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NEW PERSPECTIVES ON RAY’S THEOREM FOR
THE LOCAL TIMES OF DIFFUSIONS!'

By M. B. MARCUS AND J. ROSEN

A new global isomorphism theorem is obtained that expresses the local
times of transient regular diffusions under P**7, in terms of related Gaussian
processes. This theorem immediately gives an explicit description of the local
times of diffusions in terms of Oth order squared Bessel processes similar
to that of Eisenbaum and Ray’s classical description in terms of certain
randomized fourth order squared Bessel processes. The proofs given are very
simple. They depend on a new version of Kac’s lemma for A-transformed
Markov processes and employ little more than standard linear algebra. The
global isomorphism theorem leads to an elementary proof of the Markov
property of the local times of diffusions and to other recent results about
the local times of general strongly symmetric Markov processes. The new
version of Kac’s lemma gives simple, short proofs of Dynkin’s isomorphism
theorem and an unconditioned isomorphism theorem due to Eisenbaum.

1. Introduction. In a classical paper [8], published in 1963, Ray describes the
total local time {L/_; r € I'} of a transient regular diffusion on some interval / C R,
which may be infinite, starting at x € / and conditioned to die at a fixed point
y € I. Ray’s theorem has been the subject of many investigations, reformulations
and new proofs. See, for example, the works of Williams [15], Sheppard [13],
Biane and Yor [1] and Eisenbaum [2]. In some of these works the description of
{L.,; r € I} looks quite different from the one given by Ray.

In all of these papers the law of {L]_;r € I} is described piecewise, in three
separate regions: r < x,x <r < yandr > y, conditioned to agree at the endpoints.
In Theorem 1.1 we present a single global description of {L[; r € I}. Itis inspired
by our work on the Dynkin isomorphism theorem and our generalization of the
second Ray—Knight theorem [4], which was done with Eisenbaum, Kaspi and Shi.
However, our proofs do not depend on this work. They are elementary, using little
beyond basic linear algebra. One of the most remarkable consequences of Ray’s
theorem is that the local time process {L,; r € I} is Markovian in r. The proof of
this result is particularly simple in our formulation.

Let X be a transient regular diffusion. It is known that we can always
find a measure m on the state space [/, called the speed measure, so that the
O-potential density of X with respect to m is symmetric. We denote this
symmetric O-potential density by v(r, s). Throughout this paper we normalize the
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local times with respect to the speed measure, so that
(1.1) E"(L3,) =v(r,s).

It is easy to show, using symmetry, that v(r, s) is positive definite (see, e.g., [6],
Theorem 3.3). Therefore, we can find a mean zero Gaussian process G = {G,
r € I} with

(1.2) E(G,Gs) =v(r,s).
Let G, ; denote the projection of G, on the orthogonal complement of G, that is,

E(G,G))
E(G:G)) *
For hy(r) = v(r, y), let P*7 denote the h-transform of P*, where P* is the

law of X starting at x. Under P*>”, the process X starts at x and is conditioned to
die at y. (Sometimes P is denoted by P*/"))

(1.3) G.=G, —

THEOREM 1.1. Let L;, denote the total accumulated local time of X . Let G
be an independent copy of G. Let x < y. Then under P*-> X Pg & or P** X Pg &,

G?. G? G*, G?
(1.4) {Lg"+(%+ ;x)ﬂ{’EX}Jr( 2 " ;y>ﬂ{’2”:r61}
: 2 A2
law Gr Gr
Wl 2rrel
{ > T2
where I C R.

Of all the references given above, Theorem 1.1 is most closely related to
Eisenbaum’s results in [2]. She gives an explicit description of the law of {L_;
r € I} separately, in the three regions: r < x, x <r <y, and r > y. It is easy to
derive a similar description from Theorem 1.1. Let Z = {Z;(x); (x,1) € R x RT}
be a zero-dimensional squared Bessel process starting at x. That is, Z;(x) is a
measurable processes satisfying

(15) Z(x) =x +2/0’ JZs @) dW,

where W, is a linear Brownian motion. Let Z = {Z,(x); (x,7) € R x RT} be
an independent copy of Z. In addition, let B; be a standard two-dimensional
Brownian motion independent of Z and Z. Recall that we can write the
O-potential v(r, s) of a diffusion as v(r, s) = p(r)q(s), r <s, for some increasing
positive continuous function p and decreasing positive continuous function g. Set

T(r)=p(r)/q(r)and ¢(r) =q(r)/p(r).
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THEOREM 1.2.  Let {L_;r € I} be as in Theorem 1.1. Then

(1.6) (Lrrel}' 2 (0, rel)

where

(1.7) W, =3¢ B, x<r<y,
(1.8) W, = 356%() Ze(ry)—c(y) (| Be iy 1), r>y,
(1.9) W, =302 (N Zg(r)—p0) (@20 Brw|?), 1 <x.

Note that | B;|? is a two-dimensional squared Bessel process starting at 0.
The next corollary follows easily from Theorem 1.2.

COROLLARY 1.1. {LL;r €I} is a Markov process under P*”.

Using (1.6) we can easily find the generator of {L]_; r € I} in the three regions
r <x,x <r <yandr > y,asin [2]. Recall that the §-dimensional squared Bessel
process Y; has generator

d* d
2x——+6—.
Y 2 + dx
It is then easy to check that the nonhomogeneous diffusion f(¢)Y(;) has generator
f'@® ) d
x)—.
f@) Jdx

Using this we can check that {L7_; r € I'} has generator

d2
204/ (0)f ()5 + ((Sg’(t)f(t) +

(1.10) 2y 4 200, 4
. g -(r)t'(r xdzx 70 xdx’ r<x,
d? 2q’ d
(L1 @) )x o+ (q%)r’(r) + %) ")a’ x<r<y,
> 2p'(r) d
(1.12) g (r)t (r)xdzx + () xdx’ r>y.

We also give a relatively simple derivation of Ray’s theorem using the ideas that
go into the proof of Theorem 1.1.

THEOREM 1.3 (Ray’s theorem). Let L_ denote the total accumulated local
time of X. Let G = {G,,r € R} be as defined in (1.2) and let {Gﬁ’),r € R},
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i=1,...,4, be four independent copies of G. Let J =inf X and S = sup X and
let x < y. Then under the measure P*Y x PG<1)’G<2)’G<3>’G<4),

law

(1.13) {(J,L;r <x} = {J,Ar;r <x},
(1.14) (Lrix <r <y} 2 UG+ (GD)2 2 x <r < y),
(1.15) (S, Llir =y} 2 (S, Tys r = y),
where
4 .
(1.16) Ar=31420 Y (G2
i=1
4 .
(1.17) Ir=31pc5 Y (GIH

i=1

Here G;’)J and Gﬁl)s are defined as in (1.3), with G replaced by GV,

Theorem 1.1 is a simple consequence of a new version of Kac’s lemma, applied
to h-transformed processes, which we give in Lemma 2.2. Theorem 1.2 is a
immediate consequence of Theorem 1.1. It is proved in Section 6, where we
also provide a proof of Corollary 1.1. The proof of Theorem 1.3, which is given
in Section 5, uses Theorem 1.1 and some interesting equalities for the moment
generating functions of Gaussian Markov processes. These equalities are given in
Section 4.

