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We study a new type of representation problem for optional processes
with connections to singular control, optimal stopping and dynamic al-
location problems. As an application, we show how to solve a variant
of Skorohod’s obstacle problem in the context of backward stochastic dif-
ferential equations.

1. Introduction. In this paper, we study a new type of representation problem
for optional processes. Specifically, given such a process X = (X(t),0 ≤ t ≤ T̂ ),
our aim is to construct a progressively measurable process L such that X can be
written as an optional projection of the form

X(s) = E

[∫ T̂

s
f

(
t, sup

s≤v≤t
L(v)

)
dt

∣∣∣Fs

]
, 0 ≤ s ≤ T̂ ,

where f = f (t, l) is a prescribed function which strictly decreases in l.
This representation problem has some surprising connections to a variety of

stochastic optimization problems.
Indeed, our original interest in this problem comes from a singular stochastic

control problem arising in economics, namely the problem of optimal consumption
choice when consumption preferences are given through a Hindy–Huang–Kreps
utility functional; see Hindy, Huang and Kreps (1992) and Hindy and Huang
(1993). In a general semimartingale setting, Bank and Riedel (2001) show how to
reduce this optimization problem to a representation problem of the above type.
The process X is given in terms of a stochastic price process, the function f

is determined by consumption preferences, and it turns out that a solution L to
the corresponding representation problem yields an explicit description of the
optimal consumption plan. Hence, in this context, a representation problem of
the above type serves as a substitute for the Hamilton–Jacobi–Bellman equation
which extends beyond the Markovian framework.

There is also a close connection to dynamic allocation problems where one
has to spend a limited amount of effort to a number of different projects. Each
of these projects accrues a specific reward proportional to the effort spent on it.
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Of course, one wishes to allocate the available effort to the given projects so as
to maximize the total expected reward. It is well known that solutions to such
problems can be described in terms of so-called Gittins indices which provide a
dynamic performance measure for each single project; see, for example, El Karoui
and Karatzas (1994). It turns out that a solution to our representation problem
coincides with such a Gittins index process when X describes the cumulative
discounted rewards from a given project and f yields the discount factor.

Moreover, for the special case where f takes the separable form f (t, l) =
−g(t)l, we shall see that a solution L of the representation problem provides the
value process for the nonstandard optimal stopping problems

L(s) = ess inf
T

E[X(T ) − X(s)|Fs]
E[∫ T

s g(t) dt|Fs]
, 0 ≤ s < T̂ ,

where the ess inf is taken over all stopping times T > s. For special choices
of X, such problems also occur in Gittins index theory; see, for example, Karatzas
(1994). We also refer to Morimoto (1991) for further discussion.

Finally, a solution to our representation problem provides a solution to a certain
obstacle problem of Skorohod type. In this problem, the process X describes some
randomly fluctuating obstacle and one seeks to construct a semimartingale Y with
Doob–Meyer decomposition

dY (t) = f
(
t,A(t)

)
dt + dM(t) and Y (T̂ ) = 0

such that Y ≤ X where A is an adapted, right continuous and increasing process
satisfying the flat-off condition

E

∫ T̂

0
|X(t) − Y (t)|dA(t) = 0.

We will show that, for a large class of optional processes X, there is a
unique process A with these properties, namely the running supremum A(t)

�=
sup0≤v≤t+ L(v) of a solution L to our representation problem for X.

Let us now describe our results and techniques in greater detail.
We start with a general uniqueness result and show in Theorem 1 that, up to

optional sections, there can be at most one upper-right continuous, progressively
measurable solution L to the above representation problem.

For the question of existence, we first focus on the case when X is given by a
deterministic function x : [0, T̂ ] → R, that is, we look for a deterministic function l

such that

x(s) =
∫ T̂

s
f

(
t, sup

s≤v≤t
l(v)

)
dt for all 0 ≤ s ≤ T̂ .

Our construction of such a function l is based on an inhomogeneous notion of
convexity which allows us to account for the time-inhomogeneity introduced by
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the function f . We develop analogues to the basic properties of usual convexity. In
particular, we introduce the inhomogeneously convex envelope of a given function.
In terms of these envelopes, we explicitly construct the solution l to the above
problem if x is lower-semicontinuous. More precisely, Theorem 2 reveals that
precisely the lower-semicontinuous functions x with x(T̂ ) = 0 can be represented
in the above form when l varies over the deterministic upper-semicontinuous
functions.

Existence of a solution in the general stochastic case is established in
Theorem 3. The proof of this theorem uses techniques developed by El Karoui
and Karatzas (1994) in their investigation of Gittins’ problem of optimal dynamic
scheduling. The main idea is to consider a family of auxiliary optimal stopping
problems of Gittins type whose value functions in the end allow us to describe the
solution to our original representation problem. These auxiliary Gittins problems
are analyzed by means of the “théorie generale” of Snell envelopes as it is
developed in El Karoui (1981).

The paper is organized as follows: in Section 2 we give a precise formulation
of our representation problem and present the main results. Section 3 explains the
connections between the representation problem and the mentioned optimization
and obstacle problems in more detail. Proofs and some supplementary results
are contained in Section 4; the more technical arguments are relegated to the
Appendix.

2. Formulation of the problem and main results. Let X = (X(t),

0 ≤ t ≤ T̂ ) be a real-valued optional process on some filtered probability space
(�,F ,F,P) satisfying the usual conditions of right continuity and completeness.
The time horizon for our setting is T̂ ∈ [0,+∞], and we assume that X is of
class (D), that is, the family of random variables (X(T ), T ≤ T̂ a stopping time)
is uniformly P-integrable with X(T̂ ) = 0, P-a.s. Furthermore we consider a func-
tion f satisfying the following assumption.

ASSUMPTION 1. The mapping f :� × [0, T̂ ] × R → R satisfies:

(i) For each ω ∈ � and any t ∈ [0, T̂ ], the function f (ω, t, ·) : R → R is
continuous and strictly decreasing from +∞ to −∞.

(ii) For any l ∈ R, the stochastic process f (·, ·, l) :� × [0, T̂ ] → R is
progressively measurable with

E

∫ T̂

0
|f (t, l)|dt < +∞.

We ask under which conditions there exists a progressively measurable process
L = (L(t),0 ≤ t < T̂ ) such that X coincides with the optional projection

X = O

(∫ T̂

s
f

(
t, sup

s≤v≤t
L(v)

)
dt,0 ≤ s ≤ T̂

)
.(1)
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To which extent is such a process L uniquely determined?
We can state (1) in the equivalent form of the stochastic backward equation

X(S) = E

[∫ T̂

S
f

(
t, sup

S≤v≤t

L(v)

)
dt

∣∣∣FS

]
, P-a.s. for all stopping times S ≤ T̂.

In order to ensure that the right-hand side in the above expresion makes sense, we
shall follow the convention that whenever we say that a progressively measurable
process L is a solution to our representation problem (1) this implies in particular
that L satisfies the integrability condition

f

(
t, sup

S≤v≤t

L(v)

)
1[S,T̂ )

(t) ∈ L1(P⊗dt) for any stopping time S ≤ T̂ .(2)

NOTATION. For the sake of notational simplicity, let us introduce the
following sets of stopping times:

S
�= {

T :� → [0, T̂ ] | T is a stopping time
}

and Ŝ
�= {

T ∈ S | T < T̂ , P-a.s.
}
.

Given a stopping time S ∈ S, we shall furthermore make frequent use of

S(S)
�= {

T ∈ S | T ≥ S, P-a.s.
}

and
S>(S)

�= {
T ∈ S | T > S, P-a.s. on {S < T̂ }}.

Our first result concerning representation problem (1) is the following unique-
ness theorem:

THEOREM 1. Under Assumption 1, any progressively measurable, upper-
right continuous solution L to our representation problem (1) satisfies

L(S) = ess inf
T ∈S>(S)

lS,T for every stopping time S ∈ Ŝ(3)

where, for S ∈ Ŝ and T ∈ S>(S), lS,T is the unique (up to a P-null set)
FS-measurable random variable satisfying

E[X(S) − X(T )|FS] = E

[∫ T

S
f (t, lS,T ) dt

∣∣∣FS

]
.

In particular, the solution to (1) is uniquely determined on [0, T̂ ) up to optional
sections.

The proof of this result will be given in Section 4.1. Lemma 4.1 in the same
section shows that with any solution to our representation problem also its upper-
right continuous modification satisfies (1). Thus, the assumption of upper-right
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continuity of a solution L made in the above theorem comes without loss of
generality.

In Section 4.2 we treat the deterministic case, where the process X can be
identified with a function x : [0, T̂ ] → R and where Assumption 1 reduces to:

ASSUMPTION 1′ . The mapping f = f (t, l) : [0, T̂ ] × R → R is Lebesgue
integrable in t ∈ [0, T̂ ] for any fixed l ∈ R, and continuous and strictly decreasing
from +∞ to −∞ in l ∈ R for any fixed t ∈ [0, T̂ ].

In this framework, we shall show that the characterization (3) of Theorem 1
naturally leads to a generalized notion of convexity which accounts for the
problem’s time-inhomogeneity due to the function f . Specifically, we shall call
a function x : [0, T̂ ] → R (−f )-convex if for any s < t < u in [0, T̂ ] we have

x(t) ≤ x(s) +
∫ t

s

(−f (v, ls,u)
)
dv

where ls,u ∈ R is the unique constant satisfying

x(u) = x(s) +
∫ u

s

(−f (v, ls,u)
)
dv.

In the homogeneous case, where f (t, l) = −l this constant ls,u turns into the
usual difference quotient and the above inequality corresponds to the usual
condition that a secant in the graph of a convex function always stays above this
function. Section 4.2.1 shows how the usual properties of convexity carry over
to this generalized notion of convexity. In particular, this section proves absolute
continuity of (−f )-convex functions and establishes existence of (−f )-convex
envelopes. These concepts will be used in Section 4.2.2 in order to obtain:

THEOREM 2. Under Assumption 1′, any lower-semicontinuous function
x : [0, T̂ ] → R with x(T̂ ) = 0 admits a representation

x(s) =
∫ T̂

s
f

(
t, sup

s≤v≤t
l(v)

)
dt, 0 ≤ s ≤ T̂ ,(4)

where l : [0, T̂ ) → R ∪ {−∞} is a uniquely determined upper-semicontinuous
function such that, for each s ∈ [0, T̂ ], the above integrand f (·, sups≤v≤· l(v)) is

Lebesgue-integrable over [s, T̂ ]. This function l is given by

−f (s, l(s)) = (∂+x̆s)(s), 0 ≤ s < T̂ ,(5)

where ∂+x̆s denotes the density for the (−f )-convex envelope x̆s of the restriction
x|[s,T̂ ] introduced in Convention 4.7.

