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In this paper we present a study of the problem of approximating the
expectations of functions of statistics in independent and dependent random
variables in terms of the expectations of functions of the component random
variables. We present results providing sharp analogues of the Burkholder—
Rosenthal inequalities and related estimates for the expectations of func-
tions of sums of dependent nonnegative r.v.’s and conditionally symmetric
martingale differences with bounded conditional moments as well as for
sums of multilinear forms. Among others, we obtain the following sharp in-
equalities: E(X}_, Xi)" <2max(¥}_, EX}, (3 }_, ax)") for all nonneg-
ative r.v.’s Xq,..., Xy with E(Xg | Xq,..., Xx—1) < ax, EX]’C <00, k=
L..,n, 1<t <2 EQCY_, X! < EO’(I)max(ZZ:1 b, Cp_y ai)t/s)
for all nonnegative r.v’s Xi,..., X, with E(X)i | X1,.v0, Xp—1) < ai,
EX} | X1,....Xp—) <b.k=1,....n,1<t<2,0<s<t—1lort>2,
0 <s <1, where 6(1) is a Poisson random variable with parameter 1. As ap-
plications, new decoupling inequalities for sums of multilinear forms are pre-
sented and sharp Khintchine-Marcinkiewicz—Zygmund inequalities for gen-
eralized moving averages are obtained. The results can also be used in the
study of a wide class of nonlinear statistics connected to problems of long-
range dependence and in an econometric setup, in particular, in stabilization
policy problems and in the study of properties of moving average and auto-
correlation processes. The results are based on the iteration of a series of key
lemmas that capture the essential extremal properties of the moments of the
statistics involved.

1. Introduction. Let {X;} be a sequence of dependent random variables
(r.v.’s). A question of key interest is the approximation of EH (X1, ..., X,), where
H :R" — R is a continuous function. In this paper we present a series of results
that provide sharp bounds for the above expectations for a wide class of r.v.’s
and functions H, including the cases when H (x1,...,x,) =| >/ ; X; |” and when
H(xy,...,x,) is of the type |27, x;|"In|>"_, x;| (important in the study of
entropy conditions) and more general functions when the X;’s have two bounded
conditional moments as well as the case of sums of multilinear forms.
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We begin by providing a survey of the known Burkholder—Rosenthal moment
inequalities. Let A(¢) and B(¢) denote constants depending on ¢ only and let L and
L;,i=1,2, denote absolute constants, not necessarily the same from one place to
another. Rosenthal (1970) proved the following inequalities:

n t n n t
(1.1) E(ZXk> §A(t)max<ZEX,’<, (ZEXk>>
k=1

k=1 k=1
for all independent nonnegativer.v.’s X1, ..., X, with finite /th moment, ¢ > 1;
n ! n n 1/2
(1.2) E|> Xk gB(t)max<ZE|Xk|l,<ZEX,§> )
k=1 k=1 k=1
for all independent zero-mean r.v.’s Xy, ..., X, with finite 7th moment, ¢ > 2.

Burkholder (1973) showed that similar inequalities hold for martingales.
Using Sazonov’s (1974) results, one can obtain (1.2) with the constant B(¢) =

L'2%/4) while from the estimates obtained by Nagaev and Pinelis (1977) and
Pinelis (1980) it follows that one can take B(r) = L't'. Concerning refinements
and extensions of relations (1.1) and (1.2) and related inequalities, see also
Hitczenko (1990), Nagaev (1990), Wang (1991a, b), Hitczenko (1994a, b, c),
Pinelis (1994), Peshkir and Shiryaev (1995) and Nagaev (1998).

