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THE ATTRACTIVENESS OF THE FIXED POINTS
OF A -/GI/1 QUEUE

By BALAJI PRABHAKAR
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We consider an infinite tandem of first-come-first-served queues. The
service times have unit mean, and are independent and identically distributed
across queues and customers. Let I be a stationary and ergodic interarrival
sequence with marginals of mean 7 > 1, and suppose it is independent of
all service times. The process I is said to be a fixed point for the first,
and hence for each, queue if the corresponding interdeparture sequence is
distributed as I. Assuming that such a fixed point exists, we show that it is the
distributional limit of passing an arbitrary stationary and ergodic interarrival
process of mean t through the infinite queueing tandem.

1. Introduction. Consider an infinite series of -/GI/1 queues indexed by Z*.
Such a series is usually defined by an i.i.d.\sequence of non-negative random
variables {S(n, k)}, ez xez+, where S(n, k) is the service time of the nth customer
at the kth node. It is assumed that IE(S(1, 1)) = 1, and that the service distribution
is a fixed, but otherwise arbitrary, probability measure ¢ on R*. To avoid
trivialities we will suppose that o is not a point mass concentrated at 1 (otherwise,
it is easy to see that every departure process from the queue is a fixed point for the
queue). At each queue, the buffers are assumed to have infinite capacity and the
service discipline is assumed to be first-come-first-served.

We study the effect of passing customers through this infinite queueing tandem.
The arrivals process to this tandem, Al = {An, 1)}, ez, is assumed to be stationary
and ergodic. The variable A(n, 1) is the inter-arrival time between the nth and
(n + 1)st customers. We assume E(A(1, 1)) =t > 1. This ensures stability at the
first queue: that waiting times of customers, (WA, 1)},ez, form an almost surely
finite stationary and ergodic sequence [9]. (Details of Loynes’ construction from
which the previously mentioned stability follows may be found, e.g., in the book
by Baccelli and Brémaud [3].) In terms of the arrival and service processes, the
waiting time of the nth customer is given by the equation

n—1
(1) WAm, D= sup 1> SG, 1) —A@, 1), 0f.
j<n—1 i=j
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Lindley’s recursion relates the inter-departure times to the inter-arrival times and
service times via waiting times as follows:

WAn+1,1)=[WAn, 1)+ S, 1) — A(n, D],

(2) A +
A(n,2) = [A(n. 1) — S, 1) = WA, DI + S + 1, 1).

The process A? is input to the second queue from which we obtain A3 as the
departure process, and so on. In general, Ak = {A(n, k)},ez is the arrivals process
at the kth queue with {W4(n, k)},ez as the corresponding set of waiting times.
Thus, A(n, k) is the inter-arrival time between the nth and the (n + 1)st customers
at the kth queue and W4 (n, k) is the waiting time of the nth customer at the kth
queue. Using the result of Loynes [9] inductively, one obtains that A* is stationary
and ergodic for each k, with E(A(1, k)) = 7. Let 7 denote the queueing operator
and represent the queueing tandem as A¥T! = 75(Al), k> 1.

DEFINITION. A stationary and ergodic arrivals process I = {I (n)},cz with
E(I (1)) =t > 1 is said to be a fixed point or an invariant distribution at rate 1/t
for a -/GI/1 queue whose service times are distributed as o, if 7 (I) equals I in
distribution.

The following theorem is the main result of the paper.

THEOREM 1. Suppose that a -/GI /1 queue with service distribution o admits
a rate 1/t fixed point 1. Let A' be a rate 1/t ergodic stationary arrival process to
an infinite tandem of independent copies of the -/GI/1 queue. Then T*(A') -1
in distribution as k — oo.

We shall prove the theorem by coupling A' with an independent process I',
which has the same distribution as I. Similar methods, but different couplings,
were used in [12—14] to establish the distributional convergence of departures in a
tandem of queues with different assumptions on the service distribution. Chang [5]
used the couplings of this paper to show that a queue which offers i.i.d. services
of unbounded support can have at most one fixed point of a given rate. The related
literature is surveyed in more detail at the end of the paper.

2. The coupling. The process A! is coupled with a process I', distributed as
the fixed point I. The assumptions are that A' and I' are mutually independent and
also independent of the service processes {S(n, k) }, ez kez+- Let I“ ={I(n, k) ez
be the input at node k when I' is input at node 1, and let W/ (n, k) be the waiting
time of the nth customer of I¥. Then, we have the following recursions:

Win+1,k)=[W (n,k)+ S, k) —1(n, ],

3)
In,k+1)=[I(nk)— S, k) — W n M+ Sn+1,k).
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A similar recursion for the process A* is given by
@ WA+ 1,k) = [WA(n, k) + S, k) — A(n, )1T,
A, k+1)=[A(n, k) — S(n, k) — WA, )T + S+ 1,k).

From (3) we obtain
S) Imk+1)—=Wlm+1,k)=Ink —Sh, k)y—W (n,k)+Sn+1,k),
and from (4) we obtain
6) A k+1)—WAn+1,k)=A®n,k)—Sn, k)—WAn, k) +Sn+1,k).
Subtracting (5) from (6) we get
- [An,k+ 1) —IT(n,k+ D] = [WAn+1,k) — Wl@n+1,k)]
=[A(n, k) — I(n, k)] — WA, k) — Wl (n, k).

A little algebra now yields
(WA + J. k) — W (n+ J,0)]

J—1
- (Z[A(n+j,k+ =TI+, k+1)]
j=0

(®)
—[A(n+j. k) = I(n+j, k)])

+ WA, k) — Win, k).

Equation (8) will form the basis of the coupling argument.

Throughout the rest of the paper, it is helpful to imagine that there are two
queues at each node k, one for the A customers and one for the I customers.
This makes explicit the notion that customers of one process do not influence
the waiting of the customers of the other process. The coupling between the
two processes merely consists of providing customers numbered » with identical
service times, S(n, k), distributed i.i.d. over n and k. We will refer to each of the
two queues as the A-queue and the /-queue, respectively.

