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GRADIENT ESTIMATES OF DIRICHLET HEAT SEMIGROUPS
AND APPLICATION TO ISOPERIMETRIC INEQUALITIES1

BY FENG-YU WANG

Beijing Normal University

By using probabilistic approaches, some uniform gradient estimates
are obtained for Dirichlet heat semigroups on a Riemannian manifold
with boundary. As an application, lower bound estimates of isoperimetric
constants are presented in terms of functional inequalities.

1. Introduction. Let M be a connected complete Riemannian manifold of
dimension d . Consider L := � + Z, where Z is a C1-vector field. Assume that
there is K ≥ 0 such that

(Ric − 〈∇·Z, ·〉)(X,X) ≥ −K|X|2, X ∈ T M.(1.1)

If M has no boundary, then the semigroup Pt of the L-diffusion process satisfies
the gradient estimate

‖∇Ptf ‖∞ ≤ C√
t
‖f ‖∞, t ∈ (0,1], f ∈ B+

b (M),(1.2)

where C > 0 is a constant depending only on K and B+
b (M) stands for the

set of all nonnegative bounded measurable functions. When M has a convex
boundary ∂M (i.e., the second fundamental form of ∂M is nonnegative),
(1.2) remains true for the Neumann heat semigroup (i.e., the semigroup of the
reflecting L-diffusion process). Indeed, if ∂M is either empty or convex, then (1.1)

implies |∇Ptf | ≤ eKtPt |∇f | for all t ≥ 0 and all f ∈ C1
b(M). This gradient

estimate appeared first in Donnelly and Li (1982) for L = � and was established in
Elworthy (1992), Bakry and Ledoux (1996), Qian (1997), Wang (1997) and some
other references by different means. Then, as shown by the proof of Lemma 4.2 in
Bakry and Ledoux (1996), one has

‖∇Ptf ‖2∞ ≤ K‖f ‖2∞
1 − e−2Kt

≤ K‖f ‖2∞
(1 − e−2Kt)(t ∧ 1)

, t > 0.(1.3)

In particular, if K = 0, then ‖∇Ptf ‖∞ ≤ ‖f ‖∞/
√

2t .
A remarkable application of the uniform gradient estimate was made by Ledoux

(1994) to obtain isoperimetric inequalities using Poincaré and log-Sobolev ones.
It is well known that a Poincaré–Sobolev type of inequality follows from the

Received June 2002; revised February 2003.
1Supported in part by NNSFC (10025105, 10121101), TRAPOYT and the 973-Project.
AMS 2000 subject classifications. 58G11, 60J60.
Key words and phrases. Gradient estimate, Dirichlet heat semigroup, isoperimetric inequality.

424



GRADIENT ESTIMATES FOR HEAT SEMIGROUPS 425

corresponding isoperimetric inequality [see, e.g., Chavel (1984)]. When Z = 0,
Buser (1992) proved a converse result; that is, he obtained a lower bound estimate
of Cheeger’s isoperimetric constant by using the Poincaré inequality. His proof
was considerably simplified by Ledoux through a gradient estimate of type (1.2).
Ledoux’s argument has been used in Wang (2000) and Hu (2002) to obtain
lower bounds of various isoperimetric constants from general Poincaré–Sobolev
inequalities.

The purpose of this paper is to establish (1.2) for the Dirichlet heat semigroup
and then apply the gradient estimate to isoperimetric inequalities. From now on,
we assume that ∂M �= ∅ and let Pt be the Dirichlet semigroup generated by L,
that is,

Ptf (x) := Ef (xx
t )1{t<τx }, f ∈ B+

b (M), t ≥ 0,(1.4)

where (xx
t )t≥0 is the L-diffusion process starting from x and τ x is the hitting time

of the process to the boundary.
The gradient estimate of the Dirichlet semigroup has been studied in Thalmaier

and Wang (1998) and Wang (1997, 1998). But in these references a uniform
estimate is available only on a domain with a positive distance to the boundary.
Therefore, as far as we know, (1.2) is still to be established in the present setting.
In fact, for the Dirichlet semigroup, the curvature condition (1.1) is no longer
sufficient to imply (1.2): as shown by Examples 3.1 and 3.2, to derive (1.2), one
has to make additional assumptions on the boundary as well as the vector field Z.

