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RIGOROUS RESULTS FOR THE NK MODEL

BY RICHARD DURRETT1 AND VLADA LIMIC2

Cornell University

Motivated by the problem of the evolution of DNA sequences, Kauffman
and Levin introduced a model in which fitnesses were assigned to strings of
0’s and 1’s of length N based on the values observed in a sliding window
of length K + 1. When K ≥ 1, the landscape is quite complicated with
many local maxima. Its properties have been extensively investigated by
simulation but until our work and the independent investigations of Evans
and Steinsaltz little was known rigorously about its properties except in the
case K = N − 1. Here, we prove results about the number of local maxima,
their heights and the height of the global maximum. Our main tool is the
theory of (substochastic) Harris chains.

1. Introduction. In Kauffman and Levin’s (1987) NK model, N refers to
the number of parts of the system—genes in a genome, amino acids in a protein,
nucleotides in a DNA sequence—and each part makes a contribution to the overall
fitness that depends on that part and on K other parts among the N . To have the
simplest possible setting, we will suppose that each part has two possible states
and represent the state of the system by η ∈ {0,1}{0,1,...,N−1}. The fitness of η is

�(η) =
N−1∑
i=0

φi(ηi, . . . , ηi+K),(1.1)

where the arithmetic in the subscripts is done modulo N and the φi(ηi, . . . , ηi+K)

are i.i.d. with a distribution function F(x) = ∫ x
−∞ f (y) dy. To simplify the proofs

and to have only one set of hypotheses, we will suppose throughout the paper that
the density function f is continuous on the interior of its support and that∫

eθxf (x) dx < ∞ for θ ∈ (−δ, δ) for some δ > 0.(F)

The main motivation for assuming the existence of a density is to make use of
thetheory of Harris chains. Weaker assumptions would suffice for many results, but
our stronger assumptions cover all the examples that have been studied previously.

Kauffman and Levin (1987), and much of the work that followed, focused on
the special case in which F is uniformly distributed on (0,1). This is the most
important special case. However, we will consider the model with general F , since
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it is interesting as well. Weinberger (1991) performed a physicist’s analysis of
the case in which F has the standard normal distribution. Evans and Steinsaltz
(2001) calculated various quantities of interest for the NK model, where F is the
(positive) exponential distribution F(x) = 1 − e−x , x ≥ 0, or the Gamma(2,1)

distribution with density f (x) = xe−x . In this paper, we prove analogous detailed
results when F is the negative exponential distribution F(x) = ex for x ≤ 0.

As Kauffman and Levin (1987) observed, the case K = 0 is trivial. The parts do
not interact, so there is only one maximum (η∗

0, . . . , η∗
N−1), which is obtained by

choosing η∗
i to maximize ηi �→ φi(ηi) for each i. The other extreme K = N − 1

is also simple. Each φi is a function of all N coordinates, so the fitness of each η

is a sum of N independent uniforms and the values of �(η) are independent for
different η. The probability that a vertex is a local maximum is just the probability
it is larger that its N neighbors, 1/(N + 1), and thus the expected number of local
maxima is EMN = 2N/(N + 1). Other aspects of the fully interconnected case
K = N − 1 lead to some interesting questions. Kauffman and Levin (1987) argued
heuristically that if one starts at a randomly chosen point and moves to a fitter
neighbor chosen at random, then the adaptive walk takes an average of log2 N

steps to reach a local maximum. Weinberger (1988), Macken and Perelson (1989),
Macken, Hagan and Perelson (1991) and Flyvberg and Lautrup (1992) carried out
more detailed analysis of such walks. See Chapter 2 of Kauffman (1993) for other
quantities related to the N = K − 1 landscape that have been analyzed.

We now describe the contents of this paper in some detail. The precise
statements and proofs of all theorems stated in this section can be found in
Sections 2–7. Let GN = {(0,0, . . . ,0) is a local maximum for �} and note that
EMN = 2NP (GN). Our first result implies that, for a fixed K , the quantity
(log EMN)/N converges to a limit.

THEOREM 2.1. For each fixed K ≥ 1, there is a constant λK so that

lim
N→∞

1

N
log P (GN) = log λK.

Note that, for all K and F , we have λK ≥ 1/2 since EMN ≥ 1, and also λK < 1,
due to the sentence following Theorem 5.1.

REMARK. In (1.10), we will show that P (GN) ∼ CλN
K . Evans and Steinsaltz

(2002), see their Theorem 7, have shown this result for distributions that are
bounded below.

Theorem 2.1 is a simple consequence of subadditivity. For 1 ≤ i ≤ N , let 0i be
the vector that has a 1 at coordinate i and 0 at all other coordinates, and let Ei

be the event that changing the bit at i from 0 to 1 does not increase the value:

Ei = {
φi−K(0) + · · · + φi(0) > φi−K(0i) + · · · + φi(0i)

}
.(1.2)
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Here, and in what follows, it is convenient to regard φj as a function of the entire
sequence by setting φj (η) = φj (ηj , . . . , ηj+K). Let G′

N−1 = ⋂N−1
i=K Ei be the part

of GN that involves tests that do not “wrap around.” Clearly, P (GN) ≤ P (G′
N−1).

It is not hard to show that P (G′
N−1) ≤ P (G′

M−1)P (G′
N−M−1) and hence

1

N
log P (G′

N−1) → inf
M

1

M
logP (G′

M−1).

The proof of Theorem 2.1 can then be completed (see Section 2 for details) by
showing P (GN) ≥ εKP (G′

N−1).
As is usually the case in applications of subadditivity, the proof of Theorem 2.1

gives no insight into the value of the constant, except for the crude upper bounds
that come from the definition of the limiting constant. In Section 3, we study
the case of the negative exponential distribution F(x) = ex , x ≤ 0, in detail. In
particular, we compute λ1 exactly. If we change variables yi = −xi , a formula of
Weinberger (1991) implies that (if K = 1)

P (GN) =
∫ ∞

0
dy0 · · ·

∫ ∞
0

dyN−1 exp

(
−

N−1∑
i=0

3yi

)
N−1∏
i=0

(1 + yi + yi−1).(1.3)

After integrating out y0 to break the ring, one can write recursive equations for
related multiple integrals to conclude that

1

N
log P (GN) → log

(
5 + √

29

18

)
,

so λ1 ≈ 0.5769536. Replacing 3 by 3 + θ in (1.2) gives a formula for the Laplace
transform of the sum of the coordinates on GN :

ẐN(θ) = E

(
exp

(
−θ

N−1∑
i=0

yi

)
;GN

)

=
∫ ∞

0
dy0 · · ·

∫ ∞
0

dyN−1 exp

(
−

N−1∑
i=0

(3 + θ)yi

)
N−1∏
i=0

(1 + yi + yi−1).

We use the notation ẐN (θ) to indicate that this is the analogue of the partition
function from statistical mechanics. Using the recursions to compute the Laplace
transform and then differentiating, we find that

lim
N→∞E

(
1

N

N∑
i=1

xi

∣∣∣GN

)
= − 126

√
29 + 774

270
√

29 + 1566
= −0.480971328.

This gives the expected height of a local maximum at 0 conditioned on GN .
Differentiating again, we can find the asymptotic distribution of the second

moment and use the formula for the Laplace transform to obtain the following
result.
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THEOREM 3.1. If F is the negative exponential distribution and K = 1,
then the distribution of (φ(0) − µHN)/

√
N conditional on GN converges to a

normal with mean 0 and variance σ 2
H . Here, µH is the mean given above and

σ 2
H ≈ 0.901465824 is a constant that has an exact formula similar to the one

for µK .

An earlier version of this paper asserted that the limit law in Theorem 3.1
applied to the height of a randomly chosen local maxima since that quantity had
the same distribution as φ(0) conditional on GN . Unfortunately, this is a statement
that is “obviously true” but turns out to be false. Fix N,K and recall that MN

denotes the number of local maxima in the landscape. Let IN be the coordinates
of a randomly chosen local maximum. Using the symmetry of the landscape, we
have P (IN = (0,0, . . . ,0)|MN = m) = 2−N and P (IN = (0,0, . . . ,0)) = 2−N , so

P
(
MN = m|IN = (0,0, . . . ,0)

)
= P (IN = (0,0, . . . ,0)|MN = m)P (MN = m)

P (IN = (0,0, . . . ,0))

= 2−NP (MN = m)

2−N
= P (MN = m).

In words, if we pick a local maximum at random and its coordinates turn out
to be all 0’s, then the distribution of MN is not changed. In contrast, since
P (GN |MN = m) = m/2N , we have

P (MN = m|GN) = P (GN |MN = m)P (MN = m)

P (GN)

= P (MN = m)m/2N

P (GN)
,

so conditioning the landscape on GN causes it to have more local maxima. The
shift caused by the weight factor m/2N is far from innocent. Theorem 7.1 will
show that (log MN − µMN)/

√
N has a limiting normal distribution. The last

computation is not definitive, but once one doubts the obvious result is true, it
is easy to see it fails even in the simplest possible example. Suppose N = 2 and
K = 1. Since K = N −1, the four heights �(i, j) are independent. The probability
density

P
(
�(0,0) = h,G2

) = P
(
�(0,0) = h > max{�(1,0),�(0,1)})= f (h)F (h)2.

On the other hand,

P
(
�(0,0) = h, I2 = (0,0)

)
= 1

2P
(
�(0,0) = h,min{h,�(1,1)} > max{�(1,0),�(0,1)})

+ P
(
�(0,0) = h > max{�(1,0),�(0,1)} > �(1,1)

)
.



THE NK MODEL 1717

Break things down according to the value of �(1,1) = x to get

= 1
2f (h)F (h)2(1 − F(h)

)+ 1
2f (h)

∫ h

−∞
dx f (x)F (x)2

+ f (h)

∫ h

−∞
dx f (x)

(
F(h)2 − F(x)2).

The ratio of the two densities just computed is not constant, so

P
(
�(0,0) = h|G2

) �= P
(
�(0,0) = h|I2 = (0,0)

)
.

Our next result considers the height of the global maximum, H ∗
N .

THEOREM 3.2. Suppose F has a negative exponential distribution. Let b =
−0.231961. If a > b, then supK<N P (H ∗

N > aN) → 0 as N → ∞.

This is proved by using standard large-deviations estimates for sums of random
variables. It is sharp in the case KN = N − 1 since, then, the values at the 2N

points are independent. It is certainly not sharp when K = 0 and is presumably an
overestimate for other fixed values of K .

