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We will introduce a class of m-times integrated Brownian motions.
The exact asymptotic expansions for the L,-small ball probabilities will be
discussed for members of this class, of which the usual m-times integrated
Brownian motion is an example. Another example will be what we call an
Euler-integrated Brownian motion. We will also find very sharp estimates for
the asymptotics of the eigenvalues of the covariance operator of integrated
Brownian motions and will, therefore, obtain exact, not just logarithmic,
asymptotics.

1. Introduction. Let X,,(t), 0 <t < 1, be a usual m-times integrated
Brownian motion

(1) Xm(t)=/0l fo /Osz B(si)dsi ds --- dsy,

where B(s) is a standard Brownian motion and m > 0 is an integer. In this paper
we will be interested in understanding the behavior of the probability that X, (¢)
stays in a small ball of radius ¢ around the origin

2) P Xnll <e).

As ¢ tends to 0, this probability clearly tends to 0—the question is, at what rate?

Questions of this type fall into the realm of what has come to be called “small
ball” probabilities. The asymptotic analysis of small ball probabilities for Gaussian
processes has received much attention in the literature [see, e.g., the recent survey
of Li and Shao (2001)].

To be specific, we will be interested in understanding the asymptotic behavior
of (2) with the L, norm. This question was previously studied by Khoshnevisan
and Shi (1998) and Chen and Li (2003). They prove the exact logarithmic
asymptotics of the small ball probability of m-times integrated Brownian motion
for m =1 and m > 1 respectively. Actually Khoshnevisan and Shi (1998) achieve
more. They find an explicit representation for the Laplace transform

02 1 5 2 1/2
Eex ——/ X1t dt) = ( ) .
p( 2 Jo 10 cosh? \/8/2 + cos2 \/8/2
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INTEGRATED BROWNIAN MOTIONS 1321

Motivated by this result, Chen and Li (2003) obtained the following: as ¢ — 07,
1
log P <f X2 (1) dt < 82>
0

_2m +1 o—2/@m+1)

~

)—(2m+2)/(2m+1)

2 2) si
(( m 4+ )sm2m+2

That is, they are able to find the exact logarithmic small ball asymptotics for all
integrated Brownian motions. The calculations performed show that the Laplace
transform of ||Xm||% for m > 2 is extremely complicated, whereas in the case
m = 0 and 1 it has a relatively nice form.

In this paper we extend their result beyond the logarithmic asymptotics, and,
more importantly, we show that our result is true for a larger class of processes we
call general m-times integrated Brownian motions. Informally, a general m-times
integrated Brownian motion is a C[0, 1] process defined as in (1) with By replaced
by Bj_s or with some of the limits of integration changed from (0, s;) to (sg, 1).
Formally, we define the general m-times integrated Brownian motion as follows.
Consider the following Sturm-Liouville problem:

3) AT (@)= (=D f(@r),  0<t<l,
with the boundary conditions
4) flto)=ftn=f"t) == Vty11) =0,
where
2m-+1
S) t;€{0,1}  foreachj, and Y t;=m+1.
j=0

We say that the boundary conditions of (4) are antisymmetric if foreach 0 < j <m,
tj =1—1ty,4+1—;. Integrating (3) with antisymmetric boundary conditions leads to
the following integral equation.

1
©) () = AF() = /0 K(s.0)f(s)ds,

where K (s, t) is a (uniquely determined) symmetric and positive definite kernel.
Call the unique centered Gaussian process X (¢) on [0, 1] with the covariance
function K (s, t) a general m-times integrated Brownian motion. We will call A
the covariance operator of X (¢). It is easy to see that if the boundary conditions
are not antisymmetric, then (3) and (4) do not lead to a symmetric, positive definite
kernel and will therefore lack a probabilistic interpretation.

There are two important special cases. When the boundary conditions (4) are
chosen so that 7; =0 for 0 < j <m and ¢; = 1 for j > m, then the resulting
covariance kernel is

K(s.1) = /(;Mt(s—u)m(t—u)mdu.