2.1. A coloring scheme. The next step is to introduce a coloring scheme for
our processes. Since A! and I' are both of rate 1/7 and are not identical (else
Theorem 1 is trivially true), there must exist “points of crossing.” That is, there
exist disjoint random sets of integers

Al={neZ:An,1)> I(n, 1},
P'={neZ:In 1)> A, 1)},
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where A! dominates I' or the other way around. Call these the sets of domination.
The stationarity and ergodicity of (Al TH implies that of (AL, £1); therefore, the
density of A!,

# of points of Alin [—N, N]
2N +1

dal)= fim

’

is well defined and almost surely equal to a positive constant. Similarly, d(41) is
almost surely a positive constant.
Let r = sup{m < 0:m € A'} and define

b(1,1)=inflm >r:m e 11},
r(1,1) =inf{m > b(1,1):m € A'}.
For n > 2, recursively define r(n, 1) and b(n, 1) as follows:
b(n,)=inflm >r(n—1,1):m e 11},
® r(n,1)=inf{m > b(n,1):m € A'}.

Let 7(0, 1) = sup{m < b(1,1):m € A'} and b(0, 1) = sup{m < #(0, 1):m € 41}.
For n < —1, define 7(n, 1) and b(n, 1) as
F(n,1) =sup{m < b(n+1,1):m e A},
b(n,1) = sup{m < 7(n,1):m € 4'}.
Finally, for n < 0 define
a0 r(n, 1) =inf{m:l§(n, 1) <m <#(n,1) andm € A'},
b(n,1)=inf{m:F(n—1,1) <m <b(n,1)andm e 4'}.

Of interest to us throughout this paper are the quantities r(n, 1) and b(n, 1); see
Figure 1 for an illustration.
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r(-1,1) b(0,1) r0,1) b(1,1) r(1,1) b(2,1) n

FIG. 1. A realization.
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Since d(A') > 0and d(L1) > 0 a.s., r(n, 1) and b(n, 1) are almost surely finite

for every n, and the infima in the above definitions are minima. Define
an Rm,1)=tkeZ:r(n,1)<k<bn+1,1)},
Bm,1))={keZ:b(n,1)<k<r(n,l)}

to be nonoverlapping intervals of integers which almost surely partition Z. Finally,
let

Rn,)= Y Ak, 1)—1I(k, 1) and
keR(n,1)

B(n,1)= Y I(k,1)—A(,D.

keB(n,1)

(12)

We are now ready to introduce the coloring scheme. One thinks of the sets
of domination ! and &' as the “support of red and blue bubbles,” respectively.
That is, r(n, 1) is the point at which the nth red bubble begins, R(n, 1) is the
interval over which it is supported, and R(n, 1) is its volume. With reference to
Figure 1, R(1, 1) is the sum of the lengths of the vertical red lines in R(1,1) =
[7(1,1),b(2,1)). A similar interpretation may be made for the blue bubbles.

It is crucial that for m # n the shades of the mth and the nth red bubbles are
distinct. Thus, we think of the nth red bubble as being colored with an nth shade
of red. Similarly, one is able to distinguish between the various shades of blue.
See Figure 1.

2.2. Sketch of the proof. By the ergodicity of (A!,I!), the densities of the red
and blue bubbles at the first stage are exactly equal. This follows from the fact that
lim, oo (- __, A(j, 1) — I(j, 1))/(2n + 1)) = 0, which implies

Ten(AGL D) = 1(, D)L jeay

lim
n—00 2n+1
o DG D = AG D) ey
n—00 2n+1 ’
that is,
. volume of red in [—n, n] . volume of blue in [—n, n] A
lim = lim =d(1),
n—00 2n+1 n—00 2n+1

where d (1) is the average volume of red (or blue) per arrival at stage 1.
At any stage k, the arrival processes (AX, I¥) are jointly ergodic. Hence, by the
ergodic theorem,

E(A(, k) —1(,k)])

dk) = 7
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is almost surely a constant and equals the average volume of red (or blue) per
arrival at stage k. Chang [5] has shown

E(|A(L k) — I(1,k)|) = E(JA(L,k+ 1) — I(1,k + 1)])

for each k. Hence the d (k) are monotonically nonincreasing. Given that I' is a
fixed point for the queue, the desired weak convergence will follow from showing
that d (k) converges to zero almost surely as k— oo.

We shall do this by observing the evolution of each individual red and blue
bubble as the two processes pass through the series of queues. Thus, for each n, the
quantities r(n, k), b(n, k), R(n, k), B(n, k), R(n, k) and B(n, k) are derived from
the corresponding quantities at stage k — 1 and the service process at stage k — 1.
For each k, the nth red (resp., blue) bubble is imagined to be colored with the nth
shade of red (resp., blue). We then show that the red and blue bubbles cancel each
other out and therefore that R(n, k) and B(n, k) decrease monotonically to zero
as k— oo.

The main difficulty in establishing the monotone decrease of R(n, k) and
B(n, k) to zero is that it is possible for the red bubbles to accumulate far away from
the blue bubbles and not cancel them out. We address this problem by showing that
(i) the ordering between red and blue bubbles is always maintained, that is, they
cannot overtake each other, and (ii) since the services are independent the two
types of bubbles will be forced to interact and must therefore cancel each other
out. The details follow.

3. Preliminary lemmas. We simplify the notation as follows: Let
d¥(n,ky=WAn,k)— W' n,k)y  VneZkeZ",

(13)
d(n, k)= A, k) —1(n, k) VneZ keZt.

Mnemonically, d" (-, -) is “the difference in waiting times” between customers of
the two processes. In this notation (8) reads:

J—1
(14) d¥(n+J, k)= (Z d°(n+j,k+1)—d*(n+j, k)) +d%(n, k).
j=0

LEMMA 1. The following hold for any n and k:
1) A(n, k) <Sn, k)= An,k+1)=Sn+1,k)andd*(n,k+ 1) <0;
) I(n,k)<Sn,k)y=I1n,k+1)=Smn+1,k)andd*(n,k+1) > 0.

PROOF. Given that A(n,k) < S(n,k), it follows from (4) and the non-
negativity of WA, k) that A(n,k + 1) = S(n + 1,k). From (3) we get
I(n,k+1)> Sn + 1,k). Therefore, d*(n,k + 1) < 0, and similarly with (ii).

O
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LEMMA 2. Foranyn and k:

1) d¥(n, k) =d*n, k) =d*(n,k+1) <0andd“(n+1,k) = 0;
(i) d¥(n, k) <d*(n, k) =d*(n,k+1)=>0andd¥(n+1,k) <0.

Additionally,

(iii) if under (i), S(n,k) > I (n, k), then d*(n,k + 1) =0;
(iv) if under (i1), S(n,k) > A(n, k), then d*(n,k+ 1) =0.