Evans and Steinsaltz (2001) have studied λK , HN and H ∗
N for the positive

exponential distribution F(x) = 1 − e−x , x ≥ 0. Their results show that, when
K = 1, λ1 = 0.562682, HN/N → 1.61651 and H ∗

N/N → 1.78509. The first two
results could also be derived using the methods of Section 3. Theorem 3.3 gives an
upper bound of 2.678347 on the limit of H ∗

N/N , so we suspect that our bound for
the negative exponential from Theorem 3.2 is not very good, either, when K = 1.
Theorems 6.2 and 7.2 improve the results of Evans and Steinsaltz by giving central
limit theorems for HN and H ∗

N for the positive exponential.
We are not able to get exact results for λ1 in the uniform case, but we are able to

get reasonably good bounds. To explain this, we will introduce a connection with
Markov chains that is valid for a general F , N and K < N and will be the key
to many of our theoretical results. Recall that Ei is the event that changing the bit
at i from 0 to 1 does not increase the overall fitness. Let Xj = φj(0) and let Fk be
the σ -field generated by φj(0) and φj(0i ) with i, j ≤ k. The definitions (1.1) and
(1.2) imply that Ej ∈ Fk if K ≤ j ≤ k, and if k ≥ K − 1, then, on G′

k =⋂k
i=K Ei ,

P (Ek+1,Xk+1 = y|Fk) = FK+1(Xk−K+1 + · · · + Xk + y)f (y),(1.4)

where FK is the distribution of the sum of K independent random variables with
distribution F . The last equation shows that Xj is a K-step Markov process; that
is, (Xj−K+1, . . . ,Xj ), j ≥ K − 1, is a Markov chain.

When K = 1 and F is uniform, (1.4) states

p(x, y) = P (Ek+1,Xk+1 = y|Xk = x,Fk) = F2(x + y), x, y ∈ [0,1].
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Since p is a symmetric and square-integrable function, a theorem on page 243 of
Riesz and Nagy (1990) implies that we can write

p(x, y) =
∞∑
i=1

βihi(x)hi(y),(1.5)

where βi is a decreasing sequence of eigenvalues and the hi(x) are the
corresponding eigenfunctions which form an orthonormal sequence. In Section 4,
we establish that λ1 = β1 and obtain bounds on λ1.

To get a lower bound on λ1, we can use the variational characterization of the
largest eigenvalue

β1 = max

∫∫
g(x)p(x, y)g(y) dx dy∫

g(x)2 dx
.

A little calculus shows that if we choose g(x) = 1+ax and then optimize the value
of a, we have

λ1 ≥ 0.571455.(1.6)

To get a bound in the other direction, let

qN(x) = P (G′
N−1|X0 = x).

As one might expect [see inequality (2.10)], qN(x) is the largest for x = 1. Another
application of subadditivity implies

(1/N) logqN(1) → inf
M≥1

(1/M) logqM(1) = log λ1.

Using Mathematica to compute q5(1) = 0.0839578 then gives

λ1 ≤ q5(1)1/5 = 0.60273.(1.7)

As the referee pointed out, one might be able to estimate λ1 by approximating
the continuous eigenvalue problem by a numerical eigenvalue problem for a large
matrix. We leave this project to an interested reader.

In Section 5, we study the behavior of λK for large K . Recall that throughout
the paper we are assuming F is a distribution satisfying (F).

THEOREM 5.1. For large K ,

λK ≥ 1 − 9 log(K + 1)

K + 1
.

For a corresponding upper bound, one can note that

P (GN) ≤ P

([N/(K+1)]⋂
i=1

Ei(K+1)

)
= (1/2)[N/(K+1)]

since the events are independent, so λK ≤ (1/2)1/K+1 ≈ 1 − (ln 2)/(K + 1). We
believe that the bound in Theorem 5.1 is sharp, that is, we have the following.
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CONJECTURE. There is a c > 0 so that λK ≤ 1 − c log(K + 1)/(K + 1).

In support of this conjecture, note that if the actual number of local maxima
(not just its expected value) is of order 2N(1 − c log(K + 1)/K + 1)N , then
a large-deviations calculation would show that if the mean of φi is 0 and the
variance is 1, then the average height of the local maxima would be less than
or equal to C

√
log(K + 1)/(K + 1), in agreement with the heuristic calculations

of Weinberger (1991); see his page 6401. To see why C
√

log(K + 1)/(K + 1)

is a reasonable guess for the limit of EHN/N , suppose that we divide the
coordinates into blocks of size K + 1 and the fitness contribution of each site
in each block depends on the K + 1 coordinates in the block. In this case, the
fitness contribution of each block will have approximately a normal distribution
with mean 0 and variance K + 1. Each block behaves like the fully interconnected
case so, as discussed above, a local maximum will look like the maximum of
K + 1 independent normals with mean 0 and variance K + 1, which will have
mean approximately equal to

√
2(K + 1) log(K + 1). [See, e.g., Exercise 2.3 on

page 85 of Durrett (1995).]
In Sections 6 and 7, we study the general model where K ≥ 1 and F satisfy-

ing (F) are fixed. We consider the vector Markov chain with transition probability

q
(
(x0, . . . , xK−1), (x1, . . . , xK)

) = FK+1(x0 + · · · + xK)f (xK)

and is 0 for other choices of the second argument. In Section 6, we show that this
chain is R-recurrent in the sense of Tweedie (1974). Let

Q(y,A) =
∫
A

q(y, z) dz.

Results in Section 3 of Tweedie (1974) now imply the existence of a constant R,
a measure µ and a function h unique up to constant multiples so that∫

µ(dy)RQ(y,A) = µ(A) and
∫

RQ(y,dz)h(z) = h(y).(1.8)

Theorem 6 on page 860 of Tweedie (1974) then implies that

RnQn(x,A) → µ(A)h(x)∫
µ(dy)h(y)

.(1.9)

From this, we can conclude easily that

P (GN) ∼ C/RN,(1.10)

sharpening the conclusion of Theorem 2.1.
To investigate the properties of coordinates of local maxima, it is useful to let

π(y) = cj (y), where dµ(y) = j (y) dy and where the constant c is chosen so that∫
dy π(y)h(y) = 1. Introduce the transformed chain

q̄(x, y) = R

h(x)
q(x, y)h(y).(1.11)
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Since h(y) is a right eigenvector, the kernel q̄ satisfies has
∫

q̄(x, y) dy = 1. Since
π(x) is a left eigenvector, π̄(x) = π(x)h(x) is a stationary distribution∫

dx π(x)h(x)q̄(x, y) = π(y)h(y).

Let PN be the distribution of (x0, . . . , xN−1) conditioned on GN and let QN

be the distribution of (x0, . . . , xN−1) under the Markov chain with transition
probability q̄ and initial distribution π̄ . Results from the theory of Markov
chains give limit theorems under QN . Considering the Radon–Nikodym derivative
dPN/dQN then allows us to transfer the well-known results from QN to PN .

THEOREM 6.1. Let µH = ∫
dy π(y)h(y) y. If ε > 0, then

P
(|φ(0)/N − µH | > ε|GN

) → 0.

THEOREM 6.2. There is a constant σ 2
H so that the distribution of (φ(0) −

µHN)/
√

N conditional on GN converges to a normal with mean 0 and
variance σ 2

H .

As in the case of Theorem 3.1, this shows that most of the local maxima have
about the same height. Figure 1 shows the result of 1000 simulations of a system
with N = 96 and K = 1. The distribution has a roughly normal shape but is
somewhat asymmetric. The reader who complains that 96 is not very large should
note that there are 296 > 1028 points in the space.

In Section 7, we prove results about the number of local maxima and the
height of the global maximum. The key to this is the observation that there are
“cut points” where all local maxima must have specified bits and this breaks the
overall maximization problem into a large number of independent maximization
subproblems. To explain this notion, consider the special case K = 1. If

φi−1(u,1) + φi(1, v) > φi−1(u,0) + φi(0, v)

for the four choices of u, v ∈ {0,1}, then the ith coordinate of any local maximum
must be 1, and we call i a cut point. If j > i is another cut point, then the
optimization inside the segment (i, j) can be done independently of the other
variables.

Combining the idea of cut points with results about Harris chains, it is easy to
show the following result.

THEOREM 7.1. Let MN be the number of local maxima. There are constants
µM and σ 2

M such that (logMN −µMN)/
√

N converges in distribution to a normal
with mean 0 and variance σ 2

M .
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FIG. 1. Number of maxima ( powers of 2).

THEOREM 7.2. Let H ∗
N be the height of the global maximum. There are

constants µH ∗ and σ 2
H ∗ such that (H ∗

N − µH ∗N)/
√

N converges in distribution
to a normal with mean 0 and variance σ 2

H ∗ .

Figures 2 and 3 show the results of 1000 simulations of the quantities studied in
Theorems 7.1 and 7.2 for N = 96 and K = 1. Note the wide range for the number
of maxima from 27 = 128 to over 225, which is approximately 32 million. The
shape of both distributions is decidedly abnormal.

Up to this point, we have been concerned with the height of �(0,0, . . . ,0) given
(0,0, . . . ,0) is a local maximum. Theorem 7.3 shows that the ensemble of values
in one realization is approximately normal for large N . That is, if νN is the measure

FIG. 2. Randomly chosen local maximum.
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FIG. 3. Global maximum.

that assigns mass 1/MN to the height of each local maximum and N is large, then
νN has approximately a normal distribution. Figure 4 gives the heights of local
maxima in one simulation of the system with N = 96 and K = 1. The distribution
has almost exactly the shape of the normal distribution. Since the mode of the
center of the distribution is O(N) while the standard deviation is O(

√
N ), this

leads to the interesting qualitative conclusion that most of the local maxima have
about the same height.

The results in Section 7 also give some insight into what Kauffman calls the
Massif Central phenomenon: local optima with high values are close to the global

FIG. 4. Height.
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FIG. 5.

maximum in the usual metric on the hypercube defined by

d(η1, η2) =
N−1∑
i=0

|η1
i − η2

i |

for η1, η2 ∈ {0,1}{0,1,...,N−1}. This is illustrated in the simulation of N = 256 and
K = 1 in Figure 5. Here, the 69,578,335,677,472 local maxima are classified
according to their height and distance from the global maximum. Each band
represents an increase in density by a factor of 16. Two randomly chosen points
have a distance that is binomial with mean 128 and standard deviation 8. However,
in the simulation no local maximum is at distance more than 120 from the global
maximum and the typical local maximum has a distance between 40 and 75.

To understand this phenomenon, intuitively we note that the cut points break
the maximization problem into independent pieces. A solution that does not make
the best local choice in a positive fraction of the intervals will be smaller than the
global maximum by a constant times N . Conversely, those local maxima whose
heights are within εN of the global maximum must be close to it. It would be
interesting to prove results about the limiting shape of the picture in Figure 5 and
the limiting behavior of (1/N logMN(c)), where MN(c) is the number of local
maxima at distance [cN ] from the global maximum. The simulation supports the
notion that such a limit exists. However, at this point, we do not know how to
attack these two large-deviations problems.
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2. General results. Let GN = {(0,0, . . . ,0) ∈ RN is a local maximum for �}.

THEOREM 2.1. There is a constant λK so that

lim
N→∞

1

N
log P (GN) = log λK.