(m!)>
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This is just the covariance kernel of the usual m-times integrated Brownian
motion (1).

Suppose we choose boundary conditions so that #; = 0 for j even and 7; = 1
for j odd. The resulting integral equation leads one to the kernel

_ 1 1
Km(s,t)=/ / (SASDGBIASY) (S At)dsidsy--- dsy,.
0 0

This kernel has the form [see Chang and Ha (2001), Theorem 2]

- 22m |s — ¢] s+t
_ m—+1
Kp(s, 1) = (=)™t 7(2m+1)!(Ezm+1<—2 )—Ezm+1( > ))

where E, (x) is the nth degree Euler polynomial (see Theorem 1 below). In this
case the eigenvalue problem (6) is completely solvable and we get

1 2m+2
()
w(n—1/2)

which allows us to calculate the exact small ball asymptotics (including all the
constants) for this process. We will call the corresponding process the m-times
Euler integrated Brownian motion.

In general, we could have chosen any antisymmetric boundary conditions. It
turns out that these processes are not very different from each other from an
eigenvalue point of view. We prove the following result:

THEOREM 3. For the general m-times integrated Brownian motion
1
P</ X2(0)dr < 82) ~ Cell—ko@mt2)/Omt D) gty o =2/Cmt 1)
A =

where

om+ 1
D=t

’

)—(2m+2)/(2m+1)

2 2)si
(( m + )Sm2m+2

C is a positive constant and kg is an integer. Furthermore, ko = 0 for m < 10.

The authors conjecture kg = O for all m > 0. It is not difficult to show kg =0
for m < 2;however, to show kg = 0 for all m > 0 would require a general statement
about the spectral function for higher-order Sturm-Liouville problems. Roughly
speaking, one would need to show the asymptotic equivalence of the spectral
functions for certain Sturm—Liouville problems with “permuted” evaluation points.

We prove Theorem 3 by approximating the eigenvalues of the covariance
operator of general m-times integrated Brownian motion. These approximations
will be sharp enough to achieve the exact small ball probability rates. Since
centered Gaussian processes are determined uniquely by their covariance kernels,
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what we shall see is that m-times integrated Brownian motions can be understood
through the analysis of the corresponding Sturm-Liouville problem.

Let A be the covariance operator of a general m-times integrated Brownian
motion.

THEOREM 2. The eigenvalues Ay of A are

2m—+2
A ! +of- ( k ( T ))
=|\— —— €X —KIJT S1n
““\ko+k-Dr j2m+3 P m+ 1

where kg = ko(A) is an integer.

For example, if we consider the usual one-time integrated Brownian motion it
turns out that the eigenvalues A of A satisfy

1 1
(7 cosh(m) cos(m) =-1

[see Courant and Hilbert (1937), page 296, or Freedman (1999)], but as
m increases so does the complexity of this defining equation. For example,
form =2, we get

444 ! 2( 8 ! hﬁ
+cosm+cos m—kcosmcos m

1 V3
+ Cos<m> cosh<m> =0.

In the case m =1 it is not difficult to see that in order for a small A to be an
eigenvalue the cosine needs to be very close to zero

o) ofew(55)

As we shall see later Ay = (7w (k — 1/2))_4 + O(e %) as k — oo. It turns out
that this asymptotic is very sharp, and, with the help of a representation theorem
of Sytaya (1974) and comparison theorems of Li (1992), we can get the exact
asymptotic behavior of the L;-small ball modulo a constant. In fact, what we will
see later is that for m large the complexity of the processes is coming from only
the first few eigenvalues after which the eigenvalues behave very much like a fixed
function of the zeros of cosine.