Hence, under (iii) and (iv), (14) implies d¥(n + 1, k) =d"¥ (n, k) — d“(n, k).
PROOF. Equations (3) and (4) imply (i). Consider (iii). From part (i) we have
that d*(n, k + 1) < 0. From part (ii) of Lemma 1 we have that d“(n, k + 1) > 0.
Therefore, d“(n, k + 1) = 0. The proofs of (ii) and (iv) are similar. [J
LEMMA 3. The following hold for any n and k:

G) d¥(n,k) =0, d*(n, k) >0=>d%n,k+1) <d*n,k), d°(n+ 1,k) <
d¥(n, k);

(i) d%(n,k) <0, d*(n, k) <0=d*n,k+ 1) >d*@n, k), d°(n+ 1,k) >
d¥(n, k).

PROOF. We prove (i). From (3) and (4) we get that

d(n,k+1) =[A(n, k) — WA, k) — S, k)1 =L (n, k) — W (n, k)—Sn, k1.

If[A(n, k) — WA, k) — S, k)]T =0, then d%(n, k + 1) <0 < d%(n, k).
On the other hand, if A(n, k) — WA, k) — S(n, k) > 0, then

d(n k+1)= A, k) — WAn, k) — S, k) — [ (n, k) — Wl (n, k) — S(n, k)T
< A(n, k) — WA(n, k) — S(n, k) — (I(n, k) — W' (n, k) — S(n, k))
=d"(n, k) —d¥(n, k) <d®(n,k).

Using this in (14), we get

dP(n+1,k)=d*(n, k+1) —d*(n, k) +d* (n, k) <d" (n, k).

The same argument with reversed inequalities proves (ii). [

LEMMA 4. The following hold for any n and k:

@ d’n+1,k)>0=d(n,k+1) <0;
(i) d*(n,k+1)<0=d"(n+1,k) > 0;
(i) d¥(n+1,k) <0=d(n,k+1)>0;
Gv) d*(n,k+1)>0=d"(n+1,k) <0.
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PROOF. We verify (i) and (ii). From (3) and (4) we get
dP(n+1,k)>0 = A, k) —WAn, k) <I(n, k) — W' (n, k)
= Am,k+1)<I(n,k+1)
= dn,k+1)<0
and
dnk+1)<0 = A, k)—WAn, k) <I1(n, k) — W (n, k)
— WAn+1,k)>W (n+1,k)
= d"(n+1,k)>0. O

LEMMA 5. The following hold for any n and k:

(i) d¥(n+1,k) >0, d(n, k) >0=d"(n, k) >d¥(n+1,k);
(i) d¥(n+1,k) <0, d*(n, k) <0=d"(n,k) <d“(n+1,k).

PROOF. Under hypothesis (i), Lemma 4 implies d“(n, k+ 1) < 0. Using this in
dV(n,ky=d¥(n+1,k)—d*(n,k+1)+d*(n, k) we getd" (n, k) >d"(n+1, k).
The proof of (ii) is similar. [J

LEMMA 6. The following hold for any n and k:

(i) d¥(n,k) >0,d(n, k) <0=d"(n+1,k)>0,d(n, k+1) <0;
(i) d¥(n, k) <0,d(n,k) >0=d"(n+1,k) <0,d*(n,k+1) > 0.

The proof follows from Lemma 2.

4. The evolution of the bubbles. From the processes (A!,I') and (A2, 1?)
and the service process at node 1, we deduce the status of the red and blue bubbles
at node 2. It eases the exposition to do this gradually, to first consider the evolution
of bubbles in certain simple situations. One can isolate three basic possibilities for
bubble evolution and all other possibilities can be described in terms of these three.

Possibility a: bubbles can only move to the right. Consider only the first red
bubble and ignore all others, that is, from the processes A' and I' construct the
process Al = {A(n, 1)} ez as follows: A(n, 1) = A(n, 1) for all n € R(1, 1) and
A(n,1) =1(n,1) for all n ¢ R(1,1). We then modify the definition of R(1, 1)
and let it equal the set {{:r(1, 1) <[ < g}, where ¢ = min{n > r(1,1): A(k, 1) =
I(k, 1), Yk > n}. Since A(n, 1) > I(n, 1) for eachn € Z, WA(n, 1) < Wl (n, 1)
and A(n,2) > I(n,2). For k = 1,2, let d*(n,k) = A(n,k) — I(n, k) and

dv(n, k) =WAm, k) — W, k).
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Parenthetically, although the process Al is not stationary, it is rate stable.
That is,

L AGD
B ——l i

lim > 1,
n—00 2n+1
which, via equation (1), implies that for any N € Z there is an n > N such that

WA(n,1)=0.

Define ¢’ = inf{n: A(k,2) = I(k,2), Yk > n}. To see that ¢’ < oo, let i =
inf{n > g : W/ (n, 1) = 0}. Note that the stability of the /-queue implies that i < 0o
a.s. Since W/ (n, 1) > W4(n, 1) for every n, Wi, 1) =0 implies WA, 1) =0.
This and the fact that A(n, 1) =1(n,1) for all n > i > g, give us recursively
via (14) that A(n,Z) =1n,2) and Wl (n,1) = WA(n,1) for all n > i. In
particular, we obtain ¢’ <i < 0o a.s.

Now define r(1,2) = inf{n < q’:A(n, 2) > [ (n,2)}. The following lemma
will show that r(1,2) is well defined; indeed, it lies in the interval [r(1, 1), ¢'].
Define R(1,2) to be the set of all integers in [r(1,2),q’]. Now the set of n
for which /i(n, 2) > I(n,2) is included in R(1,?2). Therefore one may think of
R(1,2) as the support of the red bubble at node 2. For k = 1,2, let R(1, k) =
2 ner(1.x d(n, k).

LEMMA 7. The following hold:

(i) r(1,2) =r(, 1);
(i) R(1,1)=R(1,2).

PROOF. Since A(n,1) = I(n, 1) for n < r(1,1) it follows that A(n,2) =
I(n,2) forn <r(1,1). Therefore »(1,2) > r(1, 1).