Conversely, any function x : [0, T̂ ] → R which admits such a representation is
lower-semicontinuous.
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In Section 4.3, we deal with the general stochastic case and study the
representation problem for optional processes X. Here, results from the “théorie
générale” of Snell envelopes [El Karoui (1981)] and techniques from the theory
of Gittins indices [El Karoui and Karatzas (1994)] allow us to prove the following
existence theorem:

THEOREM 3. Under Assumption 1, every optional process X of class (D)
which is lower-semicontinuous in expectation with X(T̂ ) = 0 admits a representa-
tion of the form (1), that is, it can be written as

X(S) = E

[∫ T̂

S
f

(
t, sup

S≤v≤t

L(v)

)
dt

∣∣∣FS

]
, S ∈ S,

for some suitable optional process L taking values in R∪{−∞} which satisfies the
integrability condition f (t, supS≤v≤t L(v))1[S,T̂ )

(t) ∈ L1(P⊗dt) for any stopping

time S ≤ T̂ .

In fact, in Section 4.3 we shall construct such a process L explicitly in terms of
certain Snell envelopes.

REMARK 2.1. All the above theorems remain valid when passing from a
deterministic to a random time horizon T̂ , provided this is a predictable stopping
time. Moreover, Lebesgue measure dt can always be replaced by any non-
negative random Borel measure µ(ω,dt) on [0, T̂ ], ω ∈ �, whose distribution
function (µ([0, t]),0 ≤ t ≤ T̂ ) defines an adapted process with strictly increasing,
continuous paths. Indeed, using the time change induced by this strictly increas-
ing, continuous process, one can reduce this more general case to the one
considered above.

3. Relation to optimization and obstacle problems. Let us now give a more
detailed discussion of the various relations between our representation problem
and the optimization or obstacle problems mentioned in the Introduction.

3.1. A singular control problem arising in economics. The original interest in
our representation problem (1) stems from a singular control problem arising in
the microeconomic theory of intertemporal consumption choice. In this problem,
one considers an economic agent whose preferences on the set of cumulative
consumption plans

C
�={C ≥ 0 | C is a right-continuous, increasing and adapted process}

are given through an expected utility functional of the nontime additive form

EU(C)
�=E

∫ T̂

0
u
(
t, Y C(t)

)
dt
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with

YC(t)
�=ηe−βt +

∫ t

0
βe−β(t−s) dC(s).

Such preferences have been proposed by Hindy, Huang and Kreps (1992). The
exponential average of past consumption YC(t) is interpreted as the level of
satisfaction which the agent derives from his consumption up to time t ; η ≥ 0
is the initial level of satisfaction, β > 0 a discount rate. The felicity function
u = u(t, y) is assumed to be strictly concave and increasing in y ∈ [0,+∞) for
fixed t ∈ [0, T̂ ] with continuous partial derivative ∂yu(t, y) ∈ L1(dt) for any y > 0
and ∂yu(t,0) ≡ +∞, ∂yu(t,+∞) ≡ 0.

Given some wealth w > 0 and an optional discount process ψ > 0, the agent’s
problem is then to find his most preferred consumption plan in his budget-feasible
set

A(w)
�=

{
C ∈ C

∣∣∣E
∫ T̂

0
ψ(t) dC(t) ≤ w

}
,

that is, he aims to

Maximize EU(C) subject to E

∫ T̂

0
ψ(t) dC(t) ≤ w.

Bank and Riedel (2001) use a Kuhn–Tucker characterization of optimal plans
in order to show that the optimal consumption plan CM with Lagrange multiplier
M > 0 is to always consume “just enough” to keep the induced level of satisfaction
YCM

above the solution LM of the representation problem

Mψ(S) = E

[∫ T̂

S
∂yu

(
t, sup

S≤v≤t

{
LM(v)eβ(v−t)

})
βe−β(t−S) dt

∣∣∣FS

]
, S ∈ Ŝ.

With

X(t)
�= M

β
ψ(t)e−βt1[0,T̂ )

(t), f (t, l)
�=

{
∂yu(t,−e−βt/ l)e−βt , l < 0,
−l, l ≥ 0,

and

L(v)
�= − e−βv

LM(v)
,

this problem takes the form (1) of the representation problem studied in the present
paper.

3.2. Gittins’ problem of optimal dynamic scheduling. The Gittins problem
amounts to finding an optimal allocation rule for a certain number of independent
projects. When worked on, each of these projects accrues a specific stochastic
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reward proportional to the effort spent on the project. The aim is to allocate the
available effort on the given projects so as to maximize the total expected reward.

Gittins’ celebrated idea to solve this typically high-dimensional optimization
problem was to introduce a family of simpler benchmark problems which allowed
him to define a dynamic performance measure—later called Gittins index—for
each of the original projects separately. An optimal schedule could then be given
in form of an index rule: “always spent your effort on the projects with currently
maximal Gittins index.”

To describe the connection between the Gittins index and our representation
problem (1), let us review some of the results on Gittins’ auxiliary benchmark
problems which can be found in El Karoui and Karatzas (1994). These authors
consider a project whose reward at time t is given by some stochastic rate h(t) > 0.
With this project, they associate the family of optimal stopping problems

V (s,m)
�= ess sup

T ∈S(s)

E

[∫ T

s
e−α(t−s)h(t) dt + me−α(T−s)

∣∣∣Fs

]
, s,m ≥ 0.(6)

The constant m is interpreted as a reward upon stopping, the optimization starts at
time s and α > 0 is a constant discount rate.

El Karoui and Karatzas (1994) show that, under appropriate conditions, the
Gittins index M(s) of this project at time s can, loosely speaking, be described as
the minimal reward-upon-stopping such that immediate termination of the project
is optimal in the auxiliary stopping problem (6):

M(s) = inf{m ≥ 0 | V (s,m) = m}, s ≥ 0.(7)

Without making further use of it, they also establish the alternative representa-
tion

M(s) = ess sup
T ∈S>(s)

E[∫ T
s e−αth(t) dt|Fs]

E[∫ T
s αe−αt dt|Fs]

, s ≥ 0,(8)

which is provided as equation (3.11) in their Proposition 3.4. Note that this identity
becomes precisely our equation (10) which characterizes the solution L to the

representation problem (1) in the special case where T̂
�= + ∞ and where

f (t, l)
�= − αe−αt l, X(t)

�= − E

[∫ +∞
t

e−αsh(s) ds
∣∣∣Ft

]
, t ≥ 0, l ∈ R.

Moreover, in their equation (3.7), El Karoui and Karatzas (1994) note the identity

E

[∫ +∞
s

e−αth(t) dt
∣∣∣Fs

]

= E

[∫ +∞
s

αe−αt sup
s≤v≤t

M(v) dt
∣∣∣Fs

]
, s ≥ 0.

(9)



1038 P. BANK AND N. EL KAROUI

For the above choices of T̂ , f and X, this transforms into our backward
formulation

X(s) = E

[∫ T̂

s
f

(
t, sup

s≤v≤t
M(v)

)
dt

∣∣∣Fs

]
, s ≥ 0,

of the representation problem. Thus, in this special case, the Gittins index M

for the project with rewards (h(t), t ≥ 0) coincides with the solution L to
our representation problem (1). Observe, however, that El Karoui and Karatzas
consider identity (9) merely as a property of the Gittins index M and not as a
characterization of M as the solution to a representation problem.

3.3. Nonstandard optimal stopping problems. Our representation problem (1)
is also related to some nonstandard optimal stopping problems. Indeed, in
the special case where f (t, l) = −g(t)l for some constant strictly positive
dt-integrable function g > 0, the characterization given by Theorem 1 takes the
form of a value function for an optimal stopping problem in which one optimizes
a difference quotient criterion:

L(S) = ess inf
T ∈S>(S)

E[X(T ) − X(S)|FS]
E[∫ T

S g(t) dt|FS] , S ∈ Ŝ.(10)

Recall that, for special choices of X and g, such a representation has occurred in
our discussion of the connection to Gittins indices in the previous section; see (8).
In fact, it was this similarity which motivated the approach taken in Section 4.3 to
prove existence of a solution to our representation problem (1).

Note furthermore that the above optimal stopping problem is not directly
amenable to a solution following the standard approach via the Snell envelope.
For a discussion of optimal stopping problems similar to (10), we refer the reader
also to Morimoto (1991).

3.4. A variant of Skorohod’s obstacle problem. Let us now view the optional
process X as a randomly fluctuating obstacle on the real line. We then may
consider the set of class (D) processes Y which never exceed the obstacle X and
which follow a backward semimartingale dynamics of the form

dY (t) = −f
(
t,A(t)

)
dt + dM(t) and Y (T̂ ) = 0(11)

for some uniformly integrable martingale M and for some increasing, right-
continuous and adapted process A satisfying f (t,A(t))1[0,T̂ ](t) ∈ L1(P ⊗ dt).
Rewriting the above equation in integral form and taking conditional expectations,
we see that any such process is of the form

Y (s) = E

[∫ T̂

s
f

(
t,A(t)

)
dt

∣∣∣Fs

]
, 0 ≤ s ≤ T̂ .(12)
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In particular, the martingale M is uniquely determined by A and the terminal
condition Y (T̂ ) = 0 as

M(s) = E

[∫ T̂

0
f

(
t,A(t)

)
dt

∣∣∣Fs

]
, 0 ≤ s ≤ T̂ .

Since f is decreasing to −∞ in its second argument, it is easy to see that
many increasing, right-continuous adapted processes A induce a process Y with
dynamics (11) [or (12)] which stays below the obstacle, that is, which satisfies
Y ≤ X. However, one may wonder whether there is any such process A which does
so in the minimal sense that it only increases at points in time when its associated
process Y hits the obstacle X, that is, so that it satisfies the flat-off condition

E

∫ T̂

0
|X(s) − Y (s)|dA(s) = 0.(13)

This problem may be viewed as a variant of the classic Skorohod problem to
construct an adapted increasing process A such that X+A ≥ 0 under the restriction
that A only increases in times s when X(s) + A(s) = 0.

REMARK 3.1. For a nondecreasing function A : [0, T̂ ) → R ∪ {−∞}, we call
t ∈ [0, T̂ ) a point of increase if, for any ε > 0, we have A(t−) < A(t + ε). By
convention A(0−) = −∞ and, thus, 0 is a time of increase unless A(t) ≡ −∞
on a nondegenerate interval containing 0, a singular case which is ruled out in the
sequel by Lebesgue integrability of f (t,A(t)).

This definition entails in particular that if A is given as a running supremum
A(t) = sup0≤v≤t+ L(v) over some function L then A(t) = lim sups↘t L(s) for any
point of increase t of A. Moreover, for a right-continuous function Y and a lower

right-semicontinuous function X with X ≥ Y and
∫ T̂

0 |X(s) − Y (s)|dA(s) = 0,
we have X(t) = Y (t) for any point of increase t of A. In particular, X(0) = Y (0)

unless A(t) ≡ −∞ on a nondegenerate interval containing 0.