Lemma 2.2 can also be used to obtain isomorphisms for symmetric Markov
processes which are not necessarily diffusions. In particular we note that an
expression of the form of (1.4) is valid for any transient Markov process with
symmetric Green’s function. In this case we get that under P*> x P &,

G2, G2 ) G: G?
(1.18) Lgo+¥+%:rel}ﬂ{L’T},+7r+7’:rel}

where T) is the first hitting time of y. Obviously, when x =y, LrTV =0 and
(1.18) is more useful. In this case, using an elementary equality for the moment
generating function of squares of Gaussian processes and recognizing that L,
the total accumulated local time at y is an exponential random variable with mean
v(y, y), (1.18) states that under P¥Y x Pg,

G; 1} law : (Gry + W(r )/ IV2LK) 1}.

(1.19) {Lgo+ ;’y:re 5

Equation (1.19) is equivalent to Theorem 1.2 in [4]. Using Lemma 2.2 we give a
simple proof of this theorem in Section 9, and also justify all the other assertions
in this paragraph.
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Consider now the local time of standard Brownian motion starting at x > 0
and killed the first time it hits 0. [The O-potential of this process is v(r,s) =
2(r A 's), for r,s > 0.] Using Lemma 2.2 we easily obtain the following well-
known isomorphism; see [10], Volume 2, Section 52.

THEOREM 1.4 (First Ray-Knight theorem). Ler L7, denote the local time
of standard Brownian motion starting at x > 0 and killed the first time it hits 0.
Let {W,,r € Rt} and {W,,r € Rt} be independent standard Brownian motions
starting at 0. Then under P* x Py, y,

(1.20) (L}, :r eRT)2(H, :r e RY)

where H, is a second order squared Bessel process starting at 0, between 0 and x,
and then proceeds as a Oth order squared Bessel process from x. Equivalently,

law

(121 LG + W2+ WP )l sy ir e RYPEW? + WEir e RT)

As an application of Theorem 1.1 we give an interesting modification of
Theorem 1.4. We again consider standard Brownian motion starting at x > 0 and
killed the first time it hits 0. But now we use the Ai-transform A (r) = v(r, y) to
condition this process to hit y > x and die at y, so that the process never does
hit 0. The total accumulated local time of this process satisfies the following

isomorphism:
2
, r - ro-
i ((wr = Swe) o+ (= {00 ) i

+ (WP + W2 )z ir € R+}

2

(1.22)

Wiw2 4 W2 e RY)

under P*¥ x Py, ;. Note the two independent Brownian bridges between 0 and x.

As we mentioned above, Corollary 1.1, which states that the total accumulated
local time of a transient diffusion under P*-Y is a Markov process in the spatial
variable, is an immediate consequence of Theorem 1.2. In [8] and [13] this
property is proved by computing the explicit conditional expectations which
define the Markov property. In Theorem 8.1 we use Theorem 1.1 to simplify the
computations in these papers. This gives us an alternate, more elementary, direct
proof of Corollary 1.1, which has the advantage that it is self contained. The proof
of Corollary 1.1 given in Section 6 uses results about Bessel processes. See [14]
for a proof of Corollary 1.1 using excursion theory.

Our work is inspired by Dynkin’s isomorphism theorem but in this paper we
found it much simpler to work from Kac’s lemma directly. In fact, using this
approach we can give a simple short proof of Dynkin’s theorem. The only proofs
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we know of in the literature, including our own, are long and difficult. We give
this proof in the Appendix in Section A.l. Using the same ideas we also give a
simple short proof of an “unconditioned” isomorphism theorem due to Eisenbaum
and some results relating the two isomorphism theorems.

2. Variations of Kac’s formula. Let 1° denote the transpose of the
n-dimensional vector (1...1). In what follows we use the notation A" for the
matrix obtained by replacing the /th column of the n x n matrix A by 1'. We use
{Y'}; to denote the /th element of the vector Y.

The next lemma is given in [4] for symmetric processes. Because it is used to
prove Lemma 2.2, which is the main tool is many of our proofs, we include a
sketch of its proof.

LEMMA 2.1. Let X be a Markov process with finite 0-potential density
u(x,y). Assume that a local time L] exists for each y, normalized so that
EX(LY) = u(x, y). Let © be the matrix with elements ©; ; = u(x;,x;), i, ] =
1,...,n. Let A be the matrix with elements {A}; ; = X;8; j. For all Ay, ..., A,
sufficiently small and 1 <1 <n,

" A det((I — OA)D)
2.1 EX ALY ) =
@D P (; ’ °°) det(I — ©A)

PROOF. By Kac’s moment formula (see, e.g., [5], Section 3.6),

n

(2.2) E* ( I1 L&) = ux, Y1) Y1) e @)+ UGr(n—1s Yr(m))
i=1 7

where the sum goes over all permutations 7 of {1, ..., n}. Hence
k

“((54))

n

=k! Z u(xp, Xj)A (X, X ) A ju (X jy, X j3)

(2.3)
s U (X X DA u (X XA
n
=k Y {(OM Y,
Jk=1

= k(A1)

for all k.
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It follows from this that

n o0

(2.4) E'exp (ZML’&) = Z{(@A)kl’}, ={I-0r""1).
i=1 k=0

Consequently,

(2.5) (I-0AY =1

where Y is an n-dimensional vector with components E* exp(}_;_, A LEL),
[ =1,...,n. Equation (2.1) now follows from Cramér’s theorem. (Note that (2.5)
can also be found in [5], Section 6.) [

With the goal of studying A-transforms of a Markov process with O-potential
density wv(x,y), suppose that the Markov process X in Lemma 2.1 has
0-potential density u(x, y) of the form

1
(2.6) u(x,y)= mv(x, »h(y)

where h(x) # 0, for all x. In the next lemma we modify the right-hand side of (2.1)

so that it is written in terms of the matrix X, with elements ¥; ; = v(x;, x;), rather
than in terms of ®, which has elements u (x;, x;).

LEMMA 2.2. Let X be a Markov process with continuous 0-potential density
u(x,y) as given in (2.6). Assume that a local time L) exists for each Yy,
normalized so that EX(LY) = u(x, y). Let ¥ be the matrix with elements X =

v(x;,x;), i, j=1,...,n. Let A be the matrix with elements {A}; j = 1;6; ;. For
all Ay, ..., Ay sufficiently small and 1 <l <n,

‘ det(I — £A)
2.7 EY ML | = ——— =
@7) exP(; ’ °°> det(/ — BA)
where

a h(x;)Zik
(2.8) 2-,,(:(24,,(—#), jok=1,....n.
’ ’ h(xp)

Clearly by depends on the starting point of the Markov process and on the
function /. Rather than introduce additional cumbersome notation we leave this
dependency unstated. In our applications of Lemma 2.2 it is always clear what
these quantities are.

