required. �

LEMMA 3.10. Under the conditions of Theorem 3.1, P (Yn(Tn) ≥ [nδ]) → 0
as n → ∞.

PROOF. Fix a = 1 − 2δ and γ = 1 − δ. Then

P
(
Yn(Tn

) ≥ [nδ])
≤ P

(
Yn(Tn) ≥ an

) + P
([nγ ] ≤ Yn(Tn) ≤ an

) + P
([nδ] ≤ Yn(Tn) ≤ [nγ ]).

Since Yn(Tn) = Sn ≤st S̃n, it follows from Lemma 3.9 that P (Yn(Tn) ≥ an) → 0
as n → ∞. Define θ̃ n

i (t) and X̃n(t) in the obvious fashion for Ẽn. Then, clearly,
Yn(t) ≤st X̃n(t) for all t ≥ 0. Now Yn(Tn) ≤ an implies that Tn ≥ [(1 − a)n] and,
since Yn is nonincreasing in t , we have that

P
([nγ ] ≤ Yn(Tn) ≤ an

) ≤ P
(
Yn

([(1 − a)n]) ≥ [nγ ]).
Now P (Yn([(1 − a)n]) ≥ [nγ ]) ≤ P (X̃n([(1 − a)n]) ≥ [nγ ]) and, by Markov’s
inequality, for all sufficiently large n,

P
(
X̃n

([(1 − a)n]) ≥ [nγ ]) ≤ P

(
X̃n

([(1 − a)n]) ≥ 1

2
nγ

)
≤ 2

hn

nγ
φ(βn

G)(1−a)n−1.

Since nδg(n) → ∞ and hng(n)φ(βn
G)n → b as n → ∞, we have that hnn

−δ ×
φ(βn

G)n → 0 as n → ∞. Note that

2hnn
−γ φ(βn

G)(1−a)n−1 = 2φ(βn
G)−1{hnn

−δφ(βn
G)n}{nφ(βn

G)n}2δ−1.

Now φ(βn
G) → 1 as n → ∞ by (3.24). Also, nφ(βn

G)n = hng(n)φ(βn
G)n(n/∑

i∈Un
P (|Sn

i | = 1)) ≥ b
2 for all sufficiently large n, so, for such n, 0 ≤

{nφ(βn
G)n}2δ−1 ≤ (b

2 )2δ−1. Thus, P ([nγ ] ≤ Yn(Tn) ≤ an) → 0 as n → ∞.
Finally, since Yn is nonincreasing in t ,

P
([nδ] ≤ Yn(Tn) ≤ [nγ ]) ≤ P

(
Yn(n − [nγ ]) > 1

2nδ
) ≤ P

(
X̃n(n − [nγ ]) > 1

2nδ
)
,
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so, using Markov’s inequality, P ([nδ] ≤ Yn(Tn) ≤ nγ ) ≤ 2hnn
−δφ(βn

G)n−nγ
.

Since 0 < γ < 1, we have by (3.24) that φ(βn
G)n

γ → 1 as n → ∞. Therefore,
since hnn

−δφ(βn
G)n → 0 as n → ∞, we have that P ([nδ] ≤ Yn(Tn) ≤ [nγ ]) → 0

as n → ∞, and the lemma follows. �

Lemma 3.9 leads, via a similar argument to the proof of Lemma 3.10, to a new
and simple proof of Lefèvre and Utev (1995), Proposition 4.3, and this is presented
in the Appendix.

LEMMA 3.11. Under the conditions of Theorem 3.1, P (Dn) → 0 as n → ∞.

PROOF. For fixed n, let i ∼ j if j ∈ Mn
i and Gn = {∃ distinct i, j ∈ Wn : i ∼ j}.

Now

P (Dn) = P (Dn| |Wn| ≤ [nδ])P (|Wn| ≤ [nδ])
+ P (Dn| |Wn| > [nδ])P (|Wn| > [nδ])

≤ P (Dn| |Wn| ≤ [nδ]) + P (|Wn| > [nδ])
(3.36) = P (Dn,G

c
n| |Wn| ≤ [nδ])

+ P (Dn,Gn| |Wn| ≤ [nδ]) + P (|Wn| > [nδ])
≤ P (Dn| |Wn| ≤ [nδ],Gc

n) + P (Gn| |Wn| ≤ [nδ]) + P (|Wn| > [nδ]).
First, note that |Wn| = X̃n(n − [nδ]). Therefore, P (|Wn| > [nδ]) = P (X̃n(n −
[nδ]) > [nδ]) and by Markov’s inequality P (X̃n(n − [nδ]) > [nδ]) ≤ 2hnn

−δ ×
φ(βn

G)n−[nδ], since 1
2nδ ≤ [nδ] for all sufficiently large n. Then, as in the proof of

Lemma 3.10, we have that

2hnn
−δφ(βn

G)n−[nδ] → 0 as n → ∞.

