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INTEGRATED BROWNIAN MOTIONS AND
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BY F. GAO, J. HANNIG AND F. TORCASO

University of Idaho, Colorado State University and Johns Hopkins University

We will introduce a class of m-times integrated Brownian motions.
The exact asymptotic expansions for the L2-small ball probabilities will be
discussed for members of this class, of which the usual m-times integrated
Brownian motion is an example. Another example will be what we call an
Euler-integrated Brownian motion. We will also find very sharp estimates for
the asymptotics of the eigenvalues of the covariance operator of integrated
Brownian motions and will, therefore, obtain exact, not just logarithmic,
asymptotics.

1. Introduction. Let Xm(t), 0 ≤ t ≤ 1, be a usual m-times integrated
Brownian motion

Xm(t) =
∫ t

0

∫ sm

0
· · ·

∫ s2

0
B(s1) ds1 ds2 · · · dsm(1)

where B(s) is a standard Brownian motion and m ≥ 0 is an integer. In this paper
we will be interested in understanding the behavior of the probability that Xm(t)

stays in a small ball of radius ε around the origin

P (‖Xm‖ ≤ ε) .(2)

As ε tends to 0, this probability clearly tends to 0—the question is, at what rate?
Questions of this type fall into the realm of what has come to be called “small

ball” probabilities. The asymptotic analysis of small ball probabilities for Gaussian
processes has received much attention in the literature [see, e.g., the recent survey
of Li and Shao (2001)].

To be specific, we will be interested in understanding the asymptotic behavior
of (2) with the L2 norm. This question was previously studied by Khoshnevisan
and Shi (1998) and Chen and Li (2003). They prove the exact logarithmic
asymptotics of the small ball probability of m-times integrated Brownian motion
for m = 1 and m ≥ 1 respectively. Actually Khoshnevisan and Shi (1998) achieve
more. They find an explicit representation for the Laplace transform

E exp
(
−θ2

2

∫ 1

0
X2

1(t) dt

)
=

(
2

cosh2 √
θ/2 + cos2

√
θ/2

)1/2

.
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INTEGRATED BROWNIAN MOTIONS 1321

Motivated by this result, Chen and Li (2003) obtained the following: as ε → 0+,

logP

(∫ 1

0
X2

m(t) dt ≤ ε2
)

∼ −2m + 1

2

(
(2m + 2) sin

π

2m + 2

)−(2m+2)/(2m+1)

ε−2/(2m+1).

That is, they are able to find the exact logarithmic small ball asymptotics for all
integrated Brownian motions. The calculations performed show that the Laplace
transform of ‖Xm‖2

2 for m ≥ 2 is extremely complicated, whereas in the case
m = 0 and 1 it has a relatively nice form.

In this paper we extend their result beyond the logarithmic asymptotics, and,
more importantly, we show that our result is true for a larger class of processes we
call general m-times integrated Brownian motions. Informally, a general m-times
integrated Brownian motion is a C[0,1] process defined as in (1) with Bs replaced
by B1−s or with some of the limits of integration changed from (0, sk) to (sk,1).
Formally, we define the general m-times integrated Brownian motion as follows.
Consider the following Sturm–Liouville problem:

λf (2m+2)(t) = (−1)m+1f (t), 0 < t < 1,(3)

with the boundary conditions

f (t0) = f ′(t1) = f ′′(t2) = · · · = f (2m+1)(t2m+1) = 0,(4)

where

tj ∈ {0,1} for each j, and
2m+1∑
j=0

tj = m + 1.(5)

We say that the boundary conditions of (4) are antisymmetric if for each 0 ≤ j ≤ m,
tj = 1 − t2m+1−j . Integrating (3) with antisymmetric boundary conditions leads to
the following integral equation.

λf (t) = Af (t) =
∫ 1

0
K(s, t)f (s) ds,(6)

where K(s, t) is a (uniquely determined) symmetric and positive definite kernel.
Call the unique centered Gaussian process X(t) on [0,1] with the covariance
function K(s, t) a general m-times integrated Brownian motion. We will call A

the covariance operator of X(t). It is easy to see that if the boundary conditions
are not antisymmetric, then (3) and (4) do not lead to a symmetric, positive definite
kernel and will therefore lack a probabilistic interpretation.

There are two important special cases. When the boundary conditions (4) are
chosen so that tj = 0 for 0 ≤ j ≤ m and tj = 1 for j > m, then the resulting
covariance kernel is

K(s, t) = 1

(m!)2

∫ s∧t

0
(s − u)m(t − u)m du.
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This is just the covariance kernel of the usual m-times integrated Brownian
motion (1).