PROOF OF LEMMA 2.2. By (2.6), ® = H 'S H, where H; ; = h(x;)3, .
Therefore (I — ®A) = H~ (I — £ A)H. It now follows from (2.5 ) that H~1(I —
X A)HY =1' or, equivalently,

2.9 (I —-—%XA)HY =h
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where h = (h(x}), ..., h(x,))". Consequently by Cramér’s theorem,

det((1 — TA))
det((I — ZA))

(2.10) h(x)E* exp(ZAi&) =(HY); =

i=1
where (I — ©A)®M s the matrix obtained by replacing the /th column of
(I — X A) by h. Thus

) 1\ det(( — SA)EW)
@.11) E™exp (ZMLoo) ~ T det((I — =A))

i=1

where h = ﬁh. Note that Hl =1.
Let B be the matrix obtained by subtracting the i (x;)/h(x;) times the /th row
of (I — ZA)EM from the jth row for each j £ [. We see that

B =1,
2.12) B, =0, j#1,
Bjx=(I—-ZA)j,, jok#L
Thus
(2.13) det (1 — TA)IM) = det B = det(My))

where M is the (I, /)th minor of (I — EA). Since by (2.8), fl,k =0 for all k, we
also have that det(/ — £ A) =det(M; ). Thus we get (2.7) from (2.11). [

REMARK 2.1. Refer to Lemma 2.2 and note that (det(l — TA))~ /2 =
Eexp(}_7_,; )\iGgi/Z) (see, e.g., Lemma 4.1), where G is a mean zero Gaussian
process with covariance EGy, Gy; = }; ;. Suppose that ¥ in (2.8) is symmetric
and positive definite. Then there is a mean zero Gaussian process § with
covariance EGy; §Gx;, = ii, j- Since finite joint distributions determine stochastic
processes, we get the isomorphism

2 g2 2 a2
(2.14) Lgo+%+%:rel}lﬂv{%+%:rel}
under PY x Pg; & X Py g where G and § are independent copies of G and §.
Thus we have reduced the question of obtaining isomorphism theorems of the
form of (1.4) to checking whether T is symmetric and positive definite.

In particular let h(s)détv(s, y) and set x; = x and assume that v is symmetric.
Then

2.15) Sk =, x0) — %‘w
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When x = y this is the covariance of G, = G, — g((;yy)) G and we can write (2.7)
as
L det(I — ZWA)
2.16 EYYex ML ) =————— =
(10 p(; ‘ °°> det(I — T A)

where £ denotes the covariance of G,y. This immediately gives the isomor-
phism that under P”»Y x P &,

G2 & G e
(2.17) {Lgo+ ;y+%:rez}@”{7r+7’:rel}.

(See the discussion immediately below for an explanation of the notation EY>* and
PYY)

3. Diffusions. Let X be a Markov process with O-potential density v(r, s).
Let & be an excessive function for X. We use X" to denote the h-transform of X,
which is a Markov process with 0-potential densities v given by
(3.1) o, ) = ——v(r, $)h(s).

h(r)
In general, one uses P*/" to denote the probability of the process X h starting at x
and E*/" to denote expectation with respect to X h starting at x.

In all the isomorphism theorems obtained in this paper we use the excessive
function A(s) :=hy(s) =v(s,y). X hy can be thought of as the Markov process X
conditioned to die at y, (but not necessarily at the first time it hits y). In this case
we use P* instead of P*/" and E*-¥ instead of E*/" for the process X" starting
at x.

In general, for a Markov process Y, with O-potential density u(r, s), Y(y), the
process obtained by killing Y at T), the first time the process hits y, has O-potential
density

u(r, yu(y,s)

3.2) ueyy(r,s) =u(r,s) — iy

See (A.4). Applying this to X"» we see that (X h)‘)(y) has O-potential density

v UM () 8)

(vhy)(y)(r, s) = o (r,s) —

(3.3) v (y, y)
' 3 v(r, Y)v(y, 5)
= o) (v(r, s) — 71)(% . )hy(s).
Let

B4 xI<xp< - <X=X<X4] < <Ay =Y <Xpg1l <--+ < Xp.
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Let X be the matrix with elements X; ; = v(x;, x;), X* the matrix with elements

(3.5) X7 ={v, x)) — v, Dz, X)) /v(z, Dy xj<z)
X, be the matrix with elements

(3.6) {Z}ij ={v(xi xj) —v(xi, 2)v(z, x;) /v(z, D} ix x> 2)
and

(3.7) @ =xiq4y..

In the rest of this section we take X to be a regular diffusion with O-potential
density v(r, s). In this case there exist two positive continuous functions p and ¢,
with p increasing and ¢ decreasing such that

(3.8) v(r,s) = pr)g(s) forr <s.

See, for example, [8], Section 1.

THEOREM 3.1. Let X be a regular diffusion with 0-potential density v(r, s).

Let A be a matrix with elements {A}; j = X;6; j. For all Ay, ..., A, sufficiently
small,
" 4 det(/ — X*A)
3.9 E*Y ALY | = ——
G2 eXp(; ’ Ty) det(I — 27A)
and
" . det(/ — X, A)
3.10 EY* MLy | = ———
( ) eXp(E i Tx) det(l — =, A)

PRrROOF. It suffices to prove (3.9) with m = n since L’}ly =0 forall x; > y. We
use Lemma 2.2 with x; = x. Comparing (3.3) and (2.6) we see that in the case we
are considering here the matrix ¥ in Lemma2.2is now XY, h(z) = hy(z) =v(z, y)
and therefore

_ ) v(x, y)
Y Ik J»
()4 = 5 — k1)

(3.11) ’ ’ U(-xlay)
v(x, xp)v(xj, y)
=v(x;j, Xg) — v(x—y)
We claim that

i\y}]’k:E;’k, j7k§l7
(3.12) {7}, =0, j<l<k,
3} =0, l<j<k.
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This shows us that det(/ — fl\YA) =det(/ — ¥*A), and (3.9) follows immediately
from Lemma 2.2.

It is simple to prove the claim. We just use the decomposition v(r, s) = p(r)q(s)
for » < s to see that

v(xj,y) B v(xj, Xx)
v(x,y)  v(x,x)

(3.13) Xj,xp<x =

whereas

v(x, xpv(x;, y)

B.14) xj<x<xx or x<xj<xx =
v(x,y)

=v(xj, Xg).

The proof of (3.10) is similar. [

THEOREM 3.2. Let X to be a regular diffusion with 0-potential density v(r, s).
Let L, denote the accumulated local time of X"s. Let & be the matrix with
elements L; j =v(x;,x;),i,j=1,...,n,andx < y.Forall Ay, ..., A, suficiently
small, we have

" . det(I — Z*A)det(I — =,A)
3.15 ESY ALY = y
G1> =P (; ’ °°> det(l — TA)

where A is a matrix with elements {A}; j = A;8; ;.

PROOF. Using the Markov property and the additivity of local times we have
that

n
E*Yexp (ZML&)
(3.16) =l

n n
= E*Yexp (Z/\iL’}"))Ey’y exp (Z/\iLf;g).
i=1 i=1

It now follows from Theorem 3.1 and (2.16) that

n
3.17 EY ML) = .
3.17) xp (Z %00 | T Get(I — =AY det( — ZA)

) _det(/ — £*A) det(I — TV A)
i=1

Using the simple facts that £©) = Xy + XY and ¥, X” = 0 which imply that
(I —2WA) =1 - ZyA)(I — £7A), we get (3.15). O
PROOF OF THEOREM 1.1. It follows immediately from (3.15). U

The next lemma is used in the proof of Theorem 1.3.
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LEMMA 3.1. Let X be a diffusion. Fort <r, <---<ri <x <y,

(3.18) E”xexp<2)\,~Lrog) =Et’yexp<Z)LiLro’5).

i=1 i=1

hy(xi) _ by (xi)
hy(t) = hy(t)

x <y we see that the total accumulated local times of X’ and X" are the same.
O

PROOF. Refer to Lemma 2.2 with x; = ¢. Since forallr <x; <

4. Moment generating functions of Gaussian Markov processes. We begin
with a general relationship about the moment generating function of squares of
Gaussian processes which we provide for the convenience of the reader. A proof
is given in [4].