Let N be the inward normal unit vector field of ∂M . Define b :Tp ∂M ×
Tp ∂M → R by

b(ξ, η) := −〈∇ξN,η〉,
which is symmetric, and B(ξ, η) := b(ξ, η)N is known as the second fundamental
form of ∂M . We assume that there is σ ≥ 0 such that

Tr b :=
d−1∑
n=1

b(ξn, ξn) ≥ −σ(d − 1), {ξn}d−1
n=1 ∈ O(∂M);(1.5)

that is, the mean curvature of ∂M is bounded below by −σ(d − 1), where
O(∂M) is the orthonormal frame bundle of ∂M. Moreover, we assume that there
exists δ ∈ R such that

|Z| ≤ δ.(1.6)

Finally, let k ≥ 0 be such that

Ric(X,X) ≥ −k(d − 1)|X|2, X ∈ T M.(1.7)

Our main result is the following theorem.
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THEOREM 1.1. Assume that (1.5), (1.6) and (1.7) hold. Let c := (d − 1)[σ ∨√
k ]+δ. Let Pt be defined by (1.4). For any f ∈ B+

b (M) with ‖f ‖∞ > 0, we have

‖∇Ptf ‖∞
‖f ‖∞

≤
(

4 + 3

4

)
c +

√
2c(1 + 42/3)1/4(1 + 5/21/3)

(πt)1/4

+
√

1 + 21/3(1 + 42/3)

2
√

πt

=: C(t), t > 0.

(1.8)

Consequently,

‖∇Ptf ‖∞ ≤ C(1)‖f ‖∞√
t ∧ 1

, t > 0, f ∈ B+
b (M).(1.9)

If, in particular, k = σ = δ = 0, then

‖∇Ptf ‖∞ ≤ ‖f ‖∞
√

1 + 21/3(1 + 42/3)

2
√

πt
, t > 0, f ∈ B+

b (M).(1.10)

As an application of Theorem 1.1, we have the following result on isoperimetric
constants.

THEOREM 1.2. Let Z = ∇V for some V ∈ C2(M) and let µ(dx) := eV (x) dx,
where dx stands for the volume element. Assume (1.5), (1.6) and (1.7).

(i) Let M̂ := M \ ∂M . If

λ1 := inf
{
µ(|∇f |2) :f ∈ C∞

0 (M̂),µ(f 2) = 1
}
> 0,(1.11)

then

κ := inf
A

µ∂(∂A)

µ(A)
≥ sup

t>0

1 − e−λ1t

C(1)(t ∨ √
t )

≥ 1 − e−1

C(1)

(
λ1 ∧ √

λ1
)
,(1.12)

where here and in the rest of the paper A runs over all bounded smooth domains
in M̂ and µ∂(∂A) is the area of the boundary of A induced by µ. If, in particular,
k = σ = δ = 0, then

κ ≥ 2
√

πλ1√
1 + 21/3(1 + 42/3)

sup
r>0

1 − e−r

√
r

.

(ii) Assume that k = σ = δ = 0. If there exists p > 1 such that the following
Nash inequality holds:

µ(f 2)1+2/p ≤ Cµ(|f |)4/pµ(|∇f |2), f ∈ C∞
0 (M̂),(1.13)

where C > 0 is a constant, then

κp := inf
A

µ∂(∂A)

µ(A)(p−1)/p
≥ 2p

√
2π√

(1 + 21/3)Cp(1 + 42/3)(p + 1)(p+1)/p
.(1.14)
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(iii) In general, (1.13) implies

κ ′
p := inf

A

µ∂(∂A)

{µ(A)(p−1)/p} ∧ {µ(A)(p−2)/p}
≥ p

2
√

2C(1)(1 + p/2)(p+2)/p[(Cp) ∨ √
Cp ] .

REMARK. By Cheeger’s inequality, one has λ1 ≥ κ2/4. Next, it is well known
that [see, e.g., Chavel (1984)]

µ
(|f |p/(p−1)

)(p−1)/p ≤ 1

κp

µ(|∇f |), f ∈ C∞
0 (M̂).

Then, letting µ(|f |) = 1 and using Hölder’s inequalities, we obtain

µ(f 2) = µ
(|f |2/(p+1)|f |2p/(p+1)

) ≤ µ
(
(f 2)p/(p−1)

)(p−1)/(p+1)

≤
(

µ(|∇f 2|)
κp

)p/(p+1)

≤
{

2

κp

√
µ(|∇f |2)µ(f 2)

}p/(p+1)

.

Therefore, (1.13) holds for

C = 4

κ2
p

.

Theorem 1.2 contains certain converses of the above classical results.

Theorem 1.1 is proved in the next section by using the coupling method
developed by Kendall (1986) and Cranston (1991). To obtain a uniform gradient
estimate, the key step is to estimate the joint distribution of the coupling time and
the hitting time to the boundary. In Section 3, we present two examples to show
that any of conditions (1.5) and (1.6) cannot be dropped from Theorem 1.1. Finally,
we prove Theorem 1.2 in Section 4 following Ledoux’s argument. An extension of
Theorem 1.2 is also presented (see Proposition 4.1).

2. Proof of Theorem 1.1. The main idea of the proof comes from Cranston
(1991) where Kendall’s coupling was refined and applied to the gradient estimate
of bounded harmonic functions. To derive uniform estimates of type (1.2), we need
to estimate the joint distribution of the coupling time and the hitting times to the
boundary.

