
The Annals of Probability
2003, Vol. 31, No. 4, 2082–2108
© Institute of Mathematical Statistics, 2003

LINEAR STOCHASTIC DIFFERENTIAL EQUATIONS WITH
FUNCTIONAL BOUNDARY CONDITIONS

BY AURELI ALABERT1 AND MARCO FERRANTE2

Universitat Autònoma de Barcelona and Università degli Studi di Padova

We consider linear nth order stochastic differential equations on [0,1],
with linear boundary conditions supported by a finite subset of [0,1]. We
study some features of the solution to these problems, and especially its
conditional independence properties of Markovian type.

1. Introduction. It is well known that, under suitable Lipschitz and growth
conditions on the coefficients, a classical Itô stochastic differential equation

X(t) = ξ +
∫ t

0
b
(
s,X(s)

)
ds +

∫ t

0
σ
(
s,X(s)

)
dW(s),(1.1)

where W is a Wiener process and ξ is a F0-measurable random variable for a given
nonanticipating filtration {Ft , t ≥ 0} of W , has a unique strong solution which is
a Markov process.

If ξ is not F0-measurable or the coefficients b, σ are random and nonadapted,
then any reasonable interpretation of X in (1.1) will not be an Ft -adapted process
and, unless σ is a constant, we need to use some anticipating stochastic integral to
give a sense to the equation. In these cases, the solution is not a Markov process in
general.

Still another setting that leads to anticipation is the case of boundary conditions.
That means, the first variable of the solution process is no longer a datum of the
problem, time runs in a bounded interval, say from 0 to 1, and we impose a relation
h(X(0),X(1)) = 0 between the first and the last variables of the solution. In this
situation, the fact that the solution will not be Markovian is quite intuitive, since
the strong relationship between X(0) and X(1) will prevent the independence of
X(0) and X(1) from holding, even when conditioning to X(a), a ∈ ]0,1[, except
maybe in some very particular cases.

On the other hand, it may also seem intuitive that the following weaker
conditional independence property can hold true: For any 0 ≤ a < b ≤ 1,
the σ -fields σ {X(t), t ∈ [a, b]} and σ {X(t), t ∈ ]a, b[c} are conditionally
independent given σ {X(a),X(b)}. We will denote it by

σ {X(t), t ∈ [a, b]}
σ {X(a),X(b)}σ

{
X(t), t ∈ ]a, b[c}.(1.2)
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Now X(0) and X(1) are on the same side in relation (1.2), so that the boundary
condition does not seem to cause the problem seen above. But the following
example shows that this is wrong:

EXAMPLE 1.1. Consider the problem

Ẋ(t) = f (X(t)) dt + Ẇ (t), t ∈ [0,1],
h
(
X(0),X(1)

) = 0,

where the noise appears additively, and assume that a unique solution exists and
that the boundary condition given by h does not reduce to an initial or final
condition. Then, relation (1.2) holds if and only if f (x) = αx + β , for some
constants α and β . This was proved by Nualart and Pardoux [16].

The processes satisfying (1.2) were called reciprocal processes by Bernstein [5].
The concept arose directly from Schrödinger ideas on the formulation of quantum
mechanics. More recent research on such processes has been carried out by
Jamison [12], Krener [14], Krener, Frezza and Levy [15], Thieullen [20] and
Zambrini [21].

Other names can be found in the literature to refer to the same concept.
A reciprocal process is a one-parameter Markov field in Paul Lévy’s terminology,
and is also called a quasi-Markov process, a local Markov process and a Bernstein
process. We shall simply call them Markov fields (see Definition 4.1).

EXAMPLE 1.2. Now consider the problem

Ẍ(t) + f
(
X(t), Ẋ(t)

) = Ẇ (t), t ∈ [0,1],
X(0) = c1, X(1) = c2.

This is a second-order stochastic differential equation, and it is natural to ask
for conditional independence properties of the two-dimensional process Y (t) =
(Ẋ(t),X(t)), since X(t) has C1 paths, and therefore it is meaningless to look for
this kind of properties for X(t) itself.

Nualart and Pardoux [17] proved that if Y (t) is a Markov field, then, as in
Example 1.1, f must be an affine function. Moreover, if f is affine, then Y is
not only a Markov field, but a Markov process.

Let us look at this example more closely: note that a boundary condition for a
second-order equation has the general form

h
(
Y (0), Y (1)

) = (0,0),

where Y (0) = (Ẋ(0),X(0)) and Y (1) = (Ẋ(1),X(1)). However, in Example 1.2
the two scalar conditions do not mix values at 0 and values at 1 of Y . The same
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happens, for instance, with the Neumann-type conditions Ẋ(0) = c1, Ẋ(1) = c2,
and the result is the same (Y Markov field ⇒ f affine ⇒ Y Markov process).

From these examples and other equations of first and second order that have
been studied so far (see, e.g., [2–4, 18]), we learn that:

1. The Markovian properties can be expected only in “linear” cases.
2. The specific Markovian property depends on the actual form of the boundary

condition.

It should also be noted that the requirement of linearity on the drift coefficient f

is related to the fact that the noise appears additively. Should not this be the case,
the Markovian property would occur under a different condition which relates the
drift and the diffusion coefficients (see [2] and [3]).

In the present paper we will consider linear stochastic differential equations
of arbitrary order with additive white noise. Our boundary conditions will not be
restricted to involve the solution process at the endpoints of the time interval, but
we will allow them to involve the values at finitely many points inside the interval.
They are usually called functional or lateral boundary conditions. Our main goal
is to seek which kind of conditional independence properties can be established
for the solution. A preliminary work in this direction was published in [1]. Here
we considerably refine and extend the results therein. This type of equations was
already considered by Russek [19], who proved that the solutions are Markov
processes if and only if the lateral conditions fix to a constant the variables X(t),
for all points t in the support of the conditions. His techniques, based in the notion
of reproducing kernel space, are different from ours.

Our main result (Theorem 4.5) can be stated in the following way: Fix two
points 0 ≤ a < b ≤ 1 and set Y (t) = (Dn−1X(t), . . . ,DX(t),X(t)), where n is
the order of the equation, X(t) is its solution process and D is the time derivative;
the process Y = {Y (t), t ∈ [0,1]} satisfies the relation (1.2) if and only if there
are no lateral conditions involving points inside and outside the interval [a, b].
(Note that this is different from saying that Y is a Markov field.) We also state
a conditional independence property for the case when there are conditions that
do involve points inside and outside [a, b] (Theorem 4.10). Finally we obtain a
result from which Russek’s theorem can be trivially recovered (Theorem 4.11).
The paper is organised as follows:

In Section 2 we define the statement of the problem and develop some notation
and properties that will be needed later.

Section 3 contains the main probabilistic tools: Lemma 3.4 and Proposition 3.7.
The first is a characterization of the conditional independence of two random
vectors given a function of them. It is the most important ingredient in the proof
of Theorem 4.5, but it cannot be applied for certain singular values of a and b. For
these values, we employ an approximation by the solution of perturbed equations.
The approximation argument involves the convergence in L2 of a sequence of
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conditional expectations with varying conditioning σ -fields. Proposition 3.7 gives
a sufficient condition for this convergence in a general setting.

In Section 4 we establish the main results. The proofs of Theorems 4.10 and 4.11
will be only sketched, since the procedure is similar to that of Theorem 4.5, with
slight modifications.

2. Linear SDE with functional boundary conditions. The present section
will be devoted to the statement of the problem, the definition of a solution, and
to absolute continuity and approximation results for the solution of an nth order
linear stochastic differential equation with linear functional boundary conditions.