Next, we know that jw(n, 1) =0 for n < r(1,1) and for n > i. Since
max{q, q'} < i, it follows that R(1,1) C [r(1,1),i] and R(1,2) C [r(1,1),i].
Therefore, from (14) we get

&W(i+1,1):< > ja(n,2)—d“(n,1)>+dw(r(1,1),1),

n=r(1,1)
which implies

(15) R(1,2))= Y d°m2= > d°m 1)=Rd,1).

neR(1,2) neR(1,1)

REMARK. We shall interpret (1,2) > r(1, 1) as “a bubble can only move to
the right,” and R(1, 1) = R(1, 2) as “the volume of the red bubble is preserved.”
However, the next basic possibility shows that when there are red and blue bubbles
present, one of them can move to the right and cancel some or all of the volume of
the other.
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Possibility B: neighboring bubbles of opposite color may cancel parts of each
other. 'This time consider only the first blue and the first red bubbles. That is, set
A(n,1)=A(n, 1) foralln € B(1,1) UR(,1) and A(n, 1) = I (n, 1) otherwise.
We then modify the definition as follows: R(1,1) = [r(1, 1), g], where g =
min{n > r(1,1): Ak, 1) = I (k, 1) Vk > n}and B(1,1) = [b(1,1),r(1,1) —1].

LEMMA 8. Let b = sup{n:1(n,2) > A(n,Z)} and 7 = inf{n:A(n,Z) >
I(n,2)}, with the conventions sup{@} = —oo and inf{@} = oco. Suppose that
b and ¥ are finite. Then:

(i) b<7and i i

(i) I(n,2)<Am,2) forn>=rand I(n,2) > A(n,2) forn <b.

PROOF. To prove (i) by contradiction, suppose that b > 7. We claim 7 >
r(1, 1), and establish it as follows. Since d¥(b(1, 1), 1) = 0 [because d*(n, 1) =0
for n < b(1, 1)] and ci“(n, 1) <0 for all n € [b(1,1),r(1,1) — 1], it follows
recursively from Lemma 6 that d%(n,2) <0 for all n € [b(1,1),r(1,1) — 1].
Therefore 7 > r(1, 1).

Now, c?“(?, 2) > 0 implies cf“’(?—i— 1,1) <0, by Lemma4, and since 7 > r(1, 1),
we have that d* (n,1) > 0 for all n > r. Therefore, from Lemma 6 we get that
d“(n,?2) > 0 for n > 7. This contradicts b > 7.

In the above we have shown that d¢ (n,2) = 0 for n > r. This proves the first
part of (ii). Since b<F by part (i), the definition of 7 implies I (n,2) > A(n, 2)
forn < b. O

The above lemma shows that “bubbles do not overtake each other.” The next
two lemmas make this clearer.

Suppose that b and 7 defined above are both finite. Define b(1,2) =
inf{n < b:1(n,2) > A(n,2)} and r(1,2) = 7. Also define B(1,2) = {n €
[6(1,2),r(1,2) — 1]} and R(1,2) = {n € [r(1,2),q']}, where ¢’ = min{n >
r(1,2): A(k, 2)=1(k,?2), ‘g’k > n}. As in Case «, it is easy to see that ¢’ < oc.
Let B(1,2) ==} ,c801,2d(n,2) and R(1,2) =3, cr(1.2)d" (n,2).

LEMMA 9. Suppose that b and F are both finite, then:

1 b1,2)=b1,1)andr(1,2) >r(1,1),
(i) B(1,2) <B(1,1)and R(1,2) < R(1,1) and
Gii) B(1,2) — B(1,1)=R(1,2) — R(1, 1).

PROOF. It follows from Case « that b(1,2) > b(1, 1), and from the proof of
Lemma 8 we know that (1, 1) <7 =r(1, 2). This proves (i).

Now since d¥(b(1,1),1) =0 and d%(n, 1) <0 for n € [b(1,1),r(1,1) — 1],
Lemma 6 recursively implies that dv (r(1,1),1)>0.
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CASE 1 [d¥(r(1,1),1) = 0]. This and the fact that d%(n,1) > 0 for n >
r(1, 1) imply recursively via Lemma 6 that d“(n,2) > 0 and d%(n, 1) < 0 for

n>r(1, 1). Therefore B(1,2) = — >, 7} d*(n, 2) and from

r(1,1)—1
d(r(1,1), )= > dn,2)—d%n, 1)+d" (b1, 1),1)
n=>b(1,1)

we get that B(1,2) = — 2;“,,1()1 1) d%(n,1) = B(1,1). Let i > q' be the first time
that the /-queue idles. Since dw(n, 1) <0forn > r(1, 1) the fact that W/ (i, 1) =0
implies that WA (i, 1) = 0. Therefore from
i—1
A", = Y d*mn2)—d"(m, 1)+d"(r(1,1),1)
n=r(1,1)

we get that R(1,2) = Zn —r(l. 1)d (n,2) = Zn —r(l. 1)d“(n 1) = R(1, 1). In the
preceding step we have used that both R(1, 1) and R(1,2) are contained in
[r(1,1),i — 1]. Thus when d* (r(1, 1), 1) = 0, we have proved both (ii) and (iii).

CASE 2 [cf“’(r(l, 1),1) > 0]. From (14) we get
r(1,1)—1
O<d“’(r(1 D, 1) Z d“(n,2) —d“(n, 1)+d“’(b(1 D, 1)
(16) n=>b(1,1)

=—B'(1,2)+ B(1, 1),

where B'(1,2) = — Z;(l bl()l 11) d*(n,2) is the volume of blue at the second
stage in [b(1,1),7(1,1) — 1]. Note that d*(n,1) < 0 and d*(n,2) < 0 for
n € [b(1,1),r(1,1) — 1], the first by definition of b(1,1) and r(1,1) and the
second because r(1,2) > r(1, 1). So, we only have blue in this interval on both
the input and output sides as shown in (16).

Let b be as defined in Lemma 8, and recall that b<F=r(1,2).1fb<r(,1),
then since d“(n, 2) > 0 for n > b, it follows that B'(1,2) = B(1, 2) and (16) gives
B(1,2) < B(1, 1). i

Else, let B"(1,2) = — Zzzr(l’l) d%(n,?2) be the amount of blue volume to the
right of r(1, 1) and note that B(1,2) = B’(1,2) + B”(1,2). We shall show that
B"(1,2) < d"(r(1,1), 1), which when used at (16) gives B(1,1) > B'(1,2) +
B”(1,2) = B(1, 2). Accordingly, consider

b
d'b+1,)— Y d*n,2)—d(n, 1)=d"(r(1,1),1),
n=r(1,1)

b
d"b+1,1)+B"(1,2)+ Y d%n 1)=d"(r(1,1),1).
n=r(1,1)
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Since d*(b,2) <0, by Lemma 4, d”(b+1,1) > 0and Y_,, ;,d“(n, 1) > 0, by
definition of (1, 1). Therefore, it follows that B”(1,2) < d*(r(1, 1), 1) and that
B(1,2) < B(1, 1).