LEMMA 4.1. Let ¢ = (&1, ...,¢n) be a mean zero, n-dimensional Gaussian
random variable with covariance matrix X. Assume that % is invertible. Let
A= (A1, ..., Ay) be an n-dimensional vector and A an n x n diagonal matrix with
Aj as its jth diagonal entry. Let u = (uy, ..., u,) be an n-dimensional vector. We
can choose Aj, i = 1,...,n, sufficiently small so that (X1 = A) is invertible and

Eexp (ZM &+ Mi)2/2>
4.1) i=1

_ 1 (uAu’ N uAflAu’)
T et —xAan2 P\ 2

where ¥ déf(E_l — A)_1 andu = Wy, ..., uy).

REMARK 4.1. It follows from (4.1) that

)Ll[iz 1

_ !
2 _(det(l—EA))1/2eXp< 2 )

Note that Eexp(3>_}"_; Ai§i2/2) = (det(I — T A)) V2, ~
We define a probabiltiy measure P on R", in terms of its expectation operator E,
by

(42)  Eexp (Z vidi +
i=1

~ E(g(L1, ..., ) exp(Xi_; Ait?/2)
Y G = T T e /)

for all measurable functions g on R”. Under P, ¢ =(1,...,¢n) is a mean zero,
n-dimensional Gaussian random variable with covarian~ce matrix X. This follows
from (4.2) which shows that E exp(i (v, ¢)) = exp(—(vZv')/2).
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The next lemma is used in the proof of Theorem A.2.

LEMMA 4.2. Let (¢1,82) be an R?2 valued Gaussian random variable with
mean zero. Then for all s # 0,

E(g1exp(s2))

4.4) =
sE(exp(s2))

E(¢15).

PROOF. {1 + s¢ is a mean zero Gaussian random variable with variance
2E (¢ 12) +2ts E(182) + s2E (;‘22). Take its moment generating function, evaluated
at one to get

4.5)  E(exp(t1 +58)) =exp (PE(D)/2 +tsE(L18) + s E(&D)/2).
Differentiating this with respect to ¢ and then setting ¢ = 0 we get

(4.6) E(§1exp(s82) = sE(5152) exp (s*E(83)/2)

which gives (4.4). U

We have the following immediate corollary of Lemma 4.1.

COROLLARY 4.1. Let n ={ny; x € S} be a mean zero Gaussian process and
fr a real valued function on S. It follows from Lemma 4.1 that for a*> + b* =
2+ d?,

(O + fra@)® + (i + fxb)*; x € S}

law

= {(nx + fxc)2 + (x + fxd)2§x € S}7

where 1] is an independent copy of 1.

4.7)

Let G ={Gy, y € R} be a mean zero Gaussian Markov process with covariance
EGgGGy =v(x,y). Inthe remainder of this section we assume that G is such that

(4.8) vx, y) =pq(y),  x=v,

where p is increasing and ¢ is decreasing. As in Section 1, set
v(y,2)

4.9 Gy, =Gy — ——

@ Tz 0)

G, is the projection of G, on the orthogonal complement of G .

LEMMA 4.3. Lett <s <rj<---<ry <ry. Consider {G,, 5,1 <i < j} and

let ¥ denote its covariance matrix and f]s = (2 I A)_l. Similarly for
{Gri, 1 =i < j}. Let t(s) = p(s)/q(s).Then

det(I — XA 1
(4.10) el = %A) _

det(/ —%,A) 1 —2K(q, A, £5)(z(s) — (1))
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where K (q, A, &5) = (1/2)(qAq" + gAS;Aq") for A, as given in Lemma 4.1,

withn = jand g = (q(r1),...,q(rj)).
Furthermore, consider {G,,, 1 <i < j} and let X denote its covariance matrix.
Then

T(s)det(] — X, A) —t(t)det(d — X;A)

4.11)
= (t(s) — 7(r)) det(] — TA).

PROOF. Foreachi < j we can write

v(s, r; v(t,r;
Gri,l = Gri,s + ( ( l)Gs _ ( l)Gl>
v(s, s) v(t, 1)

4.12) ( 1 1 )
=G, )N—Gy,— —G
r,,s+Q(r1) 7(s) s 4@ t
= Gr,',s + Pri st
Using (4.8), we see that the two processes {G,, s,i =1,...,j} and {p}, 5,0 =
1,..., j} are independent. Also, note that

1 1 N (s, s) w1 u(t, )
Eq(—G,— —G = + 2
G(<q<s> q() ) ) ) 20 qngls)
=1(s) — ().

(4.13)

It follows from (4.1) that

(det( — =,A)) " /?
(4.14)

2
= (det(I — =,A)) " ?Egexp <K(q, A, is)(LGs - LG,) )
q(s) q(t)

Equation (4.10) now follows from (4.13) and (4.14).

To obtain (4.11), we first consider det(/ — X;A). The entries of I — X3 A are of
the form

(4.15) 8tm — (V1. ri) — T()G DG Tm)) e, 1<l,m<j.

Foreach/=2,...,m, multiply the first row of det(/ — X3A) by ¢g(r;)/q(r1) and
subtract it from the /th row. The resulting matrix has no terms in t(s) in rows 2
through j. This implies that det(/ — X A) is of the form A + 7 (s) B, where neither
A nor B contain terms in 7 (s). It is also clear that A = det(/ — X A). [To see this
think of what we get if 7(s) = 0.] Thus we have shown that

(4.16) det(/ — X3A) =det(/ — XZA)+1(s)B
where B is not a function of t(s). Exactly the same argument shows that

(4.17) det(/ — X;A) =det(l —XA)+1(t)B
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since the only difference in the entries of det(/ — ¥3A) and det(/ — X;A) are the
terms t(s) and 7(¢). Equation (4.11) follows from (4.16) and (4.17). O

Note that 7(r) is an increasing function of r. We consider the distribution
function F(r) = (t(r)/t(x)) A 1. The next lemma is used in the proof of Ray’s
theorem.

LEMMA 4.4, Letrjy1 <t <s=<rj=<x.Then

4

(4.18) /l (Eexp (5 ;)\,Gr,«,r)> dF(r)= det(l — Z,A)det(l — Z,;A)

PROOF. Let K = K(q, A, is). Setting ¢ = r in (4.10) and then integrating, it
follows that

N 1 2
(et = 20)* [ (g5 4F0)

s 2
= / ( ! ) dF(r).
t \1—=2K(t(s) —1(r))
Set v =1(r)/t(s). The right-hand side of (4.19) is equal to

(4.19)

O (Y
420y T® i/ N = 2KT(s)(1 —v)
(@) —@)/tlx) (F(s)— F(t))det(l —3,A)
12K (z(s) — (1)) det(I — ,A)

where for the last equality we use (4.10). Combining (4.19) and (4.20), we get
s 1 2 F(s)—F(
@4.21) / (—) dF(r) = () = (1)
¢ \det(l — Z,A) det(/ — Z;A)det(d — Z;A)
which is (4.18). O

The case r; <t < s < x is a degenerate form of (4.18), in which there are no
squares of Gaussian processes present. In this case both sides of (4.18) are equal
to F(s) — F(¢).