2.1. Statement of the problem and definition of a solution. Consider the
differential operator

L := Dn + an−1D
n−1 + · · · + a1D + a0, D := d

dt
,

where ai are continuous functions on [0,1]. Let {W(t), t ∈ [0,1]} be a standard
Wiener process. We assume that W is the coordinate process in the classical
Wiener space (�,F ,P ), that means, � = C0([0,1];R) is the space of continuous
functions on [0,1] vanishing at zero, F its Borel σ -field, and P the Wiener
measure. We shall deal with the SDE

L[X] = Ẇ(2.1)

on [0,1], together with the additional conditions
m∑

j=1

αijX(tj ) = ci, 1 ≤ i ≤ n,(2.2)

where m ≥ n, 0 ≤ t1 < · · · < tm ≤ 1 are some given points in [0,1] and αij , ci are
real numbers. The matrix of coefficients (αij ) is assumed to have full rank.

As in the case of ordinary differential equations, (2.1) and (2.2) can be regarded
as a first-order system

DY(t) + A(t)Y (t) = Ḃ(t), t ∈ [0,1],(2.3)

with constraints
m∑

j=1

αijYn(tj ) = ci, 1 ≤ i ≤ n,(2.4)

where Y (t) = (Y1(t), . . . , Yn(t)), Yi(t) = Dn−iX(t) for 1 ≤ i ≤ n, B(t) =
(W(t),0, . . . ,0) and

A(t) =


an−1(t) an−2(t) · · · a1(t) a0(t)

−1 0 · · · 0 0
0 −1 · · · 0 0
...

...
. . .

...
...

0 0 · · · −1 0

 .(2.5)
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The lateral condition (2.4) is a special case of the general linear condition

�[Y ] = c,(2.6)

for � in the set L(C([0,1];R
n);R

nt) of linear continuous R
n-valued functionals

on C([0,1];R
n), and c ∈ R

n. By the Riesz representation theorem, (2.6) can be
written as ∫ 1

0
dF (t) Y (t) = c,(2.7)

where F is an (n × n)-matrix whose components are functions of bounded
variation.

When the right-hand side of (2.3) is a continuous vector function g, it is well
known (see, e.g., [7] or [11]) that the system

DY(t) + A(t)Y (t) = g(t), t ∈ [0,1],
(2.8) ∫ 1

0
dF (t) Y (t) = c,

admits a unique solution, which belongs to C1([0,1];R
n), if and only if for some

s ∈ [0,1] (equivalently, for every s ∈ [0,1])

det
∫ 1

0
dF (t)�s(t) �= 0,(H0)

where �s(t) denotes the fundamental matrix solution of DY(t) + A(t)Y (t) = 0,
that is, ∀ s ∈ [0,1],

d

dt
�s(t) + A(t)�s(t) = 0, t ∈ [0,1],

�s(s) = I,

with I the identity matrix. In turn, this is equivalent to say that the homogeneous
problem (g ≡ 0, c ≡ 0) has only the trivial solution. When hypothesis (H0) holds,
the solution to (2.8) is given by

Y (t) = J (t)−1c +
∫ 1

0
G(t, s)g(s) ds,

where

J (t) =
∫ 1

0
dF (u)�t(u)(2.9)

and G(t, s) is the (matrix-valued) Green function associated to A and F . An
explicit expression for this function is the following:

G(t, s) = J (t)−1
[∫ s

0
dF (u)J (u)−1 − 1{t≤s}I

]
J (s).(2.10)
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Under (H0), we define the solution to (2.3) and (2.4) as the n-dimensional
stochastic process

Y (t) = J (t)−1c +
∫ 1

0
G(t, s) dB(s),(2.11)

following the lines of Russek [19], and the solution to (2.1) and (2.2) as the process
{X(t) = Yn(t), t ∈ [0,1]}. The Green function (2.10) has bounded variation, so
that the Wiener integrals in (2.11) can be interpreted pathwise by means of an
integration by parts[∫ 1

0
G(t, s) dB(s)

]
(ω) = −

∫ 1

0
G(t, ds)B(s)(ω)

[we take into account here that G(t,1) = 0, ∀ t], and therefore Y can be defined
everywhere. We shall assume throughout the paper that the solution is interpreted
in this pathwise sense. Furthermore, it is not difficult to verify that the process
Y (t) so defined is continuous (hence X(t) is a Cn−1 process) and that, for each
t ∈ [0,1], the mapping ω �→ Y (ω) from � into C([0,1];R

n) is continuous with
the usual topologies.

Notice that, with the notation introduced in (2.7), the particular lateral
condition (2.4) corresponds to

dF =


0 · · · 0

∑m
j=1 α1j δtj

0 · · · 0
∑m

j=1 α2j δtj
...

...
...

0 · · · 0
∑m

j=1 αnj δtj

 ,(2.12)

where δt denotes the Dirac measure at t , and that Jik(t) = ∑m
j=1 αij�

t
nk(tj ).

Notice also that only the first column of G(t, s) is relevant in (2.11).
Another natural definition of solution for the system (2.3) and (2.4) arises if,

for each ω fixed, we consider the object Ḃ(ω) as the derivative of a continuous
R

n-valued function defined on [0,1], and therefore we regard (2.3) as an equation
between distributions. The vector function Y = (Y1, . . . , Yn) will be a solution in
the distributional sense if for any smooth vector ϕ = (ϕ1, . . . , ϕn) vanishing in the
complement of ]0,1[, with

∫ 1
0 ϕ = 0,∫ 1

0

(
Y (t) +

∫ t

0
A(a)Y (s) ds − B(t)

)
· ϕ(t) dt = 0(2.13)

and (2.4) is satisfied. But (2.13) amounts to say that there exists a constant Y (0)

such that

Y (t) − Y (0) +
∫ t

0
A(s)Y (s) ds = B(t), t ∈ [0,1],

and a fortiori we find that Y must be a continuous function. It is easily seen that
both concepts of solution coincide.
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It is also possible to give a meaning to system (2.1) and (2.2) with a right-hand
side in (2.1) of the form σ(X(t),DX(t), . . . ,Dn−1X(t))Ẇ (t), through the use of
anticipating stochastic integrals. The distributional definition of solution does not
have a sense in that case. We do not consider this situation here; see however the
comments following Definition 4.1.

2.2. On the law of the solution. In the present section we shall prove an
absolute continuity result for the law of the solution process {Y (t), t ∈ [0,1]}.
Here we allow the boundary condition (2.4) to depend on all coordinates of Y ,
since we will use this generality later on.

Let Y = (Y1, . . . , Yn) :� → C([0,1];R
n) be the solution to the problem

DY(t) + A(t)Y (t) = Ḃ(t), t ∈ [0,1],
(2.14)

�[Y ] = c,

where � is any linear operator on C([0,1];R
n) with finite support supp� =

{t1, . . . , tm}. [We are not assuming here that � involves only the coordinate
function Yn, but we do assume that problem (2.14) is well posed.]

If {s1, . . . , sk} ⊂ [0,1] is a set containing supp�, then � can be regarded as a
linear operator on the space of functions ({s1, . . . , sk} → R

n) ∼= R
n×k . We keep

the same symbol � for both interpretations. Denote by M the linear manifold
in R

n×k :

M :=
x =


 x11

...

x1n

 , . . . ,

 xk1
...

xkn


 ∈ R

n×k :�[x] = c

 .(2.15)

PROPOSITION 2.1. With the notation above, the random vector (Y (s1), . . . ,

Y (sk)) :� → R
n×k is absolutely continuous with respect to the Hausdorff measure

in M .

