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DONSKER’S THEOREM FOR SELF-NORMALIZED
PARTIAL SUMS PROCESSES

BY MIKLÓS CSÖRGŐ,1 BARBARA SZYSZKOWICZ1 AND QIYING WANG

Carleton University, Carleton University and Australian National University

Let X,X1,X2, . . . be a sequence of nondegenerate i.i.d. random vari-
ables with zero means. In this paper we show that a self-normalized version of
Donsker’s theorem holds only under the assumption that X belongs to the do-
main of attraction of the normal law. A thus resulting extension of the arc sine
law is also discussed. We also establish that a weak invariance principle holds
true for self-normalized, self-randomized partial sums processes of indepen-
dent random variables that are assumed to be symmetric around mean zero,
if and only if max1≤j≤n |Xj |/Vn →P 0, as n → ∞, where V 2

n = ∑n
j=1 X2

j .

1. Introduction and main results. Let X,X1,X2, . . . be a sequence of
nondegenerate i.i.d. random variables and let

Sn =
n∑

j=1

Xj , V 2
n =

n∑
j=1

X2
j , n = 1,2, . . . .

The classical weak invariance principle states that, on an appropriate probability
space, as n → ∞,

sup
0≤t≤1

∣∣∣∣∣ 1√
nσ

[nt]∑
j=1

(Xj − EXj) − 1√
n
W(nt)

∣∣∣∣∣ = oP (1)

if and only if Var(X) = σ 2 < ∞,

(1)

where {W(t),0 ≤ t < ∞} is a standard Wiener process. This invariance principle
in probability is a stronger version of Donsker’s classical functional central
limit theorem. The normalizer (nσ 2)−1/2 in (1) is that in the classical central limit
theorem when Var(X) < ∞.

In contrast to the well-known classical central limit theorem, Giné, Götze and
Mason (1997) obtained the following self-normalized version of the central limit
theorem. As n → ∞,

1

Vn

n∑
j=1

(Xj − EXj)
D→ N(0,1)

(2)
if and only if lim

x→∞
x2P (|X| > x)

EX2I(|X|≤x)

= 0.
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The latter condition is well known to be equivalent to saying that X belongs to the
domain of attraction of the normal law. This beautiful theorem was conjectured by
Logan, Mallows, Rice and Shepp (1973). For a short summary of developments
that have eventually led to Gine, Götze and Mason (1997), we refer to the
Introduction of the latter paper.

The result in (2) shows that when the normalizer in the classical central limit
theorem is replaced by an appropriate sequence of random variables then the
central limit theorem holds under a weaker moment condition than in the classical
case. Thus, in the light of (2), it is natural to ask whether a self-normalized
version of the weak invariance principle (1) could also hold under the same
weaker assumption. As the following theorem shows, the answer to this paramount
question is affirmative.

THEOREM 1. As n → ∞, the following statements are equivalent:

(a) EX = 0 and X is in the domain of attraction of the normal law.
(b) S[nt0]/Vn →D N(0, t0) for t0 ∈ (0,1].
(c) S[nt]/Vn →D W(t) on (D[0,1], ρ), where ρ is the sup-norm metric for

functions in D[0,1], and {W(t),0 ≤ t ≤ 1} is a standard Wiener process.
(d) On an appropriate probability space for X,X1,X2, . . . , we can construct

a standard Wiener process {W(t),0 ≤ t < ∞} such that

sup
0≤t≤1

∣∣S[nt]/Vn − W(nt)/
√

n
∣∣ = oP (1).

Assuming appropriate conditions, we mention two immediate analogs of
Theorem 1 when {Xj , j ≥ 1} is a sequence of independent random variables
with EXj = 0 and finite variances EX2

j . Write s2
n = ∑n

j=1 EX2
j . If the Lindeberg

condition holds, namely,

for all ε > 0, s−2
n

n∑
j=1

EX2
j I(|Xj |>εsn) → 0 as n → ∞,

then it is readily seen that V 2
n /s2

n →P 1. Hence it follows easily from classical
results [e.g., Prohorov (1956)] that SKn(t)/Vn →D W(t) on (D[0,1], ρ), where
Kn(t) = sup{m : s2

m ≤ ts2
n}.

By using a similar method as in the proof of Theorem 1 (cf. Section 2),
we can also redefine {Xj , j ≥ 1} on a richer probability space together with a
sequence of independent normal random variables {Yj , j ≥ 1} with mean zero and
Var(Yj ) = Var(Xj ) such that

sup
0≤t≤1

∣∣∣∣∣S[nt]/Vn −
[nt]∑
j=1

Yj/sn

∣∣∣∣∣ = oP (1)

provided that the Lindeberg condition holds.
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Furthermore, we prove also the following result for self-normalized, self-
randomized partial sums processes of independent random variables.