Suppose we choose boundary conditions so that tj = 0 for j even and tj = 1
for j odd. The resulting integral equation leads one to the kernel

K̃m(s, t) =
∫ 1

0
· · ·

∫ 1

0
(s ∧ s1)(s1 ∧ s2) · · · (sm ∧ t) ds1 ds2 · · · dsm.

This kernel has the form [see Chang and Ha (2001), Theorem 2]

K̃m(s, t) = (−1)m+1 22m

(2m + 1)!
(
E2m+1

( |s − t|
2

)
− E2m+1

(
s + t

2

))

where En(x) is the nth degree Euler polynomial (see Theorem 1 below). In this
case the eigenvalue problem (6) is completely solvable and we get

λn =
(

1

π(n − 1/2)

)2m+2

,

which allows us to calculate the exact small ball asymptotics (including all the
constants) for this process. We will call the corresponding process the m-times
Euler integrated Brownian motion.

In general, we could have chosen any antisymmetric boundary conditions. It
turns out that these processes are not very different from each other from an
eigenvalue point of view. We prove the following result:

THEOREM 3. For the general m-times integrated Brownian motion

P

(∫ 1

0
X2(t) dt ≤ ε2

)
∼ Cε(1−k0(2m+2))/(2m+1) exp

{−Dmε−2/(2m+1)
}

where

Dm = 2m + 1

2

(
(2m + 2) sin

π

2m + 2

)−(2m+2)/(2m+1)

,

C is a positive constant and k0 is an integer. Furthermore, k0 = 0 for m ≤ 10.

The authors conjecture k0 = 0 for all m ≥ 0. It is not difficult to show k0 = 0
for m ≤ 2; however, to show k0 = 0 for all m ≥ 0 would require a general statement
about the spectral function for higher-order Sturm–Liouville problems. Roughly
speaking, one would need to show the asymptotic equivalence of the spectral
functions for certain Sturm–Liouville problems with “permuted” evaluation points.

We prove Theorem 3 by approximating the eigenvalues of the covariance
operator of general m-times integrated Brownian motion. These approximations
will be sharp enough to achieve the exact small ball probability rates. Since
centered Gaussian processes are determined uniquely by their covariance kernels,
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what we shall see is that m-times integrated Brownian motions can be understood
through the analysis of the corresponding Sturm–Liouville problem.

Let A be the covariance operator of a general m-times integrated Brownian
motion.

THEOREM 2. The eigenvalues λk of A are

λk =
(

1

(k0 + k − 1
2 )π

)2m+2

+ O

(
1

k2m+3
exp

(
−kπ sin

(
π

m + 1

)))

where k0 = k0(A) is an integer.

For example, if we consider the usual one-time integrated Brownian motion it
turns out that the eigenvalues λ of A satisfy

cosh
(

1

λ1/4

)
cos

(
1

λ1/4

)
= −1(7)

[see Courant and Hilbert (1937), page 296, or Freedman (1999)], but as
m increases so does the complexity of this defining equation. For example,
for m = 2, we get

4 + 4 cos
(

1

λ1/6

)
+ cos2

(
1

λ1/6

)
+ 8 cos

(
1

2λ1/6

)
cosh

( √
3

2λ1/6

)

+ cos
(

1

λ1/6

)
cosh

( √
3

λ1/6

)
= 0.

In the case m = 1 it is not difficult to see that in order for a small λ to be an
eigenvalue the cosine needs to be very close to zero

cos
(

1

λ1/4

)
= O

(
exp

(
− c

λ1/4

))
.

As we shall see later λk = (π(k − 1/2))−4 + O(e−kπ ) as k → ∞. It turns out
that this asymptotic is very sharp, and, with the help of a representation theorem
of Sytaya (1974) and comparison theorems of Li (1992), we can get the exact
asymptotic behavior of the L2-small ball modulo a constant. In fact, what we will
see later is that for m large the complexity of the processes is coming from only
the first few eigenvalues after which the eigenvalues behave very much like a fixed
function of the zeros of cosine.

The remainder of the paper is organized as follows: In Section 2 we relate the
two definitions of the general m-times integrated Brownian motion introduced
earlier and prove the exact small ball asymptotics of the m-times Euler-integrated
Brownian motion. In Section 3 we obtain the exact asymptotics of the eigenvalues
of the covariance operator A of any general m-times integrated Brownian motion,
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and in Section 4 we state the exact asymptotic formulations for all m-times
integrated Brownian motions and show that k0(A) = 0 for m ≤ 10. We also provide
some compelling graphs which suggest k0 = 0 for all m.