5. Ray’s Theorem. We give a proof of Theorem 1.3. Since (1.14) follows
immediately from (1.4), we proceed to the proof of (1.13). Letr, <--- <rj;1 <
t<s=<rj=<---<rp=<rp <x.Note that

7(2)

S.D Px’y(sz)=%/\1=F(z)
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where F as defined just before Lemma 4.4. To verify this see (A.1). Using (5.1),
we see that we can write (4.18) as

n . 2 4
E”((EG exp<2)»i]l{r,->1}<Gr,- - l;((r]l;))GJ> /2>> t=J < rj)
(5.2) i=1 ’

_ F(rj)—F(1)
 det(/ — By A)det(I — Z,A)

We now consider the local time process of X. It follows from the Markov
property, Lemma 3.1 and Lemma A.1 that

J
Ex’y<exp (ZMLQ’O) T, < oo)

i=1

j J
= Ex’y<eXP (ZALL%>’ I; < OO>Et’y cxXp (Z
(5.3) = -
i J
= E™"exp (ZA;’L%)PX’y(Y} <00)E"Yexp (Zkﬂ&)

i=1 i

A,-Lg'o>
1

= F(1)
det(/ — X;A) det(/ — ZA)

where for the last line we use Theorem 1.1, (3.10) with y, x replaced by x, ¢,
respectively, and the fact that ry, ..., r; are between ¢ and x. It follows from (5.3)
and (4.11) that

n
Exvyiexp(ZXiL&>,t <J <rj}

i=1

J
=EX*Y{GXP<ZMUO’5)JS J <rj}

(5.4) i=1
B 1 ( F(rj) B F(1) )
det(/ — ZA) \det(/ — =, A)  det(I — ,A)
F(rj)—F(1)

~ det( — £, A)detT — £, A)’

Equation (1.13) follows from (5.2) and (5.4).
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The proof of (1.15) is an exact replication of the proof of (1.13). We consider
y=<rp<---<rj<s<tandset

i it
Gyi =G, +<v(r s)G v(r )Gt>

v(s, s) S v(t, t)

1 1
=G, Gy, ——Gqy .
ne B PU )< e T o) )

We also note that P*Y(S <z) =1(z), where I(z) = (1 —t(y)/t(z)) V0.

We proceed to obtain analogies of all the results in Section 4 and in the
proof of (1.13). Essentially, p(-) replaces g(-), 1/t(-) replaces t(-), and I(-)
replaces F(-).

(5.5)

6. Expressing local times in terms of Bessel processes. To begin, we
motivate the choice of W(r) in (1.7)—(1.9). Let W; denote a linear Brownian
motion. By checking covariances it is easy to verify that

(6.1) (Grir e N (g Weiry:r € I} & {p() Wiy ir € 1)
and therefore

(6.2) {Gry;r=> y} = {q((Wery — Weyy) ir > 3},

(6.3) (Grir <2} 2 {p(r) (Wpr) — W) 7 < x).

Also, since v(r,s) is the O-potential of a diffusion, {G,,;r < x} and {G, y;
r > y} are independent.

Let B = {B;,t € R*} and B = {B;, t € RT} be two planar Brownian motions
independent of each other. It follows from (6.1)—(6.3) that (1.4) is equivalent to

(L2 + 3P° By " Lir<x) + 307 ()| Briry—e ()| Lpysy) 7 €1

(64) E 3O Be o7 e 1)
E 1P () By P ir e 1)
where L = {L’,_, r € I} is independent of B and B. Using this, we see that
(65) Ly, E3@01BeP. x=r=y,
aw

6.6) L+ 3q>Beir—cnPlpzy Z1201Ben P r>y,

6.7) Lo+ ip*MBser-sPlp<n Z1p2P)Bsr >, r<wx.
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The last two equalities can be written as
L + 36> (1 Br(ry—c() PLirzy)

1 o~ o~
(6.8) = %qz(r)lBt(y) + Bt(r)—r(y)lzv rzy,

Lo+ 5P°(NIBpr)—po 1<)
1 - -
(6.9 = 102" Bpy + Bory—pm 1% r<x.

By the additivity property of squared Bessel processes (see, e.g., [9], Chap-

ter XI, Theorem 1.2) and using the fact that |B¢(x)|2 law <;52()c)|Br(x)|2 in (6.9),
we see that L[ is equal in law to W,, separately, in each of the three
regions (1.7)—(1.9).

PROOF OF THEOREM 1.2. It suffices to show that (6.4) holds with L[
replaced by ¥, since, for example, by taking Laplace transforms, (1.6) determines
the finite-dimensional distributions of L’ . Let B = {B,,t € R} be a planar

Brownian motion independent of B and B. Using (1.7)—(1.9) and the additivity
property of squared Bessel processes, we see that

(W + 397 Bory -0 Lpr<a) + 367 ) Be(ry v P Lpysyy i € 1}
1 —_
= {%Pz(r)ler)—qb(x) +¢(X)Brioy L=y

+ %qz(r)lBr(r) |2]l{x<r<y}

+ %qz(r)lgt(r)—r(y) + B‘L’(y)|21].{rzy} r e I}.

(6.10)

Since this last process is clearly Markovian, it suffices to show that it agrees in law
with %qz(r)|Br(r)|2 separately in the regions {r < x}, {x <r <y} and {r > y}.
This is obvious for the latter two regions. As for the region {r < x}, we again use

the fact that ¢ (r) B () faw p(r)By () to see that
{%Pz(r)léqs(r)—mx) + ¢ (X) By > 17 < x}
1
(6.11) = {3P*()|Byr *:r < x}

law

S 3 (D|Bry [ ir <x). O
PROOF OF COROLLARY 1.1. To establish Corollary 1.1 it suffices to show

that

(6.12) E(H(Wy)|FY) = E(H(Wy)|¥,)

for each r < s and any measurable function H, where F,¥ denotes the o -algebra
generated by the stochastic process W, u <t.
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This is not difficult; for example, take y < r < s. For each a € R!, the
continuous process Z = {Z;(a); t € R} induces a probability measure P5(-) on
C(R,R™). Let X, denote the canonical coordinate process on C (R, R™). Then,
under {P7(-); a € R}, X; is a time-homogeneous strong Markov process. Using
independence and the Markov property just described we have

E(H(W)|F,") = E(H(3¢° () Ze(s)-2 (1) 1B )| F,¥)
©.13) Zery—rt) B 1P 1y 01 2
=E;"" T (H (397 () X o)1)

which implies (6.12) when y <r < s. In a similar manner we can check that (6.12)
holds for all » <s. [

7. Proof of the first Ray—Knight theorem.
PROOF OF THEOREM 1.4. We first obtain (1.21). We use Lemma 2.2 with

O<xi<-"<xy=x<x41 <---<xpand h = 1. Here Z;x = 2(x; A x¢),
which implies that

1 _ " a2
(71) m = (EeXp (Z)\.l WX[))

i=1

2

where {W,, x € R"} is standard Brownian motion starting at 0. Furthermore,

o~

(7.2) Yik=%jr— Zx=0, k=jnlL,
and
(7.3) Sik=2k— S =2((xj —x) A (xx — 1)), [ <jAk.

This defines enough elements of 3. j.k for us to see that

2

1 n
7.4 ————=|FE )‘iW)?-—x .
75 det(I — SA) ( (exP(,-:zZ+1 ’ ’>)>

Equation (1.21) now follows from Lemma 2.2. Equation (1.20) follows from
the additivity property of squared Bessel processes (see, e.g., [9], Chapter XI,
Theorem 1.2).

As for (1.22), the O-potential of standard Brownian motion starting at x > 0 and
killed the first time it hits 0 is v(r, s) = 2(r A s). Thus the Gaussian process on
the right-hand side of Theorem 1.1 is simply the square root of 2 times Brownian
motion starting at zero. The rest follows from Theorem 1.1. [J
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8. A computational proof of the Markov property of local times of
diffusions. In this section we give a simple, direct proof of Corollary 1.1. It
is a direct consequence of the explicit computations given in Theorem 8.1. We
first state Theorem 8.1, then prove Corollary 1.1 and finally return to the proof of
Theorem 8.1.