THEOREM 2. Let X1,X2, . . . be independent symmetric random variables
around mean zero. Then

max
1≤j≤n

|Xj |/Vn
P→ 0 as n → ∞,(3)

if and only if

S
K̃n(t)

/Vn
D→ W(t) on (D[0,1], ρ),(4)

where K̃n(t) = sup{m : V 2
m ≤ tV 2

n }.

We mention that (3) is equivalent to the condition that X is in the domain
of attraction of the normal law if {Xj , j ≥ 1} is a sequence of i.i.d. random
variables [cf. O’Brien (1980)]. Also, it is readily seen that the Lindeberg condition
implies (3). However, it is not clear at this moment whether or not Theorem 2
still holds for general independent random variables, that is, without assuming
{Xj , j ≥ 1} to be symmetric. In the i.i.d. case, for X being symmetric, Griffin and
Mason (1991) attribute to Roy Erikson the proof of (2). That Sn/Vn →D N(0,1),
as n → ∞, with X1,X2, . . . as in Theorem 2, is due to Egorov (1996). This result
in turn inspired us to prove Theorem 2.

The proofs of Theorems 1 and 2 will be given in the next section. We conclude
this section with some immediate corollaries of Theorem 1, which are also of
independent interest. With x ≥ 0, write

G1(x) = P

(
sup

0≤t≤1
W(t) ≤ x

)
, G2(x) = P

(
sup

0≤t≤1
|W(t)| ≤ x

)
,

G3(x) = P

(∫ 1

0
W 2(t) dt ≤ x

)
, G4(x) = P

(∫ 1

0
|W(t)|dt ≤ x

)
.

Our first corollary is an extension of the original Erdős and Kac (1946) invariance
principle to the corresponding functionals of self-normalized sums.

COROLLARY 1. Let EX = 0 and X be in the domain of attraction of the
normal law. Then, as n → ∞, we have

(i) P (max1≤k≤n Sk/Vn ≤ x) → G1(x) for x ≥ 0, and P (min1≤k≤n Sk/Vn ≤
x) → 1 − G1(−x) for x < 0;

(ii) P (max1≤k≤n |Sk|/Vn ≤ x) → G2(x) for x ≥ 0;
(iii) P (n−1 ∑n

k=1(Sk/Vn)
2 ≤ x) → G3(x) for x ≥ 0;

(iv) P (n−1 ∑n
k=1 |Sk/Vn| ≤ x) → G4(x) for x ≥ 0.
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We note in passing that the same results also hold true for the corresponding
functionals of S

K̃n(·)/Vn as in Theorem 2.
Erdős and Kac (1947) gave a further demonstration of their (1946) invariance

principle by deducing a general form of Lévy’s arc sine law (1939) via assuming
a central limit theorem. Namely, let X1,X2, . . . be independent random variables
with EXj = 0,EX2

j = 1 and assume that Lindeberg’s condition holds true, that is,
as n → ∞, we have n−1/2Sn →D N(0,1). Then,

lim
n→∞P (�n/n ≤ x) = (2/π) arcsin

√
x, 0 ≤ x ≤ 1,(5)

where �n = ∑n
j=1 I0<Sj <∞, that is, �n denotes the number of positive elements

in the sequence of S1, . . . , Sn.
Lévy (1939) found this arc sine law for Brownian motion (Wiener process)

and also referred to connection with the coin tossing game. For an insightful
treatise on Lévy’s method, we refer to Takács (1981). In addition to Lévy’s
method for Brownin motion and the Erdős and Kac (1947) invariance principle for
obtaining (5) as stated here for partial sums of independent random variables
having second moments, we mention also that Sparre and Andersen (1949)
discovered a combinatorial proof that revealed the surprising fact that the arc sine
law also held true for partial sums of i.i.d. ramdom variables with a continuous
and symmetric distribution whose second moment is not neceessarily finite. In this
regard then it is interesting to note that another direct application of Theorem 1
yields the following result in the i.i.d case.

COROLLARY 2. Assume that EX = 0 and X is in the domain of attraction of
the normal law. Then (5) holds true in this case as well.