2. General and Euler-integrated Brownian motions. In this section we first
study the connection between the “intuitive” and formal definitions of the general
integrated Brownian motion. Then we continue with a more detailed study of the
Euler-integrated Brownian motion.

The following notations will be convenient: Let T0 and T1 be operators that act
on functions in L2[0,1] by

T0f (t) =
∫ t

0
f (s) ds and T1f (t) =

∫ 1

t
f (s) ds.

By Fubini’s theorem 〈f,T0g〉 = 〈T1f,g〉, that is, T0 is the adjoint operator to T1.
Let X(t) be a continuous centered Gaussian process with the covariance

operator A. Then∫ t

0
X(s) ds = T0X(t) and

∫ 1

t
X(s) ds = T1X(t)(8)

are continuous centered Gaussian processes. It is easy to check that the covariance
operator of TiX(t) is TiAT1−i .

Let B0 be a standard Brownian motion and B1 the process B0(1 − s). It is well
known that the covariance kernel of B0 is min(s, t). Thus, the covariance operator
of Bi is TiT1−i .

Fix an integer m ≥ 0 and take a sequence I = {im, im−1, . . . , i0}, where ik ∈
{0,1}. In accordance with (8) define XI (t) = Tim · · · Ti1Bi0(t). It follows from the
observations made in the previous two paragraphs that the covariance operator
of XI(t) is

Af (t) = Tim · · · Ti0T1−i0 · · · T1−imf (t).(9)

Consider the eigenvalue problem λf (t) = Af (t). Upon successive differentiation
we arrive to the following differential equation.

λf (2m+2)(t) = (−1)m+1f (t)

with boundary conditions

f (im) = f ′(im−1) = · · · = f (m)(i0)

= f (m+1)(1 − i0) = · · · = f (2m+1)(1 − im) = 0.

This is exactly the Sturm–Loiuville problem with antisymmetric boundary
conditions. The process XI(t) is then a general m-times integrated Brownian
motion. This explains the intuition behind the definition, since each Ti is an
integral operator. Notice in particular that X{0,...,0} is the usual m-times integrated
Brownian motion and X{0,1,0,1,...} is the Euler-integrated Brownian motion.

In the rest of this section we restrict our attention to the Euler-integrated
Brownian motion. We prove the following theorem:
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THEOREM 1. Let X(t) be the m-times Euler-integrated Brownian motion.
Then:

(i) the process X(t) has the following covariance kernel

Km(s, t)

= (−1)m
m+1∑
j=1

22(m+1−j)

(2j − 1)![2(m + 1 − j)]! (s ∧ t)2j−1E2(m+1−j)

(
s ∨ t

2

)
(10)

= (−1)m+1 22m

(2m + 1)!
(
E2m+1

( |t − s|
2

)
− E2m+1

(
t + s

2

))
,(11)

where En(x) is the nth Euler polynomial;
(ii) the eigenvalues of the covariance operator are λk = ((k − 1

2 )π)−2m−2;
(iii)

P

(∫ 1

0
X2(t) dt ≤ ε2

)
∼ Cmε1/(2m+1) exp{−Dmε−2/(2m+1)}

where

Cm = 2(m+1)/2
(

2m + 2

(2m + 1)π

)1/2[
(2m + 2) sin

π

2m + 2

]m+1/(2m+1)

and

Dm = 2m + 1

2

(
(2m + 2) sin

π

2m + 2

)−(2m+2)/(2m+1)

.

We need the following lemma.

LEMMA 1. Suppose k ≥ 1 is an integer, then

∞∏
n=1

[
1 +

(
x

2n − 1

)2k
]

=
k−1∏
j=0

[
cosh(πx sin(

2j+1
2k

π)) + cos(πx cos(2j+1
2k

π))

2

]1/2

.

PROOF. Let cj = exp(
2j+1

2k
πi) be the 2kth roots of −1. Then cj = −ck+j ,

and we have

1 +
(

x

2n − 1

)2k

=
2k−1∏
j=0

[
1 − cjx

2n − 1

]
=

k−1∏
j=0

[
1 −

(
cjx

2n − 1

)2
]
.
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Using the infinite product expansion of the cosine function

cos(πz/2) =
∞∏

n=1

(
1 − z2

(2n − 1)2

)
,

we obtain
∞∏

n=1

[
1 +

(
x

2n − 1

)2k
]

=
k−1∏
j=0

∞∏
n=1

[
1 −

(
cjx

2n − 1

)2
]

=
k−1∏
j=0

cos(πxcj/2)

=
k−1∏
j=0

[
cos(πxcj /2) cos(πxck−1−j /2)

]1/2

=
k−1∏
j=0

[
cosh(πx sin(

2j+1
2k

π)) + cos(πx cos(2j+1
2k

π))

2

]1/2

.
�

REMARK 1. When k = m + 1 and x = 2(2θ)1/(2m+2)/π we obtain the exact
Laplace transform E exp(−θ

∫ 1
0 X2(s) ds) of the squared L2 norm of the m-times

Euler-integrated Brownian motion.