Denote by A*(r) and B*(¢) the best constants in Rosenthal’s inequalities
for power functions (1.1) and (1.2). Johnson, Schechtman and Zinn (1985)
showed that A*(r) and B*(¢) satisfy the inequalities L (¢/In1)" < A*(¢), B*(r) <
L;(t/ln t)" [see also Talagrand (1989), Kwapieri and Szulga (1991) and Latata
(1997)]. Ibragimov and Sharakhmetov (1998) proved that A*(t) =2, 1 <t <2,
A*(t) = EO'(1), t > 2, and B*(2m) = E@(1) — 1)®", m € N, where 0(1) is
a Poisson r.v. with parameter 1 [see also Ibragimov (1997)]. Figiel, Hitczenko,
Johnson, Schechtman and Zinn (1997) and Ibragimov and Sharakhmetov (1995,
1997) independently obtained that the best constant B;“ym (#) in inequality (1.2) in
the case of symmetric r.v’s is given by By, (1) = 1 + E|Z|',2 <t <4, By, (t) =
E161(0.5) — 6,(0.5)|", t > 4, where Z is the standard normal r.v. and 6;(0.5) and
6>(0.5) are independent Poisson r.v.’s with parameter 0.5. In the case of even
moments, one can also derive the explicit expression for the constant By, (2m),
m € N, from the results obtained by Pinelis and Utev (1984). Ibragimov and
Sharakhmetov (1995, 1997) found the exact asymptotics of the constant B:ym (t) as
t — oo. The proof of the expressions for B:‘ym (#) in Ibragimov and Sharakhmetov
(1997) significantly uses ideas and results of Utev (1985), who obtained exact
upper and lower bounds for E|Y}_,; Xi|", where X1, ..., X,, are independent
symmetric r.v.s with finite fth moment, r > 4, in terms of ) }_, E|Xy|" and
Qi E X,%)’/ 2. In particular, the fact that the maximum of his upper bounds is
attained in the case when Y }_, E|Xx|' = O {_, E X,%)’/ 2 implies the expression
for B, (¢) in the case ¢ > 4 [see Ibragimov and Sharakhmetov (1995, 1997)].

sym
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Recently, Klass and Nowicki (1997), Ibragimov and Sharakhmetov (1998,
1999, 2000) [see also Ibragimov (1997)] and Giné, Latata and Zinn (2000)
obtained analogues of Rosenthal’s inequalities (1.1) and (1.2) for U-statistics
with nonnegative and degenerate kernels. Ibragimov and Sharakhmetov (2000)
also showed the significance of each term in the analogues of Rosenthal’s
bounds for U -statistics of arbitrary order. Ibragimov (1997) proved that the best
constants in the analogues of those inequalities grow no slower than L’(¢/In7)™,
where m is the order of a U-statistic. Giné, Latata and Zinn (2000) proved
the analogues of Rosenthal’s inequalities for the rth moment of U -statistics of
order m with the constants L’ (t/Int)™", where L,, is a constant depending
only on m, and obtained Bernstein-type exponential inequalities for U -statistics.
Ibragimov, Cecen and Sharakhmetov (2001) found the best constants in analogues
of Rosenthal’s ineualities for bilinear forms in the case of the fixed number of r.v.’s.

Let (2,3, P) be a probability space with a nondecreasing sequence of
o-algebras Jp = (F,Q2) C J1--- € Jy--- € 3. Pinelis (1980) generalized the
results obtained in Nagaev and Pinelis (1977) in the case of martingales
having proved the following Burkholder—Rosenthal-type inequality for arbitrary
martingale difference (Y,,) with E|Y,|" < oo and E(Ynzl%n_l) < bﬁ eRas.,n>1,

t>2:
n ! n n
ZYk §Ltt’max<ZE|Yk|t,<Zb,%> )
k=1 k=1 k=1
Hitczenko (1990) showed that the following inequalities hold for arbitrary

(3,)-adapted sequences (X,) of nonnegative r.v.’s with EX! < oo and arbitrary
martingale differences Y, with respect to (3,,) with E|Y,|" < oo:

{(£)
(1.4) k=1 . . ‘
< (Lt/Int)" max ( Y EX. E(Z E(Xk/%k_l)) ) t>1,

k=1

k=1

t/2
(1.3) E

t

n t
D Yi
k=1

n n t/2
5(Lz/lnt)fmax(ZE|Yk|f,E<ZE(Y,3/sk_1)> ) t>2
k=1

k=1

E

(1.5)