Given a solution L to our representation problem for X, existence and
uniqueness of a solution to our variant of the Skorohod problem can be obtained
easily:

PROPOSITION 3.2. If L solves the representation problem for the obstacle
process X then the right-continuous version of its running supremum

A(t)
�= sup

0≤v≤t+
L(v), 0 ≤ t < T̂ ,(14)

is the unique adapted, increasing and right-continuous process such that Y

with (12) stays below X and which is minimal in the sense of the flat-off
condition (13).
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PROOF. First note that by the integrability assumption (2), the process A

defined by (14) satisfies E
∫ T̂

0 |f (t,A(t))|dt < +∞ and the associated process Y

with (12) is of class (D). Thus, to verify that A has the desired properties, only
the flat-off condition (13) remains to be checked. By the properties of optional
projections and by definition of L and A, we have

E

∫ T̂

0
{X(s) − Y (s)}dA(s)

= E

∫ T̂

0

{∫ T̂

s

[
f

(
t, sup

s≤v≤t
L(v)

)
− f

(
t, sup

0≤v≤t+
L(v)

)]
dt

}
dA(s)

= E

∫ T̂

0

{∫ t

0

[
f

(
t, sup

s≤v≤t+
L(v)

)
− f

(
t, sup

0≤v≤t+
L(v)

)]
dA(s)

}
dt.

Now observe that, if s is a point of increase for A(ω, ·), then sups≤v≤t+ L(ω,v) =
sup0≤v≤t+ L(ω,v). Thus the dA(s)-integral in the above expression vanishes, and
we obtain the desired flat-off condition.

In order to prove uniqueness, let A′ be another adapted, increasing and right-
continuous process with

E

∫ T̂

0

∣∣f (
t,A′(t)

)∣∣dt < +∞
such that the right-continuous version of the class (D) process

Y ′(s) �=E

[∫ T̂

s
f

(
t,A′(t)

)
dt

∣∣∣Fs

]
, 0 ≤ s ≤ T̂ ,

satisfies Y ′ ≤ X and such that the flat-off condition

E

∫ T̂

0
|X(s) − Y ′(s)|dA′(s) = 0

holds true. Fix ε > 0 and consider the stopping times

Sε �= inf
{
t ∈ [0, T̂ ) | A(t) > A′(t) + ε

} ∧ T̂ ∈ S

and

T ε �= inf
{
t ∈ [Sε, T̂ ) | A′(t) > A(t) − ε/2

} ∧ T̂ ∈ S(Sε).

Then, by right continuity of A and A′, we have T ε > Sε almost surely on {Sε < T̂ }.
Moreover, since Sε is a point of increase for A on {Sε < T̂ }, the flat-off condition
entails

X(Sε) = Y (Sε) = E

[∫ T ε

Sε
f

(
t,A(t)

)
dt

∣∣∣FSε

]
+ E

[
Y (T ε)|FSε

]
.
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By definition of T ε and monotonicity of f , the first of these conditional
expectations is < E[∫ T ε

Sε f (t,A′(t)) dt|FSε ] on {T ε > Sε} ⊇ {Sε < T̂ } while
the second is always ≤ E[X(T ε)|FSε ] since Y ≤ X by assumption. Hence,
on {Sε < T̂ } we obtain the contradiction that almost surely

X(Sε) < E

[∫ T ε

Sε
f

(
t,A′(t)

)
dt

∣∣∣FSε

]
+ E

[
X(T ε)|FSε

]

= E

[∫ T ε

Sε
f

(
t,A′(t)

)
dt

∣∣∣FSε

]
+ E

[
Y ′(T ε)|FSε

]

= Y ′(Sε) ≤ X(Sε),

where for the first equality we used Y ′(T ε) = X(T ε) a.s. This holds true trivially
on {T ε = T̂ } as X(T̂ ) = 0 by assumption, and it holds true also on {T ε < T̂ } since
on this set T ε is a point of increase for A′. It follows that P[Sε < T̂ ] = 0, that is,
A ≤ A′ + ε on [0, T̂ ) almost surely. Since ε was arbitrary, this entails A ≤ A′ on
[0, T̂ ), P-a.s. Reversing the roles of A and A′ in the above argument finally yields
the assertion. �

4. Proofs and supplementary results. In this section we will give the
proofs for our main results. Section 4.1 proves uniqueness of a solution to our
representation problem (1), Section 4.2 constructs a solution in the deterministic
case and, finally, Section 4.3 is devoted to the question of existence in the general
stochastic case.

4.1. Uniqueness. As a first step to prove uniqueness of a solution to our
representation problem (1), let us note the following:

LEMMA 4.1. If L is a progressively measurable process satisfying (1), so is
its upper-right-continuous modification

L̃(t)
�= lim sup

s↘t

L(s) = lim
ε↓0

sup
s∈[t,(t+ε)∧T̂ ]

L(s), 0 ≤ t < T̂ .

PROOF. Due to Théorème IV.2.33 in Dellacherie and Meyer (1975), the upper-
right-continuous process L̃ is again progressively measurable. Moreover, we have
for each ω ∈ � and all s ∈ [0, T̂ ) that

sup
s≤v≤t

L(ω, v) = sup
s≤v≤t

L̃(ω, v)

at every point t ∈ (s, T̂ ) where the increasing function on the left-hand side in this
equation does not jump. Since, for fixed ω and s, this happens at most a countable
number of times, we obtain

∫ T̂

s
f

(
ω, t, sup

s≤v≤t
L(ω, v)

)
dt =

∫ T̂

s
f

(
ω, t, sup

s≤v≤t
L̃(ω, v)

)
dt
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for every s ∈ [0, T̂ ] and all ω ∈ �. Consequently, we can indeed replace L by L̃

in (1) without changing the optional projection. �

For the sake of completeness, let us note the following.

LEMMA 4.2. For any S ∈ Ŝ and T ∈ S>(S), there is a unique random
variable lS,T ∈ L0(FS) such that

E

[∫ T

S
f (t, lS,T ) dt

∣∣∣FS

]
= E[X(S) − X(T )|FS].

PROOF. Uniqueness follows immediately from strict monotonicity of f =
f (t, l) in l ∈ R. Existence is due to integrability of f = f (t, l) for fixed l and
to surjectivity of l �→ f (t, l). �

PROOF OF THEOREM 1 (Uniqueness). Fix a stopping time S ∈ Ŝ. Consider
T ∈ S>(S) and use the representation property of L and the integrability
assumption (2) to write

X(S) = E

[∫ T

S
f

(
t, sup

S≤v≤t

L(v)

)
dt

∣∣∣FS

]
+ E

[∫ T̂

T
f

(
t, sup

S≤v≤t

L(v)

)
dt

∣∣∣FS

]
.

As f (t, ·) is decreasing, we may estimate the first integrand from above by
f (t,L(S)) and the second integrand by f (t, supT ≤v≤t L(v)) to obtain

X(S) ≤ E

[∫ T

S
f

(
t,L(S)

)
dt

∣∣∣FS

]
+ E

[∫ T̂

T
f

(
t, sup

T ≤v≤t

L(v)

)
dt

∣∣∣FS

]
.

From the representation property of L at time T , it follows that we may write the
second of the above two summands as

E

[∫ T̂

T
f

(
t, sup

T ≤v≤t

L(v)

)
dt

∣∣∣FS

]
= E[X(T )|FS]

and, therefore, we get the estimate

E[X(S) − X(T )|FS] ≤ E

[∫ T

S
f

(
t,L(S)

)
dt

∣∣∣FS

]
.

As L(S) is FS-measurable [Dellacherie and Meyer (1975), Théorème IV.64b],
this shows L(S) ≤ lS,T almost surely. Since in the above estimate T ∈ S>(S) is
arbitrary, we deduce

L(S) ≤ ess inf
T ∈S>(S)

lS,T .

For the converse inequality, consider the sequence of stopping times

T n �= inf
{
t ≥ S

∣∣∣ sup
S≤v≤t

L(v) > Kn

}
∧ T̂ , n = 1,2, . . . ,



A STOCHASTIC REPRESENTATION THEOREM 1043

where

Kn = (
L(S) + 1/n

)
1{L(S)>−∞} − n1{L(S)=−∞}.

Observe that T n ∈ S>(S) due to the upper-right continuity of L. Observe
furthermore that this path property also implies L(T n) = supS≤v≤T n L(v) on
{T n < T̂ } since on this set T n is a time of increase for supS≤v≤· L(v); confer
Remark 3.1. This yields

sup
S≤v≤t

L(v) = sup
T n≤v≤t

L(v) for all t ∈ [T n, T̂ ).

Thus, we may write

X(S) = E

[∫ T n

S
f

(
t, sup

S≤v≤t

L(v)

)
dt

∣∣∣FS

]
+ E

[∫ T̂

T n
f

(
t, sup

T n≤v≤t

L(v)

)
dt

∣∣∣FS

]

≥ E

[∫ T n

S
f (t,Kn) dt

∣∣∣FS

]
+ E[X(T n)|FS],

where the last estimate follows from our definition of T n and from the representa-
tion property of L at time T n. As Kn is FS-measurable, the above estimate allows
us to deduce

Kn ≥ lS,T n ≥ ess inf
T ∈S>(S)

lS,T .

Now note that for n ↑ +∞, we have Kn ↓ L(S) and so we obtain

L(S) ≥ ess inf
T ∈S>(S)

lS,T . �

4.2. The deterministic case. Let us now study the case of certainty where
f satisfies Assumption 1′ and where X can be identified with some deterministic
function x : [0, T̂ ] → R such that x(T̂ ) = 0. In this case, Theorem 1 shows that
the only candidate for an upper-right-continuous function l : [0, T̂ ) → R with
f (t, sups≤v≤t l(v))1[s,T̂ ](t) ∈ L1(dt) and

x(s) =
∫ T̂

s
f

(
t, sup

s≤v≤t
l(v)

)
dt for all 0 ≤ s ≤ T̂(15)

is characterized by

l(s) = inf
s<t≤T̂

ls,t

where ls,t ∈ R is the unique constant satisfying

x(s) − x(t) =
∫ t

s
f (u, ls,t ) du.
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FIG. 1. A function x (thick black line), its convex envelope x̆s (thick grey line), and various secants
(thin lines) starting in (s, x(s)).

As a motivation for our further steps to solve this problem, let us consider the
special case where

f (t, l) ≡ −l, t ∈ [0, T̂ ], l ∈ R.

For this choice of f , it is easy to see that ls,t is the difference quotient

ls,t = x(t) − x(s)

t − s
, 0 ≤ s < t ≤ T̂ ,

and, thus, l(s) has to be the smallest slope of a secant in the graph of x which starts
in (s, x(s)) and which ends in some point (t, x(t)) with t > s; compare Figure 1.
This figure suggests a further representation of l(s), namely as the initial slope
(∂+x̆s)(s) of the convex envelope x̆s of the restriction x|[s,T̂ ]. Indeed, as we shall
see in the subsequent sections, this observation allows us to give a constructive
existence proof for a solution to (15) not only in the special case considered
in the above example, but also for general deterministic functions f satisfying
our Assumption 1′. The main idea is to pass to a suitably generalized notion of
convexity which will be introduced in the following Section 4.2.1. The proof of
Theorem 2 will be given after that in Section 4.2.2.