Let
o v(w, 2) _ q(w)
v(z,2) g’
2
@.1) o = v(w,w)— LD _per
v(z,2) ’

K=k = s =(ew(368.))

THEOREM 8.1. Let x;j < -+ < x, =z < w and let H be a bounded
continuous function on R". Let H, (L) := H(LS,...,L3).
For all ) € C sufficiently small the following hold:

() fx<y<z<w,
(8.2) EXY (exp(ALY)Hy(LL)) = EXY (exp(¢®AK 3 Li) Ha(L1y)).

(i) fx<z<w<y,
(83)  E“Y(exp(AL)Ha(Ly)) = KL E¥Y (exp(¢ MK LE) Hy (L))

(iil) fz<w<x<y,

EXY(exp(ALE)Hy(LL); LY #0)
= KZE*Y (exp(c*AK, L3 Hy (LLy); LI #0).
(v) Ifz<=w=<x=<y,
E*Y(exp(ALY)Hy(Lyy); LY =0)
(8.5) _ Ex’y<(t(X) —t(w) + (t(w) — 1(2)) K3,
T(x) —1(2)

ALTERNATIVE PROOF OF COROLLARY 1.1. Fix x < y and let z < w. To
establish the Markov property we show that for every f € 4, the Schwartz space
of rapidly decreasing functions on R, we can find a bounded continuous function
f, possibly depending on z and w, such that for any finite sequence of points
Xp<--<xy=z<w,

(8.6) EXY(f(LE)Hu(Lyy)) = EXY (f(LL) Ha(LY,)).
This implies that
(8.7) ESY(F(LE) o (L r <z2))=EYY(f(LY)|o(LY))

(8.4)

)Hn(L;x));Lf)gzo)
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for every f € 4, and hence for all bounded measurable f by the conditional
dominated convergence theorem, thus proving the Markov property.

Refer to Theorem 8.1. It is easy to see that both sides of equations (8.2)—(8.5)
are analytic in A in the region Re A < § for some § > 0. Therefore, they hold for A
purely imaginary. This gives us (8.6) for f(x) = e'P* for any real p, and also an
explicit formula for f. This leads easily to (8.6) for any f € $ and completes the
alternative proof of Corollary 1.1. [

In preparation for the proof of Theorem 8.1 we make the following definitions.
Let A=(Ay,...,A,) and

n
(8.8) Bg def exp (% Z)»,‘Gi),
i=1
def Z
(S
(8.9) Bg,x = exp (% Z)‘iGii,xl{xifx}>’
i=1
def Z
(S
(8.10) B,y = exp (% ZMGi,yﬂ{xizy})
i=1
= def .
(8.11) My =TI (}) éexp(ZMLéé)
i=1

We next note the following simple lemma.

LEMMA 8.1. Let {G,,r € R} be a mean zero Gaussian process with
covariance as given in (3.8). Then for z < w,

A A
(8.12) E(BG exp (56121;)) = K1/2E<BG exp <5C2KG2(Z))).
PROOF. We write
(8.13) Gy=Gy;+cG;.
Since G, is independent of Gy,, i =1,...,n, and EG%)’Z = o2, we see from

Lemma 4.1 that

(8.14) E(B ex (ﬁGZ))—KWE(B ex (KCZijL 2226262 ))
. G p 2 w - G p D) 2(1_)\‘0—2)

from which we get (8.12). O

PROOF OF THEOREM 8.1. Using the same analyticity argument as in the
proof of Corollary 1.1, we see that in order to prove (8.3), it suffices to show
that for all A, Aq, ..., A, € C sufficiently small,

(8.15) EXY(TIL (M) exp(ALY)) = K; E*Y (T (1) exp(c?A K, LZ)).
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The results used below to obtain (8.15) are proved earlier in this paper for
A, AL, ..., A, real. However, it is easy to check that the proofs of these results
remain valid when A, A1, ..., A, are complex. This is also the case in the rest of
the proof of this theorem.

Since x <z <w =<y, 1>y} = 0. Using this, Theorem 1.1, Lemma 8.1 and
Theorem 1.1, again we get

Ex’yE(l'ILBG,xBG’x exp(ALY.))
G2 G2
= E(Bc;Bé exp ()\(7“’ + 7’”)))
G? G?
= KE(B(;B(-; exp ()\czK(?Z + f)))

= KE“YE(T B xBg , exp(Ac’K L))

(8.16)

from which we get (8.15) and consequently (8.3).
We now prove (8.2). It follows from Theorem 1.1, Lemma 8.1 and the fact that
Bg x and Bg,y are independent, that
)
2

E* y(HLBGxBG «BG.yBg yexp<

(1
:E(BGBGGXP< ( ;)))

(8.17) —KE(BGB exp<)~02K<G7 %)»
)

= KE" (I exp(Ac?K L%,)
2

X (E(exp( G;’y)BG,y)>2(EBG,x)2

where, at the last step we use Theorem 1.1 again. Also, obviously,

G? G2
EXJ’(HLBG,xBG’xBG,yBG’yexp ()L(L&—k ;,y +%>>>

(8.18) 5 5

G
= E*Y(My eXP(AL&))(EBG,x)Z(E <€XP (k%> BG,y)) :

‘We claim that
2 2

G G
(8.19) E<BG,y exXp (K ;y>) = Kl/zE(BG,y exp (ACZK—;’y>).

Substituting this in the right-hand side of (8.18) and comparing it to the last line
of (8.17) gives (8.2).
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To establish (8.19), one can check that
(8.20) Guy=Gy;+cG,y

and G ; is independent of both G, and Bg,,. Using (8.20) in place of (8.13)
and continuing with the proof of Lemma 8.1, we get (8.19).
To obtain (8.4), we note that

EXY (Mg exp(ALY,), T, < 00)
(8:21) =E* (I, exp(ALT), T; < 00) EXY(exp(ALY.))
since, in the first passage from x to z, I1; = 1. It follows from Lemma A.1 that
(8.22) Ex’y(exp()»L%’z), T, < o0) = Ex’z(exp()\Ll};))Px’y(TZ < 00)
and from (3.10) that
(8.23) E**(exp(ALT.)) =K.
Furthermore, since z < w < y, we can use (8.3) to get
(8.24) E*Y (Tl exp(ALY)) = K E*Y (T exp(c*AK L%,)).
Using (8.21)—(8.24) we get
EXY(Ipexp(AL), T, < 00)

(8.25) . 5

= K" PYY(T, < 00) EXY (T exp(cAK LY))).

Also, by (8.21) and (8.22) with w replaced by z, we see that
EXY(TT, exp(cszLéo), T, < o0)
(8.26) = E¥(exp(c*AK L)) P¥(T;, < 00)
x EY(Ig exp(cz)»KLéo)).

Recognizing that the first expectation to the right of the equality sign in (8.26) is
equal to one, we can substitute (8.26) into (8.25) to get (8.4).
To obtain (8.5), we note that

B (expG L)LY i =1, ...ns L =0)
= EY(exp(ALY)|z < J)
_ PYY(w<J)4 E*Y(exp(ALY),z < J <w)
= P¥Y(z <)) ‘

Using (5.1) and (5.4), we get (8.5). [To see that this is the same as (2.19), [13] note
that ¢*(x) (z(x) — 7(2)) = u(x, x) — (W*(x, 2)/u(z,2)).] O

(8.27)
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9. Strongly symmetric Markov processes. Recall (2.16) which holds for all
Markov processes with symmetric O-potential densities. We get (1.18) by adding

2
n
(E exp (% Z)‘i Gii’y>>
i=1

to each side of (3.16), which holds for all Markov processes not just diffusions,
and using (2.16).
Since G, = G,y + v(r.y) G, it follows from Corollary 4.1 that the right-hand

) ) v(y.y)
side of (2.17) is equal, in law, to

G%,y + (Gr,y + (v(r, y)/v(y, y))\/m)z‘
2 2

Using this in (2.17) and cancelling G2 ry/2 from each side we get that under
PY % Ps 6,

{L’oo
law { (Gry + @ PO VG +GY) ,}
: rely.