Clearly, P (Gn| |Wn| ≤ [nδ]) ≤ P (Gn| |Wn| = [nδ]). Since each individual in Un

is equally likely to be contained in Wn, we construct the set {|Wn| = [nδ]} as
follows. For each n ≥ 1, let χn

1 , χn
2 , . . . be independent and identically distributed

random variables with P (χn
1 = j) = h−1

n for j ∈ Un. Let Nn = min{k > 1 :∃1 ≤
i ≤ k − 1, χn

i ∼ χn
k }. Now, for each individual, i say, there are at most [nd ]

individuals, j say (including individual i him- or herself), for whom j ∼ i.
Therefore, for Nn > k, given Nn > k − 1, we require the kth individual not to
belong to

⋃k−1
i=1 Mn

i , and so there are at most (k − 1)[nd ] individuals in Un to

avoid. Thus, for all k > 1, P (Nn > k|Nn > k − 1) ≥ 1 − k[nd ]
hn

, so P (Nn > k) ≥∏k−1
i=1 (1 − i[nd ]

hn
). Now, for each k,

P (Gn| |Wn| = k) = P r(Gn| |Wn| = k,Nn > k)P (Nn > k)

+ P (Gn| |Wn| = k,Nn ≤ k)P (Nn ≤ k).



POISSON APPROXIMATIONS FOR EPIDEMICS 1191

Suppose that |Wn| = k and let Wn = {χn
1 , χn

2 , . . . , χn
k }. Note that if Nn > k,

then Wn has been constructed in such a way that, for all 1 ≤ i < j ≤ k, χn
i �= χn

j ,
so |Wn| = k and there does not exist distinct i, j ∈ Wn such that χn

i ∼ χn
j .

Hence, P (Gn| |Wn| = k,Nn > k) = 0, so P (Gn| |Wn| = k) ≤ P (Nn ≤ k). For
all n ≥ 1, let the random variable Ñn be such that, for all k ∈ N, P (Ñn > k) =∏k−1

i=1 (1 − i[nd ]
hn

). Then it is well known [see e.g., Aldous (1985), page 96], that

( hn

[nd ])
−1/2Ñn

D−→ Ñ as n → ∞, where Ñ has density f (x) = x exp(−x2

2 ) (x > 0).

Since hnn
−d−2δ → ∞ as n → ∞, we have that ( [nd ]

hn
)1/2nδ → 0 as n → ∞, so

P (Nn > [nδ]) ≥ P (Ñn > [nδ]) → 1 as n → ∞. Therefore,

P (Gn| |Wn| ≤ [nδ]) ≤ P (Nn ≤ [nδ]) → 0 as n → ∞.

Note that

P (Dn|Gc
n, |Wn| ≤ [nδ])

=
[nδ]∑
k=1

P (Dn|Gc
n, |Wn| = k)P

(|Wn| = k|Gc
n, |Wn| ≤ [nδ]).(3.37)

The probability that while infectious an individual, i say, fails to infect locally
any individual in {Ln

i }c is φ(
∑

j /∈Ln
i
vn
i,j λ

n
L). Now, conditioning on Gc

n, if each
individual, i say, in Wn does not make local infectious contacts outside Ln

i , then
all the individuals in Wn will have susceptibility sets of size 1. Since, for all
sufficiently large n,

∑
j /∈Ln

i
vn
i,j < n−ε (1 ≤ i ≤ n), it follows that, for such n,

P (Dn|Gc
n, |Wn| = k) ≤ 1 − φ(n−ελn

L)k.