PROOF. For 1 ≤ i ≤ N , let 0i be the vector that has a 1 at the ith coordinate
and 0 at all other coordinates, and let

Ei = {
φi−K(0) + · · · + φi(0) > φi−K(0i ) + · · · + φi(0i )

}
so that GN = ⋂N

k=1 Ek . Let Vi = φi(0) and Vji = φj(0i ) when i − K ≤ j ≤ i.
Since the random variables Vi and Vji are independent, after conditioning on the
values of V0, . . . , VN−1 we arrive at a special case of formula (2.4) of Weinberger
(1991):

P (GN) =
∫

dF (v0) · · ·
∫

dF (vN−1)

N−1∏
i=0

FK+1

(
i∑

j=i−K

vj

)
,(2.1)

where FK+1 is the distribution function of the sum of K +1 random variables with
distribution F , and summation is modulo N .

To prove Theorem 2.1, we will first consider G′
N−1 = ⋂N−1

i=K Ek , which leaves
out the terms that “wrap around,” and show that

lim
N→∞

1

N
logP (G′

N−1) = logλK.(2.2)

Clearly, P (GN) ≤ P (G′
N−1). To bridge the gap, we soon show that P (GN) ≥

εKP (G′
N−1). First, observe that P (G′

N−1) is a submultiplicative sequence, that is,

P (G′
N−1) ≤

∫
dF (v0) · · ·

∫
dF (vN−1)

M−1∏
i=K

FK+1

(
i∑

j=i−K

vj

)

×
N−1∏

i=M+K

FK+1

(
i∑

j=i−K

vj

)

= P (G′
M−1)P (G′

N−M−1).

A standard subadditivity argument now shows that

1

N
logP (G′

N−1) → inf
M≥1

1

M
logP (G′

M−1),

and we have established (2.2).
To complete the proof of Theorem 2.1, we note that WN

i = FK+1(
∑i

j=i−K Vj)

are increasing functions of independent random variables so Harris’s inequality,
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see, for example, Kesten (1981), implies that they have positive correlations. The
superscript N is here to remind us that since we use modulo arithmetic, the values
of the WN

i depend on i and N . Harris’s inequality implies that

P (GN) ≥ E

(
K−1∏
i=0

WN
i

)
P (G′

N−1).(2.3)

The first term on the right-hand side is a positive quantity whose value does not
depend on N , so the proof is complete. �

To further investigate properties of P (G′
N−1), we will introduce a K-step

Markov process. Let G′
j =⋂j

i=K Ei (with G′
j = � if j < K) and let

Xj =
{

φj (0), on G′
j ,


, on (G′
j )

c,

where 
 is a cemetery state that indicates 0 is not a local maximum. Let Fk be
the σ -field generated by φj(0) and φj(0i ) with i, j ≤ k. The definitions (1.1) and
(1.2) imply that Ej ∈ Fk if K ≤ j ≤ k, and if k ≥ K − 1, then, on G′

k ,

P (Ek+1,Xk+1 = y|Fk) = FK+1(Xk−K+1 + · · · + Xk + y)f (y).(2.4)

The last equation shows that Xj is a K-step Markov process; that is, (Xj−K+1, . . . ,

Xj ), j ≥ K − 1, is a Markov chain.
The first K values, X0, . . . ,XK−1, are the initial condition for the Markov chain.

If we let

p(y|xK−1, . . . , x0) = f (y)FK+1(x0 + · · · + xK−1 + y),

then iterate and use (2.4), we have

P (G′
N−1) =

∫
dF (x0) · · ·

∫
dF (xK−1) qN−K(x0, . . . , xK−1),(2.5)

where

qN−K(x0, . . . , xK−1) =
∫

dxK · · ·
∫

dxN−1

N−1∏
j=K

p(xj |xj−1, . . . , xj−K).

When K = 1, Xj is a Markov chain with transition probabilities

P (X1 = dy|X0 = x) = p(x, y) dy = F2(x + y)f (y) dy, y �= 
,

P (X1 = 
|X0 = x) = 1 −
∫

F2(x + y)f (y) dy,

P (X1 = 
|X0 = 
) = 1.

If we define

p̄(x, y) = f (x)1/2p(x, y)f (y)−1/2,
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then p̄(x, y) = p̄(y, x) for x, y �= 
 and

p̄n(x, y) = f (x)1/2pn(x, y)f (y)−1/2.(2.6)

When K > 1, the Markov chain (Xj−K+1, . . . ,Xj ) has transition probabilities

q
(
(x0, . . . , xK−1), (x1, . . . , xK)

) = FK+1(x0 + · · · + xK)f (xK),

q
(
(x0, . . . , xK−1),


) = 1 −
∫ ∞
−∞

f (x)FK+1(x0 + · · · + xK−1 + x) dx.

This chain has the symmetry property

f (x0)
1/2q

(
(x0, . . . , xK−1), (x1, . . . , xK)

)
f (xK)−1/2

(2.7) = f (xK)1/2q
(
(xK, . . . , x1), (xK−1, . . . , x0)

)
f (x0)

−1/2.

This is similar to, but not quite, the reversibility and seems much weaker than the
self-adjointness that holds when K = 1.

Still the K-step chain has nice monotonicity properties. If xi ≥ x′
i for 0 ≤ i ≤

K − 1, then

q
(
(xj , . . . , xK−1, zK, . . . , zj+K−1), (xj+1, . . . , xK−1, zK, . . . , zj+K)

)
(2.8) ≥ q

(
(x′

j , . . . , x
′
K−1, zK, . . . , zj+K−1), (x

′
j+1, . . . , x

′
K−1, zK, . . . , zj+K)

)
.

By iterating (2.8), we get that if x ≥ x′ coordinatewise and n ≥ K , then, for all
x, y ∈ RK ,

qn(x, y) ≥ qn(x′, y).(2.9)

After integrating, we have

x → qn(x) =
∫

RK
qn(x, y) dy is increasing.(2.10)

This holds for n ≥ K by (2.9). Using (2.8), we see that it is also valid for
1 ≤ n ≤ K − 1. If we let q∗

n = supx qn(x), then it is easy to see that q∗
n ≤ q∗

m ·q∗
n−m

and, hence, that

1

n
logq∗

n → inf
m≥1

1

m
log q∗

m = logλK.(2.11)

To explain the last equality, observe

P (G′
N−1) =

∫
F(dx0) · · ·

∫
F(dxK−1)

∫
RK

qN−K(x, y) dy ≤ q∗
N−K(2.12)

and

qN(x) =
∫

RK

∫
RK

qK(x, z)qN−K(z, y) dz dy

≤
∫

F(dz0) · · ·
∫

F(dzK−1)

∫
qN−K(z, y) dy = P (G′

N−k),

so q∗
N ≤ P (G′

N−K).
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3. Results for the negative exponential. Consider now the case in which
F(x) = ex for x ≤ 0; that is, −X has exponential (rate 1) distribution. We begin
with the case K = 1. If X1 and X2 are independent and have distribution F , then
P (X1 + X2 ≤ −t) is the probability that there have been 0 or 1 arrivals in a rate 1
Poisson process at time t , that is, e−t (1 + t). Changing variables t = −v, we have
F2(v) = ev(1 − v) for v ≤ 0. Using (2.1) and changing variables xi = −vi , we
have

P (GN) =
∫ ∞

0
dx0 · · ·

∫ ∞
0

dxN−1 exp

(
−

N−1∑
i=0

3xi

)
N−1∏
i=0

(1 + xi + xi−1).(3.1)

To get more information, with only a little extra work, we will analyze the Laplace
transform

ẐN (θ) = E

(
exp

(
−θ

N−1∑
i=0

xi

)
;GN

)

=
∫ ∞

0
dx0 · · ·

∫ ∞
0

dxN−1 exp

(
−

N−1∑
i=0

(3 + θ)xi

)
N−1∏
i=0

(1 + xi + xi−1).

We use the notation ẐN (θ) to indicate that this is the analogue of the partition
function from statistical mechanics.

To analyze this expression, it is useful to let �b
a = �b

a(x0, x1, . . . , xN−1) =∏b
i=a(1 + xi + xi−1) and let

〈h〉 =
∫ ∞

0
dx0 · · ·

∫ ∞
0

dxN−1 exp

(
−

N−1∑
i=0

αxi

)
h(x0, . . . , xN−1),

where α = 3 + θ . With this notation, we can write

ZN(α) = ẐN(θ) = 〈�N−1
0 〉.

Removing the two terms involving x0 from �N−1
0 , we have

ZN(α) = 〈[(1 + x0)
2 + (1 + x0)x1 + (1 + x0)xN−1 + x1xN−1]�N−1

2

〉
.(3.2)

Let mk = ∫
dx0 xk

0e−αx0 . Integrating by parts, we have mk = (k/α)mk−1 and,
hence,

m0 = 1/α, m1 = 1/α2, m2 = 2/α3, m3 = 6/α4.(3.3)

If we define

YN = 〈�N−1
1 〉, WN = 〈x0 �N−1

1 〉 for N ≥ 1,

UN = 〈�N−1
1 xN−1〉, VN = 〈x0 �N−1

1 xN−1〉 for N ≥ 2,
(3.4)
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then we have, for N ≥ 3,

ZN(α) =
(

1

α
+ 2

α2 + 2

α3

)
YN−1 +

(
1

α
+ 1

α2

)
(WN−1 + UN−1) + 1

α
VN−1

(3.5)

=
(

α2 + 2α + 2

α3

)
YN−1 + 2

(
α + 1

α2

)
WN−1 + 1

α
VN−1,

since symmetry dictates WN−1 = UN−1.
To begin, we consider the pair YN,WN . Since �N−1

1 = (1 + x0)�
N−1
2 +

x1�
N−1
2 and x0�

N−1
1 = x0(1 + x0)�

N−1
2 + x0x1�

N−1
2 , we have, for N ≥ 2,

YN =
∫ ∞

0
dx0 e−αx0(1 + x0)YN−1 +

∫ ∞
0

dx0 e−αx0WN−1,

WN =
∫ ∞

0
dx0 e−αx0x0(1 + x0)YN−1 +

∫ ∞
0

dx0 e−αx0x0WN−1.

Using (3.3), we now have

YN =
(

1

α
+ 1

α2

)
YN−1 + 1

α
WN−1,

(3.6)
WN =

(
1

α2 + 2

α3

)
YN−1 + 1

α2 WN−1.

Subtracting 1/α times the first equation from the second, we get

WN = 1

α
YN + 1

α3 YN−1.(3.7)

Substituting this into the first equation in (3.6), we have

YN =
(

1

α
+ 2

α2

)
YN−1 + 1

α4 YN−2.(3.8)

This is a second-order difference equation, YN = aYN−1 +bYN−2, so its general
solution will be of the form CY

1 βN
1 + CY

2 βN
2 , where β1, β2 are the two roots of

β2 − aβ − b. In the special case α = 3, we have a = 5/9 and b = 1/81. Using the
quadratic formula, we find

β1 = 5 + √
29

18
= 0.5769536, β2 = 5 − √

29

18
= −0.021398.