Let (xx
t , y

y
t )t≥0 be a coupling of the L-diffusion processes starting from x and y,

respectively, with absorbing boundary ∂M . Let τ x
1 and τ

y
2 denote, respectively,

the hitting times to ∂M of xx
t and y

y
t . For R > ρ(x, y), the Riemannian distance

between x and y, we put

S
x,y
R := inf{t ≥ 0 :ρ(xx

t , y
y
t ) ≥ R}, T x,y := inf{t ≥ 0 :xx

t = y
y
t }.
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As usual, we let xx
t and y

y
t move together since the coupling time T x,y .

For simplicity, from now on we remove the superscripts from the notation of
processes and stopping times, but it is important to keep in mind the dependence
on the starting points x and y.

For any t > 0 and any ε ∈ (0,1), we have

{T ∧ τ1 ∧ τ2 ≤ εt} ⊂ {T ≤ τ1 ∧ τ2 ∧ t} ∪ {τ1 ∧ τ2 ≤ εt, T ≥ τ1 ∧ τ2}
⊂ {T ≤ τ1 ∧ τ2 ∧ t} ∪ {τ1 ≤ (εt) ∧ T, τ2 > t}

∪ {τ2 ≤ (εt) ∧ T, τ1 > t} ∪ {τ1 ∨ τ2 ≤ t}.
It is clear that when T ≤ τ1 ∧ τ2 ∧ t one has τ1 = τ2 and xt = yt , and when
τ1 ∨ τ2 ≤ t one has 1{t<τ1} = 1{t<τ2} = 0. We obtain, for f ∈ B+

b (M),

|Ptf (x) − Ptf (y)|
≤ E

∣∣f (xt )1{t<τ1} − f (yt)1{t<τ2}
∣∣

≤ ‖f ‖∞
{
P(T ∧ τ1 ∧ τ2 > εt)

+ P(τ1 ≤ εt ∧ T, τ2 > t) + P(τ2 ≤ εt ∧ T, τ1 > t)
}

≤ ‖f ‖∞
{
P(T ∧ τ1 ∧ τ2 > εt) + P(τ1 ≤ εt ∧ SR, τ2 > t)

+ P(τ2 ≤ εt ∧ SR, τ1 > t) + P(T ∧ τ1 ∧ τ2 ≥ SR)
}
,

R > ρ(x, y).

Therefore, for ‖f ‖∞ > 0,

|∇Ptf |(x)

‖f ‖∞

≤ lim sup
y→x

1

ρ(x, y)

{
P(T ∧ τ1 ∧ τ2 > εt) + P(τ1 ≤ εt ∧ SR, τ2 > t)

+ P(τ2 ≤ εt ∧ SR, τ1 > t) + P(T ∧ τ1 ∧ τ2 ≥ SR)
}
,

R > 0.

(2.1)

Thus, to derive upper bounds of ‖∇Ptf ‖∞/‖f ‖∞, we need to estimate those
probabilities involved in (2.1). To this end, we present the following three lemmas.

LEMMA 2.1. Let (rt )t≥0 be the one-dimensional diffusion process generated

by a d2

dr2 + b(r) d
dr

, where a > 0 is a constant and b ∈ C1(R). Let r0 > 0 and
τ0 := inf{t ≥ 0 : rt = 0}. Let

ξ(r) :=
∫ r

0
exp

[
−1

a

∫ s

0
b(t) dt

]
ds, r ∈ R,

c(u) := 1

a
sup

t∈[0,u]

∫ t

0
b(s) ds, u > 0.
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We have

P(τ0 > t) ≤ ξ(r0) inf
s>r0

{
1

ξ(s)
+ ec(s)

√
aπt

}
, t > 0.

PROOF. It is easy to see that aξ ′′ + bξ ′ = 0. Then, by Itô’s formula,

dξ(rt ) = √
2aξ ′(rt ) dBt = √

2aξ ′ ◦ ξ−1(ξ(rt )) dBt ,

where (Bt )t≥0 is the one-dimensional Brownian motion. Hence, (ξ(rt ))t≥0 is the

one-dimensional diffusion process on (0, ξ(∞)) generated by a(ξ ′ ◦ ξ−1)2(r) d2

dr2 .

Next, let

T (t) := 1

2a

∫ t

0

ds

(ξ ′ ◦ ξ−1(Bs))2

= 1

2a

∫ t

0
exp

[
2

a

∫ ξ−1(Bs)

0
b(r) dr

]
ds, t ≥ 0.