4.2.1. A time-inhomogeneous notion of convexity. In this section we shall
introduce an inhomogeneous notion of convexity which will prove to be useful
for solving the deterministic representation problem (15). This special form of
convexity accounts for the time-inhomogeneity introduced to our representation
problem by the function f . As we shall see, it inherits many properties of usual
convexity, the most important being a characterization in terms of derivatives and
the existence of an inhomogeneously convex envelope of a given function.
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As a framework for this section, we fix a nondegenerate interval I on the
extended real line, that is, a connected set I ⊂ [−∞,+∞] with inf I < sup I, and
we consider a measurable function g = g(t, l) : I × R → R which is dt-integrable
for any l ∈ R and continuous and strictly increasing from −∞ to +∞ in l for
any t ∈ I.

REMARK 4.3. In the subsequent application to the representation prob-

lem (15), the function g will be defined as g
�= − f with f as in Assumption 1′.

Now, let x be an arbitrary real-valued function on I.

DEFINITION 4.4. We call x inhomogeneously convex with respect to g, or
g-convex for short, if for all s, t, u ∈ I such that s < t < u, we have

x(t) ≤ x(s) +
∫ t

s
g(v, ls,u) dv(16)

where ls,u ∈ R is the unique constant satisfying

x(u) = x(s) +
∫ u

s
g(v, ls,u) dv.(17)

We call x strictly g-convex if we always have strict inequality in (16).

REMARK 4.5. The preceding definition is equivalent to the usual definition
of convexity in case the function g : I × R → R is time homogeneous in the sense
that it does not depend on its first argument.

In complete analogy to usual convexity, there are the following alternative
characterizations of g-convexity:

PROPOSITION 4.6. The following properties are equivalent:

(i) The function x is (strictly) g-convex.
(ii) For all s, t, u ∈ I such that s < t < u we have

ls,t ≤ lt,u (resp. ls,t < lt,u)(18)

where ls,t and lt,u are defined as in (17).
(iii) The function x is absolutely continuous on int I with a density ẋ of the form

ẋ(t) = g
(
t, l(t)

)
, t ∈ int I,

for some (strictly) increasing function l : int I → R and, on the boundary,
x satisfies

lim
s→t

x(s) ≤ x(t) for t ∈ ∂I ∩ I.

Moreover, for boundary points t ∈ ∂I ∩ I, g(·, l(·)) is Lebesgue-integrable over the
interval [t ∧ t0, t ∨ t0] for any t0 ∈ int I.
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For the proof see Appendix A.1.

CONVENTION 4.7. Since Lebesgue measure has no atoms, we may always
assume the increasing function l : int I → R of Proposition 4.6(iii) to be right
continuous. Putting

l(t)
�= lim

s→t,s∈int I
l(s) ∈ [−∞,+∞], t ∈ ∂I ∩ I,

extends l canonically to all of I. The corresponding density of the g-convex
function x will be denoted by

∂+x(t) = g
(
t, l(t)

)
, t ∈ I.

Like usual convexity, also g-convexity allows for a definition of convex
envelopes:

DEFINITION AND PROPOSITION 4.8. The set X of g-convex functions
ξ : I → R which are dominated by x is stable with respect to taking suprema.
More precisely, if X �= ∅, there exists a pointwise maximal g-convex function
x̆ : I → R which is dominated by x. This function is called the g-convex envelope
of x.

For the proof see Appendix A.1.

REMARK 4.9. If I is compact in [−∞,+∞] then, for x to possess a g-convex
envelope x̆, it is sufficient that x is bounded from below. If I is compact in R this
is also necessary.

Let us finally record some properties of g-convex envelopes in the following.

PROPOSITION 4.10. Let x : I → R have g-convex envelope x̆ : I → R and
denote by

x∗(t) �= lim inf
s→t

x(s), t ∈ I,

its lower-semicontinuous envelope. Then:

(i) x̆ = x on ∂I ∩ I, and x̆ ≤ x∗ on int I.
(ii) The unique increasing, right-continuous function l̆ : int I → R such that

g(·, l̆(·)) is a density for x̆ on int I induces a Borel measure dl̆ on int I with support

suppdl̆ ⊂ {
t ∈ int I|x̆(t) = x∗(t)

}
.

(iii) x̆ is absolutely continuous on I iff x is lower-semicontinuous in the
boundary points contained in ∂I ∩ I.
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(iv) For t ∈ I, let x̆t denote the g-convex envelope of the restriction x|I∩[t,+∞].
Then we have (

∂+x̆t1
)
(s) ≥ (

∂+x̆t2
)
(s)

for any t1, t2, s ∈ int I such that t1 ≤ t2 ≤ s.

For the proof see Appendix A.1.

4.2.2. Proof of Theorem 2. Uniqueness of a function l with (4) follows
immediately from Theorem 1.

Let us next show that l with (5) indeed satisfies (4) for any s ∈ [0, T̂ ]. For
ease of notation, we put g

�= − f and we let l̆s : [s, T̂ ) → [−∞,+∞) denote
the unique right-continuous function such that g(·, l̆s (·)) is a Lebesgue density

for the g-convex envelope x̆s of the restriction xs �=x|[s,T̂ ](s ∈ [0, T̂ )). Note that
these envelopes do exist by Remark 4.9, because by assumption x is lower-
semicontinuous and, hence, bounded from below on the compact interval [0, T̂ ] ⊂
[0,+∞].

In this notation, we have to verify that l(v)
�= l̆v(v) solves the deterministic

representation problem. Apply Proposition 4.10(i) and (iii) to write

x(s) = x̆s(s) − x̆s(T̂ ) = −
∫ T̂

s
(∂+x̆s)(t) dt =

∫ T̂

s
f

(
t, l̆s (t)

)
dt.

Obviously, it now suffices to show that, for all t ∈ (s, T̂ ), we have

l̆s(t) = sup
s≤v≤t

l̆v(v).(19)

By Proposition 4.10(iv), ∂+x̆s (v) is decreasing in s ∈ [0, v]. Thus,

l̆v(v) ≤ l̆s(v) ≤ l̆s(t)

where, for v ≤ t , the last estimate follows from monotonicity of l̆s . Taking the
supremum over v ∈ [s, t], this proves that “≥” holds true in (19).

To establish the remaining ≤ inequality, consider the set

V
�= {

v ∈ [s, t] | x̆s(v) = x(v)
}

and let v∗ �= supV. We claim that

x̆s |[v∗,T̂ ] = x̆v∗
.(20)

For this it suffices to show that x̆s(v∗) = x(v∗). To this end, let vn,n = 1,2, . . . ,
be a sequence in V which converges to v∗. Using the continuity of x̆s and the
lower-semicontinuity of x, we obtain

x̆s (v∗) = lim
n

x̆s(vn) = lim
n

x(vn) ≥ lim inf
v→v∗ x(v) = x(v∗) ≥ x̆s (v∗).
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Consequently, equality must hold everywhere in this line and this proves our
claim (20).

Now, applying first Proposition 4.10(ii) and then our claim (20), we see that

l̆s(t) = l̆s(v∗) = l̆v
∗
(v∗) ≤ sup

s≤v≤t
l̆v(v),

proving “≤” in (19).
We next establish the upper-semicontinuity of l. From (19) we infer that

l̆s(t) ≥ l̆t (t)

for any t > s. For t ↓ s, the left-hand side of this inequality converges to l(s) =
l̆s(s), while in the limit its right-hand side is not larger than lim supt↓s l̆t (t) =
lim supt↓s l(t). This proves upper-semicontinuity of l from the right.

Now, consider t < s and fix u ∈ (s, T̂ ). Since x̆t is g-convex with x̆t (t) = x(t),
we have

l(t) = l̆t (t) ≤ λ
(
t, u, x̆t (u) − x(t)

)
,

where λ(t, u,�) ∈ R is the unique constant λ with∫ u

t
g(v,λ) dv = �.

As λ(t, s,�) is continuous in (t, s,�) and increasing in �, the above inequality
yields

lim sup
t↑s

l(t) ≤ λ

(
s, u, lim sup

t↑s

{
x̆t (u) − x(t)

})
.

Using x̆t ≤ x̆s on [s, T̂ ] and also lower-semicontinuity of x, we deduce the
estimate

lim sup
t↑s

l(t) ≤ λ
(
s, u, x̆s(u) − x(s)

) = λ
(
s, u, x̆s(u) − x̆s(s)

)
.

Due to the g-convexity of x̆s , the last expression decreases to l̆s (s) = l(s) as u ↓ s.
This yields upper-semicontinuity of l from the left.

It remains to prove the converse assertion that representable x are necessarily
lower-semicontinuous. Define

is(t)
�=1

(s,T̂ ](t)f
(
t, sup

s≤v≤t
l(v)

)

such that x(s) = ∫ T̂
0 is(t) dt for all s ∈ [0, T̂ ]. Obviously,

is(t) ≥ 0 ∧ f

(
t, sup

0≤v≤t

l(v)

)
∈ L1([0, T̂ ], dt)(21)

for every s ∈ [0, T̂ ], that is, the family of integrands (is(·), s ∈ [0, T̂ ]) is bounded
from below by some Lebesgue-integrable function.
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Now, let us show that x(s) = ∫ T̂
0 is(t) dt is lower-semicontinuous at each point

s∗ ∈ [0, T̂ ]. Indeed, on the one hand, we have

lim
s↓s∗ is(t) = 1

(s∗,T̂ ](t)f
(
t, sup

s∗<v≤t

l(v)

)
for every t ∈ [0, T̂ )

and, because of estimate (21), we may use Fatou’s lemma to obtain

lim inf
s↓s∗ x(s) ≥

∫ T̂

0
lim
s↓s∗ is(t) dt =

∫ T̂

s∗
f

(
t, sup

s∗<v≤t

l(v)

)
dt ≥ x(s∗).

On the other hand, we have

lim
s↑s∗ is(t) = 1[s∗,T̂ ](t)f

(
t, sup

s∗≤v≤t

l(v)

)
for all t ∈ [0, T̂ ]

since l(·) is upper-semicontinuous by assumption. Thus, by Fatou’s lemma again,

lim inf
s↑s∗ x(s) ≥

∫ T̂

0
lim
s↑s∗ is(t) dt =

∫ T̂

s∗
f

(
t, sup

s∗≤v≤t

l(v)

)
dt = x(s∗).

Hence, lim infs→s∗ x(s) ≥ x(s∗) as we wanted to show.