The remainder of the paper is organized as follows: In Section 2 we relate the
two definitions of the general m-times integrated Brownian motion introduced
earlier and prove the exact small ball asymptotics of the m-times Euler-integrated
Brownian motion. In Section 3 we obtain the exact asymptotics of the eigenvalues
of the covariance operator A of any general m-times integrated Brownian motion,
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and in Section 4 we state the exact asymptotic formulations for all m-times
integrated Brownian motions and show that ky(A) = 0 for m < 10. We also provide
some compelling graphs which suggest kg = 0 for all m.

2. General and Euler-integrated Brownian motions. In this section we first
study the connection between the “intuitive” and formal definitions of the general
integrated Brownian motion. Then we continue with a more detailed study of the
Euler-integrated Brownian motion.

The following notations will be convenient: Let Ty and 77 be operators that act
on functions in L3[0, 1] by

t 1
Tof () = /0 f(s)ds and Tif(r) = / F(s)ds.

By Fubini’s theorem ( f, Tog) = (11 f, g), that is, Tp is the adjoint operator to 77.
Let X(r) be a continuous centered Gaussian process with the covariance
operator A. Then

t 1
(8) /0 X(s)ds =TpX(t) and /l X($)ds=T1X(t)

are continuous centered Gaussian processes. It is easy to check that the covariance
operator of 7; X (¢) is T; ATy —;.

Let By be a standard Brownian motion and B; the process Bo(1 — s). It is well
known that the covariance kernel of By is min(s, ¢). Thus, the covariance operator
of B,’ 18 TiTl—i-

Fix an integer m > 0 and take a sequence I = {i,;, i;y—1, ..., 10}, Where iy €
{0, 1}. In accordance with (8) define X' (r) = T;, - T; Bi, (). It follows from the
obserlvations made in the previous two paragraphs that the covariance operator
of X' (¢) is

) Af@®) =T, - TiyTi—iy- -+ T, f ().
Consider the eigenvalue problem Af () = Af(¢). Upon successive differentiation
we arrive to the following differential equation.
AT @) = (=D F (@)
with boundary conditions
Flim) = f'im—1) =--- = f" (o)
= "0 —ig) =--- = fP" (A i) =0.
This is exactly the Sturm-Loiuville problem with antisymmetric boundary
conditions. The process X'(¢) is then a general m-times integrated Brownian

motion. This explains the intuition behind the definition, since each 7; is an
integral operator. Notice in particular that X (%% is the usual m-times integrated
Brownian motion and X {0101} ig the Euler-integrated Brownian motion.

In the rest of this section we restrict our attention to the Euler-integrated
Brownian motion. We prove the following theorem:
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THEOREM 1. Let X(t) be the m-times Euler-integrated Brownian motion.
Then:

(1) the process X (t) has the following covariance kernel

Km(svt)
m+1 22(m+1-j) y SV
1\ Jj—1 .
(10)  =(-1 ;(2j_1)![2(m+1_j)]!(sm) EWH_])( ; )
22m It —s| t+s
— (_1\ym+1 _
an - = (2m+1)!(Ezm+1( . ) E2m+1( ! ))

where E, (x) is the nth Euler polynomial,
(ii) the eigenvalues of the covariance operator are Ay = ((k — %)n

(iii)

)—Zm—Z.

1
P(/ X%(t)dt < 82) ~ Cpe!/@m+D exp{—Dma_z/(zmH)}
0

where
) 7 \1/2 m+1/2m+1)
C, = 2<m+1>/2(L> [(Zm +2)sin }
2m+ )m 2m+2
and
2m+ 1 ' —@2m+2)/2m4+1)
D,, = <(2m + 2) sin m +2> .

We need the following lemma.