We shall now prove that B(1,1) — B(1,2) = R(1,1) — R(1,2). This will
establish both part (iii), and in conjunction with B(1,2) < B(1, 1) it will also show
that R(1,2) < R(1,1).

Let i = min{n > g:W!(n, 1) = 0}. By the stability of the /-queue, it again
follows that i < oo. It also follows (as before) that dav (i, 1) = 0. We use this and
the fact that c?“’(b(l, 1),0) =0 as follows:

i—1
0=d"G, D= Y d®m?2)—dmn1)+d"(b(d,1),1)
n=>b(1,1)

=R(1,2)—B(1,2)— R(1,1)+ B(1,1)
or
R(1,1)—R(1,2)=B(1,1) — B(1,2).

This concludes the proof of the lemma. [

REMARK. Again, the lemma establishes that bubbles only move to the
right, that their volumes do not increase, and that they do not overtake one
another. Volume cancellations are equal and happen, in this case, when the blue
bubble moves into the red one. This movement is manifested by the condition
jw(r(l, 1), 1) > 0. For, this is the only condition under which B(1,2) < B(1, 1).

To conclude Possibility 8, we need to consider the case that at least one of
b and 7 is not finite. Accordingly, we state the following definitions:

(a) If b = —oo and 7 < oo, define r(1,2) =7, b(1,2) =r(1,2), B(1,2) =@
and R(1,2) =[r(1,2),q'], where ¢’ is as defined earlier.

(b) If b > —co and 7 = oo, define b(1,2) = b, r(1,2) = oo, B(1,2) =
[b(1,2),q"], where ¢” = min{n > b(1,2):A(k,2) = I(k,2) Vk > n} and
R(1,2)=02.

(c) If |b| = |F| = oo, define b(1,2) =r(1,2) = 0o and B(1,2) = R(1,2) = &

These definitions ensure that bubble movements are always to the right. The
next lemma shows that bubble volumes do not increase in this case either.

LEMMA 10. Suppose at least one of b and 7 is not finite. Then B(1,2) <
B(1,1), R(1,2) < R(1,1)and B(1,1) — B(1,2) = R(1,1) — R(1,2).

PROOF. Since either B(1,2) or R(1,2) is 0 in this case, the lemma is
proved if we establish B(1,1) — B(1,2) = R(1,1) — R(1, 2). But, this is simple.
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Let i = min{n:d%(k,0) =0 =d"(k,0) Vk > n}. Note that the stability of both
queues ensures that i < co. From
~ i_l ~ ~ ~
0=d"G, D= Y dn2)—d®n 1)+d"(b(d,0),1),
n=b(1,1)
=R(1,2)-B(1,2)—-R(1,1)+ B(,1)

or
R(1,1)—R(1,2)=B(,1) — B(1, 2),

we obtain a proof of the lemma. [J

The last of the three possibilities concerns the mixing of two neighboring blue
(red) bubbles, after the red (resp. blue) bubble between them has been cancelled.

Possibility y: the mixing of bubbles of the same color. This time consider the
first two blue bubbles and the first red bubble only. That is, set An,1)=A@n, 1)
forn e (B(1,1)URA, 1)U B(2,1)) and A(n, 1) = I(n, 1) otherwise. Again,
we modify the definition of B(2, 1), setting it equal to {b(2, 1) < n < g}, where
g =min{n > b(2,1) :A(k, 1)=1(k,1)Vk > n}.

Given the preceding discussion of possibilities & and g, the dynamics of bubble
evolution under y are easy to understand.

Define by = inf{n:An,2) < I(n,2)}, by = sup{n:An,2) < I(n,2)}, 7| =
inf{n: A(n,2) > I(n,2)}, and 7, = sup{n: A(n,2) > I(n,2)}. Following earlier
conventions, the infimum (supremum) of the empty set equals oo (resp. —00).

LEMMA 11. Suppose 51, l;z, 71 and 7 are all finite. Then exactly one of the
following must be true:

() bl <by<F < r,
(ii) b1 < < rz < bz and da(n 2) >0 forall n € [ry, 2], and
(i) 71 <7 <by <by.

PROOF. First suppose that by < 7y, but that 7, < by < 7. From the proof of
Lemma 8 we know that 7; > r(1, 1).

CASE 1 [F; = b(2,1)]. This implies 7 > by > b(2, 1). Since d*(b,,2) < 0,
by Lemma 4 we get that d* (b, 4+ 1,1) > 0. This together with the two facts:
bz > b(2 1), and d° (n,1) <Oforalln > b(2, 1) implies, recurswely via Lemma 6,
that d¢ (n,2) <0forall n > b(2,1). This contradicts 7 > b2
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CASE 2 [r(1,1) <71 < b(2,1)]. Lemma 4 implies c?w(Fl 4+ 1,1) <0. Since
d“(n,1) > 0 for n € [r(1,1),b(2,1) — 1], Lemma 6 implies d*(n,2) > 0 for
such n. This further implies b2 > b(2,1). Now a similar argument to the one in
Case 1 makes it impossible for there to be an n > by such that d%(n, 2) > 0. Again,
this contradicts 7, > b;.

Therefore, if 151 < 1y, either l;l < l;z < F1 < iy [this proves (i)] or l;l <n <
Iy < l;z [this proves part of (ii)].

To finish (ii), simply note that if there is a b € [r1, /2] such that de (b,2) <0,
replacing b, with b in the arguments of Cases 1 and 2 above will imply that either
b<rFiorb>r.

Finally, suppose that 7| < by. For contradiction suppose that b; < 7. The
preceding arguments make it clear that 71 > r(1, 1), hence 151 > r(1,1). We first
claim that by > b(2,1). If not r(1,1) < 7 < by < b(2,1). But, d*(#,1) > 0
implies dv (f1 +1,1) <0 (by Lemma 4); and, in conjunction with de (n,1)>0
forn € [r(1,1),b(2,1) — 1] this further implies (via Lemma 6) that d*(n,2) >0
forn € [r(1,1), b(2, 1) — 1]. This contradicts b; < b(2, 1).