4.3. Existence in the stochastic case. Let us now turn to the general stochastic
case and assume that the optional process X and the function f satisfy the
assumptions of Theorem 3.

A natural approach to prove existence in the stochastic case could be to proceed
in a similar way as in the deterministic case. In such an approach, one would
specify L as the value process of the nonstandard optimal stopping problems (3)
derived in our uniqueness Theorem 1, and try to verify then that this process
indeed solves our representation problem (1). However, this would lead to tedious
measurability issues as it is not obvious how to choose a progressively measurable
version of such a value process L. Moreover, even granted such a version does
exist, the verification that this process solves the representation problem could not
be carried out along the same lines as in the deterministic case since, in the present
stochastic framework, a suitable notion of convex envelopes does not seem to be
available; see, however, our discussion at the end of Section 4.3.

For these reasons, we shall take a different approach, exploiting the connection
between our representation problem and the Gittins index presented in Section 3.2.
This connection suggests to consider the family of auxiliary optimal stopping
problems

Y l(S) = ess inf
T ∈S(S)

E

[
X(T ) +

∫ T

S
f (t, l) dt

∣∣∣FS

]
, S ∈ S, l ∈ R,(22)

and to introduce the associated “Gittins index” L in analogy to (7) as

L(ω, t)
�= sup

{
l ∈ R | Y l(ω, t) = X(ω, t)

}
for (ω, t) ∈ � × [0, T̂ ).(23)
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In contrast to formula (3) obtained in our uniqueness theorem, this representation
of L is given in terms of the value functions for standard optimal stopping
problems. This will allow us to apply the well established theory of Snell envelopes
as it is presented in El Karoui (1981) when verifying that L given by (23) does in
fact solve our representation problem (1).

To make this precise, we shall first analyze in detail the structure of the auxiliary
Gittins problems (22) in the following Section 4.3.1 before we proceed to the proof
of Theorem 3 in Section 4.3.2.

4.3.1. On the family of Gittins problems (22). Let us start our investigation of
the auxiliary Gittins problems (22) and note some consequences of our assumption
that X be an optional process of class (D) which is lower-semicontinuous in
expectation.

LEMMA 4.11. Any process X satisfying the assumptions of Theorem 3 has
the following properties:

(i) There are two martingales M∗ and M∗ such that M∗ ≤ X ≤ M∗, P-a.s.
(ii) Almost surely, X has paths which are lower-semicontinuous from the

right at every point t ∈ [0, T̂ ) and which are lower-semicontinuous from the left
in t = T̂ .

(iii) X satisfies a conditional version of Fatou’s lemma:

lim inf
n

E[X(T n)|FS] ≥ E

[
lim inf

n
X(T n)

∣∣∣FS

]
, P-a.s.

for any S ∈ S and for every monotone sequence of stopping times T n ∈ S(S),

n = 1,2, . . . .

For the proof see Appendix A.2.
In our second lemma we collect those results which rely on techniques from the

theory of Gittins indices as developed in El Karoui and Karatzas (1994):

LEMMA 4.12. Under the assumptions of Theorem 3, there is a jointly
measurable mapping

Y :� × [0, T̂ ] × R → R,

(ω, t, l) �→ Y l(ω, t)

with the following properties:

(i) For l ∈ R fixed, Y l :� × [0, T̂ ] → R is an optional process such that

Y l(S) = ess inf
T ∈S(S)

E

[
X(T ) +

∫ T

S
f (t, l) dt

∣∣∣FS

]
, P-a.s.(24)

for every stopping time S ∈ S.
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(ii) For any l ∈ R, S ∈ S, the stopping time

T l
S

�= inf
{
t ≥ S | Y l(t) = X(t)

} ≤ T̂

is optimal in (24), that is,

Y l(S) = E

[
X(T l

S) +
∫ T l

S

S
f (t, l) dt

∣∣∣FS

]
.

Moreover, this stopping time depends on l ∈ R in a monotone manner: for any
S ∈ S we have

T l
S(ω) ≤ T l′

S (ω) for all ω ∈ � and any two l ≤ l′.

(iii) For fixed (ω, s) ∈ � × [0, T̂ ], the mapping l �→ Y l(ω, s) is continuously
decreasing from

Y−∞(ω, s)
�= lim

l↓−∞Y l(ω, s) = X(ω, s).

In particular, there is a canonical extension of Y to � × [0, T̂ ] × (R ∪ {−∞}).
(iv) For every stopping time S ∈ S, the negative random measure dY l(S)

associated with the decreasing random mapping l �→ Y l(S) can almost surely be
disintegrated in the form

∫ +∞
−∞

φ(l) dY l(S) = E

[∫ T̂

S

{∫ +∞
−∞

φ(l)1[S,T l
S ](t) df (t, l)

}
dt

∣∣∣FS

]
(25)

for any nonnegative, FS ⊗ B(R)-measurable φ :� × R → R.

For the proof see Appendix A.2.
Taking the version of Y = Y l(t,ω) given in the preceding lemma, we now can

use (23) to define our candidate L for a solution to the representation problem (1).

LEMMA 4.13. For Y as in Lemma 4.12, the process L defined by (23) is
optional and takes values in [−∞,+∞) almost surely. Moreover, for every S ∈ S,
each of the following sets is contained in the next:

A
�=

{
(ω, t, l)

∣∣∣ l > sup
S(ω)≤v≤t

L(ω, v)

}

⊂ B
�= {

(ω, t, l)
∣∣T l

S(ω) ≥ t
}

⊂ C
�=

{
(ω, t, l)

∣∣∣ l ≥ sup
S(ω)≤v<t

L(ω, v)

}
,

and for P ⊗ dt-a.e. (ω, t) ∈ � × [0, T̂ ] the (ω, t)-sections A(ω,t), B(ω,t),
C(ω,t) ⊂ R differ by at most countably many points l ∈ R.

For the proof see Appendix A.2.
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4.3.2. Proof of Theorem 3. With the results of the preceding section at hand,
we now can give the proof of our existence theorem in the stochastic case. We
proceed in three steps:

Step 1. We first prove that f (t, supS≤v≤t L(v))1[S,T l
S )(t) ∈ L1(P ⊗ dt) and

X(S) = E[X(T l
S)|FS] + E

[∫ T l
S

S
f

(
t, sup

S≤v≤t

L(v)

)
dt

∣∣∣FS

]

for every l ∈ R.
Fix l0 ∈ R. The definition of L(S) and the monotonicity of l �→ Y l(S) allow us

to write

X(S) = YL(S)(S) = Y l0(S) −
∫ +∞
−∞

1[L(S)∧l0,l0)(l) dY l(S).

Due to our disintegration formula (25) for the random measure dY l(S), the last
expression is equal to

Y l0(S) − E

[∫ T̂

S

{∫ +∞
−∞

1[L(S)∧l0,l0](l)1{T l
S≥t} df (t, l)

}
dt

∣∣∣FS

]
.

Now, let I denote the above conditional expectation. Since for P⊗dt-a.e. (ω, t) the
sections B(ω,t) and C(ω,t) of Lemma 4.13 differ by at most countably many points
l ∈ R, continuity of the measures df (t, ·) allows us to replace the set {T l

S ≥ t} in
the above expression by {l ≥ L̄(S, t)} where L̄(S, t)

�= supS≤v≤t L(v). This yields

I = E

[∫ T̂

S

{∫ +∞
−∞

1[L̄(S,t)∧l0,l0](l) df (t, l)

}
dt

∣∣∣FS

]

= E

[∫ T̂

S

{
f (t, l0) − f (t, L̄(S, t) ∧ l0)

}
dt

∣∣∣FS

]
.

(26)

We claim that

f (t, l0) − f
(
t, L̄(S, t) ∧ l0

)
= (

f (t, l0) − f (t, L̄(S, t)
)
1{T l0

S ≥t}, dt-a.e. on [S, T̂ ).
(27)

Indeed, the left-hand side of this equality is equal to
(
f (t, l0) − f

(
t, L̄(S, t)

))
1{l0>L̄(S,t)} ≥ (

f (t, l0) − f
(
t, L̄(S, t)

))
1{T l0

S ≥t}

≥ (
f (t, l0) − f

(
t, L̄(S, t)

))
1{l0≥L̄(S,t−)}

where both estimates are due to the inclusions derived in Lemma 4.13. Since
L̄(S, ·) is increasing in t , we have L̄(S, t) = L̄(S, t−) for Lebesgue-a.e. t and,
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therefore, the last term in the preceding estimate coincides with the first term
dt-a.e. This proves our claim (27).

Claim (27) in conjunction with (26) gives us

I = E

[∫ T
l0
S

S

{
f (t, l0) − f

(
t, L̄(S, t)

)}
dt

∣∣∣FS

]
.

Since f (t, l0)1[S,T
l0
S )

(t) ∈ L1(P⊗dt) by Assumption (1), this shows, in particular,

that

E

[∫ T
l0
S

S
f

(
t, L̄(S, t)

)
dt

∣∣∣FS

]

does exist as a random variable taking values in R ∪ {+∞}. Resuming our initial
calculation, we see that the above representation of I and optimality of T

l0
S imply

X(S) = Y l0(S) − I

= E

[
X

(
T

l0
S

) +
∫ T

l0
S

S
f (t, l0) dt

∣∣∣FS

]

− E

[∫ T
l0
S

S

{
f (t, l0) − f

(
t, L̄(S, t)

)}
dt

∣∣∣FS

]

= E
[
X

(
T

l0
S

)|FS

] + E

[∫ T
l0
S

S
f

(
t, L̄(S, t)

)
dt

∣∣∣FS

]
.

Since X is of class (D), this identity shows that the expectation of the last (a priori)
generalized conditional expectation is actually finite. Hence, f (t, L̄(S, t)) ×
1[S,T

l0
S )

(t) is P ⊗ dt-integrable which completes the proof of our first assertion.

Step 2. We next show that

T +∞
S

�= lim
l↑+∞T l

S = T̂ and lim
l↑+∞ E[X(T l

S)|FS] = 0.

Note first that by Lemma 4.12(ii) l �→ T l
S is monotone. Hence, T +∞

S exists as a
monotone limit of stopping times. Moreover, by optimality of T l

S , we have

Y l(S) = E

[
X(T l

S) +
∫ T l

S

S
f (t, l) dt

∣∣∣FS

]
≤ E

[
X(T̂ ) +

∫ T̂

S
f (t, l) dt

∣∣∣FS

]

or equivalently, as X(T̂ ) = 0 by assumption,

E[X(T l
S)|FS] ≤ E

[∫ T̂

T l
S

f (t, l) dt
∣∣∣FS

]
.
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Hence, for any l0 ∈ R, we have by monotonicity of f (t, ·) that

M∗(S) ≤ lim sup
l↑+∞

E[X(T l
S)|FS] ≤ lim

l↑+∞ E

[∫ T̂

T l
S

f (t, l0) dt
∣∣∣FS

]

= E

[∫ T̂

T
+∞
S

f (t, l0) dt
∣∣∣FS

]
,

(28)

where M∗ ≤ X is the martingale of Lemma 4.11(i). For l0 ↑ +∞, the right-hand
side in this estimate tends to −∞ on the set {P[T +∞

S < T̂ |FS] > 0} while the left-
hand side yields an almost surely finite lower bound. Hence, P[T +∞

S < T̂ ] = 0.
Let us now show that liml↑+∞ E[X(T l

S)|FS] = 0. From (28) and T +∞
S = T̂ , we

immediately infer that lim supl↑+∞ E[X(T l
S)|FS] ≤ 0 almost surely. On the other

hand, Lemma 4.11(iii) yields

lim inf
l↑+∞ E[X(T l

S)|FS] ≥ E

[
lim inf
l↑+∞ X(T l

S)
∣∣∣FS

]
, P-a.s.