LEMMA 1. Suppose k > 1 is an integer, then

o0 27 kT cosh(rx sin(2L ) + cos(rx cos(2it 7)) 7'/2
st

2n—1 2

n=1 j=0

PROOF. Letc; = exp(%ni) be the 2kth roots of —1. Then ¢; = —cy4j,

and we have

t <2nx— 1>2k ZZﬁl[l e 1} :lﬁ[l - (2;:{6 1)2]

Jj=0 J=0
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Using the infinite product expansion of the cosine function

00 2
cos(mwz/2) = 1_[ <1 — ﬁ)

[+ (5]

k—1 oo cox \2T k=l
- 1|:1 a <2nj— 1) i| :JEIOCOS(JTxcj/z)

we obtain

S
—

= || [cos(mxc;/2) cos(nxck_l_j/Z)]l/2

kl:[ [ cosh(x s1n(2ﬂrl ) + cos(mx cos(zJH 7)) } 172
j=0 2 O

REMARK 1. Whenk=m +1 and x = 2(20)1/(2m+2)/n we obtain the exact
Laplace transform E exp(—6 fol X2(s)ds) of the squared L, norm of the m-times
Euler-integrated Brownian motion.

PROOF OF THEOREM 1. (i) The authors proved the formulation (10) before
we discovered the formulation (11) in Chang and Ha (2001). We just need to check
that either kernel representation for A will lead to the correct differential equation.
The following facts regarding Euler polynomials will be useful in this regard [see
Abramowitz and Stegun (1972), page 805]: For n > 0 an integer,

E (x)=nE,_j(x) and E,(0)=0

The verification is straightforward and we omit the calculation.
(i1) Notice that (9) implies that the covariance operator

Af(@)y=C"T f@)

where C is the covariance operator of the standard Brownian motion. Recall that
the operator C defined on L»[0, 1] has eigenvalues vy = (w(k — 1 /2))_2 fork > 1
and corresponding eigenfunctions ¢ (t) = V2sin(r(k — 1 /2)t). The eigenvalues
and eigenfunctions of A now follow via the relation

Ap(t) = C" o) = v o).

That is, the eigenvalues of A are Ay = v,’f“ (m(k — 1/2))~?m+2) and we have
exactly the same eigenfunctions.
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(iii) It follows from the Karhunen—Loeve expansion of X (¢) that

1 o
P(/ X2(t)dt < 82) = P(Z/\ks,? 582>
0 k=1

where & are independent N (0, 1) random variables. We use the following result
from Sytaya (1974):

0
P(E )Lké'szé‘z)
k=1
o0 2 _1/2 o0
4 - = log(1 + 2A ,
( E <1+2ka ) eXp{s 14 2§ og(l +2Aky)

k=1

where y satisfies the following relation:

o0
/; 1+ 2)»/()/
Define
o0
h(y)=3log [[(1+2ny).
k=1
Then

0
2y — 13 log(1 +20uy) = yh' (v) — h(y),
k=

—

o0

=1 14+ 2Ary
Applying Lemma 1 with x = 2(2y)"/®"+2) /7 we have

1 00 2(2)/)1/(2m+2)/n_ 2m+2
h =-1 1
) 2ogg( (=)

1 " 2 1
=7 log [ | [cosh<2(2y)1/(2m+2) sin(2J —:_2 ))

Jj=0
2j+1 m+1

22y)1/Cm+2) ( ))]— log?2.

+cos( 2y) cos 2 2 og
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It is not hard to check that

log?2

|
h(y) =271 (2y)!/Cm+2) csc( T ) _mt

2m +2 2

0 —2(24) 1/ @m+2) ¢ (L)) ,
+ (exp( 2y) sin 2

2—1(2y)1/(2m+2) CSC(

W) =
YR =571 2m+2>

0 () 1/ @m+) ( i ))
+ (exp( 2y) sin 2

2m + 1 1 T
2.7 -1 1/2m+2)
h = — 2712
Y ) 2m +22m + 2 2y) CSC(2m+2)

I9) 2021/ @m+2) (L)) .
+ (exp( 2y) sin 2

On the other hand, by the definition of y, &2 = h’(y). This implies that

—1/@m+1)
)} o—2/C@m+1)

and

Qy)!/Cm+) — [(Zm +2) sin<2m —

+ O (exp(—Ce=2/Cm+Dy),
for some positive constant C. Thus,

exp(yh'(y) — h(y)) ~ 2"t D/ 2 exp(D,, e =2/ m+D)