[see also Hitczenko (1994a, b, c) and Pinelis (1994)]. Several authors [e.g.,
McConnell and Taqqu (1986), Krakowiak and Szulga (1986), Kwapien and
Woyczynski (1992), Szulga (1998) and the references therein] have focused on
the study of properties of multilinear forms and their applications. There has
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also been increasing interest in the study of sums of multilinear forms, partly
because these types of r.v.’s represent a special but important case of infinite-
degree U -statistics and are related to the study of long-range dependence [cf.
Heilig and Nolan (2001)] and moving average processes [e.g., Ho and Hsing
(1997)]. In particular, according to Ho and Hsing (1997), for a general class of
measurable functions K :R — R, stochastic Taylor expansions for functionals
Zfl\’:l(K(Z?il ciXn—i) — EK(X_72,ciXn—i)) of infinite moving averages in
independent r.v.’s X; important in the study of long-range dependence have the
form of sums of multilinear forms. We stress here that the increase in technical
difficulty in going from problems involving multilinear forms to the case of
sums of multilinear forms is justified since, by the use of the above-cited Taylor
expansions, results for sums of multilinear forms allow one to study properties of
nonlinear statistics.

In the present paper, we determine the exact (sharp) analogues of Burkholder—
Rosenthal-type inequalities (1.4) and (1.5) for expectations of functions (general-
ized moments) of sums of dependent nonnegative r.v.’s and conditionally symmet-
ric martingale differences with bounded conditional moments and for sums of mul-
tilinear forms. The results are applied to obtain the best constants in Burkholder—
Rosenthal inequalities for those objects. The obtained exact inequalities extend
the extremal results obtained in Utev (1985), Figiel, Hitczenko, Johnson, Schecht-
man and Zinn (1997), Ibragimov (1997) and Ibragimov and Sharakhmetov (1995,
1997) and are, to our knowledge, the first attempt to apply methods that were used
to investigate extremal problems in moment inequalities for sums of independent
r.v.’s, in the case of martingales, sums of dependent nonnegative r.v.’s and sums of
multilinear forms.

The paper is organized as follows. Section 2 contains an in-depth study of ex-
tremal problems for expectations of statistics H(X1, ..., X,), where H :R" - R
belongs to a class of functions satisfying certain general convexity conditions and
the X;’s are independent (dependent) r.v.’s having bounded (conditional) expecta-
tions for two different functions, that is, Ehg(Xy) < hx(ax) and E fi(Xy) < by, for
functions i :R — R and fz:R — R, k=1, ..., n. Section 3 applies the results
of Section 2 to the special case of sums of r.v.’s and sums of multilinear forms. In
particular:

1. Theorems 3.1 and 3.2 and Corollaries 3.1 and 3.2 provide sharp Burkholder—
Rosenthal-type bounds for the case H (x1, ..., x,) = ¢ {_; Xi).

2. Corollaries 3.3 and 3.4 provide new decoupling inequalities comparing the
moments of sums of dependent nonnegative r.v.’s and conditionally symmetric
martingale differences with bounded conditional moments to the moments of
sums of independent r.v.’s.

3. Theorems 3.3 and 3.4 provide the extremal distributions for the moments of
sums of multilinear forms in r.v.’s with bounded moments.

4. Theorems 3.5-3.8 provide sharp Burkholder—Rosenthal-type bounds for sums
of multilinear forms.
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5. Theorem 3.9 provides new decoupling inequalities for sums of multilinear
forms.

6. Theorem 3.10 provides exact Khintchine—Marcinkiewicz—Zygmund inequali-
ties for generalized moving averages.

Finally, the Appendix presents the auxiliary results on the extremal properties
of moments of sums of independent r.v.’s with fixed sum of tails of distributions
used in the proofs.

2. Extrema of some linear functionals on probability distributions of
nonnegative and symmetric random variables. This section contains several
general results which will be used in Section 3. The reader is advised to first study
the statements of the theorems in Section 3 (which are the main results of the
paper) and motivate the results of this section.

Let Ry = [0, 00). Denote by J the class of continuous increasing functions
f:Ry — Ry, and for f € J denote by Q  the class of functions & € J such that
h(0) =0, the function fh~! is convex on R, and the function f/# is increasing
on Ry \ {0}. Examples of functions f € J and h € Qs are given by f(x) =x' and
h(x)=x5,0<s <t.