Therefore, it follows from (3.37) that

P (Dn|Gc
n, |Wn| ≤ [nδ]) ≤

[nδ]∑
k=1

(
1 − φ(n−ελn

L)k
)
P

(|Wn| = k|Gc
n, |Wn| ≤ [nδ])

≤ 1 − φ(n−ελn
L)[nδ]

≤ 1 − (1 − n−ελn
LE[Q])[nδ ] → 0 as n → ∞,

since nδ−ελn
L → 0 as n → ∞. Therefore, from (3.36), we have that P (Dn) → 0 as

n → ∞. �

We are now in a position to prove our main theorem.

PROOF OF THEOREM 3.1. Theorem 3.7 ensures that Xn(n)
D−→ Po(b) as

n → ∞. Therefore, to prove Theorem 3.1, it suffices to show that P (Xn(n) �=
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Sn) → 0 as n → ∞. Now Lemma 3.10 shows that under the stated con-
ditions P (Yn(Tn) ≥ [nδ]) → 0 as n → ∞. We have from Lemma 3.11 that
P (Dn) → 0 as n → ∞. Finally, using Jensen’s inequality, 1 − φ([nδ]βn

G)[nδ] ≤
1 − φ(βn

G)n
2δ

and, since 2δ < 1, by (3.24), 1 − φ(βn
G)n

2δ → 0 as n → ∞. Thus,

1 − φ([nδ]βn
G)[nδ] → 0 as n → ∞, and the theorem now follows using Lemma 3.8.

�

4. Specific models. Theorem 3.1 can be simplified greatly if we specify the
model to be considered. In this section, we study the great circle, overlapping
groups and households models, outlined in Section 2.2.

4.1. Great circle model. Consider the great circle of Section 2.2.1 and
suppose that limn→∞ wn

i = wi (i ∈ Z), where {wi; i ∈ Z} is a proper dis-
tribution with w0 = 0. Suppose further that, for n = 1,2, . . . , wn

i ≥ wi(i =
−[n−1

2 ],−[n−1
2 ]+ 1, . . . , [n

2 ]) with wn
0 = 0. Therefore, for all 1 ≤ i ≤ n, P (|Sn

i | =
1) = ∏[n/2]

j=−[(n−1)/2] φ(wn
j λn

L).

THEOREM 4.1. Suppose that there exist α > 0, 0 < δ < 1
2 and b > 0 such that

λn
Ln−α → 0, nδP (|Sn

1 | = 1) → ∞ and λn
GE[Q]− log(hnP (|Sn

1 | = 1))+ logb → 0
as n → ∞. Suppose also that there exist γ ≥ 0 and ρ > δ+α

1+γ
+ 2δ such that γ >

δ + α − 1,
∑

i∈Z |i|1+γ wi < ∞ and hnn
−ρ → ∞ as n → ∞. Then Sn

D−→ Po(b)

as n → ∞.

PROOF. To prove the theorem, it is sufficient to show that the conditions of
Theorem 3.1 are satisfied. First, note that P (|Sn

i | = 1) = ∏[n/2]
l=−[(n−1)/2] φ(wn

l λn
L)

(1 ≤ i ≤ n), so g(n) = P (|Sn
1 | = 1). Fix ε and c such that δ+α

1+γ
< ε

1+γ
< c < ρ −2δ

and, for 1 ≤ i ≤ n, let Ln
i = {j ∈ N : j ≤ n and − 1

10nc < (j − i)mod n < 1
10nc}.

Then, for n ≥ 1, |Ln
i | ≤ 1

3nc (1 ≤ i ≤ n), so |Mn
i | ≤ nc (1 ≤ i ≤ n). Recall that, for

n ≥ 1, wn
l ≤ wl (l = −[n−1

2 ],−[n−1
2 ] + 1, . . . , [n

2 ]). Thus, for 1 ≤ i ≤ n,∑
j /∈Ln

i

vn
i,j = ∑

|l|≥nc/10

wn
l = 1 − ∑

|l|<nc/10

wn
l ≤ 1 − ∑

|l|<nc/10

wl = ∑
|l|≥nc/10

wl.