PROOF. Taking into account that the vector (Y (s1), . . . , Y (sk)) is Gaussian, it
suffices to prove that any open ball in M has a positive probability under the law
of this vector.

Fix x ∈ M . Let us see first that there exists ω ∈ � such that the function
Y (ω) : [0,1] → R

n satisfies (Y (ω)(s1), . . . , Y (ω)(sk)) = x. Indeed, by simple
interpolation, there obviously exists a C∞ function y : [0,1] → R

n such that
yi ≡ y′

i+1, i = 1, . . . , n − 1, and (y(s1), . . . , y(sk)) = x (therefore �[y] = c).
Defining

ω(t) = y1(t) − y1(0) +
∫ t

0

(
an−1(s)y

1(s) + · · · + a0(s)y
n(s)

)
ds,(2.16)

we find that y is the solution path Y (ω) of (2.14). Any open ball U(x) of M

centred at a point x ∈ M has therefore a nonempty inverse image Y−1(B(x)) ⊂ �.
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Moreover, since the mapping ω �→ Y (ω) is continuous, Y−1(U(x)) is open. We
get that P {Y ∈ U(x)} > 0. �

REMARK 2.2. Proposition 2.1 remains valid, with a similar proof, if the
domain where the problem is considered consists of two disjoint intervals, say
[0, a] and [b,1], instead of a single one (in that case 2n lateral conditions are
necessary for the problem to be well posed). The function ω can be defined as
in (2.16) for t ∈ [0, a]; as

ω(t) = y1(t) − y1(b) +
∫ t

b

(
an−1(s)y

1(s) + · · · + a0(s)y
n(s)

)
ds

for t ∈ [b,1], and arbitrarily (continuous) on ]a, b[.

2.3. An approximation result. We shall now state an easy approximation result
(Proposition 2.4) that we will need partially in the proof of Proposition 4.8.
Consider the space Ck := Ck([0,1];R

n×n), with k a fixed nonnegative integer
or ∞, endowed with its natural topology. Let C be the subset of Ck comprising
the matrix functions A : [0,1] → R

n×n of the form (2.5), with the topology induced
by Ck . Fix a linear operator � :C([0,1];R

n) → R
n of rank n and with the form

given by (2.12), and consider the deterministic problems

DY(t) + A(t)Y (t) = 0,
(2.17)

�[Y ] = 0,

with A ∈ Ck . Let D ⊂ Ck the class of matrix functions A such that (2.17) has only
the trivial solution. Finally set V := C ∩ D .

LEMMA 2.3. V is open and dense in C.

PROOF. For A ∈ D , denote by �0
A(t) the fundamental matrix solution of the

system DY(t) + A(t)Y (t) = 0, with Y (0) = I. Consider the composition of linear

operators R
n �A→ C([0,1];R

n)
�→ R

n defined by

c �→ [
t �→ �0

A(t)c
] �→ �

[
t �→ �0

A(t)c
]
.

The mapping

Ck ϕ→ L(Rn;R
n),

A �→ � ◦ �A,

is continuous. Indeed,

‖� ◦ �A − � ◦ �B‖L(Rn;Rn) ≤ ∥∥�∥∥
L(C,Rn) · ‖�A − �B‖L(Rn,C)
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and

‖�A − �B‖L(Rn,C) = sup
‖c‖=1

∥∥(�0
A(t) − �0

B(t)
)
c
∥∥∞

= max
i,j

sup
t

∣∣�0
A(t)i,j − �0

B(t)i,j
∣∣.

The continuity follows from the uniform continuous dependence of the solution
with respect to the data in a linear Cauchy problem.

Now we use the fact that the set H of invertible operators on R
n is open in

L(Rn,R
n). We obtain that ϕ−1(H) is open in Ck . However ϕ−1(H) is the set of

matrices A such that det(� ◦ �A) �= 0, which coincides with D by definition. This
shows that D is open in Ck .

Since C is a linear manifold in Ck , we have that V = C ∩ D is open in C. Note
that the particular form of � does not play any role up to this point.

To prove the density, we start by checking that V �= ∅. If A ∈ C and s ∈ [0,1],
the corresponding fundamental matrix �s

A(·) has the form

�s
A(t) =


Dn−1φ1(t) · · · Dn−1φn(t)

...
...

Dφ1(t) · · · Dφn(t)

φ1(t) · · · φn(t)


with

�s
A(s) = I

for some Cn+k real functions φ1, . . . , φn. Conversely, any such matrix is the
fundamental matrix solution �s of DY(t) + A(t)Y (t) = 0 for some A ∈ C. We
have

∫ 1

0
dF (t)�s(t) =

α11 · · · α1m
...

...

αn1 · · · αnm


 φ1(t1) · · · φn(t1)

...
...

φ1(tm) · · · φn(tm)

 .

Take s /∈ {t1, . . . , tm}. Since (αij ) has full rank and n ≤ m, we can obviously find
numbers φi(tj ), 1 ≤ i ≤ n, 1 ≤ j ≤ m, such that this product is an invertible square
matrix. Then we take Cn+k functions φ1, . . . , φn interpolating these numbers and
so that (Dn−jφi(s))i,j = I. The corresponding A will therefore belong to V .

Given now A ∈ D , let us fix A0 ∈ V . For λ ∈ R, define

Mλ :=


0 0 · · · 0

−1 0 · · · 0
...

. . .
. . .

...

0 · · · −1 0

 +


λ 0 · · · 0
0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

A0 +


1 − λ 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0

A.
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Let us see that the function u :λ �→ det�[�0
Mλ

] is analytical: indeed, Mλ depends
analytically on λ, and so the fundamental solution �0

Mλ
is also analytic in λ.

Finally, analyticity is preserved by the linear functional � and the determinant.
Now assume u ≡ 0 in a neighborhood of 0. This would imply u ≡ 0 on the whole
line. However,

u(1) = det�
[
�0

A0

] �= 0.

We conclude that there exists a sequence {λn}n converging to zero such that
Mλn ∈ V . Since Mλn → A as n → ∞, the density is proved.

This proof borrows some ideas from Theorem 7.1 in [6]. �

PROPOSITION 2.4. Let AN(t) be a sequence of functions in V converging to
A(t) ∈ V . Let YN(t) and Y (t) be the corresponding unique solutions to

DYN(t) + AN(t)YN(t) = Ẇ (t),

�[Y ] = c,
and

DY(t) + A(t)Y (t) = Ẇ (t),

�[Y ] = c.

Then YN(t) converges to Y (t) pointwise and in Lp , for all p ≥ 1, uniformly in t ,
that is,

lim
N→+∞ sup

0≤t≤1
|YN(t)(ω) − Y (t)(ω)| = 0 ∀ω ∈ �,

lim
N→+∞ sup

0≤t≤1
‖YN(t) − Y (t)‖Lp(�) = 0.

PROOF. In the situation given, the fundamental solutions �t(u)N converge to
the fundamental solution �t(u) uniformly in t and u. From this fact one shows
easily that JN and (JN)−1 defined by (2.9) converge uniformly to J and J−1,
taking into account that the entries of dF are finite measures. Hence, the Green
functions GN(t, s) converge to G(t, s) uniformly in t and s as well.

We have

‖YN(t) − Y (t)‖Lp ≤ ∣∣JN(t)−1c − J (t)−1c
∣∣ + ∥∥∥∥∫ 1

0

(
GN(t, s) − G(t, s)

)
dBs

∥∥∥∥
Lp

.