Then the time-changed Brownian motion BT −1(t) is also generated by a(ξ ′ ◦
ξ−1)2(r) d2

dr2 . Therefore, letting B0 = ξ(r0) and

τ ′ := inf{t ≥ 0 :Bt = 0}, σu := inf{t ≥ 0 :Bt ≥ ξ(u)}, u > r0,

we obtain [see, e.g., Karatzas and Shreve (1998) for the distribution of τ ′]

P(τ0 > t) ≤ P
(
T (τ ′) > t, τ ′ ≤ σu

) + P(τ ′ > σu)

≤ P
(
τ ′ > 2ate−2c(u)) + P(τ ′ > σu)

= 2√
2π

∫ ξ(r0)e
c(u)/

√
2at

0
e−s2/2 ds + ξ(r0)

ξ(u)

≤ ξ(r0)

(
ec(u)

√
aπt

+ 1

ξ(u)

)
. �

To study the hitting time of the L-diffusion process to ∂M , we need to estimate
Lρ∂M , where ρ∂M is the Riemannian distance function to the boundary. Let
cut(∂M) denote the set of focal cut points of ∂M [see, e.g., Chavel (1984)]. We
will use the following Laplacian comparison theorem due to Kasue (1982); see the
Appendix for a complete proof.

THEOREM 2.2 [Kasue (1982)]. Let x /∈ ∂M ∪ cut(∂M) and let l· : [0,

ρ∂M(x)] → M be the minimal geodesic linking ∂M and x. Assume (1.5) holds
for some σ ∈ R. Let R ∈ C[0, ρ∂M(x)] be such that

Ric(l′, l′)(s) ≥ −(d − 1)R(s), s ∈ [0, ρ∂M(x)].(2.2)
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If h ∈ C2[0, ρ∂M(x)] is a strictly positive function satisfying

h′′ ≥ Rh, h(0) = 1, h′(0) ≥ σ,(2.3)

then

�ρ∂M(x) ≤ (d − 1)h′(ρ∂M(x))

h(ρ∂M(x))
.

LEMMA 2.3. Under conditions (1.5)–(1.7), we have

Lρ∂M(x) ≤ δ + (d − 1)
[
σ ∨ √

k
] =: c, x /∈ ∂M ∪ cut(∂M).(2.4)

PROOF. For x /∈ ∂M ∪ cut(∂M), let ls be in Theorem 2.2. Below we simply
denote ρ = ρ∂M(x). Let

h(t) := cosh
√

kt + σ√
k

sinh
√

kt, t ∈ [0, ρ].

One has

h′′(t) − kh(t) = 0, h(0) = 1, h′(0) = σ,

where 1/
√

k sinh
√

kt := t for k = 0. By Theorem 2.2,

�ρ ≤ (d − 1)[√k sinh
√

kρ + σ cosh
√

kρ]
cosh

√
kρ + (σ/

√
k ) sinh

√
kρ

≤ (d − 1)
[
σ ∨ √

k
]
.

Then the proof is complete since 〈∇ρ,Z〉 ≤ |Z| ≤ δ. �

To apply (2.1), we let (xt , yt ) with (x0, y0) = (x, y) be the coupling by reflection
of the L-diffusion processes constructed by Kendall (1986) and Cranston (1991),
which is a diffusion process on M̂ × M̂ up to the time τ1 ∧ τ2 [see Proposition 1
in Cranston (1991)]; if one of the processes first hits ∂M before the coupling time,
then let it stay at the hitting point and let the other move independently. For this
coupling, we have [see, e.g., Chen and Wang (1994) and Wang (1994)]

dρ(xt, yt ) ≤ 2
√

2 dBt + 2
[
(d − 1)

√
k + δ

]
dt

(2.5) ≤ 2
√

2 dBt + 2c dt, t ≤ τ1 ∧ τ2.

Let

H1(u) := inf
s>u

{
c

2(1 − e−cs/2)
+ ecs/2

2
√

επt

}
,

H2(u) := inf
s>u

{
c

1 − e−cs
+ ecs

√
(1 − ε)πt

}
, u > 0.
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LEMMA 2.4. For the above coupling, we have

P(T ∧ τ1 ∧ τ2 > εt) ≤ H1
(
ρ(x, y)

)
ρ(x, y),(2.6)

P
(
τ1 ≤ (εt) ∧ SR, τ2 > t

) + P
(
τ2 ≤ (εt) ∧ SR, τ1 > t

)
≤ 2H2(R)ρ(x, y),

(2.7)

P(T ∧ τ1 ∧ τ2 > SR) ≤ cρ(x, y)

2(1 − e−cR/2)
(2.8)

for any x, y ∈ M̂, any t > 0 and any R > ρ(x, y).

PROOF. (a) Let (rt )t≥0 solve the stochastic differential equation

drt = 2
√

2dBt + 2c dt, t ≥ 0, r0 = ρ(x, y).

Let τ0 := inf{t ≥ 0 : rt = 0}, where Bt is in (2.5). By (2.5) we have rt ≥ ρ(xt , yt )

up to the time τ1 ∧ τ2. Then

P(T ∧ τ1 ∧ τ2 ≥ εt) ≤ P (τ0 ≥ εt).