(CAY

2

9.2)

Note that (G2 + G2) /2 is an exponential random variable with mean v(y, y)
independent of G,y. By Lemma 2.2, L% is also an exponential random variable
with mean v(y, y). Thus we get (1.19).

We now explain why (1.19) is equivalent to Theorem 1.2 in [4]. Consider a
transient symmetric Markov process X with symmetric O-potential density v(r, s).
Under both PY and PY-¥, L}, the total accumulated local time of X at y, is an
exponential random variable with mean v(y, y). (See Lemmas 2.1 and 2.2.) Let
T be an exponential random variable independent of X. Let V be the Markov
process X killed when it’s local time at y is equal to 7. We show that under
P x Pc;,

G%y
{ ;(Lgo/\t_)_{— ) VEI}
9.3) 5 )
taw | (Gry + @(r, )/ (0(y, )V2(Loo A1) el
> :
where L’ is the total accumulated local time of V" and 7(r) :=

T(L3AT™)
inf{s: L} > t} is the right continuous inverse of s > Lj. This is Theorem 1.2
in [4]. [Note that since T is right continuous, increasing with only a countable
number of jumps, (L3 A1) =17 (L% A1), where (1) := sup{s : L} <t}is
the left continuous inverse of s — L3 .]
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We get (9.3) by using (1.19) on V. However, to do this we need to know the
0-potential density of V. This is given in [4], Lemma 5.2. It is
u(s, yu(t,y) | v(s, y)v(t, y)
v(y, ) v2(y, )

Let 4, be a mean zero Gaussian process with covariance v and G, be a mean
zero Gaussian process with covariance v. One can check that

9.4) v(s, 1) =v(s,t) —

E(LY, AT).

law

9.5 Gry = Gry

and

v y) _ v y)

v(y,y) vy, )

Using (1.19) on V and (9.5) and (9.6) we see that under P”»Y x Pg,

(9.6)

G?
r ry .
{ T(LKOAT_)+ 5 .rel}

s : (Gry + O /OO WVALL AT ,}

9.7

2

The mean of T is arbitrary; consequently we get (9.3) since (9.7) is the Laplace
transform of (9.3).

Now let X be a recurrent symmetric Markov process. Let T be an exponential
random variable independent of X. Let V be the Markov process X killed when it’s
local time at y is equal to T'. It follows from [4], Lemma 5.1, that the O-potential
density of V can be written as

(9.8) v(r,s) =w(,s)+C

where C = E(T) and w(r, s) is the O-potential of the process X killed when it
first hits y. [So, in particular, w(r, y) = w(y,s) = 0.] In this case h,(r) = C, so
Vi (r, s) = v(r, s) [see (3.1)]. Repeating the argument that led to (9.3), we get that
under PY x Pg, forall ¢t > 0,

G? G 21)2
9.9) L;U)+%:rel}@{%:rel}

where 7(¢) :=inf{s:L} > t} and G, is a mean zero Gaussian process with
covariance w(r, s). This is Theorem 1.1 in [4].

In both Theorems 1.1 and 1.2 of [4] there is a constant b, which we take to be
zero. That the constant can be added in both (9.3) and (9.9) is a consequence of
Corollary 4.1 on the moment generating function of squares of Gaussian process
and has nothing to do with the local times.
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APPENDIX

Let X and P*-Y be as given in the third paragraph of Section 1. Let 7, denote
the first hitting time of » by X. Then

v(x,r)v(r,y)

X,y —

(A1) PT <00 = v

and

(A2) PN(T, <00y = )
v(r, r)

To obtain (A.1), we just use the Markov property
(A.3) EYY(LL) =P (T, <o0)E"Y(LL,)

together with the fact that for all /, El’y(Lgo) =v(,r)v(r,y)/v(,y). This last
equality is just the simplest case of Kac’s moment formula (2.2) applied to the
h-transform of X, that is, to the Markov process with O-potential v(s, #)h(z)/
h(s) where h(s) = v(s, y). (A.2) is obtained similarly using the simple equality
E*(LL,) = P*(T, < 00)E" (LL,) and (2.2) again.

Using the Markov property and (A.2), we see that for any measurable
function f,

/ v(x.y) £(3) dy

_ EX(/OOO f(X,)dz)

(A4) = E( | " f(X»dr) 4 E( f > f(X,)dt)
_ Ex( OT’ f(X,)dt) 1+ PY(T, < oo)E’(/ f(X,)dt)
-&([ " f(X»dt) L =0 [ ) dy

which immediately gives (3.2).
We provide the following lemma for the convenience of the reader.

LEMMA A.1. Let H € ¥7,. Then
(A.S) EXY(H1(1,<00)) = EX"(H) P (T, < 00), H e Fr,.

PROOF. For any A-transform with 0 < h(x) < oo and stopping time 7 we
have

1
(A.6) Ex/h(H]l{T<g})=mEx(Hh(XT))» He Fr.
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See (62.20) of [12]. Applying this with 7' =T, and h(s) = v(y, s) shows that

v(r, y)
v(x,y)

(A.7) Ex’y(H]l{Tr<oo}) = EX(H]l{Tr<oo}), H e *7,,

and with £, (s) = v(r, 5)

v(r,r)
(A.8) Ex’r(H]l{Tr<oo}) = o 1) E* (Hjl{T,<oo}), H e Fr,.

Therefore, by (A.1),
(A9) Ex’y(H]l{Tr<oo}) = Ex’r(H]l{Tr<oo})Px’y(Tr < 00), H e F7,.
Next, we take H =1 in (A.8) and use (A.2) to see that

v(r,r)
(A.10) Px’r(ll{Tr<oo}) =

P*(1 —1.
) (L1, <o0})

Using (A.9) and (A.10), we get (A.5). [

Note that (A.1) and hence (A.10) requires that the O-potential of X exists, that
is, that X is transient.

A.1. Other isomorphism theorems. We begin with short simple proofs of two
well-known isomorphisms between local times and Gaussian processes. They are
not as neat as the ones presented in the body of this paper but they hold in greater
generality.

Let X be a strongly symmetric Markov process with state space S and
O-potential density v(r, s). Let W be the & transform of X where h(s) = v(s, y),
that is, W has O-potential density

_ v, s)u(s, y)

(A.11) u(r,s) Y-

Let G be a mean zero Gaussian process with covariance X, ; = v(r, s).

THEOREM A.1 (Dynkin’s isomorphism theorem). Let (L3, s € S} denote the
total accumulated local time of W, which we assume exists. For all x,y in S and
measurable functions F on R", for all n,

G? 1 G2
oy ) \) ;
(A.12) E E(F(Lx,+7;>>_HKXJOE<GxGyF<7f))

PROOF. To prove this theorem it suffices to show that

_ E(G:Gyexp(X]_ %G7 /2))
-~ Eexp(X} 4iG3,/2)

for all Aq,..., A, sufficiently small where x = x; and y = x,,. It follows from

n
(A.13) v(n)OExJexp(E:)iLg

i=1
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Remark 4.1 that
E(Gy, Gy, exp(X)_; 4iG2,/2)
Eexp(Xi_; 2G2/2)

(A.14) ={(I—-2MN)7 'S},

={(Z}in

n
=Y AT =M jv(x), y).
j=1
To handle the left-hand side of (A.13) we use (2.9) with i(z) = v(z, y) and
x1 = x. Clearly,

(A.15) (HY}; ={(I — =A)"'h}y.