The first term tends to zero uniformly in t . For the second, note that

sup
t

E
[(∫ 1

0

(
GN

i,j (t, s) − Gi,j (t, s)
)
dWs

)2]

= sup
t

∫ 1

0

(
GN

i,j (t, s) − Gi,j (t, s)
)2

ds

≤
∫ 1

0
sup

t

(
GN

i,j (t, s) − Gi,j (t, s)
)2

ds

≤ sup
t

sup
s

(
GN

i,j (t, s) − Gi,j (t, s)
)2

,
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which converges to zero. Since all random variables are Gaussian, the convergence
to zero of the second moments (uniformly in t) implies the convergence to zero of
all moments, also uniformly in t . We have proved the second statement of the
theorem.

We turn to the pointwise convergence: Since GN
i,j (t, s)−Gi,j (t, s) is a function

of bounded variation which tends to zero uniformly in t and s, the finite measures
GN

i,j (t, ds) − Gi,j (t, ds) tend weakly to zero, uniformly in t , and we have∣∣∣∣∫ 1

0

(
GN

i,j (t, s) dWs − Gi,j (t, s) dWs

)∣∣∣∣
=

∣∣∣∣∫ 1

0
Ws · (GN

i,j (t, ds) − Gi,j (t, ds)
)∣∣∣∣ → 0. �

3. A characterization of conditional independence and convergence of
conditional expectations. In this section we state two facts of a general nature
that will be our main probabilistic tools in Section 4. Lemma 3.4 is an abstract
result on the conditional independence of two random vectors when a function
of them (of a special structure) is given; it was proved in [2] (see also [9]).
Proposition 3.7, on the other hand, provides a sufficient condition for the
L2-convergence as N → ∞ of a sequence of conditional expectations of the form
E[F(UN

1 )|UN
2 ].

We will mention first three auxiliary lemmas on the conditional independence
of σ -fields, whose proofs are not difficult. Recall that we write F1 G F2 to mean
that the σ -fields F1 and F2 are conditionally independent given the σ -field G.

LEMMA 3.1. Let F1, F2, G, F ′
1 , F ′

2 be σ -fields such that F ′
1 ⊂ F1 ∨ G and

F ′
2 ⊂ F2 ∨ G. Then,

F1
G

F2 �⇒ F ′
1

G
F ′

2 .

LEMMA 3.2. Let F1, F2, F3 and G be σ -fields such that F1 ∨F2 G F3 and
F1 G F2. Then,

F1 ∨ F3
G

F2 and F2 ∨ F3
G

F1.

LEMMA 3.3. Let F1,F2 and G be σ -fields such that F1 G F2 and G ⊂ F1.
Then, for any σ -field H , with G ⊂ H ⊂ F1,

F1
H

F2.

Let (�,F ,P ) be a probability space and F1 and F2 two independent sub-
σ -fields of F . Consider two functions g1 : Rd × � → R

d and g2 : Rd × � → R
d
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such that gi is B(Rd) ⊗ Fi-measurable, i = 1,2. Set B(ε) := {x ∈ R
d, |x| < ε},

and denote by λ the Lebesgue measure on R
d . Let us introduce the following

hypotheses:

(H1) There exists ε0 > 0 such that for almost all ω ∈ �, and for any |ξ | < ε0,
|η| < ε0, the system

z1 − g1(z2,ω) = ξ,

z2 − g2(z1,ω) = η

has a unique solution (z1, z2) ∈ R
2d .

(H2) For every z1 ∈ R
d and z2 ∈ R

d , the random vectors g1(z2, ·) and g2(z1, ·)
possess absolutely continuous distributions and the function

δ(z1, z2) = sup
0<ε<ε0

1

λ(B(ε))2 P
{|z1 − g1(z2)| < ε; |z2 − g2(z1)| < ε

}
is locally integrable in R

2d , for some ε0 > 0.
(H3) For almost all ω ∈ �, the functions z2 �→ g1(z2,ω) and z1 �→ g2(z1,ω) are

continuously differentiable and

sup
|z2−g2(z1,ω)|<ε0,|z1−g1(z2,ω)|<ε0

|det[ I − ∇g1(z2,ω)∇g2(z1,ω)]|−1 ∈ L1(�)

for some ε0 > 0, where ∇gi denotes the Jacobian matrix of gi with respect
to the first argument.

Note that hypothesis (H1) implies the existence of two random vectors Z1 and Z2
determined by the system

Z1(ω) = g1
(
Z2(ω),ω

)
,

Z2(ω) = g2
(
Z1(ω),ω

)
.

LEMMA 3.4 ([2]). Suppose the functions g1 and g2 satisfy the above
hypotheses (H1)–(H3). Then the following statements are equivalent:

(i) F1 and F2 are conditionally independent given the random vectors Z1,Z2.
(ii) There exist two functions Fi : R2d ×� → R, i = 1,2, which are B(R2d)⊗

Fi-measurable, such that

|det[ I − ∇g1(Z2)∇g2(Z1)]| = F1(Z1,Z2,ω)F2(Z1,Z2,ω) a.s.

Goggin [10] gives a sufficient condition for the convergence in distribution of
a sequence of conditional expectations of the form E[F(UN

1 )|UN
2 ]. We reproduce

here a slightly simplified version. Combining this result with Lemma 3.6, due to
Knudsen [13], we can easily prove our Proposition 3.7.
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LEMMA 3.5 ([10]). Let UN
1 and UN

2 be two sequences of random vectors on
a probability space (�,F ,P), such that (UN

1 ,UN
2 ) → (U1,U2) as N → ∞ in

distribution. Assume that:

(i) There exist probabilities QN on (�,F ) such that P � QN on σ {UN
1 ,

UN
2 } and UN

1 and UN
2 are independent under QN . Denote �N(UN

1 ,UN
2 ) := dP

dQN .
(ii) There exists a probability Q on (�,F ) under which U1 and U2 are

independent.
(iii) The QN -distribution of (UN

1 ,UN
2 , �N(UN

1 ,UN
2 )) converges weakly to the

Q-distribution of (U1,U2, �(U1,U2)), where � is such that EQ[�(U1,U2)] = 1.

Then:

(i) P � Q on σ {U1,U2} and dP
dQ

= �(U1,U2).
(ii) For every bounded continuous function F ,

EP

[
F(UN

1 )|UN
2

] → EP [F(U1)|U2] in distribution.

LEMMA 3.6 ([13]). Let UN
1 and UN

2 be two sequences of random vectors on
a probability space (�,F ,P ). Assume that, as N → ∞:

(i) UN
2

P→U2.

(ii) UN
1

L2→U1, with U1 ∈ Lp , for some p > 2.
(iii) ‖E[U1|UN

2 ]‖L2 → ‖E[U1|U2]‖L2 .

Then

E
[
UN

1 |UN
2

] L2→ E[U1|U2]
as N → ∞.

Combining Lemmas 3.5 and 3.6, we get the following proposition.

PROPOSITION 3.7. Let UN
1 and UN

2 be two sequences of random vectors.
Assume that, as N → ∞:

(i) UN
1

P→U1 and UN
2

P→U2.
(ii) Hypotheses 1–3 of Lemma 3.5 hold true.