PROOF OF THEOREM 1. (i) The authors proved the formulation (10) before
we discovered the formulation (11) in Chang and Ha (2001). We just need to check
that either kernel representation for A will lead to the correct differential equation.
The following facts regarding Euler polynomials will be useful in this regard [see
Abramowitz and Stegun (1972), page 805]: For n ≥ 0 an integer,

E′
n(x) = nEn−1(x) and E2n(0) = 0.

The verification is straightforward and we omit the calculation.
(ii) Notice that (9) implies that the covariance operator

Af (t) = Cm+1f (t)

where C is the covariance operator of the standard Brownian motion. Recall that
the operator C defined on L2[0,1] has eigenvalues νk = (π(k − 1/2))−2 for k ≥ 1
and corresponding eigenfunctions φk(t) = √

2 sin(π(k − 1/2)t). The eigenvalues
and eigenfunctions of A now follow via the relation

Aφ(t) = Cm+1φ(t) = νm+1φ(t).

That is, the eigenvalues of A are λk = νm+1
k = (π(k − 1/2))−(2m+2) and we have

exactly the same eigenfunctions.
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(iii) It follows from the Karhunen–Loève expansion of X(t) that

P

(∫ 1

0
X2(t) dt ≤ ε2

)
= P

( ∞∑
k=1

λkξ
2
k ≤ ε2

)

where ξk are independent N(0,1) random variables. We use the following result
from Sytaya (1974):

P

( ∞∑
k=1

λkξ
2
k ≤ ε2

)

∼
(

4π

∞∑
k=1

(
λkγ

1 + 2λkγ

)2
)−1/2

exp

{
ε2γ − 1

2

∞∑
k=1

log(1 + 2λkγ )

}
,

where γ satisfies the following relation:

ε2 =
∞∑

k=1

λk

1 + 2λkγ
.

Define

h(γ ) = 1
2 log

∞∏
k=1

(1 + 2λkγ ).

Then

ε2γ − 1
2

∞∑
k=1

log(1 + 2λkγ ) = γ h′(γ ) − h(γ ),

4π

∞∑
k=1

(
λkγ

1 + 2λkγ

)2

= −2πγ 2h′′(γ ).

Applying Lemma 1 with x = 2(2γ )1/(2m+2)/π , we have

h(γ ) = 1

2
log

∞∏
k=1

(
1 +

(
2(2γ )1/(2m+2)/π

2k − 1

)2m+2
)

= 1

4
log

m∏
j=0

[
cosh

(
2(2γ )1/(2m+2) sin

(
2j + 1

2m + 2
π

))

+ cos
(

2(2γ )1/(2m+2) cos
(

2j + 1

2m + 2
π

))]
− m + 1

4
log 2.
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It is not hard to check that

h(γ ) = 2−1(2γ )1/(2m+2) csc
(

π

2m + 2

)
− m + 1

2
log 2

+ O

(
exp

(
−2(2γ )1/(2m+2) sin

(
π

2m + 2

)))
,

γ h′(γ ) = 1

2m + 2
2−1(2γ )1/(2m+2) csc

(
π

2m + 2

)

+ O

(
exp

(
−2(2γ )1/(2m+2) sin

(
π

2m + 2

)))

and

γ 2h′′(γ ) = −2m + 1

2m + 2

1

2m + 2
2−1(2γ )1/(2m+2) csc

(
π

2m + 2

)

+ O

(
exp

(
−2(2γ )1/(2m+2) sin

(
π

2m + 2

)))
.

On the other hand, by the definition of γ , ε2 = h′(γ ). This implies that

(2γ )1/(2m+2) =
[
(2m + 2) sin

(
π

2m + 2

)]−1/(2m+1)

ε−2/(2m+1)

+O
(
exp(−Cε−2/(2m+1))

)
,

(12)

for some positive constant C. Thus,

exp
(
γ h′(γ ) − h(γ )

) ∼ 2(m+1)/2 exp
(
Dmε−2/(2m+1)

)
and [−2πγ 2h′′(γ )

]−1/2

∼
(

2m + 2

(2m + 1)π

)1/2[
(2m + 2) sin

(
π

2m + 2

)](m+1)/(2m+1)

ε1/(2m+1).

