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ATTRACTING EDGE PROPERTY FOR A CLASS
OF REINFORCED RANDOM WALKS

BY VLADA LIMIC1

University of British Columbia

Using martingale techniques and comparison with the generalized Urn
scheme, it is shown that the edge reinforced random walk on a graph
of bounded degree, with the weight function W(k) = kρ, ρ > 1, traverses
(crosses) a random attracting edge at all large times. If the graph is a triangle,
the above result is in agreement with a conjecture of Sellke.

1. Introduction. Consider a connected graph G with the set of vertices V =
V (G), and the set of (unoriented) edges E = E(G). Two vertices v, v′ are adjacent
(v ∼ v′ in symbols) if there exists an edge, denoted by [v, v′] = [v′, v], connecting
them. For any vertex v of G, let A(v) ⊂ V be the set of adjacent vertices.

Let W(k) > 0, k ≥ 0 be the weight function. The edge reinforced random walk
on G records a random motion of a particle along the vertices of G with the
following properties:

(i) if currently at vertex v ∈ G, in the next step the particle jumps to one of
the adjacent vertices,

(ii) the probability of jump to v′ is W -proportional to the number of previous
traversals of the edge [v, v′].

More precisely, let the initial edge weights be Xe
0 for all e ∈ E. Let In be a

V -valued random variable, recording the position of the particle at time n, n ≥ 0.
For concreteness, set Xe

0 = 1, e ∈ E, and I0 = v0 for some v0 ∈ V . A traversal of
edge e occurs at time n + 1 if e = [In, In+1]. Denote by Xe

n − Xe
0 the total number

of traversals of edge e until time n. Let Fn be the filtration σ {(Ik,X
e
k, e ∈ E), k =

0, . . . , n}. Let δ[v,v′] be the Kronecker symbol, that is, δ[v,v′](e) = 1 for e = [v, v′]
and δ[v,v′](e) = 0 otherwise. The edge reinforced random walk on G with weight
function W is a Markov chain (I,X) = {(In,X

e
n, e ∈ E),n ≥ 0} with the following

conditional transition probabilities: on the event {In = v}, for v′ ∈ A(v),

P
(
In+1 = v′, Xe

n+1 = Xe
n + δ[v,v′](e), e ∈ G|Fn

)
(1)

= W(X[v,v′]
n )∑

u∈A(v) W(X
[v,u]
n )

.
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It is easily seen that the edge reinforced random walk is well defined for any weight
function W , where W(k) > 0, k ≥ 0.

The edge reinforced random walk (ERRW) was originally introduced by
Coppersmith and Diaconis (cf. [3]) as a model of exploring an unknown city.
Paper [3] considers only the reinforcement weights which increase linearly in the
number of edge traversals. Davis [2] introduces ERRW on Z = { . . . ,−1,0,1, . . . }
in a setting where the reinforcement weights are given by a nondecreasing function
W : {1, . . . } �→ (0,∞). Theorem 3.2 in [2] implies that if (a)

∑
k 1/W(k) = ∞,

then with probability 1, every vertex in Z is visited by the walk infinitely often, else
if (b)

∑
k 1/W(k) < ∞, then almost surely there exists some random integer i such

that the walk visits only i and i +1 at all large times. Therefore, on infinite graphs,
the reinforced walks may explore only finite subgraphs almost surely. The same
never holds for a classical random walk on an infinite graph. Sellke [12] studies
the long-term behavior of reinforced random walks on Z

d in terms of weights W .
In particular, [12] shows a natural generalization of the above result from [2]: if

∑
k

1

W(k)
< ∞,(2)

then almost surely there exists some random attracting edge on Z
d which is

traversed by the walk at all large times. The same paper conjectures that the
above property holds for edge reinforced walks on a triangle. The goal of this
paper is to show that in the special case of power function reinforcement weights,
condition (2) implies the existence of the attracting edge with probability 1. Here
the only assumption on the graph is that each vertex has at most D(G) adjacent
vertices (edges), for some D(G) < ∞. So the graph G is either finite, or infinite
with bounded degree. Special cases are the infinite lattices.

Let G∞ = {e ∈ E : supn Xe
n = ∞} be the (random) graph spanned by all edges

in G that are traversed by the walk infinitely often. The main result of this paper is
the following.

THEOREM 1. If W(k) = kρ , ρ > 1, and supe Xe
0 < ∞, the edge reinforced

random walk on G traverses a random attracting edge at all large times a.s., that
is,

P

(
∃ e ∈ E such that sup

e′ 
=e

sup
n

Xe′
n < ∞

)
(3) = P (G∞ has only one edge) = 1.

REMARKS. A simple calculation of Borel–Cantelli type shows that (2) is a
necessary and sufficient condition for P (G∞ has only one edge) > 0. It is easy to
see that Theorem 1 holds if the weight function increases very fast, for example,
W(k) = 102k

(Andrzej Zuk, personal communication).
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Toth [14] studies the asymptotic behavior of edge occupation times for ERRW
on Z under the reinforcement with weights W(k) = kρ, ρ < 1. Keane and Rolles
[7] determine asymptotics of the joint occupation times of edges and cycles,
for a linearly reinforced ERRW on a finite graph. Pemantle [8] determines the
recurrence/transience phase transition for linearly reinforced ERRW on a tree.
The analogous vertex reinforced random walk (VRRW) was initially studied by
Pemantle [9]. Pemantle and Volkov [11] showed that a linearly reinforced VRRW
on Z visits only finitely many vertices, almost surely, and conjectured that the size
of the set of vertices visited infinitely often is five with probability 1. This was
recently proved by Tarrès [13]. These results are remarkable, since the analogous
linearly reinforced ERRW on Z visits all vertices infinitely often, for example,
by [2], Theorem 3.2. Volkov [15] proved that for a large class of graphs (Zd in
particular) the linearly reinforced VRRW visits only finitely many vertices with
positive probability. The question of whether linearly reinforced ERRW on Z

d ,
d ≥ 2 is recurrent or transient remains open. The “once reinforced random walk”
on G corresponds to the weight function W(1) = 1,W(k) = c, k ≥ 2, for some
c > 1. Davis [2] asked whether the above walk returns to its starting point with
probability 1. Durrett, Kesten and Limic [5] study once reinforced random walks
on regular trees.

In the next section the problem on the general graph is decoupled into analogous
problems (cf. Proposition 1) on finite cycles. Proposition 1 and Theorem 1 are
proved in Section 5. Section 3 considers the problem on a very simple graph, gives
some intuition, and introduces a useful supermartingale. Section 4 consists of a
sequence of lemmas needed in the proof of Proposition 1, and Section 6 contains
the proof of conditional probability estimates used in Section 4. Throughout this
paper C(p1,p2, . . . ) or c(p1,p2, . . . ) denote finite positive constants that depend
only on the parameters p1,p2, . . . inside the parentheses, and whose exact value
is not important.

Many arguments in this paper depend on the assumption W(k) = kρ , ρ > 1. The
remark at the end of Section 5 gives a detailed list of the “critical” places where
special properties of power functions are used.

2. A useful construction. The (discrete time) edge reinforced random walk
(I,X) on G is a skeleton of the continuous time reinforced random walk (Ĩ , X̃)

defined below. We take this useful construction from Sellke [12] who attributes
it to Rubin and refers to the Appendix of [2]. An analogous construction appears
in [1].

Let the initial weights be X̃e
0 = Xe

0 (= 1) on all edges, and let the initial position
of Ĩ be equal to v0 ∈ V . The process (Ĩ , X̃) moves by instantaneous jumps at
transition times 0 = T0 < T1 < T2 < · · · ≤ ∞. If ITj

= v then consider mutually
independent (and independent of FTj

) exponential (rate 1) random variables



1618 V. LIMIC

(Ee
j , e = [v,u], u ∈ A(v)). Then Tj+1 = Tj + Dj , where

Dj = Ee′
j

W(X̃e′
Tj

)
= min

u∈A(v)

E
[v,u]
j

W(X̃
[v,u]
Tj

)

for some e′ = [v, v′], v′ ∈ A(v). Moreover, (Ĩt , X̃t ) = (ĨTj
, X̃Tj

) for t ∈ [Tj , Tj+1)

and ĨTj+1 = v′, X̃e
Tj+1

= X̃e
Tj

+ δe′(e), e ∈ E.

Due to the elementary properties of exponentials the skeleton process {(ĨTj
,

X̃Tj
), j ≥ 0} is a version of the edge reinforced random walk (I,X) from

Section 1. Note that the continuous time process (Ĩ , X̃) may (and typically will)
traverse certain edge(s) infinitely often in a finite amount of time.

Say that the process Ĩ is “in contact” with edge e = [u, v] whenever Ĩ equals
u or v. Define

Y e
k =

∫
[0,∞)

1{Ĩt=u or Ĩt=v}1{X̃e
t =k} dt

to be the total amount of time that Ĩ is in contact with e while Xe· = k. Then the
total time T e =∑

k Y e
k = ∫

[0,∞) 1{Ĩt=u or Ĩt=v} dt of Ĩ in contact with edge e equals

the total amount of time that (Ĩs , s ∈ [0,∞)) spends at the endpoints of e.
Due to the memoryless property of exponentials, Y e

k ≤ Ze
k where Ze

k is an
exponential [rate W(k)] random variable. Due to independence of {Ee

j , e ∈ E,

j ≥ 1}, it is easy to see that one can construct a coupling of {Y e
k , e ∈ E,k ≥ 0}

and a family {Ze
k, k ≥ 1, e ∈ E} of independent exponential random variables

[where Ze
k has rate W(k), k ≥ 1, e ∈ E] so that Y e

k = Zk on event {edge e is
traversed at least k times}, for details see [12]. Since E

∑
k Ze

k =∑
k 1/W(k) < ∞

by (2), we get that T e ≤ ∑
k Ze

k is finite almost surely. Moreover, on the event
{supt X̃

e
t > k}, where e is traversed by Ĩ more than k times, we have Y e

k = Ze
k . The

last observation is the main ingredient in the slick proof of Sellke ([12], Theorem 3)
showing assertion (3) for G the d-dimensional integer lattice, under the minimal
assumption (2).

Let G1 be the random subgraph of G spanned by all edges that are visited at
least once by the walk. Clearly G∞ ⊂ G1 almost surely. It is not difficult to see
(and proved in [12], Lemma 4) that (2) implies

P (G1 is a finite graph) = 1,(4)

whenever G has bounded degree. This implies P (G∞ is a finite and connected
graph) = 1, as shown in [12].

A cycle of length k (k ≥ 3) is a k-tuple of vertices (v1, . . . , vk), such that
v1 ∼ v2 ∼ · · · ∼ vk ∼ v1. There are no repeated vertices in a cycle. Call a cycle
of even (resp. odd) length an even (resp. odd) cycle.
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LEMMA 1. Let (I,X) be the edge reinforced random walk on G with
weights W satisfying (2). Then:

(i) P (G∞ does not contain an even cycle ) = 1, and
(ii) P (G∞ is a tree) = P (G∞ has only one edge).

As pointed out by Stas Volkov (personal communication), this is a part of the
argument in [12], proof of Theorem 3. For reader’s benefit we give the argument
for P (G∞ does not contain a square) = 1 (the proof for longer even cycles is
similar) and for (ii). Let e1 = [v1, v2], e2 = [v2, v3], e3 = [v3, v4], e4 = [v4, v1] be
the edges of a square � such that

P (� ⊂ G∞) > 0.(5)

Since (I,X) is the skeleton of (Ĩ , X̃), (5) implies that Ĩ traverses all four edges
of � infinitely often, with positive probability. Let T ei denote the total time of Ĩ

in contact with edge ei . Now the total time T that Ĩ spends at the set of vertices
{v1, v2, v3, v4} of � can be obtained from T ei ,1 ≤ i ≤ 4 in two (symmetric) ways.
Since T = (total time at v1 or v2) + (total time at v3 or v4), then T = T e1 + T e3 ,
and similarly, T = T e2 + T e4 . On the event in (5),

∑∞
k=1 Y

ei

k = ∑∞
k=1 Z

ei

k by the
observation preceding the lemma. Therefore, on the same event,

T =
∞∑

k=1

Z
e1
k +

∞∑
k=1

Z
e3
k =

∞∑
k=1

Z
e2
k +

∞∑
k=1

Z
e4
k .(6)

Since two independent continuous random variables are equal with probability 0,
(5) is impossible.

PROOF OF (ii). Suppose that � is a tree with at least two edges such that

P (� = G∞) > 0.(7)

Let v be a vertex in � such that there are at least two [and at most D(G)] different
edges in � incident to v. Call these edges e1 = [v,u1], e2 = [v,u2], . . . , ek =
[v,uk], ui 
= uj for 1 ≤ i 
= j ≤ k. Relation (7) implies existence of time t and
integers m1,m2, . . . ,mk such that

P

(
{� = G∞} ∩ {

Ĩt− 
= Ĩt = v
}∩ ⋂

s≥0

{
Ĩt+s ∈ �

}∩
k⋂

i=1

{
X̃

[v,ui ]
t = mi

})
> 0.

However, on the event above, the time T v,t := ∫∞
0 1{Ĩt+s=v} ds in contact with

vertex v on the interval [t,∞) equals both
∑∞

l=0 Z
[v,u1]
m1+2l and

∑∞
l=0 Z

[v,u2]
m2+2l , and

these are again two independent continuous random variables which are equal with
probability 0, a contradiction.