Thus, our assumption that by < 7> leads to the conclusion b(2, 1) < by < 7.
Since d“(b1,2) < 0, Lemma 4 implies d“’(b1 4+ 1,1) > 0. This and the fact
de (n,1) <0 forn>b(2,1) imply (via Lemma 6) that de (n,2) <0 for all such n.
This contradicts 7, > 151. Therefore, if 7| < l;l, it must be that 7 <7 < 151 < l;z
and the lemma is proved. [

REMARK. The essence of the lemma is that bubbles do not overtake or
intersperse between one another. That is, there are uninterrupted runs of blue and
red volumes whenever these are not zero. This intuitive statement is made more
precise in the next few lemmas.

Suppose that 7y, 72, l;l and l;z are all finite and 151 <r <m< 52. Define
b(1,2) = by, r(1,2) =7 and b(2,2) = min{n: 7 <n < by, d*(n,2) < 0}. Also
define B(1,2) = — S de(n.2) R(1,2) = Y020, d%(n, 2) and B(2,2) =
— ZZib(z,Z) d“(n,?2). The previous lemma implies B(1,2) > 0, R(1,2) > 0 and
B(2,2)>0.

_ LEMMA 12.  Suppose that 1,72, 131 and l;z are all finite and 131 <M <mP<
by. Then:

() b(1,2) >b(1, 1), r(1,2) > r(1,1) and b(2,2) > b(2, 1),
(i) B(1,2) < B(1,1),R(1,2) < R(1, 1) and B(2,1) < B(2,2), and
(i) R(1,1)— R(1,2)=B(1,1)+ B(2,1) — B(1,2) — B(2,2).

PROOF. Statement (i) follows from Possibilities « and 8 and the proof of
Lemma 11.



FIXED POINTS OF A -/GI/1 QUEUE 2251

It again follows from Possibility 8 that B(1,2) < B(1, 1). We shall prove the
lemma by showing that B(2,2) < B(2,1) and R(1,1) — R(1,2) = B(1,1) +
B(2,1)— B(1,2) — B(2, 2). We proceed by establishing some preliminary claims.

CLAIM 1. For b =max{n € [b(1,2),r(1,2) — 1] :c?“(n, 2) < 0}, it holds that
b<b2,1).

Suppose to the contrary b > b(2, 1). Then, since d(b, 2) < 0, Lemma 4 implies
czw(b 4+ 1,1) > 0. And since de (n,1) <0 for all n > b(2, 1), this further implies
via Lemma 6 that d“ (n,2) <0 for all n > b. This contradicts the finiteness of 7
and establishes the claim.

CLAIM 2. d¥(b(2,1),1)<0.

Suppose d*(b(2, 1), 1) > 0. Since d*(n,2) < 0 for all n > b(2, 1), Lemma 6
tells us that ci“(n, 2) <0 for all n > b(2,1). Therefore r(1,2) < b(2,1). Now,
given that d%(r(1,2), 2) > 0, Lemma 4 implies d”(r(1,2) + 1, 1) <0, and since
r(1,2) > r(1, 1), this further implies (via Lemma 6) that d®(n,1) <0 for n €
[r(1,2) + 1, b(2, 1)]. This contradicts our assumption that dav b2,1),1) > 0and
proves the claim.

Now, given that b < b(2,1), it follows from the definition of b(2,2) that
ci“(n, 2) > 0foralln € [b(2,1),b(2,2) — 1]. Therefore (14) gives

(17) di+1, )= Y d*m2)—d*(m 1)+d" (@, 1,1),
n=b(2,1)

where i = min{n > b(2, 1):d*(k, 1) =0Vk > n). Rewriting (17) we get

b22)-1 5
Y d“n,2)— B2,2)+ B2, 1) +d"(b2.1),1)
n=b(2,1)
or
b(2,2)—1
B(2,1)— B(2,2) = —d’”(b(z D, 1) Z d"(n 2).
n=b(2,1)

If d* (n,2)=0foralln e [b~(2, 1), b(2,2) — 1], the above equation immediately
gives B(2,1) — B(2,2) =—-d*(»(2,1),1) > 0.

Else, r2 > b(2, 1) for 7, as defined earlier. In this case note that Zb(zbz()z 11) d*(n,
2) = Zn —b(2.1) de (n,2). Therefore it suffices to show —dv b2, 1), 1) —
Zn —b2.1) d° (n,2) > 0 in order to conclude B(2, 1) > B(2, 2).
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But, this follows immediately from considering

¥ 2
d"(b@. 1), 1) =d"(FH+1,)— Y d0)+ Y d'n1)
n=b(2,1) n=b(2,1)
~ fz ~
&d"(0e, D, )+ Y dn2)
n=b(2,1)

r
=d"(R+1,D)+ Y dn1)<0,
n=b(2,1)
since d* (72,2) > 0implies dav (Fo+1,1) <0 (from Lemma 4), and fo:b(z’l) de (n,
1) < 0 because, to the right of 5(2, 1) on the input side, blue is all there is.
Finally, from

i
0=d"(+1.1)= Y d*m2)—dmn1)+d" (b, 1),1)
n=>b(1,1)

and the fact that jw(b(l, 1), 1) = 0 itimmediately follows that R(1, 1) — R(1,2) =
B(1,1)+B(2,1)— B(1,2) — B(2, 2). This completes the proof of the lemma. [

Suppose Fl,Fg,];l and 152 are all finite and l;l < 152 < 71 < rp. Then
define b(1,2) = by, r(1,2) = r; and b(2,2) = oco. Also define B(1,2) =

— S d(.2), R(1,2) = X021 5,d%(n,2) and set B(2,2) =0.

LEMMA 13. [Ifry, 7o, by and b, are all finite and by < by <7 <7, then:

() b(1,2)>b(1, 1), r(1,2) > r(1,1) and b(2,2) > b(2, 1),
(i) B(1,2) < B(1,1)and R(1,2) < R(1, 1),
(i) R(1,1)— R(1,2)=B(1,1)+ B(2,1) — B(1,2) — B(2,2).

PROOF. Part (i) follows from Possibilities « and 8, and clearly (2, 2) = co >
b(2,1).

It follows as in the proof of Lemma 12 that dv b(2,1),1) <0. (In words, this
means no blue volume from the first blue bubble enters the second blue bubble.)
As a consequence, it is straightforward to infer from Possibility 8 that B(1,2) <
B(1,1). Since B(2,2) = 0, the rest of the lemma will follow from showing
R(1,1)—R(1,2) = B(1,1)+ B(2, 1) — B(1, 2). Because d* (b(1, 1), 1) = 0, this
follows trivially from

i
0=d"(+1,1)= )Y d*®n2)—d"mn 1)+d"([bd,1),1),
n=b(1,1)

where i = min{n > b(2,1):d¥(k,1)=0Vk >n}. O
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Next suppose 51, l;z, r1 and 7, are all finite and 7} <7, < l;l < l;z. Then
define b(1,2) =r(1,2) = ry and b(2,2) = by. Set B(1,2) =0, define R(1,2) =

S 12 d%(n.2) and B2,2) = — Y02, 0 5 d(n, 2).