The statement of the theorem now follows. �

3. Eigenvalue approximations. In this section we obtain very sharp asymp-
totics of the eigenvalues for the covariance operator A of all general m-times inte-
grated Brownian motions.

THEOREM 2. The eigenvalues λk of A are

λk =
(

1

(k0 + k − 1
2)π

)2m+2

+ O

(
1

k2m+3
exp

(
−kπ sin

(
π

m + 1

)))

where k0 = k0(A) is an integer.



INTEGRATED BROWNIAN MOTIONS 1329

Notice that the error term is of exponential order. The only setback is the
presence of the integer k0, which we are not able to evaluate for general m.
However, we shall see that k0 = 0 for all m ≤ 10 (see Section 4).

It is worth mentioning that, in the case of Brownian motion (i.e., m = 0), our
formula recovers the well-known exact solution. In the case of m = 1 we sharpen
the result of Freedman (1999), who proved that λk ∼ (kπ)−4. In fact, in his paper
Freedman defines a general class of priors which is an example that shows for a
statistical problem with infinitely many parameters the Bayesian and frequentist
methods lead to totally different results. Our result shows that general m-times
integrated Brownian motions fall exactly into the framework of his example.

PROOF. For simplicity we first consider the usual m-times integrated Brown-
ian motion. We need to analyze the following Sturm–Liouville equation:

λf (2m+2)(t) = (−1)m+1f (t) = (i)2m+2f (t)

with boundary conditions

f (k)(0) = f (m+1+k)(1) = 0

for k = 0,1, . . . ,m. The eigenfunctions are the nontrivial functions of the form

f (t) =
2m+1∑
j=0

cje
αj t

with αj = λ−1/(2m+2)iωj and ωj = exp(
jπ

m+1 i) satisfying the boundary conditions.
The idea is to find the values of λ which make nontrivial solutions possible.
Taking derivatives, plugging in the boundary conditions, and dividing the kth row
by (λ−1/(2m+2)i)k leads to the following (2m + 2) × (2m + 2) matrix:

M =




1 1 · · · 1
ω0 ω1 · · · ω2m+1
...

... · · · ...

ωm
0 ωm

1 · · · ωm
2m+1

ωm+1
0 eα0 ωm+1

1 eα1 · · · ωm+1
2m+1e

α2m+1

...
... · · · ...

ω2m+1
0 eα0 ω2m+1

1 eα1 · · · ω2m+1
2m+1e

α2m+1




.

The key observation is that λ is an eigenvalue if and only if detM = 0.
We claim detM is either real or pure imaginary. To see this, we notice

ωj = −ωm+1−j and eαj = eαm+1−j . Furthermore, M = DMR where D is a
(2m+2)×(2m+2) matrix with entries dkj = (−1)kδkj ; R is a (2m+2)×(2m+2)

matrix with entries rkj = 1 if k + j = m + 3 or k + j = 3m + 5, and rkj = 0
otherwise. This implies that detM = (−1)m detM . Thus, detM = 0 if and only
if Re(im detM) = 0.
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Multiply the last m columns of M by eα1 , eα2 , . . . , eαm respectively, and use
αj = −αm+1+j to obtain the following matrix N :

N =




1 · · · 1 1 eα1 · · · eαm

ω0 · · · ωm ωm+1 ωm+2e
α1 · · · ω2m+1e

αm

... · · · ...
...

... · · · ...

ωm
0 · · · ωm

m ωm
m+1 ωm

m+2e
α1 · · · ωm

2m+1e
αm

ωm+1
0 eα0 · · · ωm+1

m eαm ωm+1
m+1e

−α0 ωm+1
m+2 · · · ωm+1

2m+1
... · · · ...

...
... · · · ...

ω2m+1
0 eα0 · · · ω2m+1

m eαm ω2m+1
m+1 e−α0 ω2m+1

m+2 · · · ω2m+1
2m+1




.

Note that eα1 · eα2 · · · eαm = exp(− csc( π
2m+2 ) sin( mπ

2m+2 )λ−1/(2m+2)). Thus,
detM = 0 if and only if Re(im detN) = 0. Further notice that for 1 ≤ j ≤ m,

|eαj | = exp
(
−λ−1/(2m+2) sin

(
jπ

m + 1

))
→ 0 as λ → 0+.