It is important to note that the above argument easily generalizes to the case of
initial state Xe

0, where {Xe
0, e ∈ E} is a bounded set, but it depends heavily on the

fact that the cycle � has even length. �
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LEMMA 2. Under the assumptions of Lemma 1,

P (G∞ contains an odd cycle ) = P
(
G∞ contains a unique (odd) cycle

)
.

PROOF. This is a consequence of the fact that any two co-existing cycles
inside of G∞ would either be disjoint but connected by a finite path in G∞ (since
G∞ is a finite connected graph), or would have exactly one vertex in common, or
would have at least two vertices in common.

The first case is impossible by the following argument. Let �1 ∪�2 ∪�3 ⊂ G∞,
where �1 = (1,2, . . . , �1), �2 = (�1 + �, �1 + � + 1, . . . , �1 + � + �2 − 1) are odd
cycles, �1, �2 ≥ 3, and �3 is a path 1 ∼ �1 + 1 ∼ · · · ∼ �1 + � of length � ≥ 1.
Consider a combined path

1 �→ 2 �→ · · · �→ �1 �→ 1 �→ �1 + 1 �→ · · · �→ �1 + � �→ �1 + � + 1 �→ · · ·
�→ �1 + � + �2 − 1 �→ �1 + � �→ �1 + � − 1 �→ · · · �→ �1 + 1 �→ 1,

and let ej ,1 ≤ j ≤ �1 + �2 + 2�, be the j th edge on the above path. Note
that all edges e ∈ E(�1 ∪ �2) appear once, while all edges e ∈ E(�3) appear
twice on the above path. Moreover, since �1, �2 are both odd numbers, the sets
E1 = {ej ,1 ≤ j ≤ �1 +�2 +2�, j odd} and E2 = {ej ,1 ≤ j ≤ �1+�2 +2�, j even}
are disjoint sets of edges. To show this suppose e ∈ E1 ∩ E2. Then it must be
e ∈ {[1, �1 + 1], [�1 + 1, �1 + 2], . . . , [�1 + � − 1, �1 + �]}. However, [1, �1 + 1]
equals to both e�1+1 ∈ E2 and e�1+�2+2� ∈ E2 and similarly, [�1 + k, �1 + k + 1],
1 ≤ k ≤ � − 1, equals both e�1+k+1 and e�1+�2+2�−k , where �1 + k + 1 and
�1 + �2 + 2� − k have the same parity. The identity analogous to (6),

∑
e∈E1

∞∑
k=1

Ze
k = ∑

e∈E2

∞∑
k=1

Ze
k on {�1 ∪ �2 ∪ �3 ⊂ G∞}

implies the statement.
The second case (� = 0) is again impossible by a similar argument. To illustrate

this fact, consider a graph � composed of two triangles with a common vertex v

in Figure 1.
One can express the total time T v = ∫∞

0 1{Ĩt=v} dt in contact with vertex v

as both (T e2 + T e3 − T e1)/2 and (T e4 + T e5 − T e6)/2. This again implies that

FIG. 1.
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{� ⊂ G∞} is a subset of an event on which two independent continuous random
variables are equal.

In the last case, where the two odd cycles have at least two vertices in common,
a subgraph of the union of the two cycles would be an even cycle, which is
impossible by Lemma 1. The details are left to the reader. �

COROLLARY 1. Under the assumptions of Lemma 1,

P (G∞ contains a vertex of degree ≥ 3 ) = 0.

PROOF. The proof is similar to the one for Lemma 1(ii). From the previous
results, note that there are only two possibilities for a vertex of G∞ to have three or
more adjacent edges: either none of the adjacent edges belongs to a cycle in G∞, or
two of the adjacent edges belong to the unique cycle in G∞ and all the other edges
do not belong to a cycle in G∞. The first case above occurs with probability 0 by
the argument in Lemma 1(ii). The second case is similar. The following example
illustrates the argument. Assume that G∞ contains the graph � in Figure 2 with
positive probability.

Then, as before, there would exist positive integers me, mei
, i = 1,2,3, and a

time t ≥ 0 such that

P

(
{� ⊂ G∞} ∩ {Ĩt− 
= Ĩt = v

}∩ ⋂
s>0

{
Ĩt+s ∈ G∞

}∩
k⋂

i=1

{
X̃

[v,ui ]
t = mi

})
> 0.

Recall the total time T v,t in contact with vertex v from the proof of Lemma 1(ii).
On the event above (due to almost sure absence of other cycles) we have both
T v,t = (

∑
k≥me2

Z
e2
k + ∑

k≥me3
Z

e3
k − ∑

k≥me1
Z

e1
k )/2 and T v,t = ∑

k≥0 Ze
me+2k

which is again impossible by independence and continuity of Z’s, therefore
P ({e, e1, e2, e3} ⊂ G∞) = 0. �

The next statement follows directly from Lemma 1(ii).

COROLLARY 2. Let G be a cycle of length �. Under the assumptions of
Lemma 1 we have {G∞ has only one edge} = {G∞ 
= G} almost surely.

FIG. 2.
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REMARKS. In the notation e = [v,w] it is implicit that at most one edge
connects any two vertices. One can apply the reasoning of Lemma 1 and
Corollary 1 to conclude that, even in the setting where loops [v, v] and multiple
edges connecting two vertices exist in G, as long as D(G) < ∞, Lemma 1(i) holds
(so cycles of length 2 are not contained in G∞ either) and G∞ contains subgraphs
spanned by two edges [v, v], [v,w] with probability 0.

It is clear that property (4), Lemmas 1, 2 and Corollaries 1, 2 continue to hold
(with arguments changed slightly) under a weaker assumption supe∈G Xe

0 < ∞. So
in order to show assertion (3), it is sufficient to show that G∞ does not include an
odd cycle. Theorem 1 is a consequence of the following proposition.

PROPOSITION 1. Let W(k) = kρ for some fixed ρ > 1. Let G be a cycle of
length �. Then

P (G∞ has only one edge) = 1.(8)

It is plausible that the statement of the proposition (and Theorem 1) remains
true under the assumption (2) only.

Both Proposition 1 and Theorem 1 are proved in Section 5.

3. Preliminaries: ERRW on two edges. We first consider a much simpler
process, the edge reinforced random walk “on two edges.” The graph G has
now three vertices 0,1,2 and two edges [0,1] = [1,0] and [0,2] = [2,0].
Process (I,X) is the same as in Section 1, except we denote X[0,1] by X1 and
X[0,2] by X2. The transition probabilities are given in (1) when In = 0, but the
particle now deterministically goes back from vertex 1 (and 2) to 0 in one step.

PROPOSITION 2. If W(k) = kρ with ρ > 1, the edge reinforced random walk
on G traverses the attracting edge for all large times a.s., equivalently,

P

(
min
i=1,2

sup
n≥1

Xi
n < ∞

)
= 1.(9)

REMARK. The above proposition is only a special case of Lemma 1(ii). We
sketch here a longer proof since we are going to use some of its ingredients later
in the proof of Proposition 1.

From now on assume W(k) = kρ with ρ > 1.

LEMMA 3. If I0 = 0, and X1
0,X

2
0 are positive integers then the process

X1
2nX

2
2n/(X

1
2n + X2

2n)
2, n ≥ 0, is a supermartingale.
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PROOF. Calculate

E

(
X1

2n+2X
2
2n+2

(X1
2n+2 + X2

2n+2)
2

∣∣∣∣F2n

)

= (X1
2n + 2)X2

2n

(X1
2n + X2

2n + 2)2

(X1
2n)

ρ

(X1
2n)

ρ + (X2
2n)

ρ

+ X1
2n(X

2
2n + 2)

(X1
2n + X2

2n + 2)2

(X2
2n)

ρ

(X1
2n)

ρ + (X2
2n)

ρ
(10)

= X1
2nX

2
2n

(X1
2n + X2

2n)
2

(X1
2n + X2

2n)
2

(X1
2n + X2

2n + 2)2

× (X1
2n)

ρ + (X2
2n)

ρ + 2(X1
2n)

ρ−1 + 2(X2
2n)

ρ−1

(X1
2n)

ρ + (X2
2n)

ρ
.

It suffices to check that

(X1
2n + X2

2n)
2

(X1
2n + X2

2n + 2)2

(X1
2n)

ρ + (X2
2n)

ρ + 2(X1
2n)

ρ−1 + 2(X2
2n)

ρ−1

(X1
2n)

ρ + (X2
2n)

ρ
≤ 1, n ≥ 1,

which is true, since the maximum of the quantity

(x1 + x2)2

(x1 + x2 + 2)2

(x1)ρ + (x2)ρ + 2(x1)ρ−1 + 2(x2)ρ−1

(x1)ρ + (x2)ρ

is obtained for x1 = x2 = (x1 + x2)/2 [perhaps the simplest way to check this
is by setting x1 = αx, x2 = (1 − α)x and by maximizing in α], and since
(1 + 2/x)(x/(x + 1))2 < 1 if x > 0. �

It immediately follows from the supermartingale convergence theorem that
(X1

nX
2
n)/(X

1
n +X2

n)
2 has an almost sure nonnegative limit ∈ [0,1/4], so it must be

lim
n

X1
n

n
= X a.s.(11)

for some random X ∈ [0,1]. Then, intuitively, along each path X1
2n is asymptoti-

cally equal to a Binomial(n,Xρ/(Xρ + (1 − X)ρ)) variable multiplied by 2, and
therefore

X = long run average = P (success) = Xρ

Xρ + (1 − X)ρ
.(12)

So the only possible values X may take are 0,1/2 and 1, and provided 1/2 can be
excluded, one is a step closer to (9). One can show that indeed the limit X in (11)
may take only values 0 or 1 and that the events {X = 0} and {maxn≥2 X1

n < ∞} are
equal; see [6] for similar arguments.

In the next section we will need the following corollary.
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COROLLARY 3. For any two c1 < c2 < 1,

P

(
sup
k≥1

X1
n+k

X1
n+k + X2

n+k

≤ c2

2

∣∣∣∣ X1
n

X1
n + X2

n

≤ c1

2
, In = 0

)
(13)

≥ 1 − c1(2 − c1)

c2(2 − c2)
,

P

(
sup
k

X1
k < ∞

∣∣∣∣ X1
n

X1
n + X2

n

≤ c1

2
, In = 0

)
≥ 1 − c1(2 − c1)

c2(2 − c2)
.(14)

PROOF. If Zk is a nonnegative supermartingale then by optional stopping

P

(
sup
k≥0

Zk+n ≤ b|Fn

)
1{Zn≤a} ≥

(
1 − a

b

)+
1{Zn≤a}.(15)

Fix c < 1. Note that X1
n/(X

1
n + X2

n) ≤ c/2 implies X1
nX

2
n/(X

1
n + X2

n)
2 ≤

c(2 − c)/4, and also X1
n/(X

1
n + X2

n) < 1/2 and supk≥0 X1
n+2kX

2
n+2k/(X

1
n+2k +

X2
n+2k)

2 ≤ c(2 − c)/4 imply supk≥0 X1
n+k/(X

1
n+k + X2

n+k) < c/2. Since

X1
n+2kX

2
n+2k/(X

1
n+2k + X2

n+2k)
2 is a nonnegative supermartingale, and since

supk≥1 X1
n+k/(X

1
n+k + X2

n+k) is realized at n + 2k for some k, (15) and previous
observations give statement (13). Furthermore, by Proposition 2 (or the remark
following it), on the event {supk≥n X1

k/(X
1
k + X2

k) ≤ c2/2 < 1/2} we know that
vertex 1 will be visited only finitely often, yielding (14). �

4. Attracting edge for ERRW on a cycle. Let G be a cycle of length �.
Denote its vertices by {1,2, . . . , �} and its edges by {[1,2], [2,3], . . . , [�,1]}.
The statement of Proposition 1 is true for even � by Lemma 1, so we may
assume that � ≥ 3 is an odd number, although this is not necessary for the
argument below. Without loss of generality, assume the initial configuration

X
[1,2]
0 ,X

[2,3]
0 , . . . ,X

[�,1]
0 is given at the initial time X

[1,2]
0 + X

[2,3]
0 + · · · + X

[�,1]
0 .

Intuitively, in order to show Proposition 1, one hopes to show first that the ERRW
on G eventually stops traversing one of the edges with probability 1, and then apply
Lemma 1(ii). The actual analysis is done in terms of searching for a “candidate”
attracting edge. The addition in brackets [ ·, · ] is always done modulo �. It is
easy to check that if X

[1,2]
0 is large, and all the initial weights are comparable

(X[i−1,i]
0 ≈ X

[i,i+1]
0 ) then only after a very large number of steps it may be true

that one edge is traversed many more times than the others. Indeed, the attracting
edge appears gradually, as shown by the sequence of lemmas below.

It seems difficult to show a priori that (X[1,2]
n /n,X[2,3]

n /n, . . . ,X[�,1]
n /n)

has a limit as n → ∞. Lemmas 7 and 9 imply that with probability 1, the
vector of rescaled weights (X[1,2]

n /n,X[2,3]
n /n, . . . ,X[�,1]

n /n) does not converge to
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(1/�,1/�, . . . ,1/�). Lemma 11 says there exists an edge such that, up to some
future time, the particle traverses this edge many more times than one of its
neighbors. Lemmas 13 and 14 use coupling arguments to show that eventually
there exists one edge which is traversed at least 21/(ρ−1) times as both of its
neighbors, and finally that its neighbors end up being traversed only finitely many
times, with probability uniformly bounded away from 0.