As shown before, lim infl↑+∞ X(T l
S) ≥ lim inf

t↗T̂
X(t), and this lim inf is 0 by

Lemma 4.11(ii).

Step 3. The results of Steps 2 allow us to let l ↑ +∞ in the representation
of X(S) derived in Step 1. Indeed, take an arbitrary constant l0 = 0, say, and use
the representation obtained in Step 1 to write for l > l0 = 0:

X(S) − E[X(T l
S)|FS] = E

[∫ T 0
S

S
f

(
t, sup

S≤v≤t

L(v)

)
dt

∣∣∣FS

]

+ E

[∫ T l
S

T 0
S

{
f

(
t, sup

S≤v≤t

L(v)

)
− f (t,0)

}
dt

∣∣∣FS

]

+ E

[∫ T l
S

T 0
S

f (t,0) dt
∣∣∣FS

]
.

As l ↑ +∞ the left-hand side in this formula tends to X(S) as shown in Step 2.
The integrand in the second summand of the right-hand side is nonpositive by
Lemma 4.13. Since T l

S ↑ T +∞
S = T̂ by Step 2, monotone convergence implies that

the second summand converges to

E

[∫ T̂

T 0
S

{
f

(
t, sup

S≤v≤t

L(v)

)
− f (t,0)

}
dt

∣∣∣FS

]
;

in particular E[∫ T̂

T 0
S

f (t, supS≤v≤t L(v)) dt|FS] exists as an (a priori) general-

ized conditional expectation taking values in R ∪ {−∞}. Finally, our integra-
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bility assumption on f implies that, for l ↑ +∞, the last summand tends to

E[∫ T̂

T 0
S

f (t,0) dt|FS]. This proves

X(S) = E

[∫ T̂

S
f

(
t, sup

S≤v≤t

L(v)

)
dt

∣∣∣FS

]

from which we immediately infer that in fact the a priori generalized condi-
tional expectation on the right-hand side has finite mean. This finally yields
f (t, supS≤v≤t L(v))1[S,T̂ )

(t) ∈ L1(P ⊗ dt) and completes our proof.

4.3.3. Comparison with the deterministic case. Let us briefly compare the
above proof of existence to our proof of existence in the special case where both
X and f are deterministic. To this end, let us reconsider the deterministic
framework of Section 4.2 and relate the key concept of inhomogeneously convex
envelopes with our key device in the stochastic case, the family of processes Y l(·),
l ∈ R.

In this deterministic setting, it can be shown that Y l(s) coincides with the time s

value of the maximal (−f )-convex function ξ s,l on [s, T̂ ] which is dominated by x

on this interval and whose density ∂+ξ s,l is of the form ∂+ξ s,l(t) = −f (t, l̆(t)) for
some right-continuous increasing function l̆ ≥ l; compare Figure 2. The level L(s)

can now be reinterpreted as the maximal index l for which this function ξ s,l

actually coincides with the (−f )-convex envelope of X|[s,T̂ ]. This observation
implies also that

s �→ Y L̄(s)(s) where L̄(s)
�= sup

0≤v≤s

L(v)

FIG. 2. A function X (thick grey line), the associated function Y l for some fixed l (black line) and
two convex envelopes X̆si , i = 0,1, starting in (si ,X(si)), respectively (dashed grey lines).
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coincides with the (−f )-convex envelope of X. For the special function X

considered in Figure 2, it turns out that the constant l chosen to compute Y l

coincides with the solution L of the representation problem precisely at the times
t0, t1, t2, and t3. Between these points in time, l is either smaller than L and
Y l coincides with X, or lager than L and X strictly dominates Y l .

For the stochastic case, the comparison of our two methods to prove existence
suggests to consider the semimartingale

X̆(s)
�=E

[∫ T̂

s
f

(
t, sup

0≤v≤t

L(v)

)
dt

∣∣∣Fs

]
, s ∈ [0, T̂ ],

as some stochastic kind of inhomogeneously convex envelope for the optional
process X. In fact, as our analysis of the Skorohod-type obstacle problem in
Section 3.4 reveals, X̆ is the only semimartingale dominated by X with dynamics

dX̆(t) = f
(
t,A(t)

)
dt + dM(t) and X̆(T̂ ) = 0

where A is an adapted, right-continuous, increasing process satisfying the
minimality condition

E

∫ T̂

0
|X(s) − X̆(s)|dA(s) = 0.

Hence, one could define a class (D) optional process X to be (inhomogeneously)
convex if it coincides with its “convex envelope,” that is, with the solution X̆ of
the associated Skorohod problem. It is an open question, however, to which extent
such a definition could be justified by additional properties with natural analogues
in the deterministic setting.

APPENDIX

A.1. Proofs in the deterministic case.

PROOF OF PROPOSITION 4.6. The argument for the characterization of strict
convexity being similar, we only prove the characterization of convexity.

(i) ⇒ (ii). We shall show ls,t ≤ ls,u and ls,u ≤ lt,u.
For the first inequality we note that, by definition of ls,t and (i),∫ t

s
g(v, ls,t ) dv = x(t) − x(s) ≤

∫ t

s
g(v, ls,u) dv.

Similarly, we obtain the second inequality from∫ u

t
g(v, ls,u) dv = x(u) −

(
x(s) +

∫ t

s
g(v, ls,u) dv

)

≤ x(u) − x(t) =
∫ u

t
g(v, lt,u) dv.
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(ii) ⇒ (i). Using the definition of ls,t and lt,u, we may write

x(u) − x(s) =
∫ t

s
g(v, ls,t ) dv +

∫ u

t
g(v, lt,u) dv.

By (ii) and the definition of ls,u, this yields∫ u

s
g(v, ls,u) dv ≥

∫ u

s
g(v, ls,t ) dv.

Thus, ls,t ≤ ls,u and therefore

x(t) − x(s) =
∫ t

s
g(v, ls,t ) dv ≤

∫ t

s
g(v, ls,u) dv

as was to be shown.
(iii) ⇒ (ii). Because of the boundary conditions, it suffices to show (18) for

s < t < u contained in the interior int I of our interval. The monotonicity of l(·)
implies

x(t) − x(s) =
∫ t

s
g
(
v, l(v)

)
dv ≤

∫ t

s
g
(
v, l(t)

)
dv

which yields ls,t ≤ l(t). Moreover,

x(u) − x(t) =
∫ u

t
g
(
v, l(v)

)
dv ≥

∫ u

t
g
(
v, l(t)

)
dv,

whence we deduce l(t) ≤ lt,u.
(ii) ⇒ (iii). The same argument as in (ii) ⇒ (i) shows that, for t ∈ int I fixed,

both l·,t and lt,· are increasing functions on their respective domains. Hence, we
may define

l−(t)
�= lim

s↑t
ls,t and l+(t)

�= lim
s↓t

lt,s .

By (18) we have, for s < t < u in int I,

ls,t ≤ l−(t) ≤ l+(t) ≤ lt,u.

In particular, both l− and l+ are increasing, real-valued functions on int I.
We next show that x is absolutely continuous on int I. To this end, we fix a

compact interval [a, b] ⊂ int I and associate with each partition τ = {t0 = a < t1 <

· · · < tn = b} the integrand

iτ (t)
�=

n∑
i=1

g
(
t, lti ,ti+1

)
1[ti ,ti+1)(t), t ∈ [a, b].

By definition of l·,· and g-convexity of x, we then have that the function

I τ (s)
�=x(a) +

∫ s

a
iτ (t) dt, s ∈ [a, b],
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interpolates x at each point s ∈ τ while dominating x otherwise. Moreover, by (ii),
refining the partition τ indefinitely makes iτ converge to

i(t)
�=g

(
t, l+(t)

) = g
(
t, l−(t)

)
in any point t ∈ (a, b) such that l+(t) = l−(t), that is, in all but countably many
points. Since, in addition, g(·, l+(a)) ≤ iτ ≤ g(·, l−(b)), dominated convergence
entails that I τ (s) converges to

I (s)
�=x(a) +

∫ s

a
g
(
t, l±(t)

)
dt

for any s ∈ [a, b] along any sequence of partitions τ1 ⊂ τ2 ⊂ · · · with mesh ‖τn‖
tending to 0 as n ↑ +∞. Since for any given s ∈ [a, b] we may take a sequence
of partitions τ1 ⊂ τ2 ⊂ · · · which all contain s [whence x(s) = I τn(s) for all
n = 1,2, . . . ], this yields x(s) = I τn(s) → I (s) for n ↑ +∞, that is, x(s) = I (s).
In particular, x is absolutely continuous with density

ẋ(t) = g
(
t, l−(t)

) = g
(
t, l+(t)

)
for almost every t ∈ int I. As both l− and l+ are increasing, either representation
of ẋ is of the desired form.

To check the boundary conditions x(t) ≥ lims→t x(s) for t ∈ ∂I ∩ I, let us
for instance consider the case where t

�= sup I ∈ ∂I ∩ I. Note first that x(t−) =
lims↑t x(s) exists as a number in R ∪ {+∞}. Indeed, take an arbitrary t0 ∈ int I,
and consider the function x̃ defined by

x̃(s)
�=x(t0) +

∫ s

t0

{
g
(
v, l+(v)

) − g
(
v, l+(t0)

)}
dv, s ∈ int I.

Since l+ is increasing, x̃ is increasing on (t0, t) and, therefore, has a possibly
infinite limit for s ↑ t . By integrability of g(·, l+(t0)), this property carries over
to x.

As we know already that property (ii) implies g-convexity, we have for any
s ∈ int I with s > t0 the estimate

x(s) ≤ x(t) −
∫ t

s
g
(
v, lt0,t

)
dv.