Now
∑

|l|≥nc/10 wl < n−ε for all sufficiently large n, since otherwise∑
i∈Z

|i|1+γ wi ≥ ∑
|i|≥nc/10

|i|1+γ wi

≥ 1

101+γ
nc(1+γ )

∑
|i|≥nc/10

wi ≥ 1

101+γ
nc(1+γ )−ε
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for arbitrarily large n, which contradicts
∑

i∈Z |i|1+γ wi < ∞ since c(1 +γ )− ε >

0. Thus,
∑

j /∈Ln
i
vn
i,j < n−ε for all sufficiently large n. Further,

∑
j /∈Ln

i
vn
j,i =∑

j /∈Ln
i
vn
i,j by the symmetry of the great circle model, so

∑
j /∈Ln

i
vn
j,i < n−ε for

all sufficiently large n. Finally, since c + 2δ < ρ, hnn
−(c+2δ) → ∞ as n → ∞,

and the theorem then follows from Theorem 3.1. �

In the nearest neighbor case where, for all n ≥ 3, wn
1 = wn−1 = 1

2 , the conditions
of Theorem 4.1 can be greatly simplified. The result is presented in Theorem 4.2.
The proof of Theorem 4.2 is very similar to that of Theorem 4.3 and is hence
omitted.

THEOREM 4.2. Suppose that there exist 0 < δ < 1
2 and b > 0 such that

nδφ(1
2λn

L)2 → ∞, hnn
−2δ → ∞ and λn

GE[Q] − log hn − 2 logφ(1
2λn

L) +
logb → 0 as n → ∞. Then Sn

D−→ Po(b) as n → ∞.

The extension of Theorem 4.2 to d-dimensional nearest neighbor percolation
epidemic models is straightforward, and in that case g(n) = P (|Sn

1 | = 1) =
φ( 1

2d
λn

L)2d .

4.2. Overlapping groups model. Consider the overlapping groups model
of Section 2.2.2. Suppose that no two individuals belong to both the same
group of type A and the same group of type B . Therefore, for all 1 ≤ i ≤ n,
P (|Sn

i | = 1) = φ(βn
A)mA−1φ(βn

B)mB−1. Let i
o∼ j if individuals i and j belong to

the same group either of type A or of type B . For 1 ≤ i ≤ n, let Ln
i = {j : j

o∼ i}.
Then |Ln

i | = mA + mB − 1. Clearly, since there is no local infection between two
individuals who do not share a group, we have, for all n ≥ 1 and for all 1 ≤ i ≤ n,
that

∑
j /∈Ln

i
vn
i,j = ∑

j /∈Ln
i
vn
j,i = 0. Note that |Mn

i | = 2mAmB − mA − mB + 1.

The local independence in the overlapping groups model of two individuals in
different groups leads to a simplification of Theorem 3.1, as demonstrated below.

THEOREM 4.3. Suppose that there exist 0 < δ < 1
2 and b > 0 such that

nδP (|Sn
1 | = 1) → ∞, hnn

−2δ → ∞ and λn
GE[Q] − log(hnP (|Sn

1 | = 1)) +
logb → 0 as n → ∞. Then Sn

D−→ Po(b) as n → ∞.

Before proving Theorem 4.3, we require the following two lemmas. However,
we first note that Lemma 3.4 holds under the conditions of Theorem 4.3.

LEMMA 4.4. Under the conditions of Theorem 4.3, E[Xn(n)] → b and∑
i∈Un

∑
j∈Un\{i}

cov
(
θn
i (n), θn

j (n)
) → 0 as n → ∞.
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PROOF. Using (3.4) and (3.5), it is straightforward to show that

hnφ(βn
G)nP (|Sn

1 | = 1) ≤ E[Xn(n)] ≤ hnφ(βn
G)n−mA−mB+1P (|Sn

1 | = 1).(4.1)

By identical arguments to those employed in the proof of Lemma 3.5, (3.24)
again holds and E[Xn(n)] → b since φ(βn

G)mA+mB−1 → 1 as n → ∞. Therefore,
(4.1) leads to a result equivalent to that of Lemma 3.5 without requiring that there
exists α > 0 such that λn

Ln−α → 0 as n → ∞.
Note that |Ln

i ∪ Ln
j | ≤ 2(mA + mB − 1) and, using (3.25), we have that if

Ln
i ∩ Ln

j = ∅, then

E[θn
i (n)θn

j (n)] ≤ φ(2βn
G)n−2(mA+mB−1)P (|Sn

i | = 1)P (|Sn
j | = 1).(4.2)

Suppose that Ln
i ∩ Ln

j �= ∅. Then it is straightforward to show that

E[θn
i (n)θn

j (n)] ≤ φ(2βn
G)n−2(mA+mB−1)P (|Sn

i | = 1).(4.3)