For r > 0, let

τm
0 (r) := inf

{
k ≥ m : max

i

∣∣X[i−1,i]
k − X

[i,i+1]
k

∣∣> r
√

k

}
,

τm
1 (r) := inf

{
k ≥ m : max

i

∣∣X[i−1,i]
k − X

[i,i+1]
k

∣∣> rk

}
,

τm
2 (r) := inf

{
k ≥ m :

X
[j,j−1]
k

X
[j,j+1]
k

/∈
(

1

r
, r

)
for some j ∈ {1, . . . , �}

}
.

For a fixed integer m, let T (0) := m and

T (n) = inf{k > T (n − 1) : Ik = 1}(16)

be the successive times of return to vertex 1. If {Ik 
= 1,∀ k > T (n−1)} for some n,
then set T (n) = T (n+1) = · · · = ∞. Since IT (n) = 1 on the event {T (n) < ∞}, in
the next step the particle moves to IT (n)+1 ∈ {2, �}, and X[1,IT (n)+1] increases by 1.
If T (n + 1) < ∞ then [Ik, Ik+1] /∈ {[1,2], [1, �]} for all T (n) < k < T (n + 1) − 1,
and [IT (n+1)−1, IT (n+1)] ∈ {[1,2], [1, �]}. Call {(Ik,Xk) :T (n) < k ≤ T (n + 1)}
an excursion of (I,X) away from vertex 1. Let M > 0 be a large number to be
fixed later. Recall the filtration Fn = σ {(Ik,X

e
k, e ∈ E), k = 0, . . . , n}, n ≥ 1. For

j ∈ {2, �}, let

pj(n) = P
({

IT (n+1)−1 = j, T (n + 1) < τm
2 (2M)

}
(17) ∪ {

T (n + 1) ≥ τm
2 (2M)

}∣∣FT (n), IT (n)+1 = j
)
.

Probability pj(n) is an analytically tractable analogue of the quantity

qj (n) = P
(
IT (n+1)−1 = j, T (n + 1) < ∞∣∣FT (n), IT (n)+1 = j

)
,(18)

the probability that the last edge in the nth excursion equals [1, j ], given that the
first edge equals [1, j ]. The pj (n)’s in (17) are more useful in this proof than
the qj (n)’s due to the fact that τ2(2M) may happen when X[j,j−1]· /X[j,j+1]· /∈
(1/2M,2M) for some j 
= 1 during some excursion away from 1. Although this is
a good event [since τ2(M) < τ2(2M)], the estimates in Lemmas 4–6 apply only in
the intermediate regime where all the weights are “balanced.” The supermartingale
calculations ahead are based on estimates for pj (n).

The following three technical lemmas will be proved in Section 6. If (I,X)

were a classical (nonreinforced) random walk with fixed edge weights (X·
T (n))

ρ
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then qj (n) = P (IT (n+1)−1 = j |IT (n)+1 = j) and by reversibility

1 − q2(n)

1 − q�(n)
=
(

X
[1,�]
T (n)

X
[1,2]
T (n)

)ρ

.

Similarly, the estimates in Lemmas 5 and 6 have direct analogs in the classical
setting.

LEMMA 4. Let ι ∈ (0,1/2) be fixed.

(i) For each fixed M ∈ (0,∞), we have

1 − p2(n)

1 − p�(n)
=
(

X
[1,�]
T (n)

X
[1,2]
T (n)

)ρ(
1 + O

(
1

T (n)1−ι

))

on the event {τm
2 (M) > T (n)}.

(ii) For any fixed ε > 0, there exists n(M,ε) such that for all m ≥ n(M,ε) on

the event {τm
2 (M) > T (n)} ∩ {X[1,2]

T (n) − X
[1,�]
T (n) > ε

√
T (n)},

p�(n) ≤ p2(n).

LEMMA 5. For each δ > 0 there is an ε(δ) > 0 so that for any ε1 ∈ (0, ε(δ))

there exists n1(δ, ε1) < ∞ with the property: if m ≥ n1(δ, ε1) then on the event
{τm

1 (ε1) > T (n)} we have

� − 1

�
(1 − δ) ≤ pj (n), j = 2, �.

The next lemma gives a stronger statement on the event {τm
0 (K) > T (n)}.

LEMMA 6. For any K < ∞ on the event {τm
0 (K) > T (n)}, we have:

(i)
� − 1

�

(
1 − c1(n)

)≤ pj (n) ≤ � − 1

�

(
1 + c1(n)

)
, j = 2, �,

(ii)
1

2

(
1 − c2(n)

) ≤ (X
[1,j ]
T (n))

ρ

(X
[1,2]
T (n))

ρ + (X
[1,�]
T (n))

ρ
≤ 1

2

(
1 + c2(n)

)
, j = 2, �,

where the nonnegative sequences c1(n), c2(n) converge to 0 as n → ∞.

LEMMA 7. For any fixed K,0 < K < ∞,

inf
m

P
(
τm

0 (K) < ∞|Fm

)
> 0.

PROOF. Fix some K and let m be the initial time large enough so that
τm

0 (K) < τm
2 (M). The reason why such m exists is the following: for each n,
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∑�
i=1 X[i,i+1]

n = n, and so if |X[i,i+1]
n − X[i,i−1]

n | ≤ K
√

n + 1 < (K + 1)
√

n for
all i, then by telescoping

X[i,i+1]
n ∈

[
n − C(�)(K + 1)

√
n

�
,
n + C(�)(K + 1)

√
n

�

]
(19)

for some finite positive constant C(�), in particular, X[i,i−1]
n /X[i,i+1]

n ≈ 1 for all n

large n ≤ τm
0 (K). Without loss of generality assume Im = 1, and observe the

process at times T (n) of return to vertex 1, as defined above Lemma 4. Denote by
N(k) the number of returns to vertex 1 in the time interval {m,m + 1, . . . ,m + k},
so that N(T (k)) = k. For k ≥ 0 such that T (k) < τm

0 (K) define

Y 1
k+1 =




((
X

[1,2]
T (k+1) − X

[1,�]
T (k+1)

)− (
X

[1,2]
T (k) − X

[1,�]
T (k)

))
,

T (k + 1) < τm
2 (2M),

2, T (k + 1) ≥ τm
2 (2M) and IT (k)+1 = 2,

−2, T (k + 1) ≥ τm
2 (2M) and IT (k)+1 = �.

Note that Y 1
k+1 takes values in the set {−2,0,2}. Moreover, on {T (k) < τm

0 (K)},

P
(
Y 1

k+1 = 2|FT (k)

)= (X
[1,2]
T (k))

ρ

(X
[1,2]
T (k))

ρ + (X
[1,�]
T (k))

ρ
p2(k),

P
(
Y 1

k+1 = −2|FT (k)

)= (X
[1,�]
T (k))

ρ

(X
[1,2]
T (k))

ρ + (X
[1,�]
T (k))

ρ
p�(k).

Let (Y 2
k , k ≥ 1) be a sequence of independent and identically distributed random

variables, and independent of F∞ =⋃
n Fn, such that the distribution of Y 2

1 is also
concentrated on the set {−2,0,2}, and P (Y 2

1 = −2) = P (Y 2
1 = 2) = (� − 1)/(2�).

Define

Yk+1 = Y 1
k+11{T (k)<τm

0 (K)} + Y 2
k+11{T (k)≥τm

0 (K)}.

Due to Lemma 6,

∣∣∣∣var
(
Yk+1|FT (k)

)− 4
� − 1

�

∣∣∣∣→ 0 almost surely.(20)
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Moreover, on event {τm
0 (K) > T (k)},

E
(
Yk+1|FT (k)

)
= E

(
Y 1

k+1|FT (k)

)
,

= 2p2(k)
(X

[1,2]
T (k))

ρ

(X
[1,2]
T (k))

ρ + (X
[1,�]
T (k))

ρ
− 2p�(k)

(X
[1,�]
T (k))

ρ

(X
[1,2]
T (k))

ρ + (X
[1,�]
T (k))

ρ

= 2(p2(k) − p�(k))(X
[1,2]
T (k))

ρ

(X
[1,2]
T (k))

ρ + (X
[1,�]
T (k))

ρ
+ 2p�(k)((X

[1,2]
T (k))

ρ − (X
[1,�]
T (k))

ρ)

(X
[1,2]
T (k))

ρ + (X
[1,�]
T (k))

ρ
.

(21)

Fix ι ∈ (0,1/2). Note that, by Lemma 4(i) on event {τm
0 (K) > T (k)} ⊂ {τm

2 (M) >

T (k)},

p2(k) − p�(k) = (
1 − p�(k)

)(
1 − (X

[1,�]
T (k))

ρ

(X
[1,2]
T (k))

ρ

(
1 + O

(
1

T (k)1−ι

)))
,(22)

so (21) becomes

E
(
Yk+1|FT (k)

)
1{τm

0 (K)>T (k)}

=
(

2(X
[1,2]
T (k))

ρ − 2(X
[1,�]
T (k))

ρ

(X
[1,2]
T (k))

ρ + (X
[1,�]
T (k))

ρ
+ O

(
1

T (k)1−ι

))
1{τm

0 (K)>T (k)}.

Since on {τm
0 (K) > T (k)} we have |X[1,2]

T (k) − X
[1,�]
T (k)| ≤ K

√
T (k), therefore

|(X[1,2]
T (k))

ρ − (X
[1,�]
T (k))

ρ | ≤ (max{X[1,2]
T (k),X

[1,�]
T (k)})ρ−1ρK

√
T (k) and

∣∣E(Yk+1|FT (k)

)∣∣≤ C(K,�,ρ)√
T (k)

(23)

for some fixed C(K,�,ρ) < ∞. Here we use the fact that if T (k) < τm
0 (K) then

X
[i,i+1]
T (k) ≈ T (k)/� for each i [see also (19) and (26)]. Moreover, note that on

{τm
0 (K) = ∞} we have X

[i,i+1]
T (k) /T (k) → 1/� for all i, due to

∑�
i=1 X

[i,i+1]
T (k) =

T (k). Since the number of visits to vertex 1 in any time interval differs by at
most 1 from the half of the total number of traversals of adjacent edges [1,2] and
[1, �] in this interval, we have

k

T (k)
= N(T (k))

T (k)
→ 1

�
on {τm

0 (K) = ∞} almost surely.

Also due to (23), on {τm
0 (K) = ∞},∣∣∣∣∣

l∑
k=1

E
(
Yk|FT (k−1)

)∣∣∣∣∣≤ 2C(K,�,ρ)
√

T (l).
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Asymptotic behavior of the variance (20) and the central limit theorem for
martingales (Durrett [4]) give∑l

k=1(Yk − E(Yk|FT (k−1)))√
l

→ N

(
0,4

(
1 − 1

�

))
,

therefore, on {τm
0 (K) = ∞} ⊂⋂

k

⋂�
i=1{|X[i,i+1]

T (k) − X
[i,i−1]
T (k) | ≤ K

√
T (k), T (k) <

τm
0 (K)},

K >
X

[1,2]
T (l) − X

[1,�]
T (l)√

T (l)
=
∑l

k=1 Yk + X[1,2]
m − X[1,�]

m√
T (l)

=
∑l

k=1(Yk − E(Yk|FT (k−1)))√
l

√
l√

T (l)

+ X[1,2]
m − X[1,�]

m√
T (l)

+
∑l

k=1 E(Yk|FT (k−1))√
T (l)

,

where the last expression behaves asymptotically as a normal random variable N
with expectation 0 and variance 4(� − 1)/�2, plus a term bounded by 2C(K,�,ρ)

in absolute value. In particular,

sup
m

P
(
τm

0 (K) = ∞|Fm

) ≤ P
(
N < K + 2C(K,�,ρ)

)
= c(K, �,ρ) < 1,

which implies the statement. �

From now on assume that K ∈ [20,∞) is large so that

1 − 64�4
∞∑
i=0

1

23i/2

1

K3/2 > 0 and
∞∏
i=0

(
1 − 1

(2iK)1/4

)
> 2/3.(24)

Without loss of generality suppose τm
0 (K) = inf{k ≥ m : |X[1,2]

k − X
[1,�]
k | >

K
√

k}, let m0 = τm
0 (K), and assume Im0 = 1 and X[1,2]

m0
> X[1,�]

m0
.

Fix ε1 > 0 such that

ε1� < 1/4,(25)

and ε1 < ε(1/10) where ε(1/10) is from Lemma 5. Note that then (1 + ε1�)/(1 −
ε1�) < 2. Further assume that the initial m is large enough so that

τm
0 (K) < τm

1 (ε1) < τm
1 (2ε1) < τm

2 (M) < τm
2 (2M),

provided all the stopping times above (except maybe the last one) are finite. This
can be done without loss of generality by (19) and by noting that if T (n) ≤ τm

1 (ε1),

then X
[1,2]
T (n) + X

[2,3]
T (n) + · · · + X

[�−1,�]
T (n) = T (n) implies

T (n)

�
(1 − ε1�) ≤ X

[i,i+1]
T (n) ≤ T (n)

�
(1 + ε1�), i ∈ {1, . . . , �},(26)
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and therefore

X
[1,2]
T (n)

X
[1,�]
T (n)

≤ 1 + ε1�

1 − ε1�
.(27)

The above implies τm
1 (ε1) = τ

m0
1 (ε1), τm

2 (r) = τ
m0
2 (r), r = M,2M , and both

notations will be used below. In order to show that {τm
1 (ε1) < ∞} happens with

probability uniformly bounded away from 0, (cf. Lemma 9) we will construct a
supermartingale analogous to the one in Lemma 3. Let T (0) := m0 and T (n) be
defined in (16).