Thus we see that

(A.16) v(x, y)E*Y exp (ZAing> =Y {U = 2N v, ).

i=1 j=1
Comparing this with (A.14) gives (A.13). O

There is some similarity between this proof and the one in [10], Vol. 1,
Section 27, of what the authors refer to as a “caricature” of Dynkin’s isomorphism
theorem.

The isomorphism in Theorem A.1 is for processes conditioned to die at a fixed
point in their state space. It is a simple consequence of Lemma 2.2 which deals
with this situation. In the next isomorphism theorem, which is due to Eisenbaum
(it is stated below Théoréeme 1.3 in [3]), we consider processes with no further
condition imposed on their lifetimes. It is a simple consequence of Lemma 2.1
which deals with this situation.

THEOREM A.2. Let {L} ,s € S} denote the total accumulated local time
of X, which we assume exists. For all x in S and measurable functions F on R",

forall n,

At EXE(F(L(;O-i- <G(~)2+ s)2>> |
(1 S
forall s #0.

PROOF. To prove this theorem it suffices to show that

ow\ L EGrexp(ii (G +9)%/2))
ZAZLOO) -l sEexp(>_l_; 4i(Gy, +5)%/2)

(A.18) E* exp(

i=1
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for all Ag,...,A, sufficiently small where x = x;. Expanding the squares
(Gy; + s)? and cancelling the terms in s2, we see that the term to the right of
the plus sign in (A.18) is equal to
E(Gy exp(s X)_; % Gy) exp(X]_; 4G5, /2))

SE(exp(s 37— AiGx;) exp(3_i_ A G)%i/Z))

By Remark 4.1, we can write (A.19) in the form
E(Gy exp(s 271 4iGy)
sE(exp(s 2j_; 4iGy;))
where E signifies that, in this formulation, {G,,,i = 1,...,n} is a mean zero

Gaussian process with covariance T=(—-3AN 'z By Lemma 4.2, (A.20)
is equal to

(A.19)

(A.20)

’

n
(A21) Y oSk ={EA1.
i=1

Therefore to prove this theorem it suffices to show that

n
(A.22) Exexp<ZAiL’ég> =1+ {SA1"};.

i=1

This is indeed the case since, by (2.4) with x = x1,

n
E*lexp (Z/\ing> ={I+(—-3ZA)"'SA1}

i=1
(A.23) =1+{U-3A) " 'z=Al'}
=14+ {EA1"};. O

We now present some equalities which combine Theorems A.1 and A.2. To
simplify the expressions we make the following change of notation. Let m be
a finite discrete measure on S of the form Y 7, X;8,,(-), where A; are real or
complex and are such that the relationships given exist. In this notation we write
(A.13) as

E(G,Gyexp(f G2dm(r)/2))
Eexp(/ Gdm(r)/2)

(A.24) v(x, y)E*Y exp (/ L, dm(r)> =
and (A.22) as
(A.25) E* exp(/ L, dm(r)) =1+ / il,ym(dy)

where x = x1. [We use {L{_,s € S} to indicate the total accumulated local time
of the Markov process under consideration. Which process that is is indicated by
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the probability measure. Thus in (A.24) we are considering the total accumulated
local time of W whereas in (A.25) we are considering the total accumulated local
time of X.]

The next result gives a relation between the conditioned (Theorem A.1) and the
unconditioned (Theorem A.2) isomorphism theorems.

THEOREM A.3.

E* exp(/L&dm(r))
=1+ / (Ex’yexp (/L&dm(r)))v(x, y)dm(y).

PROOF. This follows from (A.25) and (A.14). [

(A.26)

We can use the above isomorphism theorems to obtain interesting formulas
for local times. Let X be a transient symmetric Markov process with O-potential
density v(r, s). Let Y be the process X killed at Ty and denote its zero potential by
w(r,s). Thus w(r, s) =v(r,s) — v(r,0)v(s,0)/v(0,0). Let f, =v(x,0)/v(0,0).

THEOREM A.4. Under the above conditions,

EOGXP(/L:(LQO/\t)dm(r))

1
_ 1A —1/v(0,0) | — p—1/v(0.0)
€ +1—v(0,0)A( ¢ )

is defined in (9.3) and

(A.27)
where L:(LgoAz*)

A:/fxzdm(x)
(A.28)

+ // Ex’yeXp(/ngodm(r)>W(x,y)fxfydm(x)dm(y)'

Now let X be a recurrent symmetric Markov process. Let Y be the process X
killed at Ty and denote it’s zero potential by w(r, s).

THEOREM A.5. Under the above conditions,
(A.29) E%exp ( / L7, dm(r)) =e'?,

where L;(,) is defined in (9.9) and

B:/dm(r)+//Ex,yexp</L’T()dm(r)>w(x,y)dm(x)dm(y)

:/Exexp</LrTOdm(r)) dm(x).

(A.30)
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When X is transient we have a simple formula for w(r, s) in terms of v(r, s).
When X is recurrent the situation isn’t so simple. In Section 6 of [4], w(r, s) is
obtained for recurrent symmetric Lévy processes.

PROOF OF THEOREM A.4. Under P°, LY, the total accumulated local time
of X at zero, is an exponential random variable with mean v (0, 0). Let p be an
independent random variable equal in law to LY_. It follows from (9.3) that

EOGXP(/L:(LQO/\t)dm(r))

_ Eexp(J (1 + fra/2(0 A D) dm(r)/2)
a Eexp(f n?dm(r)/2)

where 7, is a mean zero Gaussian process with covariance w(r, s). Furthermore,
by Lemma 4.1, we see that the second line of (A.31) equals

(A.31)

(A32)  Eexp ((p m)( [ sameo+ [ [0 ss, dm(x)dm(y))).

To understand what @ is, recall that the support of m is a finite set xy, ..., x,. Thus
we are really considering the matrix W with elements {i@ (x;, x i j=1- We see
from Lemma 4.1 that W = (W=1 — A)~! where W is the matrix with elements
{w(xi,xj)}l’.szl and A is a diagonal matrix with elements A; ; = m({x;}). We
now see by (A.14) that

E (1 exp(Xf_y Ain. /2))
Eexp(X/_, Ain2 /2)

(A.33) (W}jx =
Therefore, using (A.13), we get

(A.34) ECexp ( / L, 1o nmy dm(r)) = Eexp((p A1)A)

since the covariance of 7 is the O-potential of Y. Equation (A.27) follows easily
from (A.34). [

PROOF OF THEOREM A.5. It follows from (9.9) that

Eexp(f(n, +/20)2dm(r)/2)
Eexp(fn?dm(r)/2)
where 1, is a mean zero Gaussian process with covariance w(r, s). Thus (A.32)

holds in this case with fy =1 and p = co. Mimicking the rest of the proof of
Theorem A.4, we get the first equation in (A.30). To get the second, we note that

(A35)  E%exp ( [ o dm(r)) _
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by Theorem A.3,

(A.

E* exp </LrTO dm(r))

36)
=14 / (Ex,y exp(/l&o dm(r)))w(X, y)dm(y).

Using this in the first equation in (A.30) we get the second. [J
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