Therefore, we have

detN = detN0 + O

(
exp

(
−λ−1/(2m+2) sin

(
π

m + 1

)))
,(13)

where N0 is the matrix obtained from N by replacing all the entries containing eαj ,
1 ≤ j ≤ m, with 0. That is,

N0 =




1 1 · · · 1 1 0 · · · 0
ω0 ω1 · · · ωm ωm+1 0 · · · 0
...

... · · · ...
...

... · · · ...

ωm
0 ωm

1 · · · ωm
m ωm

m+1 0 · · · 0

ωm+1
0 eα0 0 · · · 0 ωm+1

m+1e
−α0 ωm+1

m+2 · · · ωm+1
2m+1

...
... · · · ...

...
... · · · ...

ω2m+1
0 eα0 0 · · · 0 ω2m+1

m+1 e−α0 ω2m+1
m+2 · · · ω2m+1

2m+1




.

It is now easy to see that detN0 = e−α0det(U) · det(V ) − eα0det(U ′) · det(V ′),
where

U =




1 1 · · · 1
ω0 ω1 · · · ωm
...

... · · · ...

ωm
0 ωm

1 · · · ωm
m


 , V =




ωm+1
m+1 ωm+1

m+2 · · · ωm+1
2m+1

ωm+2
m+1 ωm+2

m+2 · · · ωm+2
2m+1

...
... · · · ...

ω2m+1
m+1 ω2m+1

m+2 · · · ω2m+1
2m+1


 ,
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U ′ is the matrix obtained by replacing the first column of U by the column vector
(1 ωm+1 . . . ωm

m+1)
T , and V ′ is the matrix obtained by replacing the first column

of V by the column vector (ωm+1
0 ωm+2

0 . . . ω2m+1
0 )T .

We will now manipulate det(U ′) [resp. det(V ′)] in such a way that we get a
constant times det(U) [resp. det(V )]. Notice that the first column of the matrices
U ′ and V ′ is a natural successor of the last column. Thus, by factoring ω

j
1 = ωj

from the j th row of U ′ and factoring ω
m+1+j
1 = ωm+1+j from the j th row of V ′

for each 0 ≤ j ≤ m, we obtain

detN0 = e−α0det(U) · det(V ) − eα0det(U) · det(V )

2m+1∏
j=0

ωj

= det(U)det(V )(e−α0 + eα0).

(14)

Further, det(U) · det(V ) �= 0. By checking the conjugate, we have detN0 =
(−1)m detN0. So, imdet(U) · det(V ) is a nonzero real number. Thus, by (13),

cos(λ−1/(2m+2)) = O

(
exp

(
−λ−1/(2m+2) sin

(
π

m + 1

)))
,(15)

and the right-hand side of (15) is real.
Choose λ0 small enough so that absolute value of the right-hand side of (15) is

less than 1. If λn is an eigenvalue, applying the intermediate value theorem for real
continuous functions, we obtain, after some simple algebra,

λn = [
(k − 1/2)π

]−2m−2 + O

(
1

k2m+3 exp
(
−kπ sin

(
π

m + 1

)))

for some integer k.
Since the intermediate value theorem gives only the existence and not the

uniqueness of the root, we have to ensure that the detN as a function of λ is
monotone in an appropriate neighborhood of ((k − 1/2)π)−2m−2. To ensure this
as well as the fact that these eigenvalues have multiplicity 1, we need to compute
d
dλ

detN . Using similar arguments as in the derivation of (13) we get

d

dλ
detN = d

dλ
detN0

+ O

(
λ−(2m+3)/(2m+2) exp

(
−λ−1/(2m+2) sin

(
π

m + 1

)))
.

Furthermore, using (14) we obtain

d

dλ
detN0 = det(U)det(V ) sin(λ−1/(2m+2))λ−(2m+3)/(2m+2).
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This implies that there is a 0 < λ′
0 ≤ λ0 such that, at each eigenvalue λ < λ′

0 that
is exponentially close to ((k − 1/2)π)−2m−2, d

dλ
detN is exponentially close to

(−1)k det(U)det(V )[(k − 1/2)π ]2m+3, which is bounded away from 0. The local
monotonicity and the fact that the eigenvalues have multiplicity 1 follows.

Since the covariance operator A is positive and compact, A has only finitely
many eigenvalues bigger than λ′

0. We conclude that

λk = [
(k0 + k − 1/2)π

]−2m−2 + O

(
1

k2m+3
exp

(
−kπ sin

(
π

m + 1

)))

for some integer k0.
For the general m-times integrated Brownian motion defined in the Introduction,

the corresponding matrix M is changed into M= (mkj ), where mkj = ωk
je

tkαj , and
where tk satisfy (4) and (5). By checking the conjugate, one can see the determinant
of M is still either real or pure imaginary. To estimate the determinant, we apply
a similar approximation. After some appropriate row permutations, we obtain

N0 =




ω
n0
0 ω

n0
1 · · · ω

n0
m ω

n0
m+1 0 · · · 0

ω
n1
0 ω

n1
1 · · · ω

n1
m ω

n1
m+1 0 · · · 0

...
... · · · ...