Let f (x, y) = log(x)+ log(y)−2 log(x +y)+ log(4) = log(1 − (x −y)2/(x +
y)2), and consider

Yk+1 =




f
(
X

[1,2]
T (k+1),X

[1,�]
T (k+1)

)
, T (k + 1) < τm

2 (2M),

f
(
X

[1,2]
T (k) + 2,X

[1,�]
T (k)

)
, T (k + 1) ≥ τm

2 (2M) and IT (k)+1 = 2,

f
(
X

[1,2]
T (k),X

[1,�]
T (k) + 2

)
, T (k + 1) ≥ τm

2 (2M) and IT (k)+1 = �.

(28)

Define

τ+(K) = inf
{
n ≥ 0 :X[1,2]

T (n) − X
[1,�]
T (n) > 2K

√
T (n)

}
,

τ−(K) = inf
{
n ≥ 0 :X[1,2]

T (n) − X
[1,�]
T (n) < K

√
T (n)/(2�)

}
,

τ̃ = τ̃ (ε1) = inf
{
n ≥ 0 :T (n) ≥ τ

m0
1 (ε1)

}
and

τ (K) := τ+(K) ∧ τ−(K) ∧ τ̃ .(29)

Set

Hn = FT (n)∧τm
2 (2M).(30)

LEMMA 8. Let ε1 < min{1/(4�), ε(1/10)}. For sufficiently large m (≤ m0)

we have (Yn∧τ(K), n ≥ 0) is a H -supermartinagale for any K ≥ 20. Moreover:

(i) On {n < τ−(K) ∧ τ̃ },

E(�Yn|Hn) ≤ −1

3

(X[1,2] − X[1,�])((X[1,2])ρ−1 − (X[1,�])ρ−1)

(X[1,2] + X[1,�])((X[1,2])ρ + (X[1,�])ρ)
,(31)

E
[(

�Yn∧τ(K)

)2|Hn

]≤ 32�4K2

T (n)3 .(32)
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(ii) On {τm
0 (K) < ∞},

P

(
τ+(K) ∧ τ̃ < τ−(K), sup

n≥0
Yn∧τ(K) ≤

(
1 − 1

K1/4

)
Y1

∣∣∣Fτm
0 (K)

)
(33)

≥ 1 − 64�4

K3/2 .

Before showing the lemma we do some preliminary calculations. In order to
calculate E(�Yn|Hn) = E(Yn+1 − Yn|Hn), approximate

log(X + b) − log(X) ≈ b

X
− b2

2X2
(34)

where X equals X
[1,2]
T (n),X

[1,�]
T (n) or X

[1,2]
T (n) + X

[1,�]
T (n) and b ∈ {1,2}, and note that

∣∣∣∣ log(X + b) − log(X) −
(

b

X
− b2

2X2

)∣∣∣∣≤ 16

3X3 .

The following are ingredients in later calculations:

2

X
− 4

X + Y
= 2(Y − X)

X(X + Y )
,(35)

2

Y
− 4

X + Y
= 2(X − Y )

Y (X + Y )
,(36)

1

X
+ 1

Y
− 4

X + Y
= (X − Y )2

XY(X + Y )
.(37)

Moreover,

4

2X2
− 8

2(X + Y )2
= 2[(X + Y )2 − 2X2]

X2(X + Y )2
,(38)

4

2Y 2
− 8

2(X + Y )2
= 2[(X + Y )2 − 2Y 2]

Y 2(X + Y )2
,(39)

1

2X2 + 1

2Y 2 − 8

2(X + Y )2 = (X + Y )2(X2 + Y 2) − 8X2Y 2

2X2Y 2(X + Y )2 .(40)

It is easy to check that (40) is always nonnegative and that (38) and (39) are
positive as long as Y < X < 2Y . Recall the assumption X

[1,2]
T (0) > X

[1,�]
T (0), and note

that X
[1,2]
T (n) > X

[1,�]
T (n) and X

[1,2]
T (n) < 2X

[1,�]
T (n), as long as n < τ−(K) ∧ τ̃ , for ε1 small

enough so that the right-hand side in (27) is less than 2.
By definition, �Yn∧τ(K) = Y(n+1)∧τ(K) − Yn∧τ(K). If n + 1 ≤ τ (K) this

simplifies to �Yn = f (X
[1,2]
T (n+1),X

[1,�]
T (n+1))− f (X

[1,2]
T (n),X

[1,�]
T (n)). If n < τ − (K)∧ τ̃ ,
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then on the event {IT (n)+1 = 2} ∩ ({IT (n+1)−1 = 2, T (n + 1) < τm
2 (2M)} ∪

{T (n + 1) ≥ τm
2 (2M)}),

�Yn = f
(
X

[1,2]
T (n) + 2,X

[1,�]
T (n)

)− f
(
X

[1,2]
T (n),X

[1,�]
T (n)

)
,(41)

and similarly, on {IT (n)+1 = �} ∩ ({IT (n+1)−1 = �,T (n + 1) < τm
2 (2M)} ∪

{T (n + 1) ≥ τm
2 (2M)}), one has

�Yn = f
(
X

[1,2]
T (n),X

[1,�]
T (n) + 2

)− f
(
X

[1,2]
T (n),X

[1,�]
T (n)

)
,(42)

while on

({
IT (n)+1 = �

}∩ {IT (n+1)−1 = 2, T (n + 1) < τm
2 (2M)

})
∪ ({

IT (n)+1 = 2
}∩ {IT (n+1)−1 = �,T (n + 1) < τm

2 (2M)
})

,

�Yn = f
(
X

[1,2]
T (n) + 1,X

[1,�]
T (n) + 1

)− f
(
X

[1,2]
T (n),X

[1,�]
T (n)

)
.(43)

Recall pj (n) defined in (17). Using approximation (34), calculations (35)–(40)
with X = X

[1,2]
T (n) = X[1,2], Y = X

[1,�]
T (n) = X[1,�], (41)–(43), and the above observa-

tions, one can estimate on {n < τ−(K) ∧ τ̃ }:

E(�Yn|Hn)

≤ (X[1,2])ρ

(X[1,2])ρ + (X[1,�])ρ
(
p2(n)

2(X[1,�] − X[1,2])
X[1,2](X[1,2] + X[1,�])

+ (
1 − p2(n)

) (X[1,�] − X[1,2])2

X[1,2]X[1,�](X[1,2] + X[1,�])

)

+ (X[1,�])ρ

(X[1,2])ρ + (X[1,�])ρ
(
p�(n)

2(X[1,2] − X[1,�])
X[1,�](X[1,2] + X[1,�])

+ (
1 − p�(n)

) (X[1,�] − X[1,2])2

X[1,2]X[1,�](X[1,2] + X[1,�])

)

+ 16

3

(
1

(X[1,2])3 + 1

(X[1,�])3

)
.

(44)

PROOF OF LEMMA 8. (i) Fix ι ∈ (0,1/2). For K satisfying (24), assume
m ≥ n(M,K/(2�)), where n(M,K/(2�)) is from Lemma 4(ii). Since τm

0 (K) ≡
m0 ≥ m this gives p�(n) ≤ p2(n). Rearrange the terms in (44) to obtain that
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on {n < τ−(K) ∧ τ̃ },
E(�Yn|Hn) ≤ 16

3

(
1

(X[1,2])3
+ 1

(X[1,�])3

)

+ X[1,2] − X[1,�]

(X[1,2] + X[1,�])((X[1,2])ρ + (X[1,�])ρ)

×
[
−2p�(n)

((
X[1,2])ρ−1 − (

X[1,�])ρ−1)
− 2

(
p2(n) − p�(n)

)(
X[1,2])ρ−1 + (

X[1,2] − X[1,�])

×
(

(X[1,2])ρ−1

X[1,�]
(
1 − p2(n)

)+ (X[1,�])ρ−1

X[1,2]
(
1 − p�(n)

))]
.

(45)
Recall assumption ε1 < ε(1/10) and further assume that m ≥ n1(1/10, ε1) in
Lemma 5 so that

p�(n) ≥ � − 1

�
(1 − 1/10) ≥ 3/5, � ≥ 3.(46)

Let

H1 = −p�(n)
((

X[1,2])ρ−1 − (
X[1,�])ρ−1

)
,

H2 = −2
(
p2(n) − p�(n)

)(
X[1,2])ρ−1

and

H3 = (
X[1,2] − X[1,�])( (X[1,2])ρ−1

X[1,�]
(
1 − p2(n)

)+ (X[1,�])ρ−1

X[1,2]
(
1 − p�(n)

))
.

We claim that on {n < τ−(K) ∧ τ̃ },
H1 + H2 + H3 ≤ 0.(47)

Due to Lemma 4(i), relation (22) holds so H2 + H3 equals the product of 1−p�(n)

X[1,2]
and

−2
((

X[1,2])ρ − (
X[1,�])ρ(1 + δ(n)

))
(48)

+ (
2 + δ(n)

)(
X[1,2] − X[1,�])(X[1,�])ρ−1

,

where |δ(n)| = O(1/T (n)1−ι). If δ(n) ≤ 0, H2 + H3 ≤ 0 and (47) follows. If
δ(n) > 0, we have (recall X[1,2] > X[1,�])

H2 + H3 ≤ δ(n)(1 − p�(n))

X[1,2]
(
2
(
X[1,�])ρ + (

X[1,2] − X[1,�])(X[1,�])ρ−1
)
,

and it suffices to show that both

H1/2 + δ(n)(1 − p�(n))

X[1,2] 2
(
X[1,�])ρ ≤ 0
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and

H1/2 + δ(n)(1 − p�(n))

X[1,2]
(
X[1,2] − X[1,�])(X[1,�])ρ−1 ≤ 0.

For the first inequality, use (46) and note that, on the event {n < τ−(K) ∧ τ̃ }, the
intermediate value theorem implies 1− (X[1,�]/X[1,2])ρ−1 > (1−X[1,�]/X[1,2])×
(ρ−1)/2, and use the fact that on the same event we have δ(n) = O(1/(X[1,2])1−ι),
for ι < 1/2, and X[1,2] −X[1,�] > K

√
X[1,2]/(2�). The second inequality is easier,

and follows by a similar argument. Now (45) and (47) give, on {n < τ−(K) ∧ τ̃ },
E(�Yn|Hn) ≤ −3

5

(X[1,2] − X[1,�])((X[1,2])ρ−1 − (X[1,�])ρ−1)

(X[1,2] + X[1,�])((X[1,2])ρ + (X[1,�])ρ)

+ 16

3

(
1

(X[1,2])3
+ 1

(X[1,�])3

)

≤ −1

3

(X[1,2] − X[1,�])((X[1,2])ρ−1 − (X[1,�])ρ−1)

(X[1,2] + X[1,�])((X[1,2])ρ + (X[1,�])ρ)
(49)

= −1

3

√
1 − eYn((X[1,2])ρ−1 − (X[1,�])ρ−1)

((X[1,2])ρ + (X[1,�])ρ)
.(50)

Inequality (49) holds on {n < τ−(K) ∧ τ̃ } for m0 large since

(X[1,2] − X[1,�])((X[1,2])ρ−1 − (X[1,�])ρ−1)

(X[1,2] + X[1,�])((X[1,2])ρ + (X[1,�])ρ)
≥ C(ρ,M,�)

(X[1,2])2

for some C(ρ,M,�) ∈ (0,∞), proving (31) and the supermartingale property of
Yn∧τ(K). Equality (50) holds by definition of Yn, and it will be used later.

In order to estimate E[(�Yn∧τ(K))
2|Hn] again use (35)–(40). Bound the square

of the right-hand side in each of these relations by using that both the lower
bound in (26), and |X[1,2] − X[1,�]| < 2K

√
T (n), hold on {n < τ−(K) ∧ τ̃ }. For

example, the square of (35) can be bounded using (25) by 4(2K
√

T (n))2

(3T (n)/(4�))2(3T (n)/(2�))2

which amounts to 16
(9/8)2 �

4K2/T (n)3 < 16�4K2/T (n)3. Similar bounds apply

to (36) and (37). For (38)–(40) use in addition that on {n < τ−(K) ∧ τ̃ } we
have both X[1,2] + X[1,�] ≤ 2X[1,2] and X[1,2] + X[1,�] ≤ (1 + 1+ε1�

1−ε1�
)X[1,�] ≤

(1 + 5/3)X[1,�], and note that the squares of the terms in (38)–(40) are therefore
bounded by (42)9�4/T (n)4 which is bounded by �4K2/T (n)3 for m ≥ 144.
Clearly, the squares of error terms 16/(3X[1,�]), 16/(3X[1,�]), 16/(3X[1,2]), and
16/(3X[1,�] + 3X[1,2]) are of even smaller order on the same event. All of the
above calculations and the fact (a + b)2 ≤ 2(a2 + b2) easily imply (32).

(ii) Let δ1 = 1/K1/4. Due to (49), Yn∧τ(K) is a supermartinagale started at
time 0 with initial value

Y0 := log

(
4X

[1,2]
T (0)X

[1,�]
T (0)

(X
[1,2]
T (0) + X

[1,�]
T (0))

2

)
= log

(
1 − (X

[1,2]
T (0) − X

[1,�]
T (0))

2

(X
[1,2]
T (0) + X

[1,�]
T (0))

2

)
≤ − K2

T (0)
.
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Write Yn∧τ(K) = Y0 + Zn∧τ(K) + Dn∧τ(K) where Z denotes the martingale part,
D denotes the drift, and Z0 = 0 = D0. Using (35)–(40) one can bound the
martingale variance increments by

E
[(

�Zn∧τ(K)

)2∣∣Hn

]≤ E
[(

�Yn∧τ(K)

)2∣∣Hn

]≤ 32�4K2

T (n)3
.