Since YN > 0, we must have CY
1 > 0, and it follows that

(1/N) logYN → logβ1.(3.9)

Formula (3.7) implies that

WN =
(

1

α
+ 2

α2

)
WN−1 + 1

α4
WN−2;(3.10)
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hence, WN = CW
1 βN

1 + CW
2 βN

2 . Again, since WN > 0, we must have CZ
1 > 0, and

it follows that

(1/N) logWN → log β1.

Repeating the reasoning above for the pair UN,VN , we find the same recursion,

UN =
(

1

α
+ 1

α2

)
UN−1 + 1

α
VN−1,

VN =
(

1

α2 + 2

α3

)
UN−1 + 1

α2 VN−1,

and conclude that

UN =
(

1

α
+ 2

α2

)
UN−1 + 1

α4 UN−2,

(3.11)

VN =
(

1

α
+ 2

α2

)
VN−1 + 1

α4 VN−2

and

(1/N) logUN → log β1 and (1/N) logVN → logβ1.(3.12)

From (3.5), (3.8), (3.10) and (3.11), we see that

ZN(α) = A(α)β1(α)N + B(α)β2(α)N,
(3.13)

where βi(α) = (1/α + 2/α2) ±
√

(1/α + 2/α2)2 + 4/α4

2
.

Simplifying, we have

β1(α) = α + 2 + √
α2 + 4α + 8

2α2 and β2(α) = α + 2 − √
α2 + 4α + 8

2α2 .(3.14)

Of course, when α = 3 this reduces to β1 = (5±√
29)/18. Since P (GN) = ZN(3),

we have
1

N
logP (GN) → logβ1,

so λ1 = β1 = 0.5769536.
Our next goal is to compute the height of all 0’s given that it is a local maximum.

To do this, we begin by noting

Z′
N(3) = −E

(
N−1∑
i=0

xi;GN

)
.

Differentiating (3.13), we have

Z′
N(α) = A′(α)β1(α)N + A(α)Nβ1(α)N−1β ′

1(α)
(3.15) + B ′(α)β2(α)N + B(α)Nβ2(α)N−1β ′

2(α).
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Since β1(3) > β2(3), combining this with (3.13) gives

lim
N→∞

1

N

−Z′
N(3)

ZN(3)
= −β ′

1(3)

β1(3)
.

Differentiating (3.13), we have

2β ′
1(α) = − 1

α2 − 4

α3 + 1

2

(
1

α2 + 4

α3 + 8

α4

)−1/2(
− 2

α3 − 12

α4 − 32

α5

)

= − 1

α2 − 4

α3 + 1

2
(α2 + 4α + 8)−1/2

(
−2α2 − 12α − 32

α3

)
.

Setting α = 3, we have

2β ′(3) = − 7

27
− 86

54
√

29
.

Since β1(3) = (5 + √
29)/18, we have

−β ′
1(3)

β1(3)
= 7

√
29 + 43

54
√

29

18

5 + √
29

= 126
√

29 + 774

270
√

29 + 1566
= 0.480971328.(3.16)

Note that although E(xi) = 1 (since xi = −vi and Evi = −1) we have

lim
N→∞E(xi|GN) ≈ 0.481.

To compute the variance, we note that

var

(
N−1∑
i=0

xi

∣∣∣GN

)
= E

((
N−1∑
i=0

xi

)2∣∣∣∣GN

)
−
{
E

(
N−1∑
i=0

xi

∣∣∣GN

)}2

(3.17)

= Z′′
N(3)

ZN(3)
−
(

Z′
N(3)

ZN(3)

)2

.

Ignoring the terms involving β2(α) that will vanish in the limit, we have

Z′′
N(α) = A′′(α)β1(α)N + 2A′(α)Nβ1(α)N−1β ′

1(α)

+ A(α)N(N − 1)β1(α)N−2β ′
1(α)2 + A(α)Nβ1(α)N−1β ′′

1 (α).

From this, it follows that

Z′′
N(3) = N2A(3)β1(3)N−2β ′

1(3)2

+ N
{
2A′(3)β1(3)N−1β ′

1(3)

− A(3)β1(3)N−2β ′
1(3)2 + A(3)β1(3)N−1β ′′

1 (3)
}

+ O
(
β2(3)N

)
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and, hence,

Z′′
N(3)

ZN(3)
= N2

(
β ′

1(3)

β1(3)

)2

+N

{
2
A′(3)

A(3)

β ′
1(3)

β1(3)
−
(

β ′
1(3)

β1(3)

)2

+ β ′′
1 (3)

β1(3)

}
+ o(1).(3.18)

Using (3.15) and ignoring the terms involving β2(α), we have

Z′
N(3)2 = (

NA(3)β1(3)N−1β ′
1(3)

)2 + N
(
2A′(3)A(3)β1(3)2N−1β ′

1(3)
)

+ O
(
βN

1 (3)
)
,

ZN(3)2 = (
A(3)β1(3)N

)2 + O
(
βN

1 (3)
)

and, hence,

Z′
N(3)2

ZN(3)2 = N2
(

β ′
1(3)

β1(3)

)2

+ N

{
2
A′(3)

A(3)

β ′
1(3)

β1(3)

}
+ o(1).(3.19)

Combining (3.17)–(3.19), we have

var

(
N−1∑
i=0

xi

∣∣∣GN

)
∼ N

{
β ′′

1 (3)

β1(3)
−
(

β ′
1(3)

β1(3)

)2}
.(3.20)

Letting µ = −β ′
1(3)/β1(3) and using Chebyshev’s inequality shows that, for any

ε > 0,

P

(∣∣∣∣∣
N−1∑
i=0

xi − µN

∣∣∣∣∣> N1/2+ε
∣∣∣GN

)
→ 0.(3.21)

Using the analysis of ZN(α), it is not hard to improve the last result to a central
limit theorem. To do this, we begin by computing the Laplace transform

ψ(θ) ≡ E

(
exp

(
− θ√

N

(
N−1∑
i=0

xi − µN

))
;GN

)

= exp
(
θµ

√
N

)
ZN

(
3 + θ√

N

)
.

Since β1(α) > β2(α) for α near 3, we have ZN(α) ≈ A(α)β1(α)N and, hence,

ψ(θ)

P (GN)
≈ exp

(
θµ

√
N

)A(3 + θ/
√

N)β1(3 + θ/
√

N)N

A(3)β1(3)N
.

As N → ∞, we have A(3 + θ/
√

N)/A(3) → 1. Using Taylor’s theorem with
remainder, we see that the above

∼ exp
(
θµ

√
N

)(β1(3) + (θ/
√

N )β ′
1(3) + (θ2/2N)β ′′

1 (αN)

β1(3)

)N

,



1732 R. DURRETT AND V. LIMIC

where αN ∈ (3,3 + θ/
√

N). Taking logarithms, we find

log
(
ψ(θ)/P (GN)

) = θµ
√

N + N log
(

1 + θ√
N

β ′
1(3)

β1(3)
+ θ2

2N

β ′′
1 (αN)

β1(3)

)
.

Using log(1 + x) = x − x2/2 + · · · , we have that the right-hand side

∼ θ2

2

[
−
(

β ′
1(3)

β1(3)

)2

+ β ′′
1 (3)

β1(3)

]
.

Letting σ 2 denote the term in square brackets and recalling that the Laplace
transform of the normal with mean 0 and variance σ 2 is exp(σ 2θ2/2), we have
shown the following result.

THEOREM 3.1. As N → ∞,

P

((
N−1∑
i=0

xi − µN

)
/σ

√
N ≤ x

∣∣∣GN

)
→ P (χ ≤ x),

where χ has a normal distribution with mean 0 and variance 1.

The last detail is to compute σ 2. To get β ′′
1 (3), we differentiate (3.13) twice to

get

2β ′′
1 (α) = 2

α3 + 12

α4 − 1

4

(
1

α2 + 4

α3 + 8

α4

)−3/2(
− 2

α3 − 12

α4 − 32

α5

)2

+ 1

2

(
1

α2 + 4

α3 + 8

α4

)−1/2( 6

α4 + 48

α5 + 160

α6

)

= 2

α3
+ 12

α4
− 1

4
(α2 + 4α + 8)−3/2

(
2α2 − 12α − 32

α2

)2

+ 1

2
(α2 + 4α + 8)−1/2

(
6α2 + 48α + 160

α4

)
.

Setting α = 3, we have

2β ′′
1 (3) = 6

27
− 1

4 · 29 · √29

(
86

9

)2

+ 1

2
√

29
· 358

27

= 18 · 29 · √29 − 432 + 179 · 3 · 29

81 · 29 · √29

= 522
√

29 + 13724

2349
√

29
.
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Dividing by 2 and by β1(3) = (5 + √
29)/18, we have

β ′′
1 (3)

β1(3)
= 261

√
29 + 6862

2349
√

29

18

5 + √
29

= 4698
√

29 + 123516

11745
√

29 + 68121
= 1.132799243.

From this, it follows that σ 2 = 0.901465824.
Theorem 3.1 gives the approximate distribution of the height of a local

maximum chosen at random. Our next result considers the height of the global
maximum, H ∗

N .

THEOREM 3.2. Let b = inf{a ∈ (−1,0) :−2a exp(a + 1) < 1} ≈ −0.231961.
If a > b, then P (H ∗

N > aN) → 0.

PROOF. Let h(θ) = ∫ 0
−∞ eθxex dx = 1/(1+θ) be the Laplace transform of the

negative exponential. If SN is the sum of N independent random variables with a
negative exponential distribution, then Markov’s inequality implies that if θ > 0
then

eθNaP (SN > Na) ≤ h(θ)N .(3.22)

Rearranging, we have

P (SN > Na) ≤ exp
(−N [θa + log(1 + θ)]).(3.23)

To optimize the estimate, we set

0 = d

dθ
[θa + log(1 + θ)] = a + 1

1 + θ
.(3.24)

When a ∈ (−1,0), the solution is θ = −(1 + a)/a > 0, so we have

P (SN > Na) ≤ exp
(
N [a + 1 − log(−1/a)]).

Since there are 2N possible sequences (proteins) and to each corresponds a sum
of N independent negative exponentials, we have

P (H ∗
N > aN) ≤ (−2a)N exp

(
N(a + 1)

)
.(3.25)

Taking b = inf{a ∈ (−1,0) :−2a exp(a +1) < 1}, the desired result follows. Since
a → a +1 − log(−1/a) is increasing, it is straightforward to compute numerically
that b = −0.231961. The reader can verify the computation by checking that
−2b exp(b + 1) ≈ 1. �

Using the same technique, one can obtain the following result.