Since (rt )t≥0 is generated by 4 d2

dr2 + 2c d
dr

, (2.6) follows from Lemma 2.1.
(b) Kendall (1987) established Itô’s formula for the distance of the Brownian

motion to a fixed point in M . It is easy to see that his argument also works for the
distance of the L-diffusion process to ∂M . Then we have

dρ∂M(yt) = √
2dBt + 1{yt /∈cut(∂M)}Lρ∂M(yt) dt − dLt, t ≤ τ2,

where Bt is a Brownian motion on R and (Lt )t≥0 is an increasing process with
support contained by {t ≥ 0 :yt ∈ cut(∂M)}. Since cut(∂M) is a zero-volume set
so that the Lebesgue measure of {t :yt ∈ cut(∂M)} is 0, it follows from Lemma 2.3
that

dρ∂M(yt) ≤ √
2 dBt + c dt, t ≤ τ2.

Letting a = 1 and b(r) = c, it follows from Lemma 2.1 and a comparison theorem
that, for any y ∈ M̂ ,

P
(
τ2 > (1 − ε)t

) ≤ 1

c
H2

(
ρ∂M(y)

)(
1 − e−cρ∂M(y)

)
.(2.9)

Since when τ1 ≤ (εt) ∧ τ2 ∧ SR one has

ρ∂M

(
yτ1

) ≤ ρ
(
xτ1, yτ1

) = ρ
(
xτ1∧τ2∧(εt), yτ1∧τ2∧(εt)

) ≤ R,
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letting P
z stand for the distribution of the L-diffusion process starting from z for

any z ∈ M , we obtain, by (2.9) with y replaced by yτ1 ,

P
(
τ1 ≤ (εt) ∧ SR, τ2 > t

)
≤ E1{τ1≤(εt)∧τ2∧SR}Pyτ1

(
τ2 > (1 − ε)t

)

≤ H2(R)

c
E

(
1 − exp

[−cρ
(
xτ1∧τ2∧(εt), yτ1∧τ2∧(εt)

)])
.

Next, it follows from (2.5) and Itô’s formula that

d
(
1 − e−cρ(xt ,yt )

) ≤ ce−cρ(xt,yt )
{
2
√

2 dBt + 2c dt − 4c dt
}

≤ ce−cρ(xt,yt )2
√

2 dBt .

Then

E
(
1 − exp

[−cρ
(
xτ1∧τ2∧(εt), yτ1∧τ2∧(εt)

)]) ≤ 1 − e−cρ(x,y) ≤ cρ(x, y).

Thus, P(τ1 ≤ (εt) ∧ SR, τ2 > t) ≤ H2(R)ρ(x, y). Similarly, the same estimate
holds by exchanging τ1 and τ2. Therefore, (2.7) holds.

(c) Let (rt )t≥0 solve

drt = 2
√

2dBt + 2c dt, r0 = ρ(x, y).

Let τ ′
r := inf{t ≥ 0 : rt = r}, r ≥ 0. We have rt ≥ ρ(xt , yt ) up to time τ1 ∧ τ2. Then

P(T ∧ τ1 ∧ τ2 > SR) ≤ P(τ ′
0 > τ ′

R)

=
∫ ρ(x,y)

0 exp[−cr/2]dr∫ R
0 exp[−cr/2]dr

≤ cρ(x, y)

2(1 − e−cR/2)
. �

PROOF OF THEOREM 1.1. Combining (2.1) with (2.6)–(2.8), we obtain

‖∇Ptf ‖∞
‖f ‖∞

≤ H1(0) + 2H2(R) + c

2(1 − e−cR/2)
, R > 0.(2.10)

It is easy to see that, for r, t > 0, the minimum of the function

h(s) := r

1 − e−rs
+ 1

t
e2rs, s > 0,

is reached at s with ers = 1 + √
rt/2. Then

H1(0) =
√

2c + c(επt)1/4

2(επt)1/4
+ (

√
2 + √

c(επt)1/4)2

4
√

επt

=
√

2c

(επt)1/4 + 3c

4
+ 1

2
√

επt
.
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Similarly, letting R = 1
c

log[1 + √
c/2((1 − ε)πt)1/4], one obtains

H2(R) = H2(0) = 2
√

2c

((1 − ε)πt)1/4
+ 3c

2
+ 1√

(1 − ε)πt
.

Moreover, letting α := 1 + √
c/2((1 − ε)πt)1/4, we have

c

2(1 − e−cR/2)
= c

2(1 − α−1/2)
= c(1 + α−1/2)α

2(α − 1)

≤ cα

α − 1
= c +

√
2c

((1 − ε)πt)1/4 .

Therefore, it follows from (2.10) that

‖∇Ptf ‖∞
‖f ‖∞

≤
(

4 + 3

4

)
c +

√
2c

(επt)1/4
+ 5

√
2c

((1 − ε)πt)1/4

+ 1

2
√

επt
+ 2√

(1 − ε)πt
.