The first inequality above is true since E(�Dn∧τ(K)�Zn∧τ(K)|Hn) = 0, and the
second inequality is the assertion (32). Therefore the total variance of Z·∧τ(K) is
bounded by 64�4K2/(T (0))2 and

P

(
sup
n≥0

Yn∧τ(K) > −(1 − δ1)
K2

T (0)

)

≤ P

(
sup
n≥0

Yn∧τ(K) > (1 − δ1)Y0

)

≤ P

(
sup
n≥0

Yn∧τ(K) > Y0 + δ1
K2

T (0)

)

≤ P

(
sup
n≥0

Zn∧τ(K) > δ1
K2

T (0)

)

≤ 64�4/(δ2
1K2) = 64�4/K3/2.

(51)

Due to

−K2(1 − δ1)

T (0)
= −K2(1 − δ1)

T (k)

T (k)

T (0)
,(52)

we have {supn≥0 Yn∧τ(K) ≤ −(1 − δ1)K
2/T (0)} ⊂ {τ (K) < ∞}, since the

opposite would imply both Yk ≤ −10K2�2/T (k) and

Yk ≥ −2
(X

[1,2]
T (k) − X

[1,�]
T (k))

2

(X
[1,2]
T (k) + X

[1,�]
T (k))

2
≥ −2

(
2�

3T (k)

)2(
X

[1,2]
T (k) − X

[1,�]
T (k)

)2
(53)

≥ −32�2K2

9T (k)

for some k < τ(K) = ∞, a contradiction. For the calculation in (53) use

X
[1,2]
T (k) + X

[1,�]
T (k) ≥ 2T (k)

�
(1 − ε1�) ≥ 3T (k)

2�
(54)

by (26), and

log(1 − x) ≥ −2x for 0 < x < 2/3.(55)

Due to (52), it is also true that {supn≥0 Yn∧τ(K) ≤ −(1−δ1)K
2/T (0)} ⊂ {τ+(K)∧

τ̃ < τ−(K)}, since on {supn≥0 Yn∧τ(K) ≤ −(1 − δ1)K
2/T (0)} ∩ {τ−(K) <
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τ+(K) ∧ τ̃ } it would be

− 2K2

9T (τ (K))
≤ log

(
1 − (X

[1,2]
T (τ(K)) − X

[1,�]
T (τ(K)))

2

(X
[1,2]
T (τ(K)) + X

[1,�]
T (τ(K)))

2

)
≤ −K2(1 − δ1)

T (τ (K))
,

which is impossible for K ≥ 20 (δ1 ≤ 1/2). For the above calculation again use
(54) and (55) with k = τ (K) = τ−(K). This implies (33), and the lemma follows.

�

LEMMA 9. If (25) and ε1 < ε(1/10) hold, then

P
(
τm

1 (ε1) < ∞|Fτm
0 (K)

)
1{τm

0 (K)<∞} ≥ c0(m, ε1,K, �)1{τm
0 (K)<∞},

where infm≥m̄ c0(m, ε1,K, �) > 0 for m̄ = max{n(M,K/(2�)), n1(1/10, ε1)}.
PROOF. Fix ε1 satisfying assumptions of the lemma and assume m ≥ m̄.

Recall we assumed K satisfies (24). Use estimate (33) with K,2K, . . . ,2lK, . . . in
place of K to obtain that for each finite l on the event {τm

0 (K) < ∞}

P

(
l⋂

j=0

{
τ+(2jK) ∧ τ̃ < τ−(2jK)

}

∩
{

sup
n≥0

Yn∧τ(2lK) ≤
l∏

j=0

(
1 − 1

(2jK)1/4

)
Y0

}∣∣∣∣Fτm
0 (K)

)

≥ 1 −
l∑

j=0

64�4

(2jK)3/2 .

Let η(1) = 2K2

3T (0)
, and define events A1

n = {Yk ≤ −η(1),0 ≤ k ≤ n} and

A1∞ = {Yk ≤ −η(1), k ≥ 0}. Since
⋂

l≥0{τ+(2lK) < τ−(2lK) ∧ τ̃ } ⊂
{liml→∞ τ+(2lK) = τ (2lK) → ∞}, and

⋂l
j=0{τ+(2jK) ∧ τ̃ < τ−(2jK)} ∩

{supn≥0 Yn∧τ(2lK) ≤ ∏l
j=0(1 − 1

(2jK)1/4 )Y0} ⊂ {τm0
1 (ε1) < τ(2lK)} ∪ A1

τ(2lK)

which converges to {τm0
1 (ε1) < ∞} ∪ A1∞, as l → ∞ we have, on {τm

0 (K) < ∞},
P
({τm

1 (ε1) < ∞} ∪ A1∞
∣∣Fτm

0 (K)

)

≥ lim inf
l→∞ P

(
l⋂

j=0

{
τ+(2jK) ∧ τ̃ < τ−(2jK)

}

∩
{

sup
n≥0

Yn∧τ(2lK) ≤
l∏

j=0

(1 − 1

(2jK)1/4 )Y0

}∣∣∣∣Fτm
0 (K)

)

≥ 1 −
∞∑
i=0

64�4

23i/2

1

K3/2
> 0.

(56)
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Assertion (56) joint with next lemma implies the claim of Lemma 9. �

LEMMA 10. P (A1∞ ∩ {τm0
1 (ε1) = ∞}) = 0.

PROOF. Clearly {τm0
1 (ε1) = ∞} ⊂ {τ̃ = ∞} and note that on A1∞ we have

X
[1,2]
T (k) − X

[1,�]
T (k)

X
[1,2]
T (k) + X

[1,�]
T (k)

≥
√

1 − e−η(1) ≥
√

η(1)

2
, w.l.o.g. η(1) < 1

so that X
[1,2]
T (k) −X

[1,�]
T (k) ≥ (X

[1,2]
T (k) + X

[1,�]
T (k))

√
η(1)

2 ≥ T (k)K

�
√

3T (0)
> K

√
T (k)/(2�), using

(25) and (26) as usual. Therefore

A1∞ ∩ {
τ

m0
1 (ε1) = ∞}⊂ {τ̃ ∧ τ−(K) = ∞}.(57)

Note that (31) implies that Yn∧τ̃∧τ−(K) is a supermartingale. Furthermore, a little
algebra shows that for any x > y > 1 such that (x − y)/(x + y) ≥ √

1 − e−η(1),
we have (xρ−1 −yρ−1)/(xρ +yρ) ≥ c(ρ, η(1))/x for some c(ρ, η(1)) > 0, so that
due to (50) on A1∞ ∩ {τm0

1 (ε1) = ∞}, we have

E(�Yn|Hn) ≤ −c(ρ, η(1))
√

1 − e−η(1)

3X
[1,2]
T (n)

.(58)

Since X
[1,2]
T (n+1) ≤ X

[1,2]
T (n) +2, the above sequence is not summable in n. At the same

time, Yn on A1∞ ∩ {τm0
1 (ε1) = ∞} takes values in [−8ε2

1�
2,−η(1)]. The lower

bound is again obtained from an analogue of (54) and (55). Due to (25), (26) and
(35)–(40) the overshoot (and undershoot) of Yn∧τ̃∧τ−(K) is bounded by 4�/T (0).
This together with (57) and (58) and the supermartingale property of Yn∧τ̃∧τ−(K)

implies the statement of the lemma. Namely if a < b < c are fixed numbers, and
if Zn = Z0 + Mn + Dn is a supermartingale such that Z0 = b, D0 = M0 = 0
and such that the drift Dn diverges to −∞ (in our case Dn ≤ −d log n for some
d > 0), and if undershoot of Z at a is bounded by u we have (a − u)Pb(τa ∧ τc ≤
n) + aPb(τa ∧ τc > n) ≤ Eb[Zτa∧τc∧n] and

Eb

[
Zτa∧τc∧n

]≤ b − d log nPb(τa ∧ τc > n),

implying Eb(τa ∧ τc > n) → 0 as n → ∞. �

In the continuing search for the attracting edge, the following Lemmas 11 and 13

show that once X
[j,j−1]
n and X

[j,j+1]
n , the weights on two adjacent edges are

more than ε1T (n) > ε1(X
[j,j−1]
n +X

[j,j+1]
n ) apart, then with probability uniformly

bounded away from 0 one of the edges will be traversed many more times than both
of its neighbors. This happens in two stages.
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Recall M is a large number, introduced before Lemma 7, and

τm
2 (M) := inf

{
k ≥ m :

X
[j,j−1]
k

X
[j,j+1]
k

/∈
(

1

M
,M

)
for some j ∈ {1, . . . , �}

}
.

LEMMA 11. P (τm
2 (M) < ∞|Fτm

1 (ε1))1{τm
1 (ε1)<∞} ≥ c1(m, ε1,K, �) ×

1{τm
1 (ε1)<∞}, where lim infm c1(m, ε1,K, �) > 0.

PROOF. Without loss of generality assume Iτm
1 (ε1) = 1 and X

[1,2]
τm

1 (ε1)
−X

[1,�]
τm

1 (ε1)
>

ε1τ
m
1 (ε1). This time let T (0) = τm

1 (ε1), and define T (n) by (16). Recall definitions
(28) and (30) of Y and Hn, and in analogy to (29) define

σ− = σ−(ε1/2) = inf
{
n ≥ 0 :X[1,2]

T (n) − X
[1,�]
T (n) ≤ ε1T (n)/2

}
,

σ̃ = σ̃ (M) = inf
{
n ≥ 0 :T (n) ≥ τ2(M)

}
and

σ(M,ε1/2) := σ− ∧ σ̃ .(59)

Lemma 11 is a direct consequence of (62). �

LEMMA 12. For sufficiently large initial time m, we have:

(i) On {τm
1 (ε1) ≤ n < σ(M, ε1

2 )},

E(�Yn|Hn) ≤ − (X[1,2] − X[1,�])((X[1,2])ρ−1 − (X[1,�])ρ−1)

(Mρ + 1)(X[1,2] + X[1,�])(X[1,2])ρ + (X[1,�])ρ
.(60)

(ii) Therefore,

P

(
σ

(
M,

ε1

2

)
< ∞

∣∣∣Fτm
1 (ε1)

)
1{τm

1 (ε1)<∞} = 1{τm
1 (ε1)<∞}(61)

and

P
(
σ̃ < σ−∣∣Fτm

1 (ε1)

)
1{τm

1 (ε1)<∞} > c(m,ε1,K, �)1{τm
1 (ε1)<∞},(62)

where lim infm c(m, ε1,K, �) > 0.

PROOF. Here we use approximation

log(X + b) − log(X) = b

X
,

where ∣∣∣∣ log(X + b) − log(X) − b

X

∣∣∣∣≤ 2

X2
.
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The analog of expression (45), obtained using (35)–(37) only, is

E(�Yn|Hn)

≤ 2
(

1

(X[1,2])2
+ 1

(X[1,�])2

)

+ X[1,2] − X[1,�]

(X[1,2] + X[1,�])((X[1,2])ρ + (X[1,�])ρ)

×
[
−2p�(n)

((
X[1,2])ρ−1 − (

X[1,�])ρ−1)
− 2

(
p2(n) − p�(n)

)(
X[1,2])ρ−1

+ (
X[1,2] − X[1,�])((X[1,2])ρ−1

X[1,�]
(
1 − p2(n)

)

+ (X[1,�])ρ−1

X[1,2]
(
1 − p�(n)

))]
.