Further to Theorem 1, we note also that in Csörgő, Szyszkowicz and Wang
(CsSzW) (2001) we prove optimal weighted approximations for the sequence
of self-normalized partial sum processes {S[nt]/Vn,0 ≤ t ≤ 1}, while in CsSzW
(2003) we investigate the asymptotic behaviour in distribution of max1≤k≤nSk/Vk

as well as the LIL for Sn/Vn.

2. Proofs.

PROOF OF THEOREM 1. The statement (b) implies (a) by an immediate
restatement of Theorem 3.3 of Giné, Götze and Mason (1997). It is obvious that (d)

implies (c) and hence also (b). So, it only needs to be shown that (a) implies (d).
For the sake of proving the latter, we first provide and list some lemmas that are

also of independent interest. For convenience, throughout the paper,

l(x) := EX2I(|X|≤x),

and we shall denote an absolute constant by A, which may differ from one place
to another in the text.
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LEMMA 1. The following statements are equivalent:

(a) l(x) is a slowly varying function at ∞;
(b) x2P (|X| > x) = o(l(x));
(c) xE|X|I(|X|>x) = o(l(x));
(d) E|X|αI(|X|≤x) = o(xα−2l(x)) for α > 2.

PROOF. It follows from Theorem 2 of Feller [(1966), page 275] that (a) holds
if and only if (b) does. If (b) holds, then (c) follows from Lemma 6.2 of Griffin
and Kuelbs (1989) with θ ↓ 0, and by noting that

E|X|αI(|X|≤x) =
∫ x

0
yα dP (|X| ≤ x)

= xαP (|X| > x) + α

∫ x

0
yα−1P (|X| > y)dy,

(6)

we get (d). On the other hand, it can be easily shown that (c) implies (b) and (d)

implies (b) via using (6) again. Therefore, the proof of Lemma 1 is now complete.
�

The next result is due to Sakhanenko (1980, 1984, 1985).

LEMMA 2. Let X1,X2, . . . be independent random variables with EXj = 0
and σ 2

j = EX2
j < ∞ for each j ≥ 1. Then we can redefine {Xj , j ≥ 1} on a

richer probability space together with a sequence of independent N(0,1) random
variables, Yj , j ≥ 1, such that for every p > 2 and x > 0,

P

{
max
i≤n

∣∣∣∣∣
i∑

j=1

Xj −
i∑

j=1

σjYj

∣∣∣∣∣ ≥ x

}
≤ (Ap)px−p

n∑
j=1

E|Xj |p,

where A is an absolute positive constant.

LEMMA 3. Let aj , j ≥ 1, be a sequence of nonnegative constants and put
A(n) = ∑n

j=1 aj . If an+1/A(n) → 0 as n → ∞, then we have

A−1/2(n)

n−1∑
j=1

aj+1A
−1/2(j) = O(1).(7)

If in addition A([tn])/A(n) → 1 for any t > 0 as n → ∞, then

[nA(n)]−1/2
n−1∑
j=1

j1/2aj+1A
−1/2(j) = o(1)(8)

and

1

nA(n)

n−1∑
j=1

j aj+1 = o(1).(9)



SELF-NORMALIZED DONSKER THEOREM 1233

PROOF. To prove (7), we assume without loss of generality that aj+1/A(j) ≤
1/2 for all j ≥ 1. Noting that 1 ≤ A(j + 1)/A(j) ≤ 3/2 for j ≥ 1 and

√
1 + y ≤

1 + y/2 for y ≥ 0, we get

I (n) := A−1/2(n)

n−1∑
j=1

aj+1A
−1/2(j)

= A−1/2(n)

n−1∑
j=1

A1/2(j + 1)
[(

1 + aj+1A
−1(j)

)1/2 − 1
]

+ A−1/2(n)

n−1∑
j=1

(
A1/2(j + 1) − A1/2(j)

)

≤ 1
2A−1/2(n)

n−1∑
j=1

aj+1A
1/2(j + 1)A−1(j) + 1 − a1A

−1/2(n)

≤ 1
2

(
3
2

)1/2
I (n) + 1.

This implies (7), since 1
2 (3

2 )1/2 < 1.
If A([tn])/A(n) → 1, then for any t > 0,

A(n) − A([tn])
A1/2(n)A1/2([tn]) → 0 as n → ∞.

Hence, by using (7), letting n → ∞ and then t → 0, we have

[nA(n)]−1/2
n−1∑
j=1

j1/2aj+1A
−1/2(j)

≤ t1/2A−1/2(n)

[tn]∑
j=1

aj+1A
−1/2(j) + A−1/2(n)

n−1∑
j=[tn]

aj+1A
−1/2(j)

≤ O(1)t1/2 + A(n) − A([tn])
A1/2(n)A1/2([tn]) = o(1).