Then, for any bounded and continuous function F ,

E
[
F(UN

1 )|UN
2

] L2→E[F(U1)|U2].
PROOF. Applying Lemma 3.5, we have that, for every bounded and continu-

ous F ,

E
[
F(UN

1 )|UN
2

] → E[F(U1)|U2] in distribution.(3.1)
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From (3.1) and the fact that F(UN
1 ),F (U1) ∈ L∞, we obtain the convergence of

the L2 norms: ∥∥E
[
F(UN

1 )|UN
2

]∥∥
L2 → ‖E[F(U1)|U2]‖L2 .(3.2)

On the other hand, since F is bounded and UN
1

P→U1, we also have

F(UN
1 )

L2→ F(U1).(3.3)

Now, (3.2) and (3.3) imply that∥∥E
[
F(U1)|UN

2
]∥∥

L2 → ‖E[F(U1)|U2]‖L2

and we get the conclusion applying Lemma 3.6. �

4. Markovian properties of linear functional boundary value problems.
In the study of boundary value stochastic problems, one of the main interests
has been to seek conditions on the coefficients for the solution process to satisfy
some suitably defined Markov-type property. Intuition suggests that a relation
h(X(0),X(1)) = 0 will possibly prevent the Markov process property from
holding in general. One might think that nevertheless the Markov field property,
which is defined below, will be satisfied. It is easy to see that any Markov
process is a Markov field (see [12] for the continuous case and [3] for a simple
proof in the general case). The converse is not true. For instance, the processes
X(t) = W(t) − αW(1) are Markov fields; they are not Markov processes, except
for the cases α = 0 and α = 1.

DEFINITION 4.1. A process {X(t), t ∈ [0,1]} is said to be a Markov field if
for any 0 ≤ a < b ≤ 1, the σ -fields σ {X(t), t ∈ [a, b]} and σ {X(t), t ∈ ]a, b[c} are
conditionally independent given σ {X(a),X(b)}.

However, even this weaker property holds only in special cases. For instance,
in [2] it was shown that the solution to

Ẋ(t) = b(X(t)) + σ(X(t)) ◦ Ẇ (t), t ∈ [0,1],
(4.1)

X(0) = ψ(X(1)),

where the stochastic integral is understood in the Stratonovich sense, is a Markov
field if and only if b(x) = Aσ(x) + Bσ(x)

∫ x
c

1
σ(t)

dt , for some constants A,B, c.
As a corollary, in case σ is a constant (additive noise), X is a Markov field if and
only if b is an affine function.

Our aim is to study the linear-additive case when the additional condition takes
into account the value of the solution in some interior points of the time interval.
The following simple example illustrates that the situation changes.
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EXAMPLE 4.2. Consider the first-order system

Ẋ(t) = Ẇ (t), t ∈ [0,1],
X

(1
2

) + X(1) = 0.

The solution is the process

X(t) = −1
2

(
W

(1
2

) + W(1)
) + W(t),

which is not a Markov field. Indeed, for a = 0 and b = 2
3 , the random variables

X(1
2 ) and X(1) are not conditionally independent given σ {X(a),X(b)}. Never-

theless, X is a Markov field when restricted to [0, 1
2 ] or [1

2 ,1].

In order to formulate precisely the conditional independence property enjoyed
by the system (2.3) and (2.4), we introduce first some more concepts and notation.

Let �1, . . . ,�n be the real-valued components of a boundary operator � of the
form (2.4) and denote their support by supp�i := {tj ∈ [0,1] :αij �= 0}.

DEFINITION 4.3. We will say that �i preserves the pair (a, b) if either
supp�i ⊂ ]a, b[ or supp�i ⊂ [a, b]c. If this is true for all i (i.e., there are no
boundary conditions involving simultaneously points inside and outside [a, b]),
then we will also say that � preserves (a, b).

We want to prove that the solution Y to the system (2.3) and (2.4) satisfies the
following conditional independence property (Theorem 4.5): If � preserves (a, b),
then

σ {Y (t), t ∈ [a, b]}
σ {Y (a),Y (b)}σ

{
Y (t), t ∈ ]a, b[c}.

More generally, this conditional independence is also true when � does not pre-
serve (a, b), provided the conditioning σ -field is enlarged with the variables Yn(t),
for t in [a, b] and in the support of all nonpreserving boundary operators �i (The-
orem 4.10).

Since the boundary conditions can be written in many different equivalent
ways, and the sets supp�i (hence the property of preserving an interval) depend
on the representation chosen, we need, before proceeding further, some sort of
“canonical” definition of the linear operator �. Given supp� = {t1, . . . , tm}, � can
be regarded as a linear mapping R

m → R
n, that means, an n × m matrix acting on

the vector (Yn(t1), . . . , Yn(tm)) (see the notation in Section 2).
A basis B for an n×m matrix � is any n×n minor with full rank. For notational

simplicity, assume that B consists of the firsts n columns of �. Denoting by N

the nonbasic columns, we can write � = (B,N). Defining �̃ = (I,B−1N), the
system of equations �x = c can be written in the equivalent form �̃x = B−1c.
In this situation, we shall say that �̃ is a basic expression of � relative to
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the basis B . In the following lemma we prove that this representation can be
considered “canonical” for our purposes, since any pair (a, b) will or will not be
preserved by any basic equivalent form of �. In the sequel, we will always assume,
without explicit mention, that the boundary condition is written in this form.

LEMMA 4.4. Let �̃ and �̃′ be two basic expressions of �, and fix 0 ≤ a <

b ≤ 1. Then, �̃ preserves (a, b) if and only if �̃′ preserves (a, b).

PROOF. Without any loss of generality we can assume that �̃ = (I,N), where
I is the n × n identity matrix and

N =
α1,n+1 · · · α1,m

...
. . .

...

αn,n+1 · · · αn,m

 .

All basic expressions of the original matrix � can be obtained by repeated
Gaussian pivoting on entries of nonbasic columns; when pivoting on αik , the
column i leaves the basis (the identity matrix) and is replaced by column k.
Therefore, it is sufficient to prove the lemma for �̃ and a basic expression �̃′
obtained from �̃ by one pivoting operation.

Let us assume that α1,n+1 �= 0 and that the operator �̃i does not preserve the
pair (a, b). We are going to find an operator �̃′

j which neither preserves (a, b).
Rows 1 and i before and after pivoting on α1,n+1 are the following:

�̃1 = [
1 0 · · · 0 0 0 · · · 0 α1,n+1 α1,n+2 · · · α1,m

]
,

�̃i = [
0 0 · · · 0 1 0 · · · 0 αi,n+1 αi,n+2 · · · αi,m

]
,

�̃′
1 =

[ 1

α1,n+1
0 · · · 0 0 0 · · · 0 1

α1,n+2

α1,n+1
· · · α1,m

α1,n+1

]
,

�̃′
i = [−βi 0 · · · 0 1 0 · · · 0 0 γi,n+2 · · · γi,m

]
,

where βi = αi,n+1
α1,n+1

and γi,j = αi,j − α1,j βi .

If �̃1 does not preserve (a, b), then the result is trivially true, with j = 1, since
�̃1 and �̃′

1 have their nonzero coefficients in the same columns. By a similar
reason, if βi = 0 we can take j = i.

Assume finally that supp �̃1 ⊂ ]a, b[ (so that i �= 1), and that βi �= 0. If ti ∈
[a, b]c, the result is proved, since �̃′

i links t1 and ti , and t1 ∈ ]a, b[; take j = i. If
ti ∈ ]a, b[, then there exists k ∈ {n + 1, . . . ,m} such that tk ∈ [a, b]c with αik �= 0;
since α1k = 0 (because supp �̃1 ⊂ ]a, b[), we have γik = αik �= 0 and we can take
again j = i. �

Now we can formulate our main result:



2098 A. ALABERT AND M. FERRANTE

THEOREM 4.5. Suppose the system

DY(t) + A(t)Y (t) = Ḃ(t), t ∈ [0,1],
�[Y ] = c,

satisfies (H0), and let Y = {Y (t), t ∈ [0,1]} be its unique solution. Then,

σ {Y (t), t ∈ [a, b]}
σ {Y (a),Y (b)}σ

{
Y (t), t ∈ ]a, b[c}(4.2)

if and only if the pair (a, b) is preserved by �.