(63)

Recall the definition of Hi,1 ≤ i ≤ 3, above relation (47). We next show that for
m large enough, and for τm

1 (ε1) ≤ n < σ(M,ε1/2), we have H2 +H3 ≤ 0. By (48)
this amounts to showing

−2
((

X[1,2])ρ − (
X[1,�])ρ(1 + δ(n)

))
(64)

+ (
2 + δ(n)

)(
X[1,2] − X[1,�])(X[1,�])ρ−1 ≤ 0,

or equivalently,

2 ≥ (
2 + δ(n)

)(X[1,�]

X[1,2]
)ρ−1

+ δ(n)

(
X[1,�]

X[1,2]
)ρ

,(65)

where |δ(n)| = O(1/T (n)1−ι). If X[1,2]/X[1,�] >
1+ε1/2
1−ε1/2 , which follows from

X[1,2] − X[1,�] > ε1T (n)/2 > ε1(X
[1,2] + X[1,�])/2, for δ = δ(n) > 0 sufficiently

small so that 2 ≥ (2 + δ)
(

1−ε1/2
1+ε1/2

)ρ−1 + δ
(

1−ε1/2
1+ε1/2

)ρ
indeed H2 + H3 ≤ 0. Since

p�(n) ≥ 1/(Mρ + 1) (cf. proof of Lemma 15 in Section 6), in analogy to (49), on
the event {τm

1 (ε1) ≤ n < σ(M,ε1/2)},

E(�Yn|Hn) ≤ −2p�(n)(X[1,2] − X[1,�])((X[1,2])ρ−1 − (X[1,�])ρ−1)

(X[1,2] + X[1,�])(X[1,2])ρ + (X[1,�])ρ

+ 2
(

1

(X[1,2])2
+ 1

(X[1,�])2

)
(66)

≤ −p�(n)(X[1,2] − X[1,�])((X[1,2])ρ−1 − (X[1,�])ρ−1)

(X[1,2] + X[1,�])(X[1,2])ρ + (X[1,�])ρ

≤ −1

Mρ + 1

(X[1,2] − X[1,�])((X[1,2])ρ−1 − (X[1,�])ρ−1)

(X[1,2] + X[1,�])(X[1,2])ρ + (X[1,�])ρ
.
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The second inequality above is due to the fact that, on event {n < σ(M,ε1/2)},
(X[1,2] − X[1,�])((X[1,2])ρ−1 − (X[1,�])ρ−1)

(X[1,2] + X[1,�])(X[1,2])ρ + (X[1,�])ρ
≥ c(M,�, ε1, ρ)

X[1,2](67)

for some c(M,�, ε1, ρ) > 0. Therefore, assertion (i) holds and Yn∧σ(M,ε1/2)

is a supermartinagale, started at time τm
1 (ε1) with initial value ≤ log(1 − ε2

1).
Since the overshoot (undershoot) bounded by 4/m0 [cf. (35)–(37)]. Since

X
[1,2]
T (n+1) − X

[1,2]
T (n) ≤ 2, due to (67) the drift in (66) is not summable on event

{σ(M,ε1/2) = ∞} and the overshoot of Y is bounded, assertion (61) holds.
Assertion (62) now follows by Wald inequality for supermartingales. In this
computation it may be useful to introduce auxiliary supermartingale Ỹn∧σ(M,ε1/2)

(that bounds Yn∧σ(M,ε1/2) from below) defined as Yn∧σ(M,ε1/2) on event {n <

σ(M,ε1/2)} ∪ {σ− = σ(M,ε1/2) ≤ n}, and defined as log(1/(M + 1)) − 4/m0

on the opposite event {σ̃ (M) = σ(M,ε1/2) ≤ n}. The details are left to the reader.
�

After time τ2(M) controlling pj (n) [or qj (n)] seems difficult, and the rest of the
argument is based on coupling with the process on two edges. For i ∈ {1, . . . , �}
let

τ
m,i
3 := inf

{
k ≥ m :X[i,i+1]

k >
(
21/(ρ−1) + ε

)(
X

[i+1,i+2]
k + X

[i,i−1]
k

)}
.(68)

LEMMA 13. For M sufficiently large P (mini τ
m,i
3 < ∞|Fτm

2 (M)) ×
1{τm

2 (M)<∞} > c2(m, ε1,K, �)1{τm
2 (M)<∞}, where lim infm c2(m, ε1,K, �) > 0.

PROOF. To reduce notation write τm
2 instead of τm

2 (M). Without loss of

generality, suppose X
[1,2]
τm

2
> MX

[1,�]
τm

2
, and Iτm

2
∈ {1, �}. Let N = 2X

[1,�]
τm

2
+

(X
[�,�−1]
τm

2
+ X

[1,2]
τm

2
). Observe the random walk (In,Xn), n ≥ τm

2 at times ξN = τm
2 ,

ξn = inf{k ≥ ξn−1 : Ik ∈ {1, �}}, n > N , of return to end vertices {1, �} of edge
[1, �]. Let

W 1
n = 2X

[1,�]
ξn

and W 2
n = X

[�−1,�]
ξn

+ X
[1,2]
ξn

, n ≥ N.

Note that W 1
n −W 1

n−1,W
2
n −W 2

n−1 ∈ {0,2}, and W 2
n −W 2

n−1 = 2 − (W 1
n −W 1

n−1).
Let

γn = X
[1,�]
ξn

/
(W 1

n /2 + W 2
n ) = X

[1,�]
ξn

/(
X

[1,2]
ξn

+ X
[�,�−1]
ξn

+ X
[1,�]
ξn

)
,

αn = max
{
X

[�−1,�]
ξn

/
(W 1

n /2 + W 2
n ),X

[1,2]
ξn

/
(W 1

n /2 + W 2
n )
}
,

βn = 1 − αn − γn = min
{
X

[�−1,�]
ξn

/
(W 1

n /2 + W 2
n ),X

[1,2]
ξn

/
(W 1

n /2 + W 2
n )
}
.
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Note that

(W 2
n )κ

(W 2
n )κ + (W 1

n )κ
(69)

≤ min

{
(X

[1,2]
ξn

)ρ

(X
[1,2]
ξn

)ρ + (X
[1,�]
ξn

)ρ
,

(X
[�−1,�]
ξn

)ρ

(X
[�−1,�]
ξn

)ρ + (X
[1,�]
ξn

)ρ

}
,

if and only if (
βn

γn

)ρ

≥
(

1 − γn

2γn

)κ

.(70)

Let σ 1 := inf{n ≥ N : (70) does not hold}. Let ((Jn,Vn), n ≥ N) be a reinforced
random walk on two edges from Section 3 with weight function WJ,V (k) = kκ =
k
√

ρ , started at the initial time N with JN = 0, and V
[0,i]
N = Wi

N , i ∈ {1,2}. Instead
of κ = √

ρ one could take any κ such that 1 < κ < ρ. Due to estimate (13) in
Corollary 3,

P

(
V [0,1]

n ≤ 2√
M

V [0,2]
n ∀n ≥ N

∣∣∣V [0,1]
N ≤ 2

M
V

[0,2]
N

)
≥ 1 − 4√

M
.(71)

Let

σ ∗ := inf{n ≥ N : ξn = ∞}.(72)

The importance of conditions (69) and (70) lies in the fact that there exist versions
of ((In,Xn), n ≥ N) and ((Jn,Vn), n ≥ N) on the same probability space such that

W 1
N+k + W 2

N+k = V
[0,1]
N+2k + V

[0,2]
N+2k,0 ≤ k ≤ σ 1 ∧ σ ∗ − N and

W 1
N+k ≤ V

[0,1]
N+2k, 0 ≤ k ≤ σ 1 ∧ σ ∗ − N.(73)

This joint version is easily constructed step by step since one can make W 1
N+k −

W 1
N+k−1 ≤ V 1

N+2k − V 1
N+2(k−1) as long as (69) holds with n = N + k. On

{τm
2 < ∞} let P ∗(·) = P (·|Fτm

2
). Note that

P ∗({σ ∗ < ∞, σ ∗ ≤ σ 1} ∪ {σ 1 < σ ∗} ∪ {σ 1 = σ ∗ = ∞})= 1.(74)

In words, either the particle stops returning to {1, �} in finite time before the
coupling condition (70) breaks, or the coupling (70) and (73) breaks in finite time
before the particle stops returning to {1, �}, or (70), (73) never breaks and the
particle returns to {1, �} infinitely often. Due to Corollary 2,{

min
i

τ
m,i
3 < ∞, σ ∗ < ∞, σ ∗ ≤ σ 1

}
⊃ {G∞ 
= G, σ ∗ < ∞, σ ∗ ≤ σ 1}
= {σ ∗ < ∞, σ ∗ ≤ σ 1},



1642 V. LIMIC

and due to (73) and Proposition 2 (see also proof of Corollary 3),{
min

i
τ

m,i
3 < ∞, σ ∗ = σ 1 = ∞

}

⊃
{
σ ∗ = σ 1 = ∞, sup

n≥N

V [0,1]
n

V
[0,2]
n

≤ 2/
√

M

}
.

Therefore

P ∗(min
i

τ
m,i
3 < ∞

)

= P ∗(min
i

τ
m,i
3 < ∞, σ ∗ < ∞, σ ∗ ≤ σ 1

)

+ P ∗(min
i

τ
m,i
3 < ∞, σ 1 < σ ∗)

+ P ∗(min
i

τ
m,i
3 < ∞, σ 1 = σ ∗ = ∞

)

≥ P ∗(σ ∗ < ∞, σ ∗ ≤ σ 1)

+ P ∗
(
σ 1 = σ ∗ = ∞, sup

n≥N

V [0,1]
n /V [0,2]

n ≤ 2/
√

M

)

+ E∗(E(1{mini τ
m,i
3 <∞}

∣∣Fξ
σ1

)
× 1{σ 1<σ ∗,sup

n∈[N,σ1] V
[0,1]
n /V

[0,2]
n ≤2/

√
M}
)
,

(75)

where E∗(·) = E(·|Fτm
2
). Note that by the above construction on {σ 1 < σ ∗} ∩

{supn≥N V [0,1]
n /V [0,2]

n ≤ 2/
√

M} we have W 1
σ 1 ≤ 2√

M
W 2

σ 1 . This implies γσ 1 ≤
2√
M

(ασ 1 + βσ 1)/2 ≤ 2√
M

ασ 1 , and also by the definition of σ 1,

βσ 1 <

(
1

2

)κ/ρ

γ
(ρ−κ)/ρ

σ 1 ≤ γ
(1−1/

√
ρ)

σ 1 ≤
(

2√
M

)(1−1/
√

ρ)

.

Since ασ 1 + βσ 1 + γσ 1 = 1, the above inequalities imply

ασ1 ≥ 1 − 2
(

2√
M

)(1−1/
√

ρ)

and

max{βσ 1, γσ 1} ≤ (2/
√

M)(1−1/
√

ρ)

1 − 2(2/
√

M)(1−1/
√

ρ)
ασ 1 .

(76)

Assume for a moment that � = 3. Then if

(2/
√

M)(1−1/
√

ρ)

1 − 2(2/
√

M)(1−1/
√

ρ)
< (21/(1−ρ) + ε)−1,
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we see that E∗(E(1{mini τ
m,i
3 <∞}|Fξ

σ1 ) = 1 since τ
m,i
3 happens at σ 1 (if not

before) for i such that ασ 1 = X[i,i+1]/(W 1
σ 1/2 + W 2

σ 1). So if � = 3, the last term

in (75) is at least P ∗(σ 1 < σ ∗, supn∈[N,σ 1] V [0,1]
n /V [0,2]

n ≤ 2/
√

M) ≥ P ∗(σ 1 <

σ ∗) − P ∗(σ 1 < σ ∗, supn≥N V [0,1]
n /V [0,2]

n > 2/
√

M). Therefore by (71), (74) and
(75), on {τm

2 < ∞} we have

P ∗(min
i

τ
m,i
3 < ∞

)
≥ 1 − 4/

√
M.(77)

If � > 3 continue the coupling on {σ 1 < σ ∗, supn≥N V [0,1]
n /V [0,2]

n ≤ 2/
√

M} in
order to bound E∗(E(1{mini τ

m,i
3 <∞}|Fξ

σ1 ) as follows. Set M0 = M , and define

inductively

1

Mi+1
= (2/

√
Mi)

(1−1/
√

ρ)

1 − 2(2/
√

Mi)
(1−1/

√
ρ)

, 0 ≤ i ≤ � − 3.(78)

Then (76) says

max
{
X

[�,1]
ξ
σ1

,X
[�−1,�]
ξ
σ1

}
≤ 1

M1
X

[1,2]
ξ
σ1

.

Now define

N1 =
(
X

[1,�]
ξ
σ1

+ X
[�,�−1]
ξ
σ1

)
+
(
X

[1,2]
ξ
σ1

+ X
[�−1,�−2]
ξ
σ1

)
.

Observe the random walk (In,Xn), n ≥ ξσ 1 , at times ξn = inf{k ≥ ξn−1 : Ik ∈
{1, � − 1}}, n > N1, of return to the vertices {1, � − 1}. Let

W 1
n = X

[1,�]
ξn

+ X
[�,�−1]
ξn

and W 2
n = X

[�−1,�−2]
ξn

+ X
[1,2]
ξn

, n ≥ N1.

Note that again W 1
n − W 1

n−1,W
2
n − W 2

n−1 ∈ {0,2}, W 2
n − W 2

n−1 = 2 − (W 1
n −

W 1
n−1). Let βn = X

[�−1,�]
ξn

/(W 1
n + W 2

n ), γn = X
[1,�]
ξn

/(W 1
n + W 2

n ), and αn =
max{X[�−1,�−2]

ξn
/(W 1

n + W 2
n ),X

[1,2]
ξn

/(W 1
n + W 2

n )}, and δn = 1 − αn − βn − γn =
min{X[�−1,�−2]

ξn
/(W 1

n + W 2
n ),X

[1,2]
ξn

/(W 1
n + W 2

n )}. The condition

(W 2
n )κ

(W 2
n )κ + (W 1

n )κ

≤ min

{
(X

[1,2]
ξn

)ρ

(X
[1,2]
ξn

)ρ + (X
[1,�]
ξn

)ρ
,

(X
[�−1,�−2]
ξn

)ρ

(X
[�−1,�−2]
ξn

)ρ + (X
[�−1,�]
ξn

)ρ

}
,

(79)

which enables coupling with the walk on two edges, is implied by the following
condition written in terms of Greek letters:(

δn

γn

)ρ

≥
(

αn + δn

βn + γn

)κ

,

(
δn

βn

)ρ

≥
(

αn + δn

βn + γn

)κ

.
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Then it is easy to check that (79), not holding for some n, implies

δρ
n < (βn + γn)

ρ−κ , that is, δn < (βn + γn)
(1−1/

√
ρ).(80)

Define σ 2 := inf{n ≥ N1 : (79) does not hold}. Let ((J 1
n ,V 1

n ), n ≥ N1) be a
reinforced random walk on two edges again with weight function W(k) = kκ =
k
√

ρ , now started at the initial time N1 with J 1
N1

= 0, and V
1,[0,i]
N1

= Wi
N1

, i ∈ {1,2}.
Due to Corollary 3,

P

(
V 1,[0,1]

n ≤ 2√
M1

V 1,[0,2]
n , n ≥ N1

∣∣∣∣V 1,[0,1]
N1

≤ 2

M1
V

1,[0,2]
N1

)
≥ 1 − 4√

M1
.(81)

Recall σ ∗ defined in (72). Again there exist versions of ((In,Xn), n ≥ N) and
((J 1

n ,V 1
n ), n ≥ N1) on the same probability space such that W 1

N1+k + W 2
N1+k =

V
1,[0,1]
N1+2k + V

1,[0,2]
N1+2k ,0 ≤ k ≤ σ 2 ∧ σ ∗ − N1, and

W 1
N1+k ≤ V

1,[0,1]
N1+2k , 0 ≤ k ≤ σ 2 ∧ σ ∗ − N1.