This gives (8). The proof of (9) is similar, and hence omitted. This also completes
the proof of Lemma 3. �

We now are ready to prove that (a) implies (d). Put b = inf
{
x ≥ 1 : l(x) > 0

}
and

ηj = inf
{
s : s ≥ b + 1,

l(s)

s2 ≤ 1

j

}
, j = 1,2, . . . .
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Furthermore, let B2
n = nl(ηn),

X∗
j = XjI(|Xj |≤ηj ) and S∗

n =
n∑

j=1

X∗
j .

By Lemma 2, we can redefine {Xj , j ≥ 1} on a richer probability space together
with a sequence of independent N(0,1) random variables, Yj , j ≥ 1, such that for
any x > 0,

P

{
max
i≤n

∣∣∣∣∣
i∑

j=1

(X∗
j − EX∗

j ) −
i∑

j=1

σ ∗
j Yj

∣∣∣∣∣ ≥ x

}

≤ Ax−3
n∑

j=1

E|X|3I(|X|≤ηj ),

(10)

where σ ∗2
j = Var(X∗

j ). Let {W(t),0 ≤ t < ∞} be a standard Wiener process such
that

W(n) =
n∑

j=1

Yj , n = 1,2,3, . . . .

We have

sup
1/n≤t≤1

∣∣S[nt]/Vn − W(nt)/
√

n
∣∣

≤ sup
1/n≤t≤1

∣∣∣∣∣B−1
n

[nt]∑
j=1

σ ∗
j Yj − n−1/2W(nt)

∣∣∣∣∣
+ sup

1/n≤t≤1

∣∣∣∣∣B−1
n

(
S∗[nt] − ES∗[nt]

) − B−1
n

[nt]∑
j=1

σ ∗
j Yj

∣∣∣∣∣(11)

+ sup
1/n≤t≤1

∣∣∣∣ 1

Vn

S[nt] − 1

Bn

(
S∗[nt] − ES∗[nt]

)∣∣∣∣
:= I1(n) + I2(n) + I3(n).

Therefore, (d) will follow from (a) if we can prove that, as n → ∞,

Ij (n) = oP (1), j = 1,2,3,(12)

on assuming that EX = 0 and X is in the domain of attaction of the normal law.
We now proceed to prove (12). Since X belongs to the domain of attraction of

the normal law, that is, x2P (|X| > x) = o(l(x)), by Lemma 1 l(x) is a slowing
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varying function at ∞. Hence it can be easily shown that

j l(ηj ) ≤ η2
j ≤ (j + 1)l(ηj ) for j ≥ 1,(13)

l(ηj+1)/ l(ηj ) → 1 as j → ∞,(14)

|EX∗
j | ≤ E|X|I(|X|>ηj ) = o

(
η−1

j l(ηj )
) = o(Bj/j) as j → ∞,(15)

Var(X∗
j ) = EX∗2

j − (EX∗
j )

2 = (
1 + o(1)

)
l(ηj ) as j → ∞,(16)

E|X∗
j |3 ≤ E|X|3I(|X|≤ηn) = o

(
ηnl(ηn)

) = o(B3
n/n) as j → ∞,(17)

and, as n → ∞,

1

B2
n

n∑
j=1

X2
j → 1 in probability.(18)

Let η0 = 0. Noting that l(ηn) = ∑n
k=1 EX2I(ηk−1<|X|≤ηk) and that (14) implies

l(η[tn])/ l(ηn) → 1 for any fixed t > 0, by (13) and Lemma 3, we get, as n → ∞,

1

nl(ηn)

n∑
j=1

EX2I(ηj<|X|≤ηn)

≤ 1

nl(ηn)

n−1∑
k=1

(k + 1)EX2I(ηk<|X|≤ηk+1) → 0

(19)

and

1

n1/2l1/2(ηn)

n∑
j=1

E|X|I(ηj <|X|≤ηn)

≤ 1

n1/2l1/2(ηn)

n−1∑
j=1

jE|X|I(ηj <|X|≤ηj+1)(20)

≤ 1

n1/2l1/2(ηn)

n−1∑
j=1

j1/2

l1/2(ηj )
EX2I(ηj<|X|≤ηj+1) → 0.