THEOREM 3.3. Consider the positive exponential distribution and let b =
{a > 1 : 2a exp(1 − a) < 1} ≈ 2.678347. If a > b, then P (H ∗

N > aN) → 0.
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PROOF. Let h(θ) = ∫∞
0 eθxe−x dx = 1/(1 − θ) be the Laplace transform of

the (positive) exponential (rate 1). Let SN be the sum of N independent exponential
(rate 1) random variables. The analogues of (3.22)–(3.24) are now

eθNaP (SN > Na) ≤ h(θ)N ,

P (SN > Na) ≤ exp
(−N [θa + log(1 − θ)])

and

0 = d

dθ
[θa + log(1 − θ)] = a − 1

1 − θ
.

When a > 1, the solution θ = 1 − 1/a > 0, so we have

P (SN > Na) ≤ exp
(−N [a − 1 + log(1/a)]).

As in (3.25), we get

P (H ∗
N > aN) ≤ (2a)N exp

(−N(a − 1)
)
,

and, after taking b = inf{a > 1 : 2a exp(1 − a) < 1}, the desired result follows. �

4. Results for the uniform case, K = 1. When K = 1 and f (y) = 1 for
0 ≤ y ≤ 1, we have

p(x, y) = F2(x + y), x, y ∈ [0,1].(4.1)

Since this is symmetric and square integrable, a theorem on page 243 of Riesz and
Nagy (1990) implies that we can write

p(x, y) =
∞∑
i=1

βihi(x)hi(y),(4.2)

where βi is a decreasing sequence of eigenvalues and the hi(x) are the
corresponding eigenfunctions, which form an orthonormal sequence.

Iterating and using the fact that the hi are orthonormal, we have

p2(x, y) =
∫

p(x,u)p(u, y) du =
∞∑
i=1

β2
i hi(x)hi(y)

or, in general, that

pn(x, y) =
∞∑
i=1

βn
i hi(x)hi(y).(4.3)

In Section 6, we will show that Rp(x, y)h(y)/h(x) is a transition kernel of a Harris
chain with unique stationary distribution, so β1 > β2 and if R = 1/β1 we have

Rnpn(x, y) → h1(x)h1(y).(4.4)
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As in (2.12), we have

P (G′
N−1) =

∫
dx0

∫
dxN−1 pN−1(x0, xN−1),

and it follows that

RN−1P (G′
N−1) →

(∫
h1(x) dx

)2

.(4.5)

Comparing with (2.2), we see that λ1 = β1 = 1/R.
Combining this result with the variational characterization of the largest

eigenvalue

β1 = max

∫∫
g(x)p(x, y)g(y) dx dy∫

g(x)2 dx

allows us to get a lower bound on λ1. A little calculus shows that

p(x, y) =
{

(x + y)2/2, 0 ≤ x + y ≤ 1,

1 − (2 − x − y)2/2, 1 ≤ x + y ≤ 2,

and that ∫ ∫
p(x, y) dx dy = 1

2 ,

∫ ∫
xp(x, y) dx dy = 37

120 ,

∫ ∫
xyp(x, y) dx dy = 11

60 .

Taking g(x) = 1 + ax, we have

λ1 ≥
1
2 + 37

60a + 11
60a2

1 + a + a2/3
.

Differentiating the right-hand side with respect to a gives

(37
60 + 22

60a)(1 + a + a2/3) − (1
2 + 37

60a + 11
60a2)(1 + 2a/3)

(1 + a + a2/3)2 .

Fortunately, the cubic terms cancel out, and 180 times the numerator becomes

(111 − 90)+ a(111 + 66 − 111 − 60) + a2(37 + 66 − 33 − 74) = 21 + 6a − 4a2.

Solving the quadratic equation, we have a = 3.1609127 and

λ1 ≥ 0.571455.(4.6)

It is important that the lower bound is greater than 1/2, since the expected number
of local maxima is EMN = 2NP (GN) and we have limN→∞(1/N) logEMN =
log(2λ1) > 0.
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To get a bound in the other direction, we use (2.11), which says that

1

N
log q∗

N → inf
M≥1

1

M
logq∗

M = logλ1,

and (2.10), which implies that q∗
n = qn(1). Mathematica computes (after three days

of calculation) that q∗
5 = 0.0839578, implying

λ1 ≤ (q∗
5 )1/5 = 0.609273.(4.7)

5. Bounds on λK for large K . In this section, we will derive lower bounds
for P (GN), which show that λK → 1 as K → ∞. We begin with the situation
in which F has a standard normal distribution. Due to the Cauchy–Schwarz
inequality, we have

EW ≥ (EW 1/2V )2/EV 2.(5.1)

We will apply (5.1) with W =∏N−1
i=0 FK+1(Xi−K + · · · + Xi) and

V = dQ

dP
= exp(ξ

∑N−1
i=0 Xi)

ψ(ξ)N
,

where ψ(θ) is the moment-generating function

ψ(θ) =
∫ 1√

2π
exp

(
−x2

2

)
exp(θx) dx = exp

(
θ2

2

)
.

Note that if, under P , the coordinates of (X0, . . . ,XN−1) are i.i.d. normal variables
with mean 0 and variance 1, then, under Q, the coordinates of (X0, . . . ,XN−1) are
independent and identically distributed normals with mean ξ and variance 1. The
change of measure and Harris’s inequality imply that

E

(
W 1/2 dQ

dP

)
= EQ(W 1/2) ≥ [

EQ

(
F

1/2
K+1(X0 + · · · + XK)

)]N
.(5.2)

We choose

ξ = 2

√
2 log(K + 1)

K + 1
,

so that the expected value under Q, EQ(F
1/2
K+1(X0 +· · · +XK)), converges to 1 as

K → ∞.
To compute the right-hand side of (5.2), we note that, under Q, X0 + · · · + XK

is normal with mean µK = 2
√

2(K + 1) log(K + 1) and variance K + 1. Scaling
to express things in terms of a standard normal random variable χ , we get

EQ

(
F

1/2
K+1(X0 + · · · + XK)

)
≥ Q(X0 + · · · + XK ≥ µK/2)F

1/2
K+1(µK/2)

= P
(
χ ≤ √

2 log(K + 1)
)3/2

.
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Using the fact that P (χ > x) ≤ exp(−x2/2) in the last inequality, we have

EQ

(
FK+1(X0 + · · · + XK)1/2) ≥

(
1 − 1

K + 1

)3/2

.(5.3)

It remains to bound the second moment of the Radon–Nikodym derivative from
above. Note that

E

(
dQ

dP

)2

= E exp(2ξ
∑N−1

i=0 Xi)

ψ(ξ)2N

(5.4)
= exp(ξ2N) = exp

(
8 log(K + 1)

K + 1
N

)
.

Combining (5.1)–(5.4), we have

EW ≥
(

1 − 1

K + 1

)3N/2

exp
(
−8 log(K + 1)

K + 1
N

)
,

implying

λK ≥
(

1 − 1

K + 1

)3

exp
(
−8 log(K + 1)

K + 1

)
(5.5)

≥ 1 − 9 log(K + 1)

K + 1

for large K .
The derivation of the last result only involved values of the moment-generating

function when θ was close to 0, so it will hold for distributions where the moment-
generating function is finite in a neighborhood of 0. Without loss of generality,
we can suppose that the mean and the variance of F satisfy µ = 0 and σ 2 = 1.
Inequalities (5.1) and (5.2) hold in general, so we begin with the estimation of
the right-hand side of (5.2). Due to our assumptions, we have ψ ′(0) = 0 and
ψ ′′(0) = 1/2, where ψ(θ) = ∫

eθxdF (x). Therefore, if |θ | is sufficiently small,
we have

exp
(

θ2

2.02

)
≤ 1 + θ2

2.01
≤ ψ(θ) ≤ 1 + θ2

1.99
≤ exp

(
θ2

1.99

)
.

Let

νK =
√

2.1 log(K + 1)/(K + 1).

Markov’s inequality implies that, if θ > 0 is small,

exp
(
θνK(K + 1)

)[
1 − FK+1

(
νK(K + 1)

)] ≤ exp
(

θ2(K + 1)

1.99

)
.

Taking θ = νK , we have

1 − FK+1
(
νK(K + 1)

) ≤ exp
(−ν2

K(K + 1)(0.99)/1.99
)≤ (K + 1)−1.(5.6)



1738 R. DURRETT AND V. LIMIC

To bound Q(X0 +· · ·+XK ≥ νK(K +1)), we note that, under Q, Xi has moment-
generating function ψ(θ + ξ)/ψ(ξ), so

exp
(
θνK(K +1)

)
Q
(
X0 +· · ·+XK ≤ νK(K +1)

) ≤ exp((ξ + θ)2(K + 1)/1.99)

exp(ξ2(K + 1)/2.02)
.

Taking θ = νK − ξ , where |ξ | ≤ 5νK , we have

Q
(
X0 + · · · + XK ≤ νK(K + 1)

)
≤ exp

(
−(K + 1)

{
ξ2

2.02
− (ξ − νK)νK − ν2

K

1.99

})
.

Setting ξ = 2.01νK , the above inequality becomes

≤ exp
(
−(K + 1)ν2

K

{
4.0401

2.02
− 1.01 − 1

1.99

})
(5.7)

≤ exp
(−(2.1)(0.487) log(K + 1)

) ≤ 1

K + 1
.

Combining (5.6) and (5.7), we have

EQ

(
FK+1(X0 + · · · + XK)1/2)
≥ Q

(
X0 + · · · + XK ≥ νK(K + 1)

)
F

1/2
K+1

(
µK(K + 1)

)
(5.8)

≥
(

1 − 1

K + 1

)3/2

.

Similarly, note that

E

(
dQ

dP

)2

= ψ(2ξ)N

ψ(ξ)2N

≤ exp
(
Nξ2

(
4

1.99
− 2

2.02

))

= exp
(
N(2.01)2 2.1 log(K + 1)

K + 1

8.08 − 3.98

(2.02)(1.99)

)

≤ exp
(

8.7
log(K + 1)

K + 1
N

)
.

Using the last result together with (5.8), (5.2) and (5.1) we have, as in (5.5),

λK ≥
(

1 − 1

K + 1

)3/2

exp
(
−8.7 log(K + 1)

K + 1

)
≥ 1 − 9 log(K + 1)

K + 1

for large K .
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6. Results for the height of local maxima, K ≥ 1. We will use the R-theory
of Markov chains as developed by Tweedie (1974). Let R = sup{r : rnqn(x,

y) → 0}. Our first goal is to check the R-positive recurrence condition given on
page 844 of Tweedie (1974) for the transition probability

q
(
(x0, . . . , xK−1), (x1, . . . , xK)

) = FK+1(x0 + · · · + xK)f (xK).