Our main tool for the proof of the “if” part in Theorem 4.5 will be Lemma 3.4.
The idea is the following: We will split the 2n-dimensional random vector
(Y (a), Y (b)) into two vectors Z1 and Z2 of suitable dimensions, in such a way that
Z1 be a function of Z2 and the increments of the Wiener process W in [a, b], and
in turn Z2 be a function of Z1 and the increments of W in ]a, b[c . These mappings
will play the role of g1 and g2 in the set of hypotheses (H1) to (H3). The first will
be defined through the solution to equation DY(t) + A(t)Y (t) = Ḃ(t), with the
components of Z2 fixed to a constant; the second will be defined similarly, fixing
the components of Z1 to a constant. However, this means that we need to solve our
differential equation with several sets of constraints, which are different from the
original set, and therefore we cannot ensure a priori that these problems are well
posed. Consequently, the above functions g1 and g2 need not exist in general.

To solve this technical difficulty, we will resort to a two-step procedure. First,
we will assume that all functional boundary value problems that we need to
solve are indeed well posed. Then, hypotheses (H1) to (H3) can be checked,
and Lemma 3.4 applies directly, yielding the desired result. This is the goal of
Proposition 4.7. Secondly, we will use the approximation result of Section 2.3
to show that the matrix A can be approximated by perturbed matrices AN for
which all boundary problems involved are well posed and whose solutions YN

converge to the solution Y of the original problem. Then, the convergence of
conditional expectations given in Proposition 3.7 will allow to carry the conditional
independence properties of YN to the limit. This second step is the contents of
Proposition 4.8. The “only if” part of the theorem is shown in Proposition 4.9.

Let us formulate precisely the assumption needed for the first step. Set

� = #{i : supp�i ⊂ [0, a[},
p = #{i : supp�i ⊂ ]b,1]},(4.3)

q = #{i : supp�i ⊂ ]a, b[}.
We can assume that the equalities �i[X] = ci are ordered in the following way:

supp�i ⊂ [0, a[, i = 1, . . . , �,

supp�i ⊂ ]a, b[, i = � + 1, . . . , � + q,(4.4)

supp�i ⊂ ]b,1], i = � + q + 1, . . . , � + q + p,
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and the remaining equations (those involving points both in [0, a[ and in ]b,1]),
carry the labels i = � + q + p + 1, . . . , n.

Consider now DY(t) + A(t)Y (t) = 0 with the following sets of lateral
conditions and the specified domain:

Yj (a) = 0, j = 1, . . . , n − �,

�i[Y ] = 0, i = 1, . . . , �,
on [0, a],(4.5)

Yj (b) = 0, j = 1, . . . , n − � − q,

Yj (a) = 0, j = n − � + 1, . . . , n,

�i[Y ] = 0, i = � + 1, . . . , � + q,

on [a, b],(4.6)

Yj (b) = 0, j = n − � − q + 1, . . . , n,

�i[Y ] = 0, i = � + q + 1, . . . , � + q + p,

�i[Y ] = 0, i = � + q + p + 1, . . . , n,

Yn(t) = 0 ∀ t ∈
n⋃

i=�+q+p+1

(supp�i ∩ [0, a]),

on [b,1](4.7)

(notice that the third and fourth lines result in n − � − q − p equations involving
only points in [b,1]).

DEFINITION 4.6. We will say that the pair (a, b) is regular if DY(t) +
A(t)Y (t) = 0 together with any of the sets of conditions (4.5), (4.6) or (4.7) has
only the trivial solution. Otherwise (a, b) will be called singular.

PROPOSITION 4.7. Suppose the system

DY(t) + A(t)Y (t) = Ḃ(t), t ∈ [0,1],
(4.8)

�[Y ] = c

satisfies (H0), and let Y = {Y (t), t ∈ [0,1]} be its unique solution. Let (a, b) be a
regular pair preserved by �. Then (4.2) holds true.

PROOF. Let us define the σ -fields:

F i
a,b = σ {Wt − Wa, t ∈ [a, b]},

F e
a,b = σ {Wt, t ∈ [0, a]} ∨ σ {W1 − Wt, t ∈ [b,1]}

for 0 ≤ a < b ≤ 1. Notice that F i
a,b and F e

a,b are independent.
We shall divide the proof into several steps. In Step 1 we reduce the proof to

that of the conditional independence of two independent σ -fields. In Step 2 it is
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shown that there exist the two functions g1 and g2 needed to apply Lemma 3.4.
The hypotheses of this lemma are checked in Steps 3, 4 and 5. In Step 6 we finally
conclude the result.

STEP 1. Denote Ga,b = σ {Y (a), Y (b)}. If

F i
a,b

Ga,b

F e
a,b,(4.9)

then (4.2) holds.

PROOF OF STEP 1. It is immediate to prove that σ {Y (t), t ∈ [a, b]} ⊂
Ga,b ∨ F i

a,b, and σ {Y (t), t ∈ ]a, b[c} ⊂ Ga,b ∨ F e
a,b. We apply then Lemma 3.1.

STEP 2. Let �, p and q be as in (4.3). We will denote by Ỹ the solution to
(4.8), to distinguish the actual solution from Y regarded as an unknown of the
system. Define

Z1 := (
Ỹ1(a), . . . , Ỹn−�(a), Ỹn−�−q+1(b), . . . , Ỹn(b)

) ∈ R
n+q,

Z2 := (
Ỹ1(b), . . . , Ỹn−�−q(b), Ỹn−�+1(a), . . . , Ỹn(a)

) ∈ R
n−q .

Then, there exist two functions

g1 : R
n−q × � → R

n+q,

g2 : R
n+q × � → R

n−q,

measurable with respect to B(Rn−q) ⊗ F i
a,b and B(Rn+q) ⊗ F e

a,b, respectively,
and such that

Z1 = g1(Z
2,ω) and Z2 = g2(Z

1,ω).(4.10)

PROOF OF STEP 2. Consider the lateral conditions

Yj(b) = Z2
j , j = 1, . . . , n − � − q,

Yj (a) = Z2
j−q, j = n − � + 1, . . . , n,

�i[Y ] = ci, i = � + 1, . . . , � + q,

(4.11)

on [a, b]. The process Ỹ trivially satisfies DY(t) + A(t)Y (t) = Ḃ(t) and these
conditions on [a, b]; however the solution to this problem is also unique.
Therefore, taking into account that �i[Ỹ ] = ci are constants, the vector Z1 is
determined by Z2 and the increments of the Wiener process in [a, b]. Moreover,
the function g1(z2,ω) so defined has a sense for every z2 ∈ R

n−q , because we have
that the solution to (2.3)—(4.11) is unique, and this fact does not depend on the
particular right-hand sides.
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We want to prove analogously the existence of the function g2. Consider first
DY(t) + A(t)Y (t) = Ḃ(t) on [0, a] with conditions

Yj (a) = Z1
j , j = 1, . . . , n − �,

�i[Y ] = ci, i = 1, . . . , �.
(4.12)

The restriction to [0, a] of the solution Ỹ to (4.8) solves also the differential
system with conditions (4.12), and is its unique solution. Consider now DY(t) +
A(t)Y (t) = Ḃ(t) on [b,1], with

Yj(b) = Z1
j+q, j = n − � − q + 1, . . . , n,

�i[Y ] = ci, i = � + q + 1, . . . , � + q + p,
(4.13)

and the n − � − q − p equations on [b,1] that result from

�i[Y ] = ci, i = � + q + p + 1, . . . , n,

Yn(t) = Ỹn(t) ∀ t ∈
n⋃

i=�+q+p+1

(supp�i ∩ [0, a]).(4.14)

Again, Ỹ restricted to [b,1] is its unique solution with conditions (4.13) and (4.14).
The values Ỹn(t) appearing here are found in (4.13) as a function of Z1

j+q ,
j = n − � − q + 1, . . . , n, and the Wiener process on [0, a]. Therefore, the whole
vector Z2 is determined by Z1 and the increments of W in ]a, b[c. As before, the
function g2(z1,ω) so defined has a sense for all z1 ∈ R

n+q .