It follows from (16) and (19) that

1

n

n∑
j=1

( σ ∗
j

l1/2(ηn)
− 1

)2

≤ 2

n

n∑
j=1

o(1)l(ηj )

l(ηn)
+ 2

nl(n)

n∑
j=1

(
l1/2(ηj ) − l1/2(ηn)

)2

≤ o(1) + 2

nl(n)

n∑
j=1

EX2I(ηj <|X|≤ηn)

→ 0 as n → ∞.
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This, together with Kolmogrov’s inequality, implies that for any ε > 0,

P

(
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

( σ ∗
j

l1/2(ηn)
− 1

)
Yj

∣∣∣∣∣ ≥ εn1/2

)
≤ 1

ε2n

n∑
j=1

( σ ∗
j

l1/2(ηn)
− 1

)2

→ 0,

and hence, as n → ∞, I1(n) = oP (1).
To estimate I2(n), let Zj = X∗

j − EX∗
j − σ ∗

j Yj . It follows from (10) and (17)
that for any ε > 0,

P

(
sup

1/n≤t≤1

∣∣∣∣∣B−1
n

[nt]∑
j=1

Zj

∣∣∣∣∣ ≥ ε

)

= P

(
max

1≤k≤n

∣∣∣∣∣
k∑

j=1

Zj

∣∣∣∣∣ ≥ εBn

)

≤ A

(εBn)3

n∑
k=1

E|X|3I(|X|≤ηj ) ≤ A

(εBn)3
nE|X|3I(|X|≤ηn)

= o(1) as n → ∞.

This gives that I2(n) = oP (1) as n → ∞.
As to I3(n), we have

I3(n) ≤ 1

Vn

sup
1/n≤t≤1

∣∣S[nt] − S∗[nt] + ES∗[nt]
∣∣

+
∣∣∣∣ 1

Vn

− 1

Bn

∣∣∣∣ sup
1/n≤t≤1

∣∣S∗[nt] − ES∗[nt]
∣∣

≤ 1

Vn

n∑
j=1

(|Xj |I(|Xj |>ηj ) + E|Xj |I(|Xj |>ηj )

)
(21)

+
∣∣∣∣Bn

Vn

− 1
∣∣∣∣ sup

1/n≤t≤1
B−1

n

∣∣S∗[nt] − ES∗[nt]
∣∣

: = I
(1)
3 (n) + I

(2)
3 (n).

By Markov’s inequality, (13), (15) and (20), we obtain, for any ε > 0,

P

(
B−1

n

n∑
j=1

(|Xj |I(|Xj |>ηj ) + E|Xj |I(|Xj |>ηj )

) ≥ ε

)

≤ 2n

εBn

E|X|I(|X|>ηn) + 2ε−1

n1/2l1/2(ηn)

n∑
k=1

E|X|I(ηk<|X|≤ηn)

→ 0 as n → ∞,
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and hence, as n → ∞, B−1
n

∑n
j=1(|Xj |I(|Xj |>ηj ) + E|Xj |I(|Xj |>ηj )) = oP (1).

This, together with (18), implies that, as n → ∞,

I
(1)
3 (n) = Bn

Vn

B−1
n

n∑
j=1

(|Xj |I(|Xj |>ηj ) + E|Xj |I(|Xj |>ηj )

) = oP (1).(22)

We continue to use the notations I1(n) and I2(n) introduced in (11). Noting
that sup0<t≤1 |n−1/2W(nt)| = OP (1) and using the estimators above for I1(n) and
I2(n), it can be easily shown that

sup
1/n≤t≤1

B−1
n

∣∣S∗[nt] − ES∗[nt]
∣∣

≤ I1(n) + I2(n) + sup
0<t≤1

∣∣n−1/2W(nt)
∣∣ = OP (1)

as n → ∞. Hence, by using (18) again, as n → ∞, we obtain

I
(2)
3 (n) =

∣∣∣∣Bn

Vn

− 1
∣∣∣∣ sup

1/n≤t≤1
B−1

n

∣∣S∗[nt] − ES∗[nt]
∣∣ = oP (1).(23)

It now follows from (21)–(23) that, as n → ∞,

I3(n) ≤ I
(1)
3 (n) + I

(2)
3 (n) = oP (1).