Let � = 1/λK . It follows from (2.11) that R ≥ �. To prove that � ≥ R and
the chain is R-recurrent, it suffices to show that �nqn(x, y) �→ 0 for some fixed
x and y. Note that (2.11) implies

�nq∗
n ≥ 1, n ≥ 1.(6.1)

Let a be in the interior of the support of f . Suppose first that K = 1. Using the
Markov property,

�nqn(x, a) =
∫

�n−1qn−1(x, y)�q(y, a) dy.

Since the integrand above is nonnegative and q(y, a) = F2(y + a)f (a) ≥
F2(b + a)f (a) for y ≥ b, we have

�nqn(x, a) ≥
∫ ∞
b

�n−1qn−1(x, y) dy �F2(b + a)f (a).(6.2)

To estimate
∫ b
−∞ �n−1qn−1(x, y) dy, we use again the Markov property

qn−1(x, y) =
∫

qn−2(x, z)q(z, y) dz,

and note that∫ b

−∞
q(z, y) dy =

∫ b

−∞
F2(z + y)f (y) dy ≤ F2(z + b)

∫ b

−∞
f (y) dy,

∫ ∞
b

q(z, y) dy ≥ F2(z + b)

∫ ∞
b

f (y) dy.

Therefore, if we pick b so that
∫ b
−∞ f (y) dy = ∫∞

b f (y) dy = 1/2, that is, b is a
median of F , then we have∫ ∞

b
q(z, y) dy ≥ 1

2

∫ ∞
−∞

q(z, y) dy,

and, by the sentence following (6.2) and Fubini’s theorem,∫ ∞
b

�n−1qn−1(x, y) dy ≥ 1
2

∫
�n−1qn−1(x, y) dy.(6.3)

Taking supx and using (6.1) and (6.2), we have

sup
x

�nqn(x, a) ≥ �

2
F2(b + a)f (a) > 0.

At this point, we consider two cases:
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CASE 1. F(x) = 1 for some x < ∞ and, without loss of generality, 1 =
inf{x :F(x) = 1}. Then

�nqn(1, a) ≥ �

2
F2(b + a)f (a).

CASE 2. If F(x) < 1 for all x, then

sup
x

�nqn(x, a) = �n
∫

dy0 f (y0)q
n−1(y0, a).

Using the Markov property and the monotonicity of F2, we get

sup
x

�nqn(x, a) =
∫

dy0 f (y0)

∫
dy1 F2(y0 + y1)f (y1)�

nqn−2(y1, a)

(6.4)

≤ 2
∫ ∞
b

dy0 f (y0)�
nqn−1(y0, a).

The last inequality is a consequence of calculations similar to those that led
to (6.3). Combining (6.4) with the observation that

�nqn(a, a) ≥ F(a + b)

∫ ∞
b

dy0 f (y0)�
nqn−1(y0, a),(6.5)

we have

�nqn(a, a) ≥ F(a + b)

2
sup
x

�nqn(x, a),

and the desired result follows.

The above argument generalizes to K ≥ 1 in the following way. Let W+
1 , . . . ,

W+
K be i.i.d. with density function 2f (x)1{x>b} and let W−

1 , . . . ,W−
K be i.i.d.

with density function 2f (x)1{x<b}. For each subset I ⊂ {1,2, . . . ,K}, define
AI = {x :xi > b if and only if i ∈ I }. For each i ∈ {1, . . . ,K}, let

Y I
i =

{
W+

i , i ∈ I,

W−
i , i /∈ I,

and Zi = W+
i .

Clearly, Y I
i ≤ Zi for all I, i and, due to the monotonicity of FK+1,

2K
∫
AI

qK(x, y) dy = E

(
K∏

j=1

FK+1(xj + · · · + xK + Y I
i + · · · + Y I

j )

)

≤ E

(
K∏

j=1

FK+1(xj + · · · + xK + Z1 + · · · + Zj )

)

= 2K
∫
[b,∞)K

qK(x, y) dy.
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Since RK is a disjoint union of AI over all subsets I of {1, . . . ,K}, we get∫
qK(x, y) dy ≤ 2K

∫
[b,∞)K

qK(x, y) dy.

Now, if n ≥ K ,∫
qn(w,y) dy =

∫ ∫
qn−K(w,x)qK(x, y) dy dx

≤ 2K
∫ ∫

[b,∞)K
qn−K(w,x)qK(x, y) dy dx

= 2K
∫
[b,∞)K

qn(w,y) dy,

so that due to (6.1), for each n ≥ K ,

sup
w

∫
[b,∞)K

�nqn(w,y) dy ≥ 2−K.

Let ā = (a, . . . , a) ∈ RK . As in the one-dimensional case, monotonicity implies

�nqn(x, ā) ≥ (�f (a))K
K∏

i=1

FK+1
(
bi + (K + 1 − i)a

)
(6.6)

×
∫
[b,∞)K

�n−Kqn−K(x, y) dy,

so that, for n ≥ 2K ,

sup
x

�nqn(x, ā) ≥ (�f (a))K
K∏

i=1

FK+1
(
bi + (K + 1 − i)a

)
2−K > 0.

We again have two cases. If F(x) = 1 for some x < 1, then clearly for this x we
have

�nqn(x̄, ā) ≥ (�f (a))K
K∏

i=1

FK+1
(
bi + (K + 1 − i)a

)
2−K,

where x̄ = (x, . . . , x) ∈ RK . If F(x) < 1 for all x < ∞, then instead of (6.4) we
have (again by using RK =⋃

I AI and the random variables Y I
i ,Zi)

sup
x

�nqn(x, ā) ≤ 2K
∫
[b,∞)K

dy0 · · · dyK−1 f (y0) · · ·f (yK−1)�
nqn−K(y, a),

and instead of (6.5), we have

�nqn(ā, ā) ≥
K∏

i=1

FK+1
(
bi + (K + 1 − i)a

)

×
∫
[b,∞)K

dy0 · · ·dyK−1 f (y0) · · · f (yK−1)�
nqn−K(y, ā).
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At this point, we have shown that the chain with transition probability q is
R-recurrent in the sense of Tweedie (1974). Let

Q(y,A) =
∫
A

q(y, z) dz.

Results in Section 3 of Tweedie’s paper now imply the existence of a σ -finite
measure µ and a nonnegative function h unique up to constant multiples so that∫

µ(dy)RQ(y,A) = µ(A) and
∫

RQ(y,dz)h(z) = h(y).(6.7)

LEMMA 6.1. The measure µ has a density j (y) with respect to the Lebesgue
measure.

PROOF. The kernel QK(y, dz) has density qK(y, z). Using

µ(A) =
∫

µ(dy)RK
∫
A

qK(y, z) dz =
∫
A

dz

∫
µ(dy)RKqK(y, z),

we conclude µ(dz) = j (z) dz, where j (z) = ∫
µ(dy)RKqK(y, z). �

LEMMA 6.2. For y = (y0, . . . , yK−1), let ŷ = (yK−1, . . . , y0) and g(y) =
f (y0) · · ·f (yK−1). There are constants Ci ∈ (0,∞), i = 1,2, so that h(y) =
C1j (ŷ)/g(ŷ) and j (y) ≤ C2g(y). The measure µ is finite and the function h is
bounded above.

PROOF. Writing dy or dŷ as shorthand for dy0 · · · dyK−1, we have

j (ẑ)

g(ẑ)
= 1

g(ẑ)

∫
j (ŷ)RKqK(ŷ, ẑ) dŷ

=
∫

g(ŷ)RKqK(ŷ, ẑ)g(ẑ)−1 j (ŷ)

g(ŷ)
dŷ

=
∫

RKqK(z, y)
j (ŷ)

g(ŷ)
dy,

where the last equality follows from (2.7). The uniqueness in (6.7) now implies
that h(y) = C1j (ŷ)/g(ŷ).

Next, we show that µ in (6.7) is a finite measure. Take a constant a > 0 and let
A = {x :h(x) ≥ a}. Clearly, g(ŷ) = g(y). Then

µ(Ac) =
∫ 1

C1
h(x)g(x)1Ac dx ≤ a

C1

∫
g(x) dx < ∞.

Also,

µ(A) =
∫

j (x)1A dx ≤ 1

a

∫
h(x)1A(x)j (x) dx ≤ 1

a

∫
h(x)j (x) dx =

∫
hdµ,
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which is finite by Theorem 7(ii) in Tweedie (1974) and R-positivity.
We will now use the fact that µ is a finite measure to verify the inequality and

boundedness of h. Note that qK(y, z) ≤ g(z), so

j (z) =
∫

j (y)RKqK(y, z) dy ≤ RK
∫

j (y) dy g(z).

Finally, note that the above inequality says

h(ẑ) = C1j (z)

g(z)
≤ RK

∫
j (x) dx

so h is bounded. �

Theorem 6 on page 860 of Tweedie (1974) implies that

RnQn(x,A) → µ(A)h(x)∫
µ(dy)h(y)

.(6.8)

At first, it may look like the eigenfunctions are in the wrong places. To check this
formula, recall that if there were no killing then R = 1 and the right eigenfunction
would identically equal 1. To simplify (6.8), we will now let π(y) = cj (y), where
the constant is chosen so that

∫
dy π(y)h(y) = 1.

To get information about P (GN) from this, note that

RN−KP (GN) =
∫

· · ·
∫

dx0 · · · dxK−1 dxN−K · · · dxN−1 RN−K

× qN−K
(
(x0, . . . , xK−1), (xN−K, . . . , xN−1)

)
(6.9)

×
K−1∏
i=0

FK+1(xi−K, . . . , xi)f (xi).

Letting N → ∞ and using (6.8), we see that the above converges to∫
· · ·

∫
dx−K · · ·dx−1 dx0 · · · dxK

× π(x−K, . . . , x−1)h(x0, . . . , xK−1)

K−1∏
i=0

FK+1(xi−K, . . . , xi)f (xi),

which is finite by Lemma 6.2. The last computation implies that

P (GN) ∼ c/RN,(6.10)

sharpening the conclusion in Theorem 2.1.
To investigate the properties of coordinates of local maxima, it is useful to

introduce the transformed chain

q̄(x, y) = R

h(x)
q(x, y)h(y).(6.11)
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Relation (6.7) and the irreducibility of Q imply that h(x1, . . . , xk) is positive∏K
i=1 f (xi) dxi almost everywhere, so there are no problems caused by dividing

by 0. Since h(y) is a right eigenvector, the new kernel has
∫

q̄(x, y) dy = 1. Since
π(x) is a left eigenvector, π̄(x) = π(x)h(x) is a stationary distribution∫

dx π(x)h(x)q̄(x, y) = π(y)h(y).