Obviously, the right-hand side converges to x(t) as s ↑ t while the left-hand side
converges to lims↑t x(s) = x(t−), establishing the desired boundary condition.
Additionally, we obtain that g(v, l+(v))1[t0,t](v) ∈ L1(dv) since otherwise we had∫ t
t0

g(v, l+(v)) dv = +∞ which would imply x(t) = +∞ in contradiction to our
assumption that x(s) ∈ R for all s ∈ I. �

PROOF OF PROPOSITION 4.8. It suffices to show that the pointwise supre-
mum

x̆(t)
�= sup

ξ∈X
ξ(t), t ∈ I,
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of the g-convex functions ξ ≤ x is again g-convex. So fix s < t < u in I and
consider ξ ∈ X. Since ξ is g-convex, we have

ξ(t) ≤ �
(
ξ(s), ξ(u)

)
where

�(ξ1, ξ2)
�= ξ1 +

∫ t

s
g(v, l) dv = ξ2 −

∫ u

t
g(v, l) dv

with l = l(ξ1, ξ2) ∈ R such that

ξ1 +
∫ u

s
g(v, l) dv = ξ2.

It is easy to see that the function � is increasing in both arguments. Thus,

ξ(t) ≤ �
(
x̆(s), x̆(u)

)
.

As this holds true for any ξ ∈ X, we deduce

x̆(t) ≤ �
(
x̆(s), x̆(u)

)
,

which means that indeed x̆ is g-convex. �

PROOF OF PROPOSITION 4.10. (i) Let ξ be an arbitrary g-convex function

dominated by x. Define ξ̃
�= ξ on int I and put ξ̃

�=x on ∂I ∩ I. Then ξ̃ is another
g-convex function dominated by x. Since x̆ is the largest of these functions, this
yields in particular x = x̆ on ∂I ∩ I. The property x̆ ≤ x∗ on int I holds since, on
this set, x̆ is continuous and dominated by x.

(ii) Consider t ∈ I with x̆(t) < x∗(t). By (i), t ∈ int I and we have to show
that t /∈ suppdl̆. To this end, we note first that, by assumption on t , there are real
numbers c, δ > 0 such that

x̆(s) + c ≤ x(s) for all s ∈ [t − δ, t + δ] ⊂ I.

For 0 < h ≤ δ, consider the function xh defined by xh �= x̆ on I \ (t − h, t + h) and

xh(s)
�= x̆(t − h) +

∫ s

t−h
g(v, lh) dv for s ∈ (t − h, t + h)

where lh ∈ R is the unique constant satisfying

x̆(t − h) +
∫ t+h

t−h
g(v, lh) dv = x̆(t + h).

As x̆ is g-convex, we have x̆ ≤ xh on [t − h, t + h] and, hence, x̆ ≤ xh on all of I.
Since sup[t−h,t+h] xh depends continuously on h through x̆(t ± h) and because

x̆ +c ≤ x on [t −δ, t +δ], we may choose h > 0 small enough to ensure xh ≤ x on
this interval and, hence, even on all of I. Then, by construction, xh is a g-convex
function dominated by x and, thus, xh is also dominated by x̆.

Altogether, we find that in fact xh has to coincide with x̆. This implies l̆ ≡ lh

on (t − h, t + h) and, in particular, t /∈ suppdl̆.
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(iii) We know already that x̆ is absolutely continuous on int I. Thus, in order to
establish this property on all of I, it suffices to show that x̆ is continuous on the
boundary points inf I, sup I if these are contained in I. The argument for the inf case
being similar, we restrict ourselves to show continuity of x̆ in case b

�= sup I ∈ I.
By Proposition 4.6, limt→b x̆(t) exists and is ≤ x̆(b) = x(b). For the converse

inequality, we distinguish two cases.
If b = supsuppdl̆ with l̆ as in (ii), there is a sequence of points tn ∈ suppdl̆

which increases to b. By (ii), we thus have

lim
t→b

x̆(t) = lim
n

x̆(tn) = lim
n

x∗(tn) ≥ lim inf
t→b

x∗(t) = x∗(b) = x(b)

which establishes the converse inequality in this case.

If b > τ
�= supsuppdl̆, then

x̆(t) = x̆(s) +
∫ t

s
g
(
v, l̆(τ )

)
dv for all τ ≤ s ≤ t < b.

Thus, in case limt→b x̆(t) < x(b) = x∗(b), there is a constant c > 0 such that
for s < b large enough we have x̆(t) + c ≤ x(t) for all t ∈ [s, b). This, however,
contradicts the maximality of x̆ as a g-convex function dominated by x.

(iv) Consider s, t1, t2 ∈ int I with t1 < t2 ≤ s and put

u
�= inf

{
t ≥ s | x̆t1(t) = x̆t2(t)

}
.

As x̆t1 ≤ x̆t2 on [s,+∞] ∩ I, we then have

x̆t1 |[u,+∞]∩ I = x̆t2 |[u,+∞]∩ I.(29)

If u = s, this immediately yields that our assertion

∂+x̆t1(s) ≥ ∂+x̆t2(s)

holds true with equality.
In case u > s and u ∈ I, let l̆1

s,u, l̆ 2
s,u denote the constants associated via (17) with

x̆t1 and x̆t2 , respectively; let furthermore l̆1, l̆ 2 be the right-continuous increasing
functions such that ∂+x̆t1 = g(·, l̆1(·)), ∂+x̆t2 = g(·, l̆ 2(·)). Since x̆t1(s) < x̆t2(s),
it follows that l̆1

s,u > l̆ 2
s,u. Using (iii), our identity (29) and monotonicity of l̆ 2, we

thus obtain the series of (in)equalities

∂+x̆t1(s) = g(s, l̆1
s,u) > g(s, l̆ 2

s,u) ≥ g(s, l̆ 2
s,u) ≥ g

(
s, l̆ 2(s)

) = ∂+x̆t2(s)

as claimed.
Finally, if u > s is not contained in I, then x̆t1 < x̆t2 ≤ x∗ on [s, u). By (iii), this

implies

x̆t2(t) = x̆t2(s) +
∫ t

s
g
(
v, l̆1(s)

)
dv.

Hence, by integrability of g(·, const.), we may extend both x̆t2 and x canonically
to I ∪ {u} and apply the reasoning of the preceding case to conclude the assertion.

�
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A.2. Proofs in the stochastic case.

A.2.1. Proof of Lemma 4.11. (i) By Proposition 2.29 in El Karoui (1981), the
optional versions of the Snell envelopes

J∗(S) = ess sup
T ∈S(S)

E[X−(T )|FS] and J ∗(S) = ess sup
T ∈S(S)

E[X+(T )|FS], S ∈ S,

are of class (D) since so is X = X+ − X−. By the same proposition, J∗ (resp. J ∗)
can be written as the difference of a martingale −M∗ (resp. M∗) and a nonnegative
increasing process. It follows that

M∗ ≤ −J∗ ≤ −X− ≤ X ≤ X+ ≤ J ∗ ≤ M∗

which proves assertion (i).
(ii) Since X is optional and of class (D), pathwise lower-semicontinuity

from the right follows from Dellacherie and Lenglart (1982). In order to prove
lim inf

t↑T̂
X(t) ≥ X(T̂ ) = 0 almost surely, suppose to the contrary that for some

ε > 0 we have P[lim inf
t↑T̂

X(t) < −2ε] > 0. Put T 0 �=0 and define

T n �= inf
{
t ≥ T n−1 ∨ Sn | X(t) ≤ −ε

} ∧ T̂

where Sn,n = 1,2, . . . , may be any sequence of stopping times announcing T̂ .
Then obviously T n ↗ T̂ and, since the paths of X are lower-semicontinuous from
the right, it holds that X(T n) ≤ −ε on {T n < T̂ } while X(T n) = 0 on {T n = T̂ }.
Hence, we have

EX(T n) = E
[
X(T n)1{T n<T̂ }

] ≤ −εP[T n < T̂ ].
Since the process X is lower-semicontinuous in expectation we may let n ↑ +∞
in the above relation to deduce

EX(T̂ ) ≤ lim inf
n

EX(T n) ≤ −εP[T n < T̂ for all n = 1,2, . . . ].
However, as EX(T̂ ) = 0, this is a contradiction to our initial assumption that the
event {

lim inf
t↑T̂

X(t) < −2ε

}
⊂ {T n < T̂ for all n = 1,2, . . . }

has strictly positive probability.
(iii) Apply Fatou’s lemma to X(T n) − M∗(T n) ≥ 0, n = 1,2, . . . , to deduce

lim inf
n

E[X(T n) − M∗(T n)|FS] ≥ E

[
lim inf

n

{
X(T n) − M∗(T n)

}∣∣∣FS

]
.

Since M∗ is a martingale we may rewrite the left-hand side in this expres-
sion as lim infn E[X(T n)|FS] − M∗(S). Furthermore, the martingale property
of M∗ in conjunction with the monotonicity of T n,n = 1,2, . . . , implies that
limn M∗(T n) exists almost surely and in L1(P) so that the right-hand side equals
E[lim infn X(T n) − limn M∗(T n)|FS] = E[lim infn X(T n)|FS] − M∗(S).
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A.2.2. Proof of Lemma 4.12. The proof of Lemma 4.12 is rather lengthy and
technical. We therefore split it into several parts and start with some preliminaries.

Preliminaries. Due to our assumptions on f and X, we may apply
Théorème 2.28 in El Karoui (1981) to obtain existence of optional processes
Ỹ l (l ∈ R) such that

Ỹ l(S) = ess inf
T ∈S(s)

E

[
X(T ) +

∫ T

S
f (t, l) dt

∣∣∣FS

]
≤ X(S)

for every stopping time S ∈ S and every l ∈ R. Moreover, Théorème 2.41 in
El Karoui (1981) implies that, for S ∈ S fixed,

T̃ l
S

�= inf
{
t ≥ S | Ỹ l(t) = X(t)

} ≤ T̂

is optimal in the sense that

Ỹ l(S) = E

[
X(T̃ l

S) +
∫ T̃ l

S

S
f (t, l) dt

∣∣∣FS

]
.

For l, l′ ∈ R with l ≤ l′, the monotonicity of f (t, ·),0 ≤ t ≤ T̂ , yields

E

[
X(T ) +

∫ T

S
f (t, l′) dt

∣∣∣FS

]
≤ E

[
X(T ) +

∫ T

S
f (t, l) dt

∣∣∣FS

]

for all T ∈ S(S). As Ỹ l′(S) [resp., Ỹ l(S)] is the essential infimum of the left-
hand (resp., the right-hand) side of this inequality where T ranges over S(S), this
implies

Ỹ l′(S) ≤ Ỹ l(S), P-a.s.(30)

In addition, we have

Ỹ l(S) ≤ E

[
X

(
T̃ l′

S

) +
∫ T̃ l′

S

S
f (t, l) dt

∣∣∣FS

]

= E

[
X

(
T̃ l′

S

) +
∫ T̃ l′

S

S
f (t, l′) dt

∣∣∣FS

]
+ E

[∫ T̃ l′
S

S

{
f (t, l) − f (t, l′)

}
dt

∣∣∣FS

]

= Ỹ l′(S) + E

[∫ T̃ l′
S

S

{
f (t, l) − f (t, l′)

}
dt

∣∣∣FS

]

where the last equality follows from optimality of T̃ l′
S . For l ≤ l′, we have

f (t, l) − f (t, l′) ≥ 0 for any t ∈ [0, T̂ ], and thus the preceding estimate yields

Ỹ l(S) ≤ Ỹ l′(S) +
∫ T̂

0
|f (t, l′) − f (t, l)|dt, P-a.s.(31)
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Since both estimates (30) and (31) hold true for every stopping time S ∈ S,
optionality of both Ỹ l and Ỹ l′ entails the pathwise estimate

Ỹ l′(s) ≤ Ỹ l(s) ≤ Ỹ l′(s) +
∫ T̂

0
|f (t, l′) − f (t, l)|dt for all s ∈ [0, T̂ ],P-a.s.

by Meyer’s optional section theorem. In fact, we may even choose Ỹ l for l ∈ Q

such that the above relation holds true simultaneously at each point ω ∈ � for all
rational l ≤ l′. Similarly, we may assume that Ỹ l(ω, t) ≤ X(ω, t) for all l ∈ Q and
any (ω, t) ∈ � × [0, T̂ ].