(12)

and
[_27_[)/2]1//()/)]—1/2
2m+2 \'/? _
~ (7> 2m +2) sm(
Cm+ D)m 2m + 2
The statement of the theorem now follows. [

(m+1)/2m+1)
)} gl/@m+l)

3. Eigenvalue approximations. In this section we obtain very sharp asymp-
totics of the eigenvalues for the covariance operator A of all general m-times inte-
grated Brownian motions.

THEOREM 2. The eigenvalues Ay of A are

2m+2
A ! Lol ! ( ke si ( il ))
=|—) ———= €X —KJT S1In
““\ko+k-Dr j2m+3 P m+ 1

where ko = ko(A) is an integer.
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Notice that the error term is of exponential order. The only setback is the
presence of the integer kg, which we are not able to evaluate for general m.
However, we shall see that ko = O for all m < 10 (see Section 4).

It is worth mentioning that, in the case of Brownian motion (i.e., m = 0), our
formula recovers the well-known exact solution. In the case of m = 1 we sharpen
the result of Freedman (1999), who proved that A; ~ (k7). In fact, in his paper
Freedman defines a general class of priors which is an example that shows for a
statistical problem with infinitely many parameters the Bayesian and frequentist
methods lead to totally different results. Our result shows that general m-times
integrated Brownian motions fall exactly into the framework of his example.

PROOF. For simplicity we first consider the usual m-times integrated Brown-
ian motion. We need to analyze the following Sturm-Liouville equation:
AT @) = (D" f @6 = O )
with boundary conditions
f(k)(O) — f(m+1+k)(1) -0
fork =0, 1, ..., m. The eigenfunctions are the nontrivial functions of the form
2m+-1

fy =Y cjet
=0

witha; =171+ Djg; andw; = exp(;271) satisfying the boundary conditions.
The idea is to find the values of A which make nontrivial solutions possible.
Taking derivatives, plugging in the boundary conditions, and dividing the kth row
by (A~ @m+2))K Jeads to the following (2m + 2) x (2m + 2) matrix:

1 1 1
20 w1 W2m+1
m m m
M= @y ] T O
m+l a0 ml e omtl oo
Wo €7 wp ¢ Oom+1€ "
2m+1 a9, 2m+1 0y 2m4+1 4o,
Wo €T wp e Oom+1€"

The key observation is that A is an eigenvalue if and only if det M = 0.

We claim detM is either real or pure imaginary. To see this, we notice
®; = —wp4+1—; and e% = ¢%m+1-j, Furthermore, M = DMR where D is a
(2m+2) x (2m +2) matrix with entries dy; = (—l)kékj; Risa(2m+2)x 2m+2)
matrix with entries ryj =1ifk+j=m+3 ork+j=3m+5,and r;j =0
otherwise. This implies that det M = (—1)" det M. Thus, det M = 0 if and only
if Re(i" detM) = 0.
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, e“m respectively, and use

®j = —0y 414 to obtain the following matrix N:
1 1 1 el eom
o W Opy1  Opy2e® oo Wy
m m m m ay L.\ o
N = 20 Wiy Opt1 Opi2€ Oypt1€"
m+1 o . m+1 m+1_—aq m+1 m—+1
Wy e SR () Dom+1
2m+1 o0 .., 2m+1 0 2m+1 ,—ay , 2m+1 2m+1
wy e Wy e Wy e () 2m+1
Note that e% . e%2...¢% = exp(—csc(#ﬂ)sin(zzfrz))»_l/(zm”)). Thus,

det M = 0 if and only if Re(i"”" det N) = 0. Further notice that for 1 < j <m,

le% | = exp(—)»_l/(zmﬂ) sin<i>) -0 ash — 0T,
m+1

Therefore, we have

(13)

det N = det No + O (exp<_k—1/<2m+2> Sin(L)))
m—+1

where Ny is the matrix obtained from N by replacing all the entries containing e®/,
1 < j <m, with 0. That is,