Then (1.8) follows by taking ε = (1 + 42/3)−1. This choice of ε is optimal for the
summation of the last two terms and hence is optimal for small time. �

3. Examples. In this section we present two examples to show that conditions
(1.5) and (1.6) are somehow essential for the uniform gradient estimate (1.2).

EXAMPLE 3.1. Let M = {(x, y) ∈ R
2 :x ≥ 0}. Consider L = � + ay ∂

∂x
−

by ∂
∂y

, where a, b > 0 are two constants. Then k = σ = 0 and (1.1) holds for some
K ≥ 0, but ‖∇Pt1‖∞ = ∞ for all t > 0.

PROOF. It suffices to prove that ‖∇Pt1‖∞ = ∞. The proof consists of two
steps.

(a) Let (xt , yt ) be the L-diffusion process starting from (x, y) ∈ R
2. For r > 0,

let τr := {t ≥ 0 :yt ≤ r}. We intend to prove

lim
y→∞ inf

x
P(τr > t) = 1, t > 0.(3.1)

Note that one may let (xt , yt ) solve the stochastic differential equation

dxt = √
2dB1

t + ayt dt, x0 = x,

dyt = √
2dB2

t − byt dt, y0 = y,

where B1
t and B2

t are two independent Brownian motions on R. Thus, the motion
of yt does not depend on that of xt , and (yt )t≥0 is a diffusion process generated by

L2 := d2

dy2 − by
d

dy
.
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Then P(τr > t) is independent of x.
Obviously, P(τr > t) is increasing in y. So, if (3.1) does not hold, there exists

ε ∈ (0,1) such that

P(τr > t) ≤ lim
y→∞ P(τr > t) ≤ ε, y ∈ R.

Thus, by the Markovian property,

P(τr > 2t) = E1{τr>t}Eyt 1{τr>t} ≤ εP(τr > t) ≤ ε2, y ∈ R,

where, for a point z ∈ R,E
z stands for the expectation taken w.r.t. the distribution

of the L2-diffusion process starting from z. Similarly, one has

P(τr > nt) ≤ εn, n ≥ 1, y ∈ R.

Then

Eτr =
∫ ∞

0
P(τr > s) ds ≤ t +

∞∑
n=1

P(τr > nt) ≤ t +
∞∑

n=1

εn < ∞.(3.2)

On the other hand, letting

G(s) :=
∫ s

r
exp[u2/2]du

∫ ∞
u

exp[−t2/2]dt, s ∈ R,

one has L2G = −1. Thus, for N > y > r ,

G(N)P(τr > τN) = EG
(
yτr∧τN

) = G(y) − E(τr ∧ τN).(3.3)

Moreover, let F(s) := ∫ s
0 exp[t2/2]dt, s ∈ R. We have L2F = 0 and hence

F(y) = EF
(
yτr∧τN

) = [F(N) − F(r)]P(τr > τN) + F(r).

Thus,

P(τr > τN) = F(y) − F(r)

F (N) − F(r)
, N > y > r.

Combining this with (3.3), we arrive at

E(τr ∧ τN) = G(y) − G(N)[F(y) − F(r)]
F(N) − F(r)

.

By letting first N ↑ ∞ then y ↑ ∞ and noting that G(N)/F (N) → 0 as N → ∞,
we obtain

sup
y

Eτr = G(∞) = ∞,

which is contradictory to (3.2).
(b) Let τ := inf{t ≥ 0 :xt = 0}. For any r > 1, by (3.1) we may choose y > r

such that P(τr > t) ≥ 1
2 . We have, up to the time τr ,

dxt = √
2 dB1

t + ayt dt ≥ √
2 dB1

t + ra dt.
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Let (x′
t )t≥0 solve the equation

dx′
t = √

2dB1
t + ar dt, r0 = x,

and let τ ′ := inf{t ≥ 0 :x′
t = 0}. We have x′

t ≤ xt for t ≤ τr and hence

Pt1(x, y) := P(τ > t) ≥ P(τ ∧ τr > t) ≥ P(τ ′ ∧ τr > t)

= P(τ ′ > t)P(τr > t) ≥ 1
2P(τ ′ > t),

where we have used the fact that (x′
t )t≥0 and (yt )t≥0 are independent. Since

d(1 − exp[−arx′
t ]) = ar exp[−arx′

t ]
√

2dB1
t

is a martingale up to the time τ ′, one has (note that x′
0 = x)

1 − exp[−arx] = E
(
1 − exp

[−arx′
t∧τ ′

]) ≤ P(τ ′ > t).

Then

‖∇Pt1‖∞ ≥ lim sup
x↓0

Pt1(x, y)

x
= lim sup

x↓0

P(τ > t)

x
≥ 1

2
ar.