Since {θn
i (n)} are positively related,∑

i∈Un

∑
j∈Un\{i}

E[θn
i (n)θn

j (n)] ≥ ∑
i∈Un

∑
j∈Un\{i}

E[θn
i (n)]E[θn

j (n)].(4.4)

As in the proof of Lemma 3.6, it is straightforward to show that the right-hand
side of (4.4) converges to b2 as n → ∞. Since |Mn

i | = 2mAmB − mA − mB + 1,
we have from (4.2) and (4.3) that∑

i∈Un

∑
j∈Un\{i}

E[θn
i (n)θn

j (n)]

≤ ∑
i∈Un

∑
j∈Un

A−2
n φ(2βn

G)nP (|Sn
i | = 1)P (|Sn

j | = 1)

(4.5) + (2mAmB − mA − mB + 1)
∑
i∈Un

A−2
n φ(2βn

G)nP (|Sn
i | = 1)

= A−2
n {h2

nP (|Sn
1 | = 1)2φ(2βn

G)n}
{

1 + 2mAmB − mA − mB + 1

hnP (|Sn
1 | = 1)

}
,

where An = φ(βn
G)2(mA+mB−1). Note that, by (3.24), An → 1 as n → ∞ and by

the conditions of Theorem 4.3, hnP (|Sn
1 | = 1) → ∞ as n → ∞. Therefore, the

right-hand side of (4.5) has the same limit as h2
nP (|Sn

1 | = 1)2φ(2βn
G)n as n → ∞.

Since we have established a lower bound for
∑

i∈Un

∑
j∈Un\{i} E[θn

i (n)θn
j (n)]

which converges to b2 as n → ∞, to prove the lemma, it suffices to show that
h2

nP (|Sn
1 | = 1)2φ(2βn

G)n → b2 as n → ∞. Now h2
nP (|Sn

1 | = 1)2φ(2βn
G)n → b2 if

and only if

{hnP (|Sn
1 | = 1)φ(βn

G)n}2
{(

1 + φ(2βn
G) − φ(βn

G)2

φ(βn
G)2

)n

− 1
}

→ 0

(4.6)
as n → ∞.
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Now φ(βn
G)2 → 1 as n → ∞, by (3.24), so (4.6) holds, since n{φ(2βn

G) −
φ(βn

G)2} → 0 as n → ∞ by Lemma 3.4. Thus,
∑

i∈Un

∑
j∈Un\{i} E[θn

i (n)θn
j (n)] →

b2 as n → ∞, and the lemma follows. �

Define Rn,Wn,An,Bn and Dn as in Section 3.4. Then it is straightforward to
show that Lemmas 3.8–3.10 hold under the conditions of Theorem 4.3.

LEMMA 4.5. Under the conditions of Theorem 4.3, P (Dn) → 0 as n → ∞.

PROOF. As in the proof of Lemma 3.11, let i ∼ j if j ∈ Mn
i and let Gn =

{∃ distinct i, j ∈ Wn : i ∼ j}. Then, by similar arguments to those used in the proof
of Lemma 3.11, (3.17), we have that

P (Dn) ≤ P (Dn| |Wn| ≤ [nδ],Gc
n) + P (Gn| |Wn| ≤ [nδ]) + P (|Wn| > [nδ]).(4.7)

First, note that, as in the proof of Lemma 3.11, P (|Wn| > [nδ]) → 0 as n → ∞.
Now, if no two individuals in Wn share the same group, it is impossible for individ-
uals in Wn to infect each other locally, so P (Dn|Gc

n, |Wn| ≤ [nδ]) = 0. Now, for
all 1 ≤ i ≤ n, |Mn

i | = 2mAmB − mA − mB + 1, so by similar arguments to those
used in the proof of Lemma 3.11, with [nd ] replaced by 2mAmB − mA − mB + 1,
it is straightforward to show that P (Gn| |Wn| ≤ [nδ]) → 0 as n → ∞. �

PROOF OF THEOREM 4.3. First, note that since {θn
i (n)} are positive related

and (3.30) still holds then (3.34) still holds. Also, by (3.30) and Lemma 4.4,

the right-hand side of (3.34) converges to 0 as n → ∞, so Xn(n)
D−→ Po(b) as

n → ∞. Further, as previously mentioned, Lemma 3.8 holds under the conditions
of Theorem 4.3, so (3.35) holds. Now, P (Yn(Tn) > [nδ]) → 0 and P (Dn) → 0 as
n → ∞ by Lemmas 3.10 and 4.5, respectively. Note that, by Jensen’s inequality,
1 − φ([nδ]βn

G)[nδ] ≤ 1 − φ(βn
G)n

2δ
, so, using (3.24), 1 − φ([nδ]βn

G)[nδ] → 0 as
n → ∞, since 2δ < 1. Thus, P (Yn(Tn) �= Xn(n)) → 0 as n → ∞, and the theorem
follows. �

The extension to k-types of overlapping groups is straightforward and involves
no new concepts.

4.3. Households model. Let i
h∼ j if individuals i and j belong to the same

household. For each n ≥ 1 and for all 1 ≤ i ≤ n, let Ln
i = {j : j

h∼ i}. Note that,
for all 1 ≤ i, j ≤ n, if Ln

i ∩ Ln
j �= ∅ then Ln

j = Ln
i . Thus, for all 1 ≤ i ≤ n,

Mn
i = Ln

i . (Note that i ∼ j if and only if i
h∼ j , since Mn

i = Ln
i .) It is easy to

see that, for all 1 ≤ i ≤ n,
∑

j /∈Ln
i
vn
i,j = ∑

j /∈Ln
i
vn
j,i = 0. Let πn

k be the probability
that an individual in Un belongs to a household of size k. Now, if individual i

belongs to a household of size k ≥ 2, P (|Sn
i | = 1) = φ( 1

k−1λn
L)k−1, so g(n) =

πn
1 + ∑∞

k=2 πn
k φ( 1

k−1λn
L)k−1.
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THEOREM 4.6. Suppose that there exist 0 < δ < 1
2 and b > 0 such that

nδg(n) = nδ

{
πn

1 +
∞∑

k=2

πn
k φ

(
1

k − 1
λn

L

)k−1
}

→ ∞

and λn
GE[Q] − log(hng(n)) + logb → 0 as n → ∞. Suppose, in addition, that

there exist ζ > 1
1−2δ

and c > 1
ζ

such that, for all n ≥ 1,
∑∞

k=1 kζπn
k < ∞ and

hnn
−(c+2δ) → ∞ as n → ∞. Then Sn

D−→ Po(b) as n → ∞.

PROOF. Now, for all sufficiently large n, |Mn
i | = |Ln

i | ≤ nc (1 ≤ i ≤ n), since
otherwise

∞∑
k=1

kζ πn
k ≥ ncζπn[nc]+1 ≥ ncζ h−1

n ≥ ncζ−1

for arbitrarily large n, which contradicts
∑∞

k=1 kζπn
k < ∞ since cζ − 1 > 0.

By similar arguments to those employed in Lemma 4.4, it is straightforward to
show that, under the conditions of the theorem,

E[Xn(n)] → b and
∑
i∈Un

∑
j∈Un\{i}

cov
(
θn
i (n), θn

j (n)
) → 0

(4.8)
as n → ∞.

Note that since {θn
i (n)} are positive related and (3.30) still holds then (3.34)

still holds. Also, by (3.30) and (4.8), the right-hand side of (3.34) converges

to 0 as n → ∞, so Xn(n)
D−→ Po(b) as n → ∞. Define Rn,Wn,An,Bn and

Dn as in Section 3.4. Then it is straightforward to show that Lemmas 3.8–
3.10 hold under the conditions of the theorem, so (3.35) holds and P (Yn(Tn) ≥
[nδ]) → 0 as n → ∞. Since |Mn

i | ≤ nc and hnn
−(c+2δ) → ∞ as n → ∞, by

similar arguments to those used in Lemma 4.5, P (Dn) → 0 as n → ∞. Note
that, by Jensen’s inequality, 1 − φ([nδ]βn

G)[nδ] ≤ 1 − φ(βn
G)n

2δ
, so, using (3.24),

1 − φ([nδ]βn
G)[nδ] → 0 as n → ∞, since 2δ < 1. Thus, P (Yn(Tn) �= Xn(n)) → 0

as n → ∞, and the theorem follows. �

Suppose that λn
L → ∞ and πn

1 → π1 > 0 as n → ∞. Then, by Jensen’s
inequality and Lefèvre and Utev (1995), Lemma 4.5, we have that, for all k ≥ 2,

φ

(
1

k − 1
λn

L

)k−1

≤ φ(λn
L) → 0 as n → ∞.