...
... · · · ...

ω
nm

0 ω
nm

1 · · · ωnm
m ω

nm

m+1 0 · · · 0

ω
l0
0 eα0 0 · · · 0 ω

l0
m+1e

−α0 ω
l0
m+2 · · · ω

l0
2m+1

...
... · · · ...

...
... · · · ...

ω
lm
0 eα0 0 · · · 0 ω

lm
m+1e

−α0 ω
lm
m+2 · · · ω

lm
2m+1




,

where nj and lj satisfy {n0, n1, . . . , nm} = {i : ti = 0} and {l0, l1, . . . , lm} =
{i : ti = 1}. (Notice that antisymmetry implies the number of 0’s and 1’s is the
same.) It is not hard to see that detN0 = e−α0det(U) ·det(V )−eα0det(U ′) ·det(V ′),
where

U =




ω
n0
0 ω

n0
1 · · · ω

n0
m

ω
n1
0 ω

n1
1 · · · ω

n1
m

...
... · · · ...

ω
nm

0 ω
nm

1 · · · ωnm
m


 , V =




ω
l0
m+1 ω

l0
m+2 · · · ωl0

2m+1

ω
l1
m+1 ω

l1
m+2 · · · ωl1

2m+1
...

... · · · ...

ω
lm
m+1 ω

lm
m+2 · · · ωlm

2m+1




,

U ′ is the matrix obtained by replacing the first column of U by the column
vector (ω

n0
m+1 ω

n1
m+1 . . . ω

nm

m+1)
T , and V ′ is the matrix obtained by replacing the

first column of V by the column vector (ω
l0
0 ω

l1
0 . . . ω

lm
0 )T . By factoring ωnj

from
the j th row of U ′ and factoring ωlj from the j th row of V ′ for each 0 ≤ j ≤ m,
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we obtain

detN0 = e−α0 det(U) · det(V ) − eα0 det(U) · det(V )

2m+1∏
j=0

ωj

= det(U)det(V )(e−α0 + eα0).

Notice det(U) · det(V ) �= 0. Thus (15) remains unchanged. The rest of the proof is
also similar. �

4. Exact small ball rates. We now restate the main theorem of this paper.

THEOREM 3. For the general m-times integrated Brownian motion

P

(∫ 1

0
X2(t) dt ≤ ε2

)
∼ Cε(1−k0(2m+2))/(2m+1) exp

{−Dmε−2/(2m+1)
}

where

Dm = 2m + 1

2

(
(2m + 2) sin

π

2m + 2

)−(2m+2)/(2m+1)

,

C is a positive constant, and k0 is an integer. Furthermore, k0 = 0 for m ≤ 10.

PROOF. Let ak denote the kth eigenvalue of A, bk = ((k − 1
2 + k0)π)−2m−2

and ck = ((k− 1
2 )π)−2m−2. In the definition of bk if k0 < 0 then define b1, . . . , b−k0

as 1. From Li’s comparison theorem [see Li (1992), Theorem 2] we conclude

P

( ∞∑
k=1

akξ
2
k ≤ ε2

)
∼ CP

( ∞∑
k=1

bkξ
2
k ≤ ε2

)
,(16)

where C = ∏∞
k=1(bk/ak)

1/2 is a finite positive constant. In order to prove the
theorem we need to get from the bk to the ck which can be done by Li (1992),
Theorem 3. Namely,

P

( ∞∑
k=1

bkξ
2
k ≤ ε2

)
∼ Cγ k0/2P

( ∞∑
k=1

ckξ
2
k ≤ ε2

)
(17)

where C is a positive constant and γ ∼ C′ε−4(m+1)/(2m+1) as in (12). Hence, by
combining Theorem 1(iii) and (16) and (17) we conclude

P

( ∞∑
k=1

akξ
2
k ≤ ε2

)
∼ Cε(1−k0(2m+2))/(2m+1) exp

{−Dmε−2/(2m+1)
}
.

This proves the first statement.
For each m there are 2m+1 general integrated Brownian motions. Since each of

these processes has a conjugate process, that is, since the covariance operator
of the process X{i0,...,im} has the same eigenvalues as the one for X{1−i0,...,1−im}, it
suffices to consider only 2m boundary conditions.
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Case m = 0: Trivially true.
Case m = 1: There are essentially only 2 integrated Brownian motions: the

usual, and the Euler-integrated. For the usual integrated Brownian motion, we
have, from equation (7), defining ρ = λ−1/4, the function

f0(ρ) = cosρ coshρ + 1.