Let H : R, — Rbe acontinuous functionandlet f; € J,h; € Qf,i=1,...,n.
Set G; = fi/hi, i =1,...,n. Let X1, ..., X;, be independent nonnegative r.v.’s
with Ef;(X;) < oo, i =1,...,n. In what follows, write (X,n) = (X1,..., Xy).
Fix values a;, b; > 0, fi(a;) <b;,i=1,...,n.Set

M?On(n, Lb)={X,n):Efi(X;)=b;j,i=1,...,n},

Mgon(n, L0)={(X,n):Efi(X;) <b;,i=1,...,n},
M3 (n, h, f,a,b) ={(X,n): Ehi(X;) =h;i(a;)), Efi(X;) =b;,i=1,...,n},
M}°"(n,h, f,a,b) ={(X,n): Ehi(X;) <hi(a;), Efi(X;) <b;,i=1,...,n}.
Let V;(h;, fi,a;i,bi),i=1,...,n, be independent r.v.’s with distributions

_ hi(a;)
P(Vi(hi, firai.bi) = G7 ' (bi/ hi(a)))) = —— !
hi(G; ' (bi/ hi(a:)))
hi(a;)

hi (G (bi/ hi(a;)))

P(‘/l(hlv ﬁvaivbi):0)= I -

LEMMA 2.1. If the functions ﬁlk(zl, ey Zh—1s Vs Zhtls -+ 2Zn) = H(z1, ...,
Zk—1> fk_l(v),2k+1, ..yZn), k=1,...,n,are concave in v > 0 for z1, ..., zx—1,
Zk+41y--+»2n >0, then
(2.1) max EH(X1,..., X)) =H(f ' ®1), ..., £, (b))

(X,n)eM"(n, f,b)



SUMS OF MULTILINEAR FORMS 635
If, in addition to that, the function H : R, — R is nondecreasing in each argument,
then

22) max  EH(Xp,.... X)) =H(fT G0, ... £ ().
(X,n)eM(n, f,b)

PROOF. Let X; be a nonnegative r.v. with Efy (Xy) = by and let zy, ..., zx—1,
Zk+1s---»>2n = 0. If the function Hyx(z1, ..., Zk—1, VU, Zk+1, - - - » Zn) 1S CcONcave in
v > 0, then from Jensen’s inequality it follows that

EH(z1, .. Zk—1, Xks Tkt1s -+ 5 Zn)
=EH(z1, ..., 2k—1, fi(Xi), Zkt15 - -+ Zn)
S Hiyg(z1, oo s Zk—15 bis Tkt 15 -+ -5 Zn)

= H(z1 oo 2kt [T BR), Tkt - -+ Zn)-
This implies that
(2.3) EH(X1,....,Xp) <EH(f7'b1), ..., £ (o)

for all (X,n) € M{*"(n, f, b). Similarly, if, in addition to concavity, the function
H :R’, — R is nondecreasing in each argument, then we get in a similar way that
(2.3) holds for all (X, n) € M3°"(n, f, b). Sharpness of bounds (2.3) follows from

the choice X; = fi_l(bi), i =1,...,n. Therefore, (2.1) and (2.2) hold. [l

LEMMA 2.2. If fi(0)=0,i =1,...,n, and the functions ﬁzk(zl, ey Zh—1»

v, Zk-‘rla H"Z}’l) = (H(Zla ceey Zk—1s Gk_l(v)’ Zk-‘rla «««,Zn) - H(Zla ey Zk—1s 07
Zk+1> - ..,zn))/hk(Gk_l(v)), k=1,...,n, are concave in v > 0 for z, ..., Zk—1,
Zk41s--+»2n >0, then

max EH(Xq,...,Xy)
(2.4) (X,n)eM3°"(n,h, f,a,b)

= EH(Vl(hl’ fla ala b1)7 L) Vﬂ(hﬂ7 fl’l? a}’l’ bl’l))'
If, in addition to that, the functions FIzk(Zl,...,zk_l,v,zk+1,...,zn) are

nonnegative and nondecreasing in v > 0 for 71, ..., Zk—1, Zk+1, - - -» Zn = 0, then

max EH(Xy,...,Xy)
(2.5) (X,n)eMf°"(n,h, f.a,b)

= EH(Vl(hl’ fl’alab1)7 ce Vn(hn7 fn’anabn))~

PROOF. Let X be a nonnegative r.v. with Ehi(Xy) = hk(ak), Efi(Xy) = by

andletzy, ..., Zk—1, Zk+1, - - -» Zn > 0. Suppose that the function Hox (21, ..., Zk—1,
V, Zk+1, - - - » Zn) 18 concave in v > 0. Show that