1 1 --- 1 1 0
Wy W] W Oyt 0
m m m m
No = @ O O Wy 0
m+1 ,aq ... m+1l ,—ag  m+l
20 € 0 0 CUm-i—le CUm-i—2
2m4+1 o . 2m+1 —ay , 2m+1
wy e 0 0 @y e s

o

0

m+1
Wom+1

2m—+1
Wom+1

It is now easy to see that det Ny = e~ “0det(U) - det(V) — e*0det(U’) - det(V’),

where

m+1 m+1

1 D1 Pmy2

.. m+2 m—+2
@m CUm—}—l wm+2

; V= i i
m

w 2m+1  2m+1
m CUm—}—l m+2

m—+1
T Wy
m+2
Wt

2m+1

T Wop
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U’ is the matrix obtained by replacing the first column of U by the column vector

(I omg1 ... o), _H)T, and V' is the matrix obtained by replacing the first column

of V by the column vector (a)(’)”Jrl w6"+2 . a)gmH)T.

We will now manipulate det(U’) [resp. det(V’)] in such a way that we get a
constant times det(U) [resp. det(V)]. Notice that the first column of the matrices

U’ and V' is a natural successor of the last column. Thus, by factoring a){ = w;j

from the jth row of U’ and factoring a)THH

for each 0 < j < m, we obtain

= Wp+1+, from the jth row of V'

2m+1
det No = e~ *det(U) - det(V) — e*det(U) - det(V) [] o;
(14) j=0

=det(U) det(V) (e * 4 &*).

Further, det(U) - det(V) # 0. By checking the conjugate, we have det Ny =
(—=1)™det Ng. So, i"det(U) - det(V) is a nonzero real number. Thus, by (13),

(15) COS(K_I/(ZWHQ)) =0 (exp<_x—l/(2m+2) Sin( bi4 >)>’
m+1

and the right-hand side of (15) is real.

Choose Ag small enough so that absolute value of the right-hand side of (15) is
less than 1. If A, is an eigenvalue, applying the intermediate value theorem for real
continuous functions, we obtain, after some simple algebra,

o = [ — 1/2)77:]—2m—2 n 0(]62111;—%3 exp(—kn sin(mz_ 1)))

for some integer k.

Since the intermediate value theorem gives only the existence and not the
uniqueness of the root, we have to ensure that the det N as a function of A is
monotone in an appropriate neighborhood of ((k — 1/2)7)~2"~2. To ensure this
as well as the fact that these eigenvalues have multiplicity 1, we need to compute
j_x det N. Using similar arguments as in the derivation of (13) we get

d d
L detN = L det
an an oo
) (k—(2m+3)/(2m+2) eXI)<_)L—1/(2wr2) Sin<—n >)>
m+1

Furthermore, using (14) we obtain

d
- det Ny = det(U) det(V) sin(n =1/ (2m+2)) —@m+3)/@m+2),
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This implies that there is a 0 < A(; < Ao such that, at each eigenvalue A < A that
is exponentially close to ((k — 1/2)7)~ "2, j—k det N is exponentially close to
(— Dk det(U) det(V)[(k — 1/2)]*"+3, which is bounded away from 0. The local
monotonicity and the fact that the eigenvalues have multiplicity 1 follows.

Since the covariance operator A is positive and compact, A has only finitely
many eigenvalues bigger than A;,. We conclude that

i =[ko+k—1/27] "2+ 0 (errll+3 eXP(‘k” sm(;nZ 1)))

for some integer k.