Since r > 1 is arbitrary, we have ‖∇Pt1‖∞ = ∞. �

EXAMPLE 3.2. Let M = {x ∈ R
d : |x| ≥ ε}, where d ≥ 2. For L = � we have

k = δ = 0 but limε→0 ‖∇Pt 1‖∞ = ∞.

PROOF. Let (xt )t≥0 be the diffusion process generated by � with x0 = x,
|x| > ε. We have

d|xt | =
√

2dBt + d − 1

|xt | dt

up to the time τ := inf{t ≥ 0 : |xt | = ε}. For d > 2, it is easy to check that
(|xt |2−d)t≥0 is a martingale up to τ . We have

|x|2−d = E|xτ∧t |2−d ≥ ε2−d
P(τ ≤ t).

Then

P(τ > t) = 1 − P(τ ≤ t) ≥ 1 − εd−2

|x|d−2 .

Thus,

‖∇Pt1‖∞ ≥ lim sup
|x|↓ε

P(τ > t)

|x| − ε
≥ lim

r↓ε

rd−2 − εd−2

rd−2(r − ε)
= d − 2

ε
,

which goes to ∞ as ε → 0. For d = 2, (− log |xt |)t≥0 is a martingale up to τ and
hence the above argument leads to

‖∇Pt1‖∞ ≥ lim
r→ε+

log ε − log r

(− log r)(r − ε)
= 1

ε(− logε)
→ ∞ as ε → 0. �
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4. Isoperimetric inequalities: proof of Theorem 1.2.

PROOF OF THEOREM 1.2. By (1.9) we have [see formula (6) in Ledoux
(1994)]

µ(|f − Ptf |) ≤ 2C(1)
(√

t ∨ t
)
µ(|∇f |), t > 0.

For bounded smooth domain A ⊂ M̂ , let f = 1A. Since Pt is symmetric, we obtain

2C(1)
(√

t ∨ t
)
µ∂(∂A) ≥ 2µ(A) − 2µ(1APt1A)

= 2µ(A) − 2µ
(
(Pt/21A)2)(4.1)

for all t > 0. If λ1 > 0, we have µ((Pt/21A)2) ≤ e−λ1tµ(A). Then

κ ≥ sup
t>0

1 − e−λ1t

C(1)(
√

t ∨ t)
≥ 1 − e−1

C(1)

(√
λ1 ∧ λ1

)
.

If, in particular, k = δ = σ = 0, then (1.10) holds. According to Ledoux (1994),
we have

µ(|f − Ptf |) ≤
√

(1 + 21/3)/π (1 + 42/3)
√

tµ(|∇f |), t > 0.

Thus, √
(1 + 21/3)/π(1 + 42/3)

√
tµ∂(∂A)

≥ 2µ(A) − 2µ
(
(Pt/21A)2)

, t > 0.
(4.2)

Therefore,

κ ≥ 2
√

πλ1√
1 + 21/3(1 + 42/3)

sup
r>0

1 − e−r

√
r

.

Then the proof of Theorem 1.2(i) is complete.
To prove (ii), we note that (1.13) implies

‖Pt‖L1(µ)→L2(µ) ≤
(

Cp

4t

)p/4

, t > 0.(4.3)

Indeed, for f ∈ L2(µ) with µ(|f |) = 1, one obtains from (1.13) that

d

dt
µ

(
(Ptf )2) = −2µ(|∇Ptf |2) ≤ − 2

C
µ

(
(Ptf )2)1+2/p

, t > 0.

Thus,

µ
(
(Ptf )2)−2/p − µ(f 2)−2/p ≥ 4t

Cp
,

which implies (4.3). If k = δ = σ = 0, by (4.2) and (4.3) we obtain

√
(1 + 21/3)/π (1 + 42/3)

√
tµ∂(∂A) ≥ 2µ(A) − 2

(
Cp

2t

)p/2

µ(A)2.
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For ε ∈ (0,1), putting t = (Cp/2)(µ(A)/ε)2/p , we arrive at

µ∂(∂A)

µ(A)(p−1)/p
≥ 2

√
2π(1 − ε)ε1/p

√
1 + 21/3(1 + 42/3)

√
Cp

.

Therefore, (1.14) follows by minimizing the right-hand side in ε.
Finally, by (4.1) and (4.3) we have

2C(1)
(
t ∨ √

t
)
µ∂M(∂A) ≥ µ(A) −

(
Cp

2t

)p/2

µ(A)2.

Taking t = (Cp/2)(µ(A)/ε)2/p for ε ∈ (0,1), we obtain

κ ′
p ≥ sup

ε∈(0,1)

(1 − ε)ε2/p

√
2C(1)[(Cp) ∨ √

Cp ]
= p

4C(1)(1 + p/2)(p+2)/p[(Cp) ∨ √
Cp ] . �

Note that the Nash inequality is a special case of the following general
functional inequality introduced in Wang (2000):

µ(f 2) ≤ rµ(|∇f |2) + β(r)µ(|f |)2, r > 0, f ∈ C∞
0 (M̂),(4.4)

where β : (0,∞) → (0,∞) is a decreasing function with β(0+) = ∞ and
β(∞) = 0. The following is an extension of Theorem 1.2, which follows
from (1.10) and the proof of Theorem 3.4(2) in Wang (2000).