EH(z1, ..., 2k—1, Xk, Zkg1s -+ Zn)
(2.6)

<EH(z1,---s 2k—1, Vi(hic, fxs Gk BK)s Zht1s -5 Zn)-
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Since the functions Ay, fr and H are continuous, it suffices to consider
only discrete r.v.s Xj. Let Y; be the r.v. with distribution P(Y; = x) =
(hik(x)/ hik(ar))P(Xk =x),x > 0. Wehavethat ), P(Yy =x)=1and EGy(Y}) =
by / hi(ar). Moreover, since P(Xy =0) =1 — hx(ax) E(1/ hi(Yy)), we have

EH(z1,.. s Zk—1> Xks Zkt1s -+ > 2n)
=H(z1, ..., 2k-1,0, Zk1s -+ -5 20)
+ hi(ar) E((H(Z1, - s Zk—15 Yis Tkt 1s - - Zn)
—H(ziy ooy 2h=150, 2kt 1y - -5 20)) /B (Yr)).

2.7)

Since the function Hyy is concave in v > 0, from Jensen’s inequality we get

E((H(1, - 2k=1, Yio 21 - 2n)
—H(@@, ooy 21,0, Zkt15 + -+, 20)) / he(YE))
(2.8) B E{IZk(Zl"“’Zk—l’ Gr(Yi), Zk+41s - -+ Zn)
< EHy (21, k-1, b/ hi(ar), zis1s - - 5 2n)
=(H(z1v s 21 G (b ) (@) 21 - -2 2n)
—H(zy,...,2k—1,0, Zk+1,...,zn))/hk(Glzl(bk/hkmk)))'
Equations (2.7) and (2.8) imply (2.6). Using (2.6), we get
2.9) EH(X1,...,Xy) < EH(Vi(hy, fi,a1,b1), ..., Va(hn, fu, an, bn))

for all (X,n) € M3°"(h, f,a,b). Sharpness of (2.9) follows from the fact
that Vi(hy, f1,a1,b1), ..., Vi(hy, fu,an, by) € M3"(h, f,a,b). Therefore, (2.4)
holds.

Suppose now that the functions ﬁzk(m, vevyZk—15V, Zk+1s - - - » Zn) Are concave
and nondecreasing in v > O for z1, ..., Zk—1, Zk+1, - - - » Zn > 0 and nonnegative. To
prove (2.5), it suffices to show that

EH(z1, ..., 2k—1, Vi(hi, fro @i, bi)s Zis1s - -0 Zn)
<EH(z1, .- 2k—1, Ve(hi,s fi, Qps B)s Tht1s - -5 Zn)

if ax < ay, by < b} Inequality (2.10) is equivalent to the inequality

(2.10)

sz(zl7 .. '7Zk—17 yk’ Zk-‘rl’ ey Z}’l)rk
@2.11) ) /
S H2k<zl7 cees Zk—1, yk7 Zk+1, - - '7Zﬂ)7

where

rk = hi(ax)/ hi(ay,), Yk = b/ hi(ax), Ve = by/ hi(ayp).
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It is evident that 0 < rx < 1, yerx < ¥, Yk, ¥, > 0. Let rp < 1. Set x; =

(y,’c — yirr)/(1 — rg). From the concavity and nonnegativity of sz, it follows
that

Hoi (21, - o k1o ks Tkt s - -2 Zn)Tk
< Hok (1 <oy Tk 1 Vs Thls - -5 Zn)Tk
+ Hoi(z1, . . s Th—1s Xk Zht1s - - > Zn) (1 — 1%)
< Ho (21, Zhets YiTk + Xk(1 = 1%), 2kt 1s -+ -+ Zn)
= ok (21, oy Zhe1s Yoo Thtls + -+ » Zn)-
Since the functions ﬁzk (Z1s+-+»Zk—15 Vs Zk+1, - - - » Z) are nondecreasing in v > 0,

weget(2.11)forr,=1. O

Throughout the paper, ¢, €1, ..., &, denote independent symmetric Bernoulli
I.V.S.