For the general m-times integrated Brownian motion defined in the Introduction,
the corresponding matrix M is changed into M= (my;), where my; = a)’]‘.e’k"‘j ,and
where #; satisfy (4) and (5). By checking the conjugate, one can see the determinant
of M is still either real or pure imaginary. To estimate the determinant, we apply

a similar approximation. After some appropriate row permutations, we obtain

wy) @ o @) 0O --- 0
a)g” a)ﬁ” e oy w:’nlﬂ o --- 0
Ny = a)g’" a)'f’" e opm a)fn’j_l o --- 0 ,

lo ,aq lo —ap Mo ly

wye®® 0 o 0wy 7 @y @y

wlm e 0 ... 0 wlm e~ %o wlm . wl’"
0 m+1 m—+2 2m+1

where n; and [; satisfy {no,ni,...,n,} = {i:t; =0} and {lo,[1,...,In} =

{i :t; = 1}. (Notice that antisymmetry implies the number of 0’s and 1’s is the
same.) It is not hard to see that det Ny = e~ *0det(U) -det(V) —e*det(U’) - det(V'),
where

no no no lo lo .. lo
Wy Wyt Wm W1 Ot " Dopyq g
a)”l w"l w"l A I I
U= f) 1 m ’ V= ")m‘+1 wm‘-i-Z w2n‘1+1 ’
Nm Nm Nm / l /
a) a) oo a) m m . m
0 ™ m W1 Pyt """ Oyt g

U’ is the matrix obtained by replacing the first column of U by the column

vector (wfn‘ﬁrl a):ln1 e a)fn"jrl)T, and V' is the matrix obtained by replacing the
first column of V by the column vector (wé) a)é1 e a)f)’”)T. By factoring wj; from

the jth row of U’ and factoring wy ; from the jth row of V' for each 0 < j <m,



INTEGRATED BROWNIAN MOTIONS 1333

we obtain
2m+-1
det Ng = e~ det(U) - det(V) — e* det(U) - det(V) [ o,
j=0

= det(U) det(V) (e 4 ).

Notice det(U) - det(V) # 0. Thus (15) remains unchanged. The rest of the proof is
also similar. [

4. Exact small ball rates. We now restate the main theorem of this paper.
THEOREM 3. For the general m-times integrated Brownian motion
1
P(/ X2(1)dt < 82) ~ CelI=ko@mt2)/@mt ) gyt o=2/Cmt 1)
) =

where
2m +1

Dy, =

’

)—(2m+2)/(2m+1)

2m +2) si
<(m+ .

C is a positive constant, and kg is an integer. Furthermore, kg =0 for m < 10.

PROOF. Let a; denote the kth eigenvalue of A, by = ((k — % + ko)) 2m—2

and ¢ = ((k— 3)) 72" =2 In the definition of by if ko < O then define by, ..., b_g,
as 1. From Li’s comparison theorem [see Li (1992), Theorem 2] we conclude

o0 o
(16) P(Zaksz < s2> ~ cp(Zbksz < 82),

k=1 k=1
where C = []2, (bk Jai)'/? is a finite positive constant. In order to prove the
theorem we need to get from the by to the c¢; which can be done by Li (1992),
Theorem 3. Namely,

o0 o0
(17) P(Zbks,f 582> ~Cy’<0/2P<chg,§ §82>
k=1

k=1

where C is a positive constant and y ~ C’e~#m+D/@m+1 34 in (12). Hence, by
combining Theorem 1(iii) and (16) and (17) we conclude

o
P ( Z akég < 82> ~ Cg(l—k()(2m+2))/(2m+1) eXp{—Dms_z/(2m+1)}‘
k=1

This proves the first statement.

For each m there are 2! general integrated Brownian motions. Since each of
these processes has a conjugate process, that is, since the covariance operator
of the process X {0-in} has the same eigenvalues as the one for X {1 =i0--1=in} it
suffices to consider only 2" boundary conditions.
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Case m = 0: Trivially true.

Case m = 1: There are essentially only 2 integrated Brownian motions: the
usual, and the Euler-integrated. For the usual integrated Brownian motion, we
have, from equation (7), defining p = A~1/4, the function

Jo(p) =cospcoshp + 1.