Then it is straightforward to show that λn
GE[Q] − log(hng(n)) + logb → 0 if and

only if λn
GE[Q] − log hn → log π1

b
. Furthermore, all the survivors of the epidemic

belong to households of size 1 in the limit as n → ∞.
Suppose that all the households are of equal size, K say. Then we have the

following immediate corollary to Theorem 4.3, by setting λn
A = λn

L, λn
B = 0 and

mA = K .
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COROLLARY 4.7. Suppose that there exist 0 < δ < 1
2 and b > 0 such

that nδφ( 1
K−1λn

L)K−1 → ∞, hnn
−2δ → ∞ and λn

GE[Q] − loghn − (K − 1) ×
logφ( 1

K−1λn
L) + logb → 0 as n → ∞. Then Sn

D−→ Po(b) as n → ∞.

An intriguing consequence of Theorem 4.2 and Corollary 4.7 is that, for any
given sequence (λn

G,λn
L), the nearest neighbor great circle epidemic and the equal-

sized households epidemic, where all households are of size 3, have the same
Poisson limit distribution, provided one exists. No corresponding result holds for
either the branching process approximation or the Gaussian approximation, and
this is due to the fact, noted in Section 2.3, that the threshold parameter and the
Poisson limit theorem depend on different aspects of the distribution of the size of
a typical local susceptibility set.

5. Concluding comments. We have developed a Poisson limit theorem for a
very general model for epidemics with two levels of mixing. Although the theorem
has a technically complicated proof, its use as a tool for approximating the final
outcome of severe epidemics is extremely simple. One just has to determine Rn

0 ,
the mean number of global contacts that emanate from a typical infectious
individual, and g(n), the probability that a randomly chosen initial susceptible
has local susceptibility set of size 1. (For most models, these quantities are easily
calculated.) Then, provided that the epidemic is well above threshold and local
spread is sufficiently restrictive, Theorem 3.1 implies that the number of survivors
of the epidemic is approximately Poisson distributed with mean hng(n)e−Rn

0 ,
where n is the total population size and hn is the initial number of susceptibles.
Moreover, our method of proof yields, via (3.34) and (3.35), a bound for the total
variation distance between the exact and approximating distributions.

The conditions of Theorem 3.1 can be shown to be close to optimal by
considering the homogeneously mixing case (λn

L = 0) for which Lefèvre and Utev
(1995) establish necessary and sufficient conditions for a Poisson limit theorem.
If λn

L = 0, then g(n) = 1 and Theorem 3.1 reduces to the strong Poisson limit
theorem of Lefèvre and Utev (1995), Corollary 2.6, with the additional condition
that there exists ζ > 0 such that hnn

−ζ → ∞ as n → ∞. [Lefèvre and Utev
(1995), Corollary 2.6, requires in our terminology that hn → ∞ as n → ∞.]
The additional restriction on hn is required to ensure that, where there is local
infection, the configuration of the initial susceptibles is not important for the
Poisson limit theorem (see, in particular, Lemmas 3.6 and 3.11). Obviously, this
is not required for the homogeneously mixing case; all that is required is that
hn → ∞ as n → ∞, yielding the strong Poisson limit theorem of Lefèvre and
Utev (1995), Corollary 2.6.

A natural extension of the Poisson limit is a compound Poisson limit.
Compound Poisson limits are often considerably harder to prove than Poisson
limits and the above models are no exception. However, the households model
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permits a compound Poisson limit, the details of which will be presented
elsewhere. Suppose that all the households are of size K ≥ 2 and that the infection
period is constant, Q = q > 0. Then, provided λn

G and λn
L are appropriately scaled

with n, it is fairly straightforward to show that a compound Poisson limit exists

and, furthermore, that Sn
D−→ Po(b1) + K Po(b2) for some 0 ≤ b1, b2 < ∞ as

n → ∞. In particular, if b1, b2 > 0, then λn
G = 1

qK
log( n

b2
) + o(n) and λn

L =
1

qK
log( n

b3
)+ o(n) as n → ∞, where b3 = (b

1/K
2 /b1)

K/(K−1). Therefore, to obtain
an interesting compound Poisson limit for the households model requires very
careful scaling of the global and local infection rates. Moreover, for large n, the
survivors of the epidemic either belong to a household which completely avoids
infection or a survivor is the only survivor within his or her household.