According to Lemmas 2.3 and 2.4, the class of functions H, fi and hy, k =
1,...,n, such that Hy, k =1, ..., n, satisfy the assumptions of Lemma 2.2, is

quite wide and includes, in particular, powers of sums of multilinear forms with
nonnegative kernels and moments of sums of symmetrized multilinear forms.

LEMMA 2.3. Let ¢ ; >0, 1<i1 <---<i=<n, I=0,....mIf
H(xy, ..., xp) = (271:0 Zl§i1<~~<il§n Ciy,..,ipXiy *° 'xil)ta fk(x) :xt, hi(x) = x,
l<t<2,0<sx<t—1ort>2,0<s;<1,k=1,...,n, then the functions
Hok(z1, - oo s k=1, U, Tkt 1s - -5 Zn)s k =1, ..., n, defined in Lemma 2.2, are non-
negative, concave and nondecreasing in v > 0 for z1, ..., Zk—1, Zk+1s -+ -» Zn = 0.
If H(.Xl,...,.xn) == _(271:()21§i1<m<il§nCi],...,i]-xil"'-xil)t’ fk(-x) == xt,
hi(x)=x% 1<t <2, 1<spg<tort>=2,t—1<sp<t,k=1,...,n, then
the functions Hpy are concave in v > 0 for z1, ..., Zk—1, Zk+1s - -» Zn = 0.

PROOF. It suffices to show that the function g(v) = v/ ((v!/¢=9) 4
z)! —z') is nondecreasing and concaveinv > Oforz > 0if 1 <7 <2,0<s <t—1
ort>2,0<s <1,andisconvexinv >0forz >0ifl <t <2,1 <s<tort>2,
t—1<s <t Itis easy to see that d2g(v) /dv? = (t/(t — s)*)v /=972 (s((1 +
w) = —1) =t — Du(l +u)'=2), where u = v'/¢=9 /7. Since

(2.12) Il<(04+uw)>'<1+Q—-0u
forl <t <2,u>0,and
(2.13) 1+Q2—nu<(1+u)?'<1

for t > 2, u > 0, we have that (¢ — (1 +u) "' = 1) < (¢t — Du(l +u)' "2 <
A+uw)t—1forl<r<2,u>0,and (14+u)'—1<@¢—-Du(l4+u)2<
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(t—D((14+u)~t—1) for t > 2, u > 0. Therefore, d>g(v)/dv> <0if | <t <2,
0<s§t—10rt22,0<s§l,anddzg(v)/dvzinfl<t<2,1§s<t
ort>2,¢t—1<s <t. The fact that g(v) is nondecreasing in v > 0 for z > 0
ifl<t<2, 0<s<t—1lort>2 0<s <1 follows from the concavity
of g(v) and the evident relation lim,_, {5 g(v) = +00. Indeed, suppose that the
function g(v) is not nondecreasing, that is, there exist numbers v; < vy such that
g(vy) > g(v2). Since lim,_, ; », g(v) = 400, one can find a number vz > vy such
that g(v3) > g(v2). This implies that

V3 — U vy — Vg V3 — U2 vy — Vg
g(vy) + g(v3) > g(v2) + g(v2)
U3 — V1 U3 — V1 — U U3 — V1
V3 — V) vy — Vg
=g(v2) =g< v + U3>,
U3 — V1 U3 — Vg
which contradicts the fact that g(v) is concave. [l
LEMMA 2.4. Let ¢, ., €R, 1 <i1 <---<iy<n, 1 =0,....m If
H(xy, ..o, x0) = EIX0 Y1 <iy<oociyn CironigXig 8y - X831y fr(x) = X7,
h(x)=x%,2<t<4,0<sp <t—20rt>4,0<s;<2,k=1,...,n,then the
Sfunctions Hyk (21, ...y Zk—1, VU, Zk+1s---,2n), k =1, ..., n, defined in Lemma 2.2,
are nonnegative, concave and nondecreasing in v > 0 for z1, ..., Zk—1, Zk+1s -« - »
2w = 00 If Hxt, ..o Xn) = —E1 X000 X 1<iy <o <iy<n CitoonitXig iy - X3y
fix) =x", hpy(x) =x%,3<t<4,2<sgp<tort>4t—2<s <t, k=
1,...,n, then the functions Hyy are concave in v > 0 for z1, ..., Zk—1, Zk+1» -+ - »

zn > 0.