Then it is easy to check that fy(p) > 0 and fy(p) < O for p € 2km, (2k+1)7) and
p € ((2k — V)m, 2km), respectively, for k = 0, 1,2, .... Furthermore, fé(,o) <0
and fé(p) > 0 for p € 2km, 2k + 1)7) and p € ((2k — 1)m, 2km), respectively.
Therefore, fy has unique 0’s in the intervals (km, (k+ 1)) fork=0,1,2,.... For
the Euler-integrated process there is nothing to show. This proves m = 1.

Case m = 2: There are essentially 4 processes we need to consider: the usual,
the Euler-integrated, and the processes X!} and X10.0.1}, Respectively, the
determinant functions are (p = A~/ 6y,

g1(p) =48 4 48cos(p) + 12cosz(,0)

+ 96 cos(%) cosh(\/_p) + 12 cos(p) cosh(\/_,o)

22(p) =108 cos?(p) + 108 cos(p) cosh(\/g,o),
g3(p) =48cos(p) + 24 cos(2p)

+ 96 cos(%) cosh(\/_p) + 48 cos(p) cosh(\/_,o)
g4(p) =48cos(p) + 24 cos(2p)

+ 96 cos(%) cosh(\/_p) + 48 cos(p) cosh(\/_,o)

Remarkably, we find that g3 = g4. So we have reduced our work to showing kg =0
for only g; and g3, since we get the Euler-integrated process for free. The proof is
now a straightforward calculus exercise, and we omit the details.

The authors ran computer calculations that show kg = 0 for m < 10, thatis, A; &
((k — %)n)_Zm_z. The main idea is captured in Figure 1. We display K det(N)(p)
as a function of p (p = A~1/"+2) for a few usual m-times integrated Brownian
motions. The purpose of the K is solely to scale the graph to reasonably fit on the
page. Each zero of the graph of the determinant corresponds to an eigenvalue of A
to the power of —1/(2m + 2). In Section 3 we proved that the scaled determinant
should behave like a cosine for large p. We can see this in the picture. However,
the most important feature that the picture shows is the following: There exists
an integer [* > 0 such that the number of 0’s of K det(N) to the left of 7 and
the number of 0’s of cosine to the left of /7 is the same for all integer [ > [*.
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FIG. 1. Scaled determinant and the limiting cosine of usual integrated Brownian motion with
m=1,2,6,25.

By checking this, for all m < 10, we can conclude that kg = 0. The authors
conjecture that ko = O for a general m. [J

One more remark is in order. It seems intuitively clear that, among the general
m-times integrated Brownian motions, the usual integrated Brownian motions
have the largest L,-small ball probabilities while the Euler-integrated Brownian
motions have the smallest L,-small ball probabilities. The authors could not
formally prove this observation; however, it is supported by computer calculations.
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,0,0,0,0,0,0}  x{0,1,0,0,0,0,0}

FI1G. 2. Scaled determinant and the limiting cosine for x{0

x(0.1,0.1,0.0.0) x(0.1.0.1.0.1.0) yosnoctively.

For an illustration we have in Figure 2 graphs of K det(N)(p) for several
six-times integrated Brownian motions. Notice in particular that the first few 0’s
of K det(N)(p) are decreasing as we progress from the usual integrated Brownian
motion to the Euler integrated Brownian motion. This observation would imply
that for any general m-times integrated Brownian motion 0 < ko < k;j, where k{j is
the kq associated with the usual integrated Brownian motion. This is in agreement
with our belief that in all cases kg = 0.
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NOTE ADDED IN PROOF. Since the acceptance of this article, the authors
along with Professor Tzong-Yow Lee [Gao, Hannig, Lee and Torcaso (2003)] have
been able to establish that, indeed, for any generalized integrated Brownian motion
ko = 0 for all integers m > 0.
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