With this choice of the auxiliary processes Ỹ l, l ∈ Q, we now come to the
following:

CONSTRUCTION OF Y AND PROOF OF LEMMA 4.12(i). For each l ∈ R,
define the process

Y l(s)
�= lim

Q�r↑l
Ỹ r (s) = inf

l>r∈Q
Ỹ r(s), s ∈ [0, T̂ ].

We claim that Y l is indistinguishable from Ỹ l for every l ∈ R. Indeed, Y l is
obviously optional. As Ỹ r ≤ Ỹ l for all rational r < l, we also have Y l ≤ Ỹ l . For
the remaining converse inequality, fix S ∈ S and note that, for every T ∈ S(S),

Y l(S) = lim
Q�r↑l

Ỹ r (S)

≤ lim inf
Q�r↑l

E

[
X(T ) +

∫ T

S
f (t, r) dt

∣∣∣FS

]
= E

[
X(T ) +

∫ T

S
f (t, l) dt

∣∣∣FS

]
.

Since this estimate holds true for all T ∈ S(S), we may pass to the essential
infimum on its right-hand side to obtain Y l(S) ≤ Ỹ l(S) almost surely. By
optionality, this entails Y l(t) ≤ Ỹ l(t) for all t ∈ [0, T̂ ], P-a.s., which is the asserted
converse inequality. �

PROOF OF LEMMA 4.12(ii) AND (iii). Y l and Ỹ l being indistinguishable by
construction, optimality of T l

S follows from optimality of T̃ l
S .

To prove the first part of assertion (iii), recall that we have chosen Ỹ l, l ∈ Q,
such that

Ỹ l′(ω, s) ≤ Ỹ l(ω, s) ≤ Ỹ l′(ω, s) +
∫ T̂

0
|f (ω, t, l′) − f (ω, t, l)|dt

for all ω ∈ �, s ∈ [0, T̂ ] and all rational l ≤ l′. Taking rational limits, we infer from
this that

Y l′(ω, s) ≤ Y l(ω, s) ≤ Y l′(ω, s) +
∫ T̂

0
|f (ω, t, l′) − f (ω, t, l)|dt
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for all ω ∈ �, s ∈ [0, T̂ ] and all real l ≤ l′. This inequality proves the claimed
continuity and monotonicity of l �→ Y l(ω, s).

We next show that, for S ∈ S fixed, we have T l
S(ω) ≤ T l′

S (ω) simultaneously for
all l ≤ l′ and all ω ∈ �. Indeed, by construction, we have Y l′(ω, s) ≤ Y l(ω, s) ≤
X(ω, s) for every l′ ≤ l, s ∈ [0, T̂ ] and all ω ∈ �. For fixed ω, this yields

{
t ≥ S(ω) | Y l′(ω, t) = X(ω, t)

} ⊂ {
t ≥ S(ω) | Y l(ω, t) = X(ω, t)

}

whence T l′
S (ω) ≥ T l

S(ω) by definition of these stopping times.
To complete the proof of (iii), we next determine the limit Y−∞. By optimality

of T l
S , we have

X(S) ≥ Y l(S) = E

[
X(T l

S) +
∫ T l

S

S
f (t, l) dt

∣∣∣FS

]

for any l ∈ R. Letting l ↓ −∞, this entails

X(S) ≥ Y−∞(S) ≥ lim inf
l↓−∞ E[X(T l

S)|FS] + lim inf
l↓−∞ E

[∫ T l
S

S
f (t, l) dt

∣∣∣FS

]
.(32)

From the monotonicity of l �→ T l
S we deduce that T −∞

S

�= liml↓−∞ T l
S exists.

Moreover, from Lemma 4.11(iii) we may infer the estimate

lim inf
l↓−∞ E[X(T l

S)|FS] ≥ E

[
lim inf
l↓−∞ X(T l

S)
∣∣∣FS

]
≥ E[X(T −∞

S )|FS](33)

for the first summand on the right-hand side of (32). Here, the second inequality
follows by pathwise lower-semicontinuity from the right of X [Lemma 4.11(ii)].

The second summand can be estimated from below by

lim inf
l↓−∞ E

[∫ T l
S

S
f (t, l) dt

∣∣∣FS

]

≥ ess sup
l0∈R

lim inf
l↓−∞ E

[∫ T l
S

S
f (t, l0) dt

∣∣∣FS

]

= E

[∫ T −∞
S

S
f (t,−∞) dt

∣∣∣FS

]

= +∞1{T −∞
S >S}.

(34)

Hence, it follows from (32) that T −∞
S = S almost surely. Combining this with our

estimates (32)–(34) yields Y−∞(S) = X(S) almost surely as claimed. �

It finally remains to prove our version of the Envelope theorem.
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PROOF OF LEMMA 4.12(iv). Fix S ∈ S and l∗ < l∗ in R. We have to show
that Y l∗(S) − Y l∗(S) is a version of the conditional expectation

E

[∫ T̂

S

{∫ l∗

l∗
1[S,T l

S ](t) df (t, l)

}
dt

∣∣∣FS

]
.

To this end, fix a set A ∈ FS and consider a partition τ = {l∗ = l0 < l1 < · · · <

ln+1 = l∗} of the interval [l∗, l∗]. Write

E
[(

Y l∗
S − Y

l∗
S

)
1A

] =
n∑

i=0

E
[(

Y
li+1
S − Y

li
S

)
1A

]

and use optimality of T
li+1
S and T

li
S , respectively, to estimate

E
[(

Y l∗
S − Y

l∗
S

)
1A

] ≥
n∑

i=0

E

[(
X

(
T

li+1
S

) +
∫ T

li+1
S

S
f (t, li+1) dt

)
1A

]

− E

[(
X

(
T

li+1
S

) +
∫ T

li+1
S

S
f (t, li ) dt

)
1A

]

=
n∑

i=0

E

[∫ T
li+1
S

S

{
f (t, li+1) − f (t, li )

}
dt 1A

]
�= Iτ

(35)

and similarly

E
[(

Y l∗
S − Y

l∗
S

)
1A

] ≤
n∑

i=0

E

[∫ T
li
S

S

{
f (t, li+1) − f (t, li )

}
dt 1A

]
�= IIτ .(36)

We may rewrite Iτ in terms of the measures df (t, ·), t ∈ [0, T̂ ], as

Iτ =
n∑

i=0

E

[∫ T
li+1
S

S

{∫ +∞
−∞

1[li ,li+1)(l) df (t, l)

}
dt 1A

]

= E

[∫ T̂

S

{∫ +∞
−∞

n∑
i=0

1[S,T
li+1
S )

(t)1[li ,li+1)(l) df (t, l)

}
dt 1A

]
.

For mesh ‖τ‖ tending to zero, the above sum of indicator products converges to
1[l∗,l∗)(l)1[S,T l+

S ](t) and is dominated uniformly in τ by 1[l∗,l∗)(l)1[S,T̂ ](t). Since

the latter product is in L1(P ⊗ dt ⊗ df (t, l)) due to our integrability assumption
on f , we may conclude by dominated convergence that

lim‖τ‖→0
Iτ = I �=E

[∫ T̂

S

{∫ +∞
−∞

1[l∗,l∗)(l)1[S,T l+
S ](t) df (t, l)

}
dt 1A

]
.

An analogous argument shows

lim‖τ‖→0
IIτ = II �=E

[∫ T̂

S

{∫ +∞
−∞

1[l∗,l∗)(l)1[S,T l−
S ](t) df (t, l)

}
dt 1A

]
.
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For every ω ∈ �, the set {l ∈ R | T l−
S (ω) < T l+

S (ω)} is countable due to the
monotonicity of T l

S(ω) in l. In conjunction with our estimates (35) and (36), this
yields the identities

I = II = E
[(

Y l∗
S − Y

l∗
S

)
1A

]
.(37)

Moreover, monotonicity of T l−
S , T l

S and T l+
S in conjunction with T l−

S ≤
T l

S ≤ T l+
S and df (t, ·) ≤ 0 implies

I ≥ E

[∫ T̂

S

{∫ +∞
−∞

1[l∗,l∗)(l)1[S,T l
S ](t) df (t, l)

}
dt 1A

]
≥ II.

Together with (37), the preceding inequality finally implies

E
[(

Y l∗
S − Y

l∗
S

)
1A

] = E

[∫ T̂

S

{∫ +∞
−∞

1[l∗,l∗)(l)1[S,T l
S ](t) df (t, l)

}
dt 1A

]
.

As A ∈ FS is arbitrary, this completes the proof of assertion (iv). �

A.2.3. Proof of Lemma 4.13. The process L is optional since, for every l ∈ R,
we have

{
(ω, t) ∈ � × [0, T̂ ] | L(ω, t) > l

} = ⋃
l<r∈Q

{Y r = X},

where the latter set is optional by optionality of Y r and X. To see that L takes
values in [−∞,+∞), consider S ∈ Ŝ and note that on {L(S) = +∞} we have
X(S) = Y l(S) for all l ∈ R almost surely. This entails, in particular, that

X(S) ≤ E[X(T̂ )|FS] + E

[∫ T̂

S
f (t, l) dt

∣∣∣FS

]
on {L(S) = +∞} for all l ∈ R

almost surely. Letting l ↑ +∞, this implies

{L(S) = +∞} ⊂ {X(S) = −∞}
up to a P-null set. The right event has probability zero by assumption on X and,
thus, also P[L(S) = +∞] = 0.

The claimed inclusions A ⊂ B ⊂ C are easily derived from the definitions of
L and T l

S . Moreover, for (ω, t) ∈ � × [0, T̂ ] such that the running supremum
supS(ω)≤v≤· L(v) does not jump at time t , the only point contained in the difference
of the (ω, t)-sections C(ω,t)\A(ω,t) is l = supS(ω)≤v<t L(v).
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