On event {σ 1 < σ ∗, supn∈[N,σ 1] V [0,1]
n /V [0,2]

n ≤ 2/
√

M} introduce notation
P ∗1(·) = P ∗(·|Fξσ1

) and E∗1(·) = E∗(·|Fξσ1
). In analogy to (75) we have

P ∗1
(
min

i
τ

m,i
3 < ∞

)

≥ P ∗1(σ ∗ < ∞, σ ∗ ≤ σ 2)

+ P ∗1
(
σ 2 = σ ∗ = ∞, sup

n≥N1

V 1,[0,1]
n

/
V 1,[0,2]

n ≤ 2/
√

M1

)

+ E∗1
(
E
(
1{mini τ

m,i
3 <∞}|Fξ

σ2

)
× 1{σ 2<σ ∗, supn≥N1

V
1,[0,1]
n /V

1,[0,2]
n ≤2/

√
M1 }

)
.

(82)

Note that relation (80) and

βσ 2 + γσ 2 ≤ 2√
M1

ασ 2(83)

are valid on {σ 2 < σ ∗, supn∈[N1,σ
2] V 1,[0,1]

n /V 1,[0,2]
n ≤ 2/

√
M1 }. Assuming � = 4

(even though the case � odd is interesting) and M2 defined in (78) is such that
M2 > (21/(1−ρ) + ε), one gets as in (77) that (80), (82) and (83) imply

P ∗1
(
min

i
τ

m,i
3 < ∞

)
≥ 1 − 4/

√
M1

on {
σ 1 < σ ∗, sup

n∈[N,σ 1]
V [0,1]

n

/
V [0,2]

n ≤ 2/
√

M

}
,
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and after combining this with calculations before (77), that

P ∗(min
i

τ
m,i
3 < ∞

)
≥ (

1 − 4/
√

M
)(

1 − 4/
√

M1
)

on {τm
2 < ∞}.

If � > 4, the relations (80) and (83) imply (76) with M1 instead of M and σ2
instead of σ1. This enables the start of the next induction step where (assuming
that X[1,2] still corresponds to α) N2 = σ 2, ξn = inf{k ≥ ξn−1 : Ik ∈ {1, � − 2}},
n > N2, W 1

n = X
[1,�]
ξn

+X
[�−2,�−1]
ξn

, W 2
n = X

[�−3,�−2]
ξn

+X
[1,2]
ξn

, n ≥ N2. Choose the
initial M0 = M sufficiently large so that Mj ∈ (0,∞) from (78) are well defined
for each j = 0, . . . , � − 2, so that 1 − 4/

√
Mj > 0, j = 0, . . . , � − 3, and so that

M�−2 > 21/(ρ−1) + ε. Then after � − 2 induction steps are completed in the above
fashion, one gets

P ∗(min
i

τ
m,i
3 < ∞

)
≥

�−3∏
j=0

(
1 − 4√

Mj

)
on {τm

2 < ∞},

which completes the proof of the lemma. �

The next lemma says that after mini τ
m,i
3 the probability of some edge becoming

the attracting edge is uniformly bounded away from 0.

LEMMA 14. P (supk max{X[i+1,i+2]
k ,X

[i,i−1]
k } < ∞|F

τ
m,i
3

) > c3(m, ε1,K, �)

on event {τm,i
3 < ∞}, where lim infm c3(m, ε1,K, �) > 0.

PROOF. Without loss of generality suppose τ
m,�
3 = mini τ

m,i
3 , so that

X
[1,�]
mini τ

m,i
3

> (21/(ρ−1) + ε)
(
X

[�,�−1]
mini τ

m,i
3

+ X
[1,2]
mini τ

m,i
3

)
,

and that I
τ

m,1
3

∈ {1, �}. Let N = 2X
[1,�]
τ

m,1
3

+ (X
[�,�−1]
τ

m,1
3

+ X
[1,2]
τ

m,1
3

). As in the previous

lemma, observe the random walk (In,Xn) at times ξN = τ
m,1
3 , ξn = inf{k ≥

ξn−1 : Ik ∈ {1, �}}, n > N . Let W 1
n = 2X

[1,�]
ξn

and W 2
n = X

[�−1,�]
ξn

+ X
[1,2]
ξn

, n ≥ N .

Again W 1
n − W 1

n−1,W
2
n − W 2

n−1 ∈ {0,2}, W 1
n − W 1

n−1 = 2 − (W 2
n − W 2

n−1). Let

αn = X
[1,�]
ξn

/(W 1
n /2 + W 2

n ), βn = max{X[�−1,�]
ξn

/(W 1
n /2 + W 2

n ),X
[1,2]
ξn

/(W 1
n/2 +

W 2
n )}, and γn = 1−αn−βn = min{X[�−1,�]

ξn
/(W 1

n /2+W 2
n ),X

[1,2]
ξn

/(W 1
n /2+W 2

n )}.
A little algebra shows there exists κ = κ(ε, ρ) > 1 such that for any three real
numbers 1 ≥ α > β ≥ γ ≥ 0, α + β + γ = 1, with the property α > (21/(ρ−1) +
ε/2)(β + γ ), we have (

β

α

)ρ

≤
(

1 − α

2α

)κ

.(84)
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Again inequality (84) holds for αn,βn, γn defined above if and only if

(W 2
n )κ

(W 2
n )κ + (W 1

n )κ
(85)

≥ max

{
(X

[1,2]
ξn

)ρ

(X
[1,2]
ξn

)ρ + (X
[1,�]
ξn

)ρ
,

(X
[�−1,�]
ξn

)ρ

(X
[�−1,�]
ξn

)ρ + (X
[1,�]
ξn

)ρ

}
.

Let ((Jn,Vn), n ≥ N) be a reinforced random walk on two edges with weight
function W(k) = kκ = kκ(ε,ρ), started with JN = 0, and V

[0,i]
N = Wi

N , i ∈ {1,2}.
Let σ := inf{n ≥ N : (85) does not hold} and σ ∗ := inf{n ≥ N : ξn = ∞}. One can
couple the steps of (I,X) and (J,V ) up to time σ , so that

W 1
N+k + W 2

N+k = V
[0,1]
N+2k + V

[0,2]
N+2k,

W 2
N+k ≤ V

[0,2]
N+2k, 0 ≤ k ≤ σ ∧ σ ∗ − N,

(86)
W 1

N+k + W 2
N+k ≤ V

[0,1]
N+2k + V

[0,2]
N+2k,

W 2
N+k ≤ V

[0,2]
N+2k, σ ∧ σ ∗ − N ≤ k ≤ σ − N.

Finally, let P ∗(·) = P (·|τm,�
3 < ∞,F

τ
m,�
3

), and note that

P ∗
(

sup
n

(
X[1,2]

n + X[�,�−1]
n

)
< ∞

)

≥ P ∗
(
σ = ∞, sup

n
V [0,2]

n < ∞
)

≥ P ∗
(

sup
n

V [0,2]
n < ∞, αn >

(
21/(ρ−1) + ε/2

)
(βn + γn), n ≥ N

)

≥ P

(
sup
n

V [0,2]
n

V
[0,1]
n

<
1

2ρ/(ρ−1) + ε

∣∣∣∣V
[0,2]
N

V
[0,1]
N

≤ 1

2ρ/(ρ−1) + 2ε

)

≥ 1 − (2ρ/(ρ−1) + 1 + ε)2(2ρ/(ρ−1) + 2ε)

(2ρ/(ρ−1) + 1 + 2ε)2(2ρ/(ρ−1) + ε)
> 0.

The first inequality above holds due to (86), the second inequality is a consequence
of the fact that αn > (21/(ρ−1) + ε/2)(βn + γn) enables the coupling of the two
processes in the nth step, due to the choice of κ , the third inequality again follows
from (86) and the definition of αn,βn, γn, while the last inequality is an application
of Corollary 3. �

5. Final proofs.

PROOF OF PROPOSITION 1. Fix ε1 > 0 so that ε1� < 1/4 and ε1 < ε(1/10).
Assume that K ∈ [20,∞) is large so that (24) holds. Define the constant M by
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recursion (78), and assume it is sufficiently large so that

M�−2 > 21/(ρ−1) + ε and
�−3∏
j=0

(
1 − 4√

Mj

)
> 0.

Recall n(·, ·) and n1(·, ·) defined in Lemmas 4 and 5. Finally, assume that the initial
time m is sufficiently large so that

m ≥ max
{
n
(
M,K/(2�)

)
, n1(1/10, ε1)

}
,

and such that Lemmas 8 and 12 hold. Let A = {there exists attracting edge}. By
Corollary 2 we have

A =
{

min
1≤i≤�

sup
k

max
j 
=i

X
[j,j+1]
k < ∞

}
=
{

min
1≤i≤�

sup
k

max
{
X

[i+1,i+2]
k ,X

[i,i−1]
k

}
< ∞

}

almost surely.
The sequence of Lemmas 7–14 in Section 4 gives

inf
m

P (A|Fm) ≥ p∗ > 0,

almost surely, so that Lévy’s 0–1 law implies

p∗ ≤ P (A|Fm) → P (A|F∞) = 1A almost surely,

implying 1A = 1 almost surely. �

PROOF OF THEOREM 1. There are countably many cycles contained in G,
so it suffices to show that for each (deterministic odd) cycle � ⊂ G, we have
P (� ⊂ G∞) = 0. We claim that otherwise a reinforced random walk (I �,X�)

on G�, a cycle of length �, with the same reinforcement weight function W , would
satisfy (in obvious notation) P (G� = G�∞) > 0, a contradiction with Proposition 1.
Indeed, assume

P (� ⊂ G∞) > 0,(87)

for some cycle � of length �. Lemmas 1, 2 and Corollary 1 imply that almost surely
{� ⊂ G∞} = {� = G∞}, so (87) says there exists a finite n, and a configuration
(i, x) ∈ V × NE , such that

P
(
� = G∞, (In,Xn) = (i, x), In+k ∈ �,k ≥ 0

)
> 0.(88)

Denote by P � the probability law of the process (I �,X�) on � = G�. Note that for
any N < ∞, and any cylinder event An,N generated by positions of the particle at
times n,n + 1, . . . , n + N , we have

P
(
An,N, In+k ∈ �,0 ≤ k ≤ N |(In,Xn) = (i, x)

)
≤ P �

(
An,N |(I �

n ,X�
n) = (i, x)

)
,
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since W(x)/(W(x) + W(y) +∑
i W(zi)) < W(x)/(W(x) + W(y)), x, y, zi ≥ 1.

The above inequality holds path by path (cf. Section 6), therefore

P
(
� = G∞, In+k ∈ �,0 ≤ k ≤ N |(In,Xn) = (i, x)

)
≤ P �

(
G� = G�∞|(I �

n ,X�
n) = (i, x)

)
,

and (88) would imply

P �(G� = G�∞|(I �
n ,X�

n) = (i, x)
)
> 0,

which is impossible by Proposition 1. �

REMARK. The reader will soon note that the assumption W(k) = kρ is heavily
used throughout the next Section 6. In addition, various properties of power
functions were used in calculations and estimates in Sections 3 and 4 as follows:
proof of Lemma 3, displays before and after (20), computations (44), (63) and
related results, and relations (69), (79) and (85).

6. Proofs of Lemmas 4–6. The excursion {(Ik,Xk) :T (n) < k ≤ T (n + 1)}
away from vertex 1 is determined by (IT (n),XT (n)) and the random path � of
vertices IT (n)+1 → ·· · → IT (n+1)−1 → IT (n+1) = 1. Let |�| = T (n + 1) − T (n)

be the length of �.

LEMMA 15. For each M < ∞ there exist c,C ∈ (0,∞), c = c(M,�,ρ),C =
C(M,�,ρ) such that on {τn

2 (M) > T (n)}
E
(
ec|�|1{T (n+1)<τm

2 (2M)}
∣∣FT (n)

)≤ C.