STEP 3. The functions g1 and g2 found in Step 2 satisfy (H1).

PROOF OF STEP 3. The solution to a linear differential equation depends
linearly on the lateral data c [see (2.11)]. Therefore, for each ω fixed, system (4.10)
is linear and it is enough to check that it has a unique solution for ξ = η = 0.

Now, gathering together the lateral conditions (4.12)–(4.14), we obtain the
original lateral conditions, so that system (4.10) is equivalent to (4.8) and therefore
the solution exists and is unique.

STEP 4. g1 and g2 satisfy (H2).

PROOF OF STEP 4. The boundary value problem that defines g1 consists
of equation DY(t) + A(t)Y (t) = Ḃ(t), together with the conditions (4.11). The
resulting vector (

Y1(a), . . . , Yn−�(a), Yn−�−q+1(b), Yn(b)
)

is absolutely continuous on R
n+q , by Proposition 2.1. The proof for g2 is

analogous, using Remark 2.2.
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Finally, the random vectors z1 − g1(z2,ω) and z2 − g2(z1,ω) are independent
and have the form z1 − M1z2 + U1(ω) and z2 − M2z1 + U2(ω), respectively, for
some constant matrices M1 and M2 and some Gaussian absolutely continuous
vectors U1 and U2. We deduce that the R

2n-valued random vector (z1 −
g1(z2,ω), z2 − g2(z1,ω)) has a density which is uniformly bounded in z1 and z2.
It follows at once that the function δ in (H2) is bounded.

STEP 5. g1 and g2 satisfy (H3). Specifically, det[ I − ∇g1(z2,ω)∇g2(z1,ω)]
is a constant different from zero.

PROOF OF STEP 5. g1 and g2 are affine functions of the first argument, with
a nonrandom linear coefficient [see (2.11)]. Therefore, ∇g1(z2,ω) and ∇g2(z1,ω)

are constant matrices of dimensions (n + q) × (n − q) and (n − q) × (n + q)

respectively, which we denote simply ∇g1 and ∇g2. We know that the linear
system

z1 = g1(z2,ω),

z2 = g2(z1,ω),

admits a unique solution. This is equivalent to say

det[ I − ∇g1∇g2] = det
(

I −∇g1
−∇g2 I

)
�= 0.

STEP 6. Relation (4.2) holds true.

PROOF OF STEP 6. We can apply Lemma 3.4 and the factorization in (ii)
trivially holds. We deduce the relation (4.9) and, by Step 1, that the process Y

satisfies the desired property, for (a, b) regular. �

Let us now extend Proposition 4.7 to singular pairs (a, b), using an approxima-
tion argument. We denote by Eq(A,�) our functional boundary value problem rel-
ative to the matrix function A and the boundary operator �. The boundary data c

will be fixed throughout. Let us call �1, �2, �3 the operators associated to the
lateral conditions given by (4.5)–(4.7), respectively.

PROPOSITION 4.8. Proposition 4.7 holds also for singular pairs (a, b).

PROOF. Our initial hypothesis (H0) states that the original problem has one
and only one solution, that is, A(t) ∈ V�, where V� stands for the set V defined in
Section 2.3, relative to the boundary operator �.

Fix 0 ≤ a ≤ b. If the pair (a, b) is singular, then at least one of the problems
Eq(A,�1), Eq(A,�2), or Eq(A,�3) is not well posed. We know from Lemma 2.3
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that V� is open and dense in the space C of matrices of the form (2.5), for any �.
Therefore the set V := V� ∩ V�1 ∩ V�2 ∩ V�3 is also open and dense in C.

Let {AN(t), N ∈ N} be a sequence of elements of V converging to A(t) ∈ C.
From Proposition 2.4, the corresponding solutions YN(t) converge to Y (t) in Lp .

Fix s ∈ [a, b]c and r1, . . . , rk ∈ (a, b). Consider the space M defined in (2.15),
based on the coordinates {s, r1, . . . , rk} ∪ supp�. Let M ′ be the projection of M

onto the coordinates r1, . . . , rk. Assume that YN(s) are nondegenerate [if they are,
Y (s) will also be a constant, and there is nothing to prove]. Using Proposition 2.1,
the vector UN := (YN(s), YN(r1), . . . , Y

N(rk)) is a Gaussian vector with some
density f N with respect to the Hausdorff measure on R × M ′. Then there clearly
exists an equivalent Gaussian probability with density f0 on R × M ′ whose first
coordinate is not correlated with the remaining ones. Define the probability QN

on � by dP = �N dQN , with �N = f N

f0
(UN). Then hypothesis 1 of Lemma 3.5

is clearly satisfied with UN
1 = YN(s), UN

2 = (YN(r1), . . . , Y
N(rk)). Analogously,

one can define a probability Q by dP = �dQ, where � = f
f0

(U) and f is the
density of U := (Y (s), Y (r1), . . . , Y (rk)), satisfying hypothesis 2 of Lemma 3.5
with U1 = Y (s) and U2 = (Y (r1), . . . , Y (rk)).

We prove now that Hypothesis 3 also holds true: we want to see that if h is a
bounded and continuous function, then

lim
N→∞ EQN

[
h
(
UN,�N(UN)

)] = EQ

[
h
(
U,�(U)

)]
.(4.15)

Notice that

EQN

[
h
(
UN,�N(UN)

)] =
∫
M

h
(
u, �N(u)

)
f0(u)H(du),

where H denotes the Hausdorff measure, and analogously

EQ

[
h
(
U,�(U)

)] =
∫
M

h
(
u, �(u)

)
f0(u)H(du).

Convergence (4.15) is then easily derived through the dominated convergence
theorem. We can therefore apply Proposition 3.7 to obtain that

L2 − lim
N

E
[
F

(
YN(s)

)∣∣YN(a),YN(r1), . . . , Y
N(rn), Y

N(b)
]

= E
[
F(Y (s))|Y (a), Y (r1), . . . , Y (rn), Y (b)

]
.

Analogously, one obtains the limit

L2 − lim
N

E
[
F

(
YN(s)

)∣∣YN(a),YN(b)
] = E

[
F(Y (s))|Y (a), Y (b)

]
.

We conclude that the conditional independence property can be carried to the limit
and this completes the proof of the present proposition and consequently of the
necessity in Theorem 4.5. �

The “only if” part of Theorem 4.5 is far easier to prove:
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PROPOSITION 4.9. If � does not preserve (a, b), then relation (4.2) is false.