On collecting the estimators above for Ij (n), j = 1,2,3, we obtain the
desired (12). This also completes the proof of Theorem 1. �

PROOF OF THEOREM 2. If the statement (4) holds, then Sn/Vn →D N(0,1)

as n → ∞, and hence (3) follows from Theorem 2 of Egorov (1996).
We next prove that (3) implies (4). We assume without loss of generality that

X1, . . . ,Xn are defined on a probability space which also supports a sequence
of independent Rademacher random variables ε1, . . . , εn that are independent of
X1, . . . ,Xn. In view of symmetry of Xj and independence of Xj and εj , it is
readily seen that

K̃n(t)∑
j=1

Xj/Vn
D=

K̃n(t)∑
j=1

Xjεj /Vn, 0 ≤ t ≤ 1,(24)

where D= denotes equality in distribution. Write Xn(t) = ∑K̃n(t)
j=1 Xjεj /Vn. By

using (24) and classical methods of weak convergence [cf. Billingsley (1968),
Chapters 2 and 3], it suffices to show that

(a) for all 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ 1 and k ≥ 1,(
Xn(t1), . . . ,Xn(tk)

) D→ (
W(t1), . . . ,W(tk)

)
,(25)

and that
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(b) for each ε > 0,

lim
h→0

lim sup
n→∞

P

(
sup

|t−s|≤h

∣∣Xn(t) − Xn(s)
∣∣ > ε

)
= 0.(26)

We first verify tightness, that is, (b). Let P ′ and E′ denote conditional
probability and conditional expectation respectively, given X1,X2, . . . . Recalling
the definition of K̃n(t), it is readily seen that for any ε > 0,

P ′
(

sup
kh<t≤min{(k+1)h,1}

|Xn(t) − Xn(kh)| > ε

)

≤ P ′
(

max
K̃n(kh)≤r−1≤τn(h)

∣∣∣∣∣
r∑

j=K̃n(kh)+1

Xjεj

∣∣∣∣∣ > εVn

)

≤ 4ε−4V −4
n E′

(
τn(h)+1∑

j=K̃n(kh)+1

Xjεj

)4

≤ Aε−4V −4
n

(
τn(h)+1∑

j=K̃n(kh)+1

X2
j

)2

≤ Aε−4V −2
n

τn(h)+1∑
j=K̃n(kh)+1

X2
j

(
h + max

1≤j≤n
X2

j /V 2
n

)
,

where τn(h) = min
[
K̃n{(k + 1)h}, n − 1

]
. Therefore, for any ε > 0,

P

(
sup

|t−s|≤h

∣∣Xn(t) − Xn(s)
∣∣ > ε

)

≤ ∑
k:kh≤1

P

(
sup

kh<t≤min{(k+1)h,1}
|Xn(t) − Xn(kh)| > ε − max

1≤j≤n
|Xj |/Vn

)

≤ ∑
k:kh≤1

E

[
P ′

(
sup

kh<t≤min{(k+1)h,1}
|Xn(t) − Xn(kh)| > ε/2

)]
(27)

+ 1

h
P

(
max

1≤j≤n
|Xj | ≥ εVn/2

)

≤ Aε−4
(
h + h−1E max

1≤j≤n
X2

j /V 2
n

)
.

Noting that (3) implies that limn→∞ E max1≤j≤n X2
j /V 2

n = 0, (26) follows
from (27) by letting n → ∞ first and then h → 0.
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The proof of convergence of finite-dimensional distributions as in (25) is similar
to that of Theorem 2 of Egorov (1996) with minor modifications, and hence details
are omitted. The proof of Theorem 2 is now complete. �

PROOF OF COROLLARY 2. The proof of Corollary 2 coincides with that of
Billingsley [(1968), page 138], establishing (5) in the i.i.d. case. We rewrite it here
for convenience, for it is a short one.

For x(t) ∈ D[0,1], let λ(x(·)) be the Lebesgue measure of the set of t for which
x(t) > 0. Then λ is measurable with respect to (D,D), where D denotes the
σ -field of subsets of D generated by the finite-dimensional subsets of D, and is
continuous except on a set of Wiener measure 0. Now, if Sn(t) := S[nt]/Vn, then
λ(Sn(. . .)) is exactly 1/n times the number of positive sums among S1, . . . , Sn−1.
Hence, Theorem 1 and the continuous mapping theorem imply that (5) holds. This
completes the proof of Corollary 2. �

Acknowledgments. The authors thank a referee and Editors for their valuable
comments and suggestions.

NOTE ADDED IN PROOF. While attending the 8th International Vilnius
Conference on Probability Theory and Mathematical Statistics in June 2002, we
learned that, using a different method than that of CsSzW (2001) and the present
paper, the equivalence of (a), (b) and (c) as in Theorem 1 was also proved in
Račkauskas, A. and Suquet, Ch. (2000, 2001).
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