It is easy to see that q̄(x, y) is a Harris chain.
Let PN be the distribution of (x0, . . . , xN−1) conditioned on GN . Let QN be the

distribution of (x0, . . . , xN−1) under the Markov chain with transition probability
q̄ and initial distribution π̄ . From (2.1), the display following (2.5), (6.10) and
(6.11), we see that the Radon–Nikodym derivative of PN relative to QN may be
written as follows:

dPN

dQN

∼ C
g(x0, . . . , xK−1)

π(x0, . . . , xK−1)

K−1∏
i=0

FK+1(xi−K, . . . , xi)
1

h(xN−K, . . . , xN−1)
.(6.12)

As we will see in a moment, standard results for Harris chains give us results
under QN . To transfer these to PN , we will use the following result.

LEMMA 6.3. Given c > −∞, there are constants C3,c,C4,c < ∞ so that
g(z)/π(z) ≤ C3,c and 1/h(z) ≤ C4,c when zj ≥ c for 0 ≤ j ≤ K − 1.

PROOF. The reasoning that led to (6.6) implies that if zj ≥ c and 0 ≤ j ≤
K − 1, then

sup
x

�nqn(x, z) ≥
K∏

j=1

(
�f (zn−j )

)
FK+1

(
bi + (K + 1 − i)c

)
2−K.

Again, there are two cases to consider as in the proof of R-recurrence.

CASE 1. F(x) = 1 for some x < ∞ and, without loss of generality, 1 =
inf{x :F(x) = 1}. Then

�nqn(1̄, z) ≥
K∏

j=1

(
�f (zn−j )

)
FK+1

(
bi + (K + 1 − i)c

)
2−K.

Letting n → ∞ and using (6.8) with R = � and A a small ball centered at z, we
get

π(z0, . . . , zK−1)

g(z0, . . . , zK−1)
≥
(

�

2

)K 1

h(1̄)

K∏
j=1

FK+1
(
bi + (K + 1 − i)c

)
.
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CASE 2. If F(x) < 1 for all x, then, similarly,

RK
∫

RK
dy0 · · · dyK−1 f (y0) · · ·f (yK−1)h(y0, y1, . . . , yK−1)π(z0, . . . , zK−1)

= lim
n

∫
RK

dy0 · · · dyK−1 f (y0) · · ·f (yK−1)R
nqn−K(y, z),

and since∫
RK

dy0 · · · dyK−1 f (y0) · · · f (yK−1)h(y0, y1, . . . , yK−1) = C1

∫
j (y) dy

is finite, the first inequality holds.

To prove the second inequality, we use Lemma 6.2, giving that 1/h(z) is a
constant multiple of g(ẑ)/π(ẑ). �

Our final ingredient is the following lemma.

LEMMA 6.4. The law of large numbers and the central limit theorem
hold for irreducible positive recurrent Harris chains started in their stationary
distributions.

PROOF. The approach of Athreya and Ney (1978) to the study of recurrent
Harris chains on a state space S is to enlarge the state space by adding one point α

that is hit by the chain with probability 1. [See Section 5.6 of Durrett (1995) for
more details.] The law of large numbers and the central limit theorem can then
be proved as in the discrete case by considering successive visits to α. See, for
example, Exercises 5.5 and 5.6 in Chapter 5 of Durrett (1995). �

THEOREM 6.1. If we let µ = ∫
dy π̄(y)h(y) yK−1, let ε > 0 and let

�N,ε =
{
(x0, . . . , xN−1) :

∣∣∣∣∣ 1

N

N−1∑
i=0

xi − µ

∣∣∣∣∣> ε

}
,

then PN(�N,ε) → 0 as N → ∞.

Here and in the next result, the finiteness of the moments µ and σ 2 follow from
Lemma 6.2 and our assumption that

∫
eθxf (x) dx < ∞ for θ ∈ (−δ, δ). In these

two results, it would be enough to assume that f has finite mean and variance.

PROOF OF THEOREM 6.1. Results from the theory of Harris chains imply
that QN(�N,ε) → 0 as N → ∞. Let δ > 0 and pick c so that

∫ c
−∞ f (y) dy = δ.

Repeating the proof of the K-dimensional analogue of (6.3) with c in place of b in
the definitions of AI ,Y

I
i ,Zi shows that∫

AI

�nqn(x, y) dy ≤
(

δ

1 − δ

)K−|I | ∫
[c,∞)K

�nqn(x, y) dy,
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where |I | is the number of elements in I . Now take δ ≤ 1/2 so that δ/(1 − δ) ≤ 2δ

and let BN,δ = {xj ≤ c for some N − k ≤ j < N }. It follows from the previous
inequality, (2.5) and (2.3) that

PN(BN,δ) ≤ Kδ
P (G′

N−K)

P (GN)
≤ CKδ.

Let Aδ = {xj ≤ c for some 0 ≤ j < K}. Translation invariance of PN implies that
PN(Aδ) = PN(BN,δ). Lemma 6.3 and relation (6.12) imply that on Ac

δ ∩ Bc
N,δ we

have dPN/dQN ≤ Cδ , so

PN(�N,ε) ≤ PN(Aδ) + PN(BN,δ) + CδQN(�N,ε).

From this, it follows that

lim sup
N→∞

PN(�N,ε) ≤ 2CKδ.

Since δ is arbitrary, the proof is complete. �

By working harder with these ideas, we can get a central limit theorem. Let

SN = 1

σ
√

N

(
N−1∑
i=0

xi − Nµ

)
.

THEOREM 6.2. Let �N,s = {(x0, . . . , xN−1) :SN ≤ s}. There is a constant σ 2

so that

PN(�N,s) → P (χ ≤ s),

where χ has the standard normal distribution.

PROOF. Our first step is to truncate. From the proof of Theorem 6.1, we see
that ∣∣PN(�N,s) − PN(�N,s ∩ Ac

δ ∩ Bc
N,δ)

∣∣ ≤ 2CKδ.(6.13)

Results from the theory of Harris chains imply that QN(�N,s) → P (χ ≤ s). Our
goal, then, is to transfer these results to PN . Let

TN =
N−1∑
k=0

Xk and T ′
N =

N−N1/4∑
k=N1/4

Xk.

Stationarity of the Xk under QN implies that

QN(|TN − T ′
N |) ≤ 2N1/4QN(|Xk|),

where we have used QN(f ) as shorthand for
∫

f dQN . Thus, if we let S′
N =

(T ′
N − Nµ)/σ

√
N , we have

QN(|SN − S′
N | > ε) → 0(6.14)
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for all ε > 0. Let

U = (X0, . . . ,XK−1), VN = (XN−K, . . . ,XN−1).

The convergence of the Markov chain q̄(x, y) to its stationary distribution implies
that, as N → ∞, XN1/4 is asymptotically independent of U . The Markov property
then implies that U and S′

N are asymptotically independent. That is,∣∣QN(U ≤ u,S′
N ≤ s) − QN(U ≤ u)QN(S′

N ≤ s)
∣∣→ 0(6.15)

as N → ∞. Let

q̂(x, y) = π̄(y)q̄(y, x)

π̄(x)

be the transition probability for the time-reversed chain. Since q̂(x, y) is an
irreducible Harris chain and has stationary distribution π̄(x), it is positive
recurrent. Repeating the previous argument for this chain shows that VN and
XN−N1/4 are asymptotically independent. From this, it follows that VN and
(U,S′

N) are asymptotically independent. Combining this observation with (6.15),
we have ∣∣QN(U ≤ u,S′

N ≤ s,VN ≤ v)

− QN(U ≤ u)QN(S′
N ≤ s)QN(VN ≤ v)

∣∣ → 0.

Note that, dQN -almost surely,

dPN

dQN

= fN(U,VN)

as indicated in (6.12). Due to asymptotic independence,∣∣∣QN

(
fN(U,VN)1(Ac

δ∩Bc
N,δ)

1(S′
N≤s)

)
(6.16)

− QN

(
fN(U,VN)1(Ac

δ∩Bc
N,δ)

)
QN(S′

N ≤ s)
∣∣∣ → 0.

Due to (6.14) and the boundedness on fN(U,VN) on Ac
δ ∩ Bc

N,δ ,∣∣∣QN

(
fN(U,VN)1(Ac

δ∩Bc
N,δ)

1(S′
N≤s)

)
(6.17)

− QN

(
fN(U,VN)1(Ac

δ∩Bc
N,δ)

1(SN≤s)

)∣∣∣.
From (6.16) and (6.17), it follows that∣∣PN

(
Ac

δ ∩ Bc
N,δ ∩ �N,s

)− PN

(
Ac

δ ∩ Bc
N,δ

)
QN(�N,s)

∣∣ → 0.

Combining this with (6.13) and the fact that PN(Ac
δ ∩ Bc

N,δ) ≥ 1 − 2CKδ, the
desired result follows. �
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7. Maxima. In this section, we will prove results about the number of local
maxima and the height of the global maximum. The key to this is the observation
that there are “cut points” where all local maxima must have specified bits and
this breaks the overall maximization problem into a large number of independent
maximization subproblems. We begin with the case K = 1. To define a cut point
in this case, we note that if

φi−1(a,1) + φi(1, b) > φi−1(a,0) + φi(0, b) for all a, b ∈ {0,1},(�)

then any local maximum must have a 1 in the ith position. If (�) holds, then we
say that i is a cut point.

To compute the probability of this event, let

U0 = φi−1(0,1), U1 = φi−1(1,1), U2 = φi(1,0), U3 = φi(1,1),

V0 = φi−1(0,0), V1 = φi−1(1,0), V2 = φi(0,0), V3 = φi(0,1).

In terms of the new variables, the event in (�) can be expressed as

Uj + Uk > Vj + Vk for all (j, k) ∈ {(0,2), (1,2), (0,3), (1,3)}.
The events Ej,k = {Uj + Uk > Vj + Vk} are increasing functions of independent
random variables U0,U1,U2,U3, −V0,−V1,−V2,−V3, so that Harris’s inequality
[see, e.g., Kesten (1981), page 72] gives the following:

P

(⋂
(j,k)

Ej,k

)
≥ ∏

(j,k)

P (Ej,k) = 1
16 .

To compute the exact probability, we note that (�) is equivalent to

min{U2 − V2,U3 − V3} > max{V0 − U0,V1 − U1}.
The four differences in the last equation are independent and identically distrib-
uted. There are 4! = 24 possible relative orders for these random variables, exactly
four of which give the desired equality, so (�) has probability 1/6.

The concept of a cut point generalizes easily to K > 1. For example, when
K = 2 we want

φi−2(a, b,1) + φi−1(b,1,1) + φi(1,1, c)

> φi−2(a, b,u) + φi−1(b,u, v) + φi(u, v, c)

and

φi−1(b,1,1) + φi(1,1, c) + φi+1(1, c, d)

> φi−1(b,u, v) + φi(u, v, c) + φi+1(v, c, d)

for all a, b, c, d ∈ {0,1} and (u, v) ∈ {0,1}2 − {(1,1)}. These inequalities
guarantee that value at any point can be improved by flipping both the ith and
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the (i + 1)st bits to 1. There are 64 inequalities here. In some cases, for example,
φi−2(a, b,1) and φi+1(1, c, d), the variables on the left-hand side can also appear
on the right, but when this occurs they can be subtracted from each side. This
allows us to use Harris’s inequality as before to conclude the probability of a cut
point is at least 2−64. A more careful computation can reduce the probability of a
cut point to 2−16 or less, but for our purposes that is not important. The existence
of a positive density of cut points allows us to prove three results, the first of which
is as follows.