PROOF. Assume that � is odd. If � = 3, the above inequality is a simple
consequence of the fact that on the event {T (n + 1) < τm

2 (2M)}, random variable
|�| − 1 is “stochastically dominated” by a geometric (1/((2M)ρ + 1)) random
variable. In symbols,

P
(|�| − 1 > k,T (n + 1) < τm

2 (2M)|FT (n)

)
≤ P

(
T (n) + k + 1 < T (n + 1) ∧ τm

2 (2M)|FT (n)

)
≤ P

(
T (n) + k + 1 < T (n + 1) ∧ τm

2 (2M)|
T (n) + k < T (n + 1) ∧ τm

2 (2M),FT (n)+k

)
× P

(
T (n) + k < T (n + 1) ∧ τm

2 (2M)|FT (n)

)
≤
(

1 − 1

(2M)ρ + 1

)
P
(
T (n) + k < T (n + 1) ∧ τm

2 (2M)|FT (n)

)
,
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where the last inequality holds since on {T (n) + k < T (n + 1) ∧ τm
2 (2M)} we

have X[IT (n)+k,IT (n)+k+1]/X[IT (n)+k ,IT (n)+k−1] ∈ (1/(2M),2M) and since for � = 3
the particle is at each time located either at 1 or at a neighbor of 1. By induction,

P
(|�| − 1 > k,T (n + 1) < τm

2 (2M)|FT (n)

)≤ (
1 − 1

(2M)ρ + 1

)k

.

Similarly, if � = 5, then |�| is dominated by a geometric sum of independent
geometric random variables, where the success probability is 1/((2M)ρ + 1). One
proceeds by induction. The claim is proved similarly for even �. �

Let ι ∈ (0,1/2) be fixed. The previous lemma and Markov inequality imply that
on {τn

2 (M) > T (n)},
P
(|�| > T (n)ι/2, T (n + 1) < τm

2 (2M)|FT (n)

)≤ Ce−cT (n)ι/2
.(89)

Consider a path π of vertices i1 → ·· · → ik−1 → ik where i1 = 2, ik−1 = �, ik = 1,
and ij 
= 1 for all 1 ≤ j ≤ k − 1. The corresponding sequence of edges along this
path is [i1, i2], . . . , [ik−1, ik]. The “reversed” path

←
π , � = ik−1 → ·· · → 2 →1 = i0

has a similar encoding [ik−1, ik−2], . . . , [i2, i1], [i1, i0]. For 1 ≤ j ≤ k − 1, define
δ+
j (1) = δ−

j (1) = 0, �+
j ([1,2]) = �−

j ([1, �]) = 1 and

δ+
j (v) = #{1 ≤ l ≤ j :v = il},

�+
j (e) = #{1 ≤ l ≤ j − 1 : e = [il, il+1]}, e 
= [1,2],

δ−
j (v) = #{j ≤ l ≤ k − 1 :v = il},

�−
j (e) = #{j ≤ l ≤ k − 2 : e = [il , il+1]}, e 
= [1, �].

For 1 ≤ j ≤ k − 1 we have identities

δ+
j (ij ) = (

�+
j ([ij , ij − 1]) + �+

j ([ij , ij + 1]) + 1
)
/2

(90)
δ−
j (ij ) = (

�−
j ([ij , ij − 1]) + �−

j ([ij , ij + 1]) + 1
)
/2.

The conditional probability P (·|FT (n), IT (n)+1 = 2) of the path π equals

∏k−1
j=1 (x

[ij ,ij+1]
j+ )ρ∏k−1

j=1[(x[ij ,ij +1]
j+ )ρ + (x

[ij ,ij −1]
j+ )ρ]

,(91)

where for each edge e, xe
j+ = Xe

T (n)+�+
j (e). Similarly, the probability P (·|FT (n),

IT (n)+1 = �) of the reversed path
←
π equals

∏1
j=k−1 (x

[ij ,ij−1]
j− )ρ∏1

j=k−1[(x[ij ,ij +1]
j− )ρ + (x

[ij ,ij −1]
j− )ρ]

,(92)
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where xe
j− = Xe

T (n) + �−
j (e). �

PROOF OF LEMMA 4. Definition (17) implies, for j ∈ {2, �},
1 − pj (n) = P

(
IT (n+1)−1 = � + 2 − j, T (n + 1) < τm

2 (2M)|FT (n), IT (n)+1 = j
)
.

The proof is a consequence of “pseudo reversibility.” Write

1 − pj (n) = P
(
A>

j |FT (n), IT (n)+1 = j
)+ P

(
A<

j |FT (n), IT (n)+1 = j
)
,

where A>
j = {IT (n+1)−1 = � + 2 − j, |�| > T (n)ι/2, T (n + 1) < τm

2 (2M)} and

A<
j = {IT (n+1)−1 = � + 2 − j, |�| ≤ T (n)ι/2, T (n + 1) < τm

2 (2M)}. Note that on

{T (n) < τm
2 (M)} [for T (n) ≥ m > (�)2/ι],

P
(
A<

j |FT (n), IT (n)+1 = j
)≥ 1/

(
(2M)ρ + 1

)�−1
,

since the path 2 → 3 → ·· · → � → 1 (or � → � − 1 → ·· · → 2 → 1) is realized
with probability at least 1/((2M)ρ + 1)�−1. Due to this observation and (89), it
suffices to show

P (A<
2 |FT (n), IT (n)+1 = 2)

P (A<
� |FT (n), IT (n)+1 = �)

=
(

X
[1,�]
T (n)

X
[1,2]
T (n)

)ρ(
1 + O

(
1

T (n)1−ι

))
.(93)

On event {T (n) < τm
2 (M)} for large enough m [and therefore T (n)], A<

j =
{IT (n+1)−1 = � + 2 − j, |�| ≤ T (n)ι/2}, since each edge is traversed at most
T (n)ι/2 − � − 1 times during the excursion, which is not enough to achieve
τm

2 (2M). Until the end of this proof use abbreviation Xe for Xe
T (n). The probability

P (A<
2 |FT (n), IT (n)+1 = 2) [resp. P (A<

� |FT (n), IT (n)+1 = �)] is the sum over all

paths in π (resp.
←
π ) of their corresponding probabilities (91) [resp. (92)]. It is

easily seen that the numerators in expressions (91) and (92) are proportional, with
the same constant (X[1,�])ρ/(X[1,2])ρ of proportionality over all paths. This is a
consequence of the identity �+

|π |(e) = �−
|←π |(e) that holds for all e /∈ {[1,2], [1, �]},

and for all pairs of paths π and
←
π . Moreover, for each j , 1 ≤ j ≤ k−1, there exists

a unique  , 1 ≤  ≤ k − 1, such that ij = i and δ+
j (ij ) = δ−

 (i ). In words, the
vertex ij is visited δ+

j (ij ) times in the first j steps along the path π , and the same
vertex is visited the same number of times in the first  steps along the reversed
path

←
π . Now by (90),

x
[ij ,ij −1]
j+ + x

[ij ,ij +1]
j+ = x

[ij ,ij −1]
− + x

[ij ,ij +1]
− ,(94)

and the ratio of the terms in (91) and (92) equals

(X[1,�])ρ

(X[1,2])ρ
�∏

h=2

∏
j,ij =h

(
(x

[h,h−1]
− )ρ + (x

[h,h+1]
− )ρ

(x
[h,h−1]
j+ )ρ + (x

[h,h+1]
j+ )ρ

)
,(95)
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where each term in the product satisfies relation (94). It is easy to check, for
example by using Taylor’s expansion for s �→ (1 + s)ρ at 0, that(

(x − a)ρ + (y + a)ρ

xρ + yρ

)
= 1 + O

(
ρ a(xρ−1 + yρ−1)

xρ + yρ

)
.

Then due to definition of A<
j , j = 1,2, we have k = |π | ≤ T (n)ι/2, so that each of

the terms in the above product is bounded from above by 1 + KT (n)ι/2

T (n)
, for some

constant K = K(M,�,ρ) < ∞, and the product in (95) is bounded from above
by ((

1 + K

T (n)1−ι/2

)T (n)ι/2)�−1

≤
(

1 + K ′

T (n)1−ι

)�−1

≤ 1 + K ′′

T (n)1−ι
,

where K ′′ < ∞ depends only on M,� and ρ. Summing over all pairs of paths
π and

←
π , yields the estimate

P (A<
2 |FT (n), IT (n)+1 = 2)

P (A<
� |FT (n), IT (n)+1 = �)

≤
(

X[1,�]

X[1,2]
)ρ(

1 + O

(
1

T (n)1−ι

))
,(96)

and a symmetric argument gives

P (A<
� |FT (n), IT (n)+1 = �)

P (A<
2 |FT (n), IT (n)+1 = 2)

≤
(

X[1,2]

X[1,�]
)ρ(

1 + O

(
1

T (n)1−ι

))
,

implying (93), therefore (i).
For (ii), note that it suffices to show s < 1, where s = s(n) = (1 − p2(n))/(1 −

p�(n)). The last claim is true for m sufficiently large due to (i), since

s − 1 = (X[1,�])ρ − (X[1,2])ρ

(X[1,2])ρ
+ O

(
1

T (n)1−ι

)

is negative on {X[1,2] − X[1,�] > ε
√

T (n)}, as a consequence of intermediate
value theorem, and the fact ι < 1/2. Namely, 1 − (X[1,�]/X[1,2])ρ > (ρ/2)(1 −
X[1,�]/X[1,2]), gives (X[1,�])ρ−(X[1,2])ρ

(X[1,2])ρ ≤ −ερ/(2
√

T (n)), so it suffices to take
n(M,ε) = n(M,ε, �, ρ, ι) such that ερ/(2

√
n(M,ε)) > O(1/n(M,ε)1−ι), for

O( · ) above. �

PROOF OF LEMMA 5. Consider only p2(n), the argument for p�(n) is

analogous. Intuitively, the claim is true since X
[i,i−1]
T (n) /X

[i,i+1]
T (n) ≈ 1 for all i, so that

the reinforced walk is very similar to the symmetric random walk on the circle,
and the latter process satisfies

P2 := P (symmetric walk started at 2 returns to 1 via 2) = � − 1

�
.
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Since p2(n) ≥ p̃2(n) := P (IT (n+1)−1 = 2, T (n + 1) < ∞|FT (n), IT (n)+1 = 2), it
suffices to show that p̃2(n) satisfies the claim of the lemma.

Consider paths π of the form i1 → ·· · → ik−1 → ik where now i1 = ik−1 = 2,
ik = 1, and ij 
= 1 for all 1 ≤ j ≤ k − 1. Then

p̃2(n) = ∑
|π |<∞

P (π),

where P (π) is given by (91), and

P2 = ∑
|π |<∞

1

2|π |−1
.

Take K0 large enough so that

∑
|π |≤K0

1

2|π |−1
≥ � − 1

�
(1 − δ/2).(97)

Take ε(δ) = ε(δ, ρ, �) < 1/(4�) small enough so that for all ε1 < ε(δ) we have
|(xρ −1)/(xρ +1)| ≤ 3ρ(x −1) if 1 ≤ x ≤ 1+2ε1�

1−2ε1�
, and (1−24ρε1�)

K0 ≥ 1−δ/2.
Fix ε1 < ε(δ) and let n1(δ, ε1) > K0/ε1. Assume τm

1 (ε1) > T (n) ≥ m ≥ n1(δ, ε1).

Note that then by (26) for j ≤ k − 1 ≤ K0 − 1 we have x
[ij ,ij+1]
j+ ≤ (X

[ij ,ij+1]
T (n) +

K0) ≤ T (n)(1 + 2ε1�)/�. Also due to (26), x
[ij ,ij+1]
j+ /x

[ij ,ij−1]
j+ ≤ (1 + 2ε1�)/(1 −

ε1�) < (1 + 2ε1�)/(1 − 2ε1�). Now

k−1∏
j=1

(x
[ij ,ij+1]
j+ )ρ

(x
[ij ,ij +1]
j+ )ρ + (x

[ij ,ij −1]
j+ )ρ

= 1

2k−1

k−1∏
j=1

(
1 + (x

[ij ,ij+1]
j+ /x

[ij ,ij −1]
j+ )ρ − 1

(x
[ij ,ij +1]
j+ /x

[ij ,ij −1]
j+ )ρ + 1

)

≥ (1 − 24ρε1�)
k−1 1

2k−1
,

(98)

so that

p̃2(n) ≥ ∑
|π |≤K0

P (π) ≥ (1 − 24ρε1�)
K0

∑
|π |≤K0

1

2|π |−1
= � − 1

�

(
1 − δ

2

)2

≥ (� − 1)(1 − δ)

�
. �

PROOF OF LEMMA 6. (i) The proof of the lower bound is similar to
the one in the previous lemma. Note that on {τm

0 (K) > T (n)} we can choose
K0(n) = �T (n)1/4� so that the left-hand side in (97) converges to (� − 1)/�
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as T (n) → ∞, and, since |x[ij ,ij +1]
j+ − x

[ij ,ij −1]
j+ | ≤ |X[ij ,ij +1]

T (n) − X
[ij ,ij −1]
T (n) | +

T (n)1/4 ≤ 2K
√

T (n), instead of (98) we have

k−1∏
j=1

(x
[ij ,ij+1]
j+ )ρ

(x
[ij ,ij +1]
j+ )ρ + (x

[ij ,ij −1]
j+ )ρ

≥
(

1 − 24ρK�√
T (n)

)k−1 1

2k−1 .

Since (1 − 24Kρ�/
√

T (n))K0(n) → 1, the lower bound holds.
For the upper bound, it suffices to to show that

1 − pj (n) ≥ 1

�

(
1 − c̃1(n)

)
,

where c̃1(n) → 0. Observe that on {τm
0 (K) > T (n)}, in the notation of Lemma 4,

1 − pj(n) ≥ P
(
IT (n+1)−1 = � + 2 − j, |�| ≤ T (n)1/4|FT (n), IT (n)+1 = j

)
.

The rest of the argument is the same as for the lower bound.
Assertion (ii) can be obtained in the same way as (26) and (27), and is also left

to the reader. �
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