PROOF. Let us assume, to keep notation simple, that there is only one
boundary operator �1, which corresponds to a first-order equation (the general
case can be stated similarly). Assume that �1 does not preserve (a, b) and
that (4.2) holds true. The corresponding boundary condition can thus be written
as ∑

tj ∈[a,b]c
αjY (tj ) + ∑

tj ∈]a,b[
αjY (tj ) = c,(4.16)

where none of the summations is void.
Notice first that ( ∑

tj ∈]a,b[
αjY (tj ), Y (a), Y (b)

)
(4.17)

is an absolutely continuous random vector in R
3. This follows easily from

Proposition 2.1.
Now, for any bounded and measurable function � : R → R, we have, by the

conditional independence hypothesis and relation (4.16), that

E

[
�

( ∑
tj ∈]a,b[

αjY (tj )

)∣∣∣Y (a), Y (b)

]

= E

[
�

( ∑
tj ∈]a,b[

αjY (tj )

)∣∣∣{Y (t), t ∈]a, b[c}] = �

( ∑
tj ∈]a,b[

αjY (tj )

)
.

Taking � = 1[−M,M] for some M > 0, we get that, on {|∑tj ∈ ]a,b[ αjY (tj )| ≤ M},
which is a set of positive probability,

∑
tj ∈ ]a,b[ αjY (tj ) is a measurable function of

(Y (a), Y (b)). In particular, this contradicts the absolute continuity of (4.17). �

The next theorem generalizes Theorem 4.5 by allowing the existence of non-
preserving boundary operators, at the price of enlarging the conditioning σ -field.
The result can hardly be called a Markovian type property; nevertheless, it seems
interesting in itself, and gives rise to the conjecture contained in Remark 4.12
below.

THEOREM 4.10. Suppose the system

DY(t) + A(t)Y (t) = Ḃ(t), t ∈ [0,1],
�[Y ] = c

satisfies (H0), and let Y = {Y (t), t ∈ [0,1]} be its unique solution. Fix 0 ≤
a < b ≤ 1 such that a, b /∈ supp�, and let G be the σ -field generated by Y (a), Y (b)
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and all variables Yn(t), with t in supp�i ∩]a, b[ for some �i not preserving (a, b).
Then,

σ {Y (t), t ∈ [a, b]}
G

σ
{
Y (t), t ∈ ]a, b[c}.(4.18)

The same holds true replacing ]a, b[ by [a, b]c in the definition of G.

PROOF. The result can be proved as Theorem 4.5 with some modifications.
We will only give a sketch of the necessary changes in the simple case where
there is only one nonpreserving boundary condition, which links one only point t∗
inside [a, b] with one or more points in [0, a]. Specifically, fix a, b and assume
that �, p and q are as in (4.3) and (4.4), the boundary conditions with support in
[0, a] ∪ [b,1] carry the labels i = � + q + p + 1, . . . , n − 1, and that �n is the
nonpreserving condition.

In Step 2, define

Z1 := (
Ỹ1(a), . . . , Ỹn−�−1(a), Ỹn−�−q(b), . . . , Ỹn(b), Ỹn(t

∗)
) ∈ R

n+q+1,

Z2 := (
Ỹ1(b), . . . , Ỹn−�−q−1(b), Ỹn−�(a), . . . , Ỹn(a)

) ∈ R
n−q .

Consider the lateral conditions

Yj (b) = Z2
j , j = 1, . . . , n − � − q − 1,

Yj (a) = Z2
j−q, j = n − �, . . . , n,

�i[Y ] = ci, i = � + 1, . . . , � + q,

on [a, b]. This system, as before, defines the function g1. To define function g2,
we consider first DY(t) + A(t)Y (t) = Ḃ(t) on [0, a] with conditions

Yj (a) = Z1
j , j = 1, . . . , n − � − 1,

�i[Y ] = ci, i = 1, . . . , �,

�n[Y ] = cn,

Yn(t
∗) = Ỹn(t

∗),

and secondly, the system on [b,1], with

Yj(b) = Z1
j+q, j = n − � − q, . . . , n,

�i[Y ] = ci, i = � + q + 1, . . . , � + q + p,

and the n − 1 − � − q − p equations on [b,1] that result from

�i[Y ] = ci, i = � + q + p + 1, . . . , n − 1,

Yn(t) = Ỹn(t) ∀ t ∈
n−1⋃

i=�+q+p+1

(supp�i ∩ [0, a]).
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The claims of Step 4 are also easy to verify using Proposition 2.1, taking into
account that we assume � is in basic form, which implies that Ỹn(t

∗) cannot be a
constant. �

Another application of the ideas in the proof of Theorem 4.5 provides the
following “Markov process” property.

THEOREM 4.11. Fix 0 ≤ a ≤ 1 such that a /∈ supp�; the process Y (t)

satisfies

σ {Y (t), t ∈ [0, a]}
σ {Y (a)}σ {Y (t), t ∈ [a,1]}

if and only if for all i, either supp�i ⊂ [0, a[, or supp�i ⊂]a,1].
PROOF. One can use the same machinery as in the proof of Theorem 4.5. The

“only if” part can be proved within the same lines as Proposition 4.9, whereas
for the other implication, if supp�i ⊂ [0, a[, i = 1, . . . , �, and supp�i ⊂]a,1],
i = � + 1, . . . , n, then one can take

Z1 := (
Ỹ1(a), . . . , Ỹn−�(a)

) ∈ R
n−�,

Z2 := (
Ỹn−�+1(a), . . . , Ỹn(a)

) ∈ R
�,

and define g1 as a function of Z2 and the increments of the Wiener process in
[0, a], and g2 as a function of Z1 and the increments of the Wiener process
in [a,1]. �

REMARK 4.12. Property (4.18) implies, using Lemma 3.3, that

σ {Y (t), t ∈ [a, b]}
H

σ
{
Y (t), t ∈]a, b[c},

where H = σ {Y (a), Y (b);Y (t), t ∈ supp� ∩ [a, b]}. We conjecture that this
property holds true for a linear functional boundary operator � supported on
any subset of [0,1], and that it is false in general if H is replaced by a smaller
σ -field. We will show a simple example illustrating the conjecture. Unfortunately,
the technique we have employed here does not allow us to prove it.

Consider the process X(t) := − ∫ 1
0 W(u)du + W(t), solution of the first-order

problem

Ẋ(t) = Ẇ (t), t ∈ [0,1],∫ 1

0
X(u)du = 0,

in which the support of the boundary operator is the whole interval [0,1]. Fix
a ∈]0,1[, and set

G := σ {X(u),u ∈ [0, a]; X(1)} and H := σ {X(u),u ∈ [a,1]}.
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We have trivially G H H , but the conditioning H cannot be replaced by the
smaller σ -field H ′ := σ {X(u),u ∈ [a,1] − [s, t]}. Indeed, it is easy to see that

T := E
[∫ a

0
X(u)du

∣∣∣H]
= −

∫ 1

a
X(u) du,

and one can check that T is not H ′-measurable: choose ω1,ω2 ∈ C0([0,1];R)

such that ω1 ≡ ω2 on ]s, t[c and ω1 < ω2 on ]s, t[. An easy computation gives

T (ω2) − T (ω1) = a

∫ t

s
(ω2 − ω1)(u) du > 0.

Now, due to the continuity of T as a functional on C0([0,1];R), it is possible
to find two open balls, centered at ω1 and ω2, such that their images through T

take values in two disjoint intervals of R. We conclude that G and H are not
conditionally independent given H ′.
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