PROPOSITION 4.1. Assume that K ≥ 0 and k ≥ δ. Then (4.4) implies

inf
A

µ∂(∂A)
√

β−1(1/[4µ(A)])
µ(A)

≥ 2
√

π√
(1 + 21/3) log 3(1 + 42/4)

.

APPENDIX

Proof of Theorem 2.2. Theorem 2.2 appeared as Lemma (2.8) in Kasue
(1982) without proof, since he believed that the proof is similar to that of his
Lemma (2.5). As far as I understand, his proof of Lemma (2.5) is presented for
the case where the reference submanifold is a point. It is nontrivial to modify his
proof for the case where the reference submanifold is a hypersurface, because in
this case one has to check the following initial condition of reference vector fields:

Sl′0X − ∇l′0X ∈ (Tl0 ∂M)⊥,(A.1)

where l· is the minimal geodesic linking ∂M and a point x ∈ M̂, and Sl′0X is the
projection of −∇XN to Tl0∂M [recall that N is the inward unit normal vector
field of ∂M , so one has l′0 = N(l0)]. Since we do not have any explicit proof of
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Theorem 2.2, it might be helpful to include a complete proof below for the reader’s
reference.

PROOF OF THEOREM 2.2. In the situation of Theorem 2.2, simply denote
ρ = ρ∂M(x). Let {Ei}d−1

i=1 be parallel vector fields along l· such that {Ei(0)}d−1
i=0 ∈

Ol0(∂M) are eigenvectors of Sl′0 . Write

Sl′0Ei = σiEi, i ≤ d − 1.

Let g ∈ C2(R) such that 0 ≤ g ≤ 1, g(s) = 1 for s ≤ 1 and g(s) = 0 for s ≥ 2. For
any ε ∈ (0, ρ/2), let

hi,ε(s) := (1 + σis)g(s/ε) + h(s)
(
1 − g(s/ε)

)
, i ≤ d − 1, s ∈ [0, ρ].

Then it is easy to see that hi,εEi/h(ρ) satisfies (A.1). Now, let Ji be the ∂M-Jacobi
field [i.e., a Jacobi field along l· satisfying (A.1)] with Ji(ρ) = Ei(ρ). By the
second variational formula and the index inequality [see, e.g., (1.1) in Kasue
(1982)], we obtain

�ρ =
d−1∑
i=1

I (Ji, Ji)(ρ)

≤
d−1∑
i=1

I
(
hi,εEi/h(ρ),hi,εEi/h(ρ)

)
(ρ)

= 1

h(ρ)2

d−1∑
i=1

{〈
Sl′0Ei(0),Ei(0)

〉 +
∫ 2ε

0

[
h′

i,ε(s)
2 + Ri(s)hi,ε(s)

2]
ds

}

+ 1

h(ρ)2

∫ ρ

2ε
[(d − 1)h′(s)2 − h(s)2 Ric(l′s , l′s)]ds,

(A.2)

where −Ri(s) is the sectional curvature of the plane containing l′s and Ei(s). It is
easy to see that

d−1∑
i=1

〈
Sl′0Ei(0),Ei(0)

〉 = −
d−1∑
i=1

b
(
Ei(0),Ei(0)

) ≤ (d − 1)σ.(A.3)

Next, by (2.2) and (2.3) we have
∫ ρ

2ε

(
h′(s)2 − 1

d − 1
Ric(l′s , l′s)h(s)2

)
ds ≤

∫ ρ

2ε
(hh′)′(s) ds

= h(ρ)h′(ρ) − h(2ε)h′(2ε).

(A.4)

Finally, since Rihi,ε is bounded on [0, ρ] and since for s ∈ [0,2ε], one has [recall
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that h(0) = 1]

|h′
i,ε(s)| =

∣∣∣∣σig(s/ε) + g′(s/ε)
ε

[1 + σis − h(s)] + h′(s)
(
1 − g(s/ε)

)∣∣∣∣

≤ |σi| +
sup[0,ρ] |g′|

ε

(
2|σi |ε + 2ε sup

[0,ρ]
|h′|

)
+ sup

[0,ρ]
|h′| ≤ D

for some constant D > 0 and all i ≤ d − 1, it follows that

lim
ε→0

d−1∑
i=1

∫ 2ε

0

[
h′

i,ε(s)
2 + Ri(s)hi,ε(s)

2]
ds = 0.(A.5)

Therefore, substituting (A.3)–(A.5) into (A.2) and letting ε → 0 [recall that
h(0) = 1 and h′(0) ≥ σ ], we complete the proof. �
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