LEMMA 14. Ifry, 7o, 151 and 152 are all finite and ri <1 < 151 < 52, then:
(i) 6(1,2) = b(1,1),r(1,2) = r(1,1) and b(2,2) = b(2, 1),

(i) R(1,2) < R(1,1)and B(2,2) < B(2, 1),
(i) R(1,1)— R(1,2)=B(1,1)+ B(2,1) — B(1,2) — B(2,2).

The proof follows from Case 8, similarly as in the proof of Lemma 13.

Possibility y': only the red bubble survives. Suppose that by and b, are not fi-
nite. In this case, there is no blue at the second stage. Define b(1,2) =r(1,2) =
and set b(2,2) = oo. Also set B(1,2) = B(2,2) = 0 and define R(1,2) =
fo:ra,z) d“(n,2).

It is clear that b(1,2) > b(1, 1), r(1,2) > r(1, 1) and b(2,2) > b(2, 1).

LEMMA 15. Suppose that 131 and l;z are not finite. Then R(1,2) = R(1,1) —
B(1,1) — B(2,1). In particular, B(1,2) < B(1,1), R(1,2) < R(1,1) and
B(2,2) < B(2,1).

PROOF. Consider the equation

0=d"(i+1,)= Y dMm?2)—dm1)+d" (b, 1),1),
n=b(1,1)

where i = min{n > b(2,1):d"(k, 1) =0 Yk > n}. Given that d*(b(1,1),1) =0,
it follows immediately that R(1,2) = R(1,1) — B(1,1) — B(2,1). O

Possibility y*: the red bubble is completely cancelled. Suppose that 7| and 7
are not finite. In this case, there is no red at the second stage. Define b(1,2) =
r(1,2) =b(2,2) = by and

- Zﬁzzh(l,Z) d“(n,2)
B(1,D+B2,1) )

B(1,2)=B(1,1)<

- Zﬁzzh(l,Z) d*(n,2)
B(1,1)+ B2, 1) )

B(2,2) = B(2, 1)(

R(1,2)=0.

Note that it is possible for (1,2) < r(1,1) and b(2,2) < b(2,1). This is a
crucial deviation from all previous cases, necessitated by reasons detailed in the
remark after the lemma.
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LEMMA 16. Suppose that v\ and r, are not finite. Then:

@ b(1,2) =r(1,2) =b(2,2),
(i) B(,2) <B(,1)fori=1,2and R(1,2) < R(1,1) and
Gii) B(1,1)+ B(2,1)—B(1,2) — B(2,2)=R(1,1).

PROOF. Statement (i) follows by definition, while (ii) and (iii) follow from

i
0=d"i+1,1)= Y d*m2)—d"mn1)+d" (b, 1),1),
n=b(1,1)

where i = min{n > b(2,1):d"(k,1) = 0 Yk > n}. Observing that d*(b(1, 1),
1) = 0 completes the proof of the lemma. [J

REMARK. The definitions of quantities at the second stage are so as to
preserve orderings between bubble start points and to ensure that bubble volumes
do not grow. The above lemma shows that when the red bubble is fully cancelled,
it nullifies an equal amount of blue from the blue bubbles put together. The amount
of volume taken out of each blue bubble is proportional to its original size. Thus,
we do not keep an account of whether or not a specific blue bubble contributed
to the cancelling of the red. This is both unnecessary and can lead to needless
complication, as seen below.

First, without elaboration, here are the ways (and concomitant conditions) in
which the red bubble can be cancelled: (i) the first blue bubble cancels all of
the red bubble [d¥ (r(1,1),1) > R(1, 1) and d¥(b(2,1), 1) > 0], (ii) each of the
blue bubbles contributes to the cancellation of the red bubble [d" (r(1, 1), 1) > 0,
av®2,1), 1) =d*@x(1,1),1) — R(1,1) <0, and d%(n,2) <0 for n > b(2,1)]
and (iii) only the second bubble cancels the red bubble [ci Yor(,1),1) =0,
—d"(b(2,1),1) = R(1, 1) and d*(n, 2) > 0 for n > b(2, 1)].

Note that in situations (ii) and (iii) above ciw(b(Z, 1),1) < 0; or, in words, no
blue volume enters the second blue bubble. This ensures that the two shades of blue
do not mix. But, if d¥ (b(2,1),1) > 0, as can happen in (i), the two shades of blue
do mix. This can make it impossible to decide b(2, 2) so as to satisty the following
conditions simultaneously: (a) B(1,2) < B(1, 1) and (b) B(2,2) < B(2,1).

For example, suppose that B(1, 1) = B(2,1) =100, R(1, 1) =50, jw(r(l, 1),
1) = 100 and d¥(b(2,1), 1) = 25. Also suppose that d*(l,2) = 25 for some
le[r(1,1),b(2,1)— 1] and that d(m, 2) = 100, d*(n, 2) = 25 for some m < n €
[6(2, 1), 00). Observe that no choice of b(2,?2) can satisfy conditions (a) and (b)
above.

A simple way out is to set 7(1,2) = b(2,2) = b(1,2), and divide the volume of
blue on the output side proportionately among the two blue bubbles. Although
this choice can cause r(1,2) < r(1,1), it must be seen as a consequence of
convenience. It will be clear that this causes no problems in the rest of the
argument.
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4.1. The equilibrium evolution. Using the ideas of the previous section,
we will now describe the evolution of the bubbles in equilibrium. Consider
the processes Al I! and {S(n, D}pez. The quantities r(n, 1), b(n, 1), R(n, 1),
B(n, 1), R(n, 1) and B(n, 1) are as defined in (9), (11) and (12).

We describe the procedure for determining »(n, 2) and b(n, 2) for each n € Z.
From these one can deduce the quantities R(n,2), B(n, 2), R(n,2) and B(n,?2).
As in the previous section the sequence {d"(n,1)},cz plays a key role in
the determination of r(n,2) and b(n,2). For what follows, it is helpful to
make a connection between the sign of d"(n, 1) and what it means for bubble
movements at n. Accordingly, depending on whether d* (n, 1) =0, d*(n, 1) <0
ord¥(n, 1) > 0, there is a movement from n — 1 to n, respectively, of nothing, red
or blue of volume |d% (n, 1)|.