APPENDIX

Here we show that Lemma 3.9 leads to a simpler proof of Lefèvre and Utev
(1995), Proposition 4.3. Lefèvre and Utev (1995) consider homogeneously mixing
epidemics (so, in our notation, λn

L = 0), with the same conditions on Q as we
impose in Section 2.1, except that E[Q] < ∞ and (3.3) are not required. They also
assume that there are n initial susceptibles and mn initial infectives, so the infection
rate, βn

G in our notation, is indexed by the initial number of susceptibles and the
number of susceptibles at the end of the epidemic is given by Xn(Tn), where now
Tn = min{t ≥ mn : t + Xn(t) = n + mn}. Suppose also that the sequence (βn

G)

satisfies the condition [(2.9) of Lefèvre and Utev (1995)]

(n + mn)t (β
n
G) − log(n/bn) → 0 with bn → b, as n → ∞,(A.1)

where b ∈ (0,∞). Lefèvre and Utev (1995), Proposition 4.3, states that subject to
these conditions

P
(
Xn(Tn) ≥ l

) → 0 as l → ∞, uniformly in n.(A.2)

To prove (A.2), fix 0 < a < δ < 1. Then, for all l ≥ 1,

P
(
Xn(Tn) ≥ l

)
≤ P

(
l ≤ Xn(Tn) ≤ [nδ])

+ P
([nδ] ≤ Xn(Tn) ≤ an

) + P
(
Xn(Tn) ≥ an

)
.

(A.3)

Now Xn(Tn) ≤ an implies that Tn ≥ (1 − a)n + mn ≥ (1 − a)(n + mn), so

P
([nδ] ≤ Xn(Tn) ≤ an

)
≤ P

(
1

2
nδ ≤ Xn

(
(1 − a)(n + mn)

))

≤ 2

nδ
E

[
Xn

(
(1 − a)(n + mn)

)]
by Markov’s inequality

= 2{nφ(βn
G)n+mn}1−ana−δ → 0 as n → ∞,



POISSON APPROXIMATIONS FOR EPIDEMICS 1199

since (A.1) implies that nφ(βn
G)n+mn → b as n → ∞.

Suppose that mn ≤ an for all n ≥ 1. Then, by Lefèvre and Utev (1995),
Proposition 6.6, λn

G = nβn
G → ∞ as n → ∞, and it is trivial to adapt the proof of

Lemma 3.9 to show that P (Xn(Tn) ≥ an) → 0 as n → ∞. Suppose that mn > an

for all n ≥ 1. Then (A.1) implies that φ(βn
G)mn → 0 as n → ∞. Therefore, since

Tn ≥ mn, Markov’s inequality yields

P
(
Xn(Tn) ≥ an

) ≤ P
(
Xn(mn) ≥ an

)
≤ E[Xn(mn)]

an
= φ(βn

G)mn

a
→ 0 as n → ∞.

Hence, P (Xn(Tn) ≥ an) → 0 as n → ∞ for any sequence (mn) satisfying (A.1).
Thus, the final two terms on the right-hand side of (A.3) converge to 0 as

n → ∞, so (A.2) will follow if P (l ≤ Xn(Tn) ≤ [nδ]) → 0 as l → ∞ uniformly
in n. Now, as in the proof of Lemma 3.5, it is straightforward to show that, for all
sufficiently large n,

exp
(
− 2

n + mn

log
(

n

b

))
≤ φ(βn

G) ≤ 1,

so φ(βn
G)[nδ] → 1 as n → ∞ and

E
[
Xn(n + mn − [nδ])] = nφ(βn

G)n+mnφ(βn
G)−[nδ] → b as n → ∞.(A.4)

Further, Xn(Tn) ≤ [nδ] implies that Tn ≥ n + mn − [nδ], so

P
(
l ≤ Xn(Tn) ≤ [nδ]) ≤ P

(
l ≤ Xn(n + mn − [nδ])) ≤ 1

l
E

[
Xn(n + mn − [nδ])],

and (A.2) follows using (A.4).
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