Then it is easy to check that f0(ρ) > 0 and f0(ρ) < 0 for ρ ∈ (2kπ, (2k+1)π) and
ρ ∈ ((2k − 1)π,2kπ), respectively, for k = 0,1,2, . . . . Furthermore, f ′

0(ρ) < 0
and f ′

0(ρ) > 0 for ρ ∈ (2kπ, (2k + 1)π) and ρ ∈ ((2k − 1)π,2kπ), respectively.
Therefore, f0 has unique 0’s in the intervals (kπ, (k +1)π) for k = 0,1,2, . . . . For
the Euler-integrated process there is nothing to show. This proves m = 1.

Case m = 2: There are essentially 4 processes we need to consider: the usual,
the Euler-integrated, and the processes X{0,1,1} and X{0,0,1}. Respectively, the
determinant functions are (ρ = λ−1/6):

g1(ρ) = 48 + 48 cos(ρ) + 12 cos2(ρ)

+ 96 cos
(

ρ

2

)
cosh

(√
3ρ

2

)
+ 12 cos(ρ) cosh(

√
3ρ),

g2(ρ) = 108 cos2(ρ) + 108 cos(ρ) cosh(
√

3ρ),

g3(ρ) = 48 cos(ρ) + 24 cos(2ρ)

+ 96 cos
(

ρ

2

)
cosh

(√
3ρ

2

)
+ 48 cos(ρ) cosh(

√
3ρ),

g4(ρ) = 48 cos(ρ) + 24 cos(2ρ)

+ 96 cos
(

ρ

2

)
cosh

(√
3ρ

2

)
+ 48 cos(ρ) cosh(

√
3ρ).

Remarkably, we find that g3 = g4. So we have reduced our work to showing k0 = 0
for only g1 and g3, since we get the Euler-integrated process for free. The proof is
now a straightforward calculus exercise, and we omit the details.

The authors ran computer calculations that show k0 = 0 for m ≤ 10, that is, λk ≈
((k − 1

2 )π)−2m−2. The main idea is captured in Figure 1. We display K det(N)(ρ)

as a function of ρ (ρ = λ−1/(2m+2)) for a few usual m-times integrated Brownian
motions. The purpose of the K is solely to scale the graph to reasonably fit on the
page. Each zero of the graph of the determinant corresponds to an eigenvalue of A

to the power of −1/(2m + 2). In Section 3 we proved that the scaled determinant
should behave like a cosine for large ρ. We can see this in the picture. However,
the most important feature that the picture shows is the following: There exists
an integer l∗ > 0 such that the number of 0’s of K det(N) to the left of lπ and
the number of 0’s of cosine to the left of lπ is the same for all integer l ≥ l∗.
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FIG. 1. Scaled determinant and the limiting cosine of usual integrated Brownian motion with
m = 1, 2, 6, 25.

By checking this, for all m ≤ 10, we can conclude that k0 = 0. The authors
conjecture that k0 = 0 for a general m. �

One more remark is in order. It seems intuitively clear that, among the general
m-times integrated Brownian motions, the usual integrated Brownian motions
have the largest L2-small ball probabilities while the Euler-integrated Brownian
motions have the smallest L2-small ball probabilities. The authors could not
formally prove this observation; however, it is supported by computer calculations.
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FIG. 2. Scaled determinant and the limiting cosine for X{0,0,0,0,0,0,0}, X{0,1,0,0,0,0,0},
X{0,1,0,1,0,0,0}, X{0,1,0,1,0,1,0}, respectively.

For an illustration we have in Figure 2 graphs of K det(N)(ρ) for several
six-times integrated Brownian motions. Notice in particular that the first few 0’s
of K det(N)(ρ) are decreasing as we progress from the usual integrated Brownian
motion to the Euler integrated Brownian motion. This observation would imply
that for any general m-times integrated Brownian motion 0 ≤ k0 ≤ ku

0 , where ku
0 is

the k0 associated with the usual integrated Brownian motion. This is in agreement
with our belief that in all cases k0 = 0.
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NOTE ADDED IN PROOF. Since the acceptance of this article, the authors
along with Professor Tzong-Yow Lee [Gao, Hannig, Lee and Torcaso (2003)] have
been able to establish that, indeed, for any generalized integrated Brownian motion
k0 = 0 for all integers m ≥ 0.
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