THEOREM 7.1. Let MN be the number of local maxima. There are constants
µM and σ 2

M so that (logMN − µMN)/
√

N converges in distribution to a normal
with mean 0 and variance σ 2

M .

PROOF. For simplicity, we give the details only for K = 1. As the reader
will see, the proof generalizes in a straightforward way to K > 1 but becomes
more tedious to write down. To take the limit as N → ∞, it is convenient to
define an infinite family of independent random variables φi(η) for i ≥ 0 and
η ∈ {0,1}K+1 and then use appropriate N -tuples of random variables from this
family to construct the finite systems.

Let L1,L2, . . . be the location of the cut points at sites j ≥ 1 with j mod 3 = 1.
We consider sites that are 3 units apart so that the corresponding events {j is
a cut point} become independent and wi/3 = (Li+1 − Li)/3 has a geometric
distribution. Let

vi = (
φLi−1(1,1), φLi−1(0,1), φLi

(1,1), φLi
(1,0)

)
.

The sequence (vi) is i.i.d. and independent of wi , so (vi,wi, vi+1) is a positive
recurrent Harris chain.

Let mi be the number of sequences η ∈ {0,1}[Li,Li+1] with η(Li) = η(Li+1) = 1
that are local maxima; that is, the value of

∑
j∈[Li,Li+1)

φj (ηj , ηj+1) is not
improved by changing any one of the coordinates j ∈ (Li,Li+1). If we condition
on (vi,wi, vi+1), i ≥ 1, then the mi are independent, so (vi,wi,mi, vi+1), i ≥ 1,
is a positive recurrent Harris chain.

Let J (N) = max{i :Li+1 < N} and let m0 be the number of local maxima in
the interval [LJ(N)+1,L1] that wraps around. Then MN = m0

∏J (N)
i=1 mi . If we let

w0 = L1 −LJ(N)+1 mod N be the width of the wrap-around interval, then it is easy
to see that w0 is bounded in distribution by three times a sum of two independent
geometric random variables. Since m0 ≤ 2w0−1, we can ignore the contribution of
logm0 to logMN in proving a central limit theorem.

Since log2 mi ≤ wi and wi/3 has a geometric distribution, we have
E(logmi)

ρ < ∞ for all ρ < ∞. The strong law of large numbers for positive
recurrent Harris chains implies

1

n

n∑
i=1

logmi → E log mi a.s.,
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where the right-hand side is the expected value of logmi under the stationary
distribution. The law of large numbers for renewal sequences implies J (N)/N →
1/Ewi . Combining the last two results, we have

1

N

J(N)∑
i=1

logmi → E logmi

Ewi

a.s.

To derive the central limit theorem, we now note that

J (N)∑
i=1

log mi =
N/Ewi∑

i=1

log mi +
(
J (N) − N

Ewi

)
E logmi + o

(√
N
)
,

where o(
√

N) indicates a term that, when divided by
√

N , converges in
distribution to 0. Similar reasoning, using

∑J (N)
i=1 wi ≈ N , shows

J (N) − N

Ewi

= N −∑N/Ewi

i=1 wi

Ewi

+ o
(√

N
)
.

Combining the last two results, we have

J (N)∑
i=1

logmi − N
E logmi

Ewi

=
N/Ewi∑

i=1

ui + o
(√

N
)
,

where ui = logmi −wi(E logmi/Ewi) has Eui = 0. The result now follows from
the central limit theorem for positive recurrent Harris chains. �

THEOREM 7.2. Let H ∗
N be the height of the global maximum. There are

constants µH ∗ and σ 2
H ∗ so that (H ∗

N − µH ∗N)/
√

N converges in distribution to a
normal with mean 0 and variance σ 2

H ∗ .

PROOF. Again, we give the details only for the case K = 1. Let hi be the
height of the global maximum of

∑
j∈[Li,Li+1)

φj (ηj , ηj+1) over all sequences
η ∈ {0,1}[Li,Li+1] with η(Li) = η(Li+1) = 1.

PROPOSITION 7.1. P (hi > x) ≤ Ce−ax , where a > 0 and C < ∞ are some
constants.

Once Proposition 7.1 is established (see also the remark following it), we have
E|hi|ρ < ∞ for all ρ < ∞. The rest of the proof is identical to that of Theorem 7.1.
All we have to do is to replace logmi by hi . �

PROOF OF PROPOSITION 7.1. Let Em be the event that m is a cut point and
let Mj = max{φj(u, v) : (u, v) ∈ {0,1}}. From the definition, it is easy to see that
the event Em is independent of Mj with j < m − 1 and j > m. Suppose, without
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loss of generality, that Li = 0 and break things down according to the value of
Li = 3k. In this case,

hi ≤ S0 + S1 + S2 where Sl =
k−1∑
j=0

M3j+l .

In order for hi > x, we must have some Sl > x/3. Thus, to prove our result, it is
enough to show that there is some γ > 0 so that maxl E exp(γ Sl) < ∞.

If we condition on the event F3k = E0 ∩Ec
3 ∩· · ·∩Ec

3k−3 ∩E3k, then the random
variables

M0,M1, (M2,M3),M4, (M5,M6), . . . ,M3k−5, (M3k−4,M3k−3),M3k−2,M3k−1

are independent. The distribution of M1,M4, . . . ,M3k−2 is not affected by
the conditioning. Conditional on F3k , the pairs (M3j−1,M3j ) have the same
distribution as ((Mm−1,Mm)|Ec

m) while M0 and M3k−1 have the same distribution
as (Mm|Em) and (Mm−1|Em).

We have supposed that
∫

eθxf (x) dx < ∞ for θ ∈ (−δ, δ). Let p = P (Em) and
pick ε > 0 small enough so that EeγMj < 1/(1 −p)1/2 for all γ ∈ [0, ε]. Breaking
things down according to the value of k,

E
(
exp(γ S1)

) =
∞∑

k=1

p(1 − p)k(EeγMj )k ≤ p(1 − p)1/2

1 − (1 − p)1/2
.(7.1)

To bound S0 and S2, we note that if X is a random variable and G is an event with
positive probability, then

P (X > x|G) ≤ P (X > x)

P (G)
∧ 1.

From this, it follows that if we choose 0 < γ ≤ ε sufficiently small, then

Eeγ (Mm|Em), Eeγ (Mm−1|Em), Eeγ (Mm|Ec
m), Eeγ (Mm−1|Ec

m) ≤ 1/(1 − p)1/2.

Summing as in (7.1), we have, for l = 0,2, E(exp(γ Sl)) ≤ p(1 − p)1/2/(1 − (1 −
p)1/2) and the proof is complete. �

REMARK. Let gi be the height of the global minimum of
∑

j∈[Li,Li+1)
φj (ηj ,

ηj+1) over all sequences η ∈ {0,1}[Li,Li+1] with η(Li) = η(Li+1) = 1. The proof
of Proposition 7.1 easily extends to showing P (gi < −x) ≤ Ce−ax .

As another consequence of cut-point decomposition, we can show that the
heights of local maxima on one landscape follow a normal distribution. Before for-
mulating the result, we introduce additional notation. Let (w1,X

1), (w2,X
2), . . .

be independent and identically distributed taking values in Z+ × ⋃∞
m=1[0,1]m.

Here, Xi is a list of the heights of the local maxima in [Li,Li+1] and
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wi = Li+1 − Li , i ≥ 1. Let mi be the dimension of the vector Xi . Note that, given
mi = m and wi = w, (Xi

1,X
i
2, . . . ,X

i
m) form a pairwise exchangeable sequence

with no ties. That is, given wi,mi , for any two i1, i2, 1 ≤ i1 < i2 ≤ mi , the condi-
tional distribution of (Xi

i1
,X1

i2
) is symmetric in its coordinates and has no mass on

the diagonal. Let

ai = 1

mi

mi∑
j=1

Xi
j

be the average value of the coordinates of Xi . Due to pairwise exchangeability,
Eai = EXi

1. Let J (N) = max{i :w1 +· · ·+wi < N} and let νN be the distribution
that assigns mass 1/m1 · · ·mJ(N) to each of the sums

1√
N

J(N)∑
i=1

(Xi
η(i) − ai) where η(i) ∈ {1, . . . ,mi}.

Equivalently, for each i, let η(i) be a uniform random variable on {1, . . . ,mi},
given mi , and let νE be the distribution of

∑J (N)
i=1 (Xi

η(i) − ai)/
√

N .
In either formulation, νN(ω,A) depends on the realization of the variables ω

that are used to construct the sequence of landscapes and in the second variable is
a measure on R.

THEOREM 7.3. For almost every ω, as N → ∞, νN(ω, ·) converges weakly
to a normal distribution with variance σ 2

E .

PROOF. Since, for each j ∈ {1, . . . ,mi}, Xi
j ∈ [gi, hi], we have the existence

of all moments and
1

(log N)2 max
1≤i≤J (N)

max
1≤j≤mi

|Xi
j | → 0 as N → ∞.(7.2)

Let GN
j be the distribution that assigns mass 1/mj to each point (Xi

j −ai)/
√

N .

Then GN
j has mean 0 and variance vN

j . The law of large numbers implies that, as

N → ∞,
∑J (N)

j=1 vN
j → σ 2

E > 0. Using (7.2), we now see that the triangular array

J (N)∑
i=1

Xi
η(i) − ai√

N
(7.3)

satisfies the hypotheses of the Lindberg–Feller central limit theorem and the
desired result follows.

To relate the variance of the limiting normal here to that in Theorem 6.2, note
that if we replace ai by Eai in (7.3), then the new quantity

J (N)∑
i=1

Xi
η(i) − Eai√

N
(7.4)
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is very close to the CLT scaled fitness SN , which was studied in Theorem 6.2.
These two quantities differ since (7.4) does not depend on �i(ηi, . . . , ηi+K) for
i >

∑J (N)
j=1 wj . It is easy to see that the difference between them is a term of order

o(1) as N → ∞. Since ai ∈ [gi, hi], ai has all moments. Note that

E(aiX
i
η(i)) = E

[
aiE

(
Xi

η(i)

∣∣∣mi,

mi∑
j=1

Xi
j

)]
= E(a2

i ).

This implies that cov(ai, ai − Xi
η(i)) = 0. Writing

J (N)∑
i=1

Xi
η(i) − Eai√

N
=

J (N)∑
i=1

Xi
η(i) − ai√

N
+
√

J (N)

N

J(N)∑
i=1

ai − Eai√
J (N)

,

we have σ 2
H = σ 2

E + EJ(1) · var(a1). �
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