Consider 4 = {n:d“(n,2) > 0 infinitely often}. By the joint ergodicity of
AZand I, P($8) =0or 1.If P(8) = 0 then d*(n, 2) < O for every n a.s. [ergodicity
clearly rules out that d“(n,2) < 0 for finitely many n with positive probability].
But this last fact together with E(A(n, 2)) = E(I (n, 2)) implies that A> =1? a.s.
Thus, if P(8) = 0 the proof of Theorem 1 is complete.

Therefore, suppose P(8) = 1. Note that this implies the co-existence of
infinitely many blue and red bubbles at the second stage. We will now give a
procedure for determining »(1,2) and r(1, 2), and hence for b(n, 2) and r(n, 2)
for every n.

First consider the processes A? and I?. These are jointly ergodic, and hence it is
possible to apply the procedure of Section 2.1 and obtain bubbles. Let b(n, 2)
and 7(n,2) be the start points of the bubbles, and let B(n, 2) and R(n, 2) be
the corresponding bubble volumes. Note that 7(n — 1,2) < b(n,2) < #(n,?2) for
every n. We need variables e(n, 2) and f (n,2) which mark the end points of the
bubbles in order to proceed. Thus, let

e(n,2) =max{k € [l;(n, 2),7(n,2) —1]1:d%(n, 2) <0},
f(n,2) =max{k € [F(n,2),b(n +1,2) — 11:d*(n, 2) > 0}.

Note that l;(n,2) <en,2) <rmn?2) < f(n,2) < I;(n + 1,2) for every n.
With these definitions, the following procedure relates r(-,2) and b(-,2) to
7(-,2) and b(-, 2).

Determining b(1,2). Clearly b(1, 1) € [b(k,2), b(k + 1,2) — 1] for some k.

(@) Ifb(1,1) € [b(k,2),ek,2)], set b(1,2) = b(k,2). i

(b) If b(1,1) € [6(k,2) + 1,7(k,2)] and r(1,1) < f(k,2), set b(1,2) =
F(k,2).

) Ifb(1,1) e[ek,2)+1,7(k,2)land r(1,1) > f(k,2),set b(1,2) = b(k +
1,2).

() If b(1,1) € [F(k,2) + 1, f(k,2)] and r(1, 1) € [b(1,1) + 1, f(k,2)], set
b(1,2) =F(k,2).
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) If b(1, 1) € [F(k,2) + 1, f(k, 2] and r(1,1) & [b(1, 1) + 1, f(k,2)], set
b(1,2)=b(k+1,2). 3 3
(d) Ifb(1, 1) e [f(k,2) + 1,b(k+1,2) — 1], set b(1,2) = b(k + 1,2).

Determining r(1,2). Clearly r(1, 1) € [F(k,2),7(k + 1,2) — 1] for some k.

() If r(1, 1) € [F(k,2), f(k,2)], set r(1,2) =F(k,2).

f) r(1,1) e[fk,2)+1,b(k+1,2)]and b(2, 1) < é(k+1,2),setr(1,2) =
bk +1,2).

) fr(1, ) e[fk,2)+1,bk+1,2)]andb(2, 1) > &(k+1,2),setr(1,2) =
Flk+1,2).

(g Ifr(1,1) elbk+1,2)+1,é(k +1,2)]and b(2,1) € [r(1, 1)+ 1,&(k +
1,2)], set r(1,2) = bk +1,2).

(&) fr(, ) e[bk+1,2)+1,8(k+1,2)]and b2, 1) ¢ [r(1, 1) + 1,&(k +
1,2)],setr(1,2)=r(k+1,2).

(h) Ifr(1, 1) efek,2)+1,7(k+1,2) — 1], set r(1,2) = F(k + 1, 2).

LEMMA 17. Ifb(1,1) <b(p,?2) then b(1,2) < b(p, 2).

PROOF. If p =k, for k as defined in the above procedure, then from case (a),
b(1,1) = b(p,2) = b(1,2). If p > k + 1, then note that 7(k,2) < b(k + 1,2) <
b(p,?2), and hence by the procedure for determining b(1,2), it follows that
b(1,2) <b(k+1,2) <b(p,2). O

LEMMA 18. Foreveryne Z,r(n,2) <bn+1,2)<r(n+1,2).

PROOF. We prove r(n,2) < b(n + 1,2), the other inequality is similarly
established. By construction of r(n,2) and b(n, 2), these points are always at the
start point of a red or a blue bubble at the second stage [i.e., they equal some 7 (k, 2)
or b(m, 2)]. Further, they each move either to the nearest start point on the left, or
to one of the nearest two start points on the right.

Now, r(n, 1) < b(n+ 1, 1). Therefore, every time r(n,2) <r(n, 1) [i.e., r(n, 1)
moved to its nearest left start point], it follows that r(n,2) < b(n + 1, 2). This
covers cases (e) and (g), which are the cases when r(n,2) <r(n, 1).

Under (f), r(n,2) = l;(k + 1, 2) for some k. And our procedure for b(n + 1, 2)
[cases (a) and (d)] sets b(n +1,2) = l;(k +1,2).

Under ('), r(n,2) =7 (k + 1, 2) for some k. Our procedure [cases (b), (b), (c)
and (¢)] determines that b(n + 1,2) > F(k + 1,2) =r(n, 2).

Under (g), since b(n + 1, 1) > é(k + 1,2) > r(n, 1), it follows from cases (b),
(b)), (¢) and (¢/) that b(n + 1,2) > 7F(k + 1,2) = r(n, 2).

Finally, under (h), we again see that b(n + 1, 1) > r(n, 1) > e(k + 1, 2). Again
from cases (b), (b'), (¢c) and (¢) it follows that b(n +1,2) > 7k +1,2) =r(n, 2).

This concludes the proof of the lemma. [
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LEMMA 19. At the start of a red bubble at the second stage, there is always
exactly one more r(-,2) than there are b(-,2)’s. Similarly, at the start of a blue
bubble at the second stage, there is always exactly one more b(-,2) than there
arer(-,2)’s.

PROOF. For concreteness, consider 7(1,2). By the order-preservation estab-
lished in Lemma 18, it suffices to show that 7(1,2) =r(k,2) = bk + 1,2) =
-«-=r(k+m,?2) for some k and m > 0.

Consider e(1,2). If max{p:b(p,1) < e(1,2)} > max{qg:r(