PROOF. To prove the concavity properties, it suffices to show that the function
g() = v/ (EWY/ ¢ 4 7| — 7') is nondecreasing and concave in v > 0
forz>0if2<t<4,0<sp <t—2o0rt>4,0<s; <2, and convexin v > 0
forz>0if3<t<4, 2<sp<tort>4 t—2<s; <t. Itis not difficult to
check that d?g (v)/dv? = (t/(t —s))v /)72 (s (E|1 +ue| (1 +ue) — 1) —
(t — DuE|l 4 ue|'"2¢), where, as in the proof of Lemma 2.3, u = vl/(’_s)/z.
Since [see the proof of Lemmas 1 and 3 in Ibragimov and Sharakhmetov (1997)]

(2.14) gi(t,u)=(t —2)E|l +ue|" 2 —uE|l +us|' 26—t —2)<0
fort € (2,4),u > 0 and
(2.15) g t,u)=(t —3)E|l +us| 21 +ue) — (¢t — DE|1 +us|"2+2<0

for t € [3,4),u > 0, we have that (r — DuE|l 4+ ue|'"2¢ > (t — 2)(E|l +
ue|'~2(1 + ue) — 1) for t € 2,4),u > 0, and (r — DuE|l + ue|'"2e <
2(E|1 4+ uel'2(1 4+ ue) — 1) for t € [3,4),u > 0, that is, d’g(v)/dv* <0 if
2<t<4,0<s<t—2, and d’g(v)/dv>>0if 3<t <4, 2<s < t. From
the proof of Lemmas 3.2 and 3.3 in Utev (1985), it follows that

(2.16) g1(t,u) =0, &2, u)=0
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for t > 4, u > 0. This implies that dzg(v)/dv2 <0iftr>4,0<s <2, and
d’g(v)/dv?> > 0 if t >4, t —2 < s < t. The fact that the function g(v) is
nondecreasingin v >0for2 <t <4,0<s<t—2andt >4, 0<s <2 follows
from the relation lim,_, ;o g(v) = +00 and the concavity of g(v). U

LEMMA 2.5. Letl>1, HJ :R’_L — R, j=1,...,1, be continuous functions,
limy, s 400 Gk_l(u) = v (Vg can be inﬁnite), k=1,...,n, and let limy_,,, H(z1,
k1 U Tkt s e 2 /i) = ¢l €R, j=1,...k=1,...,n, for all
ZlsensZk—1s Zk+1s - - - » Zn = 0. If the functions

H3]k<zl7"'7zk—17 Uazk-i-la""zn)
. 1 i -1
=H'(z1, ... 21, b V), Zks 1o - 2n) — ¢ fe(h (),

j=1,....Lk=1,...,n,areconcaveinv > 0for zy, ..., Zk—1, Zk+1>--->2n =0,
then

l
sup E(ZHJ(Xl,---,Xn))

(X,n)eME°"(n,h, f,a,b) i—1
(2.17) R ! ;
=YY cl(bi— fila))+ > _H'(a1,....apn).

j=li=1 j=1
If, in addition to that, c,{ >0, j=1,...,1, k=1,...,n, and the functions flgk
are nondecreasing in v > 0 for z1, ..., Zk—1, Zk+1>----2n =0, k=1,...,n, then

I
sup E(ZHj(X1,~..,Xn))
(X,n)eM™ (n,h, f,a,b) —1
(2.18) AP ! ;
=YY cl(bi— fila))+ > _Hl(ar,...,an).
j=li=1 j=1
PROOF. Suppose that the functions ﬁ;k(Zh...,Zk_l,U,Zk_H,...,Zn) are

concavein v > 0 for z1, ..., Zk—1, Zk+1, - - - » Zn > 0. Then we have that, if X >0,
Ehy(Xy) = hi(ar), Efir(Xr) = by, then, by Lemma 2.1, E(le:I HI(zy, ...,
21, Xks  Zhtls--on2n) — ¢l fuXp) < le:l(ﬂj(Zl,---,Zk—l,ak,2k+1,
ey Zn) — c,ifk(ak)) for z1,...,2k—1,2k+1s----2n = 0. This implies that
Ezlj‘zl HI(z1, oo 2k—1, Xk 2hg1s oo 2n) < lezlc,i(bk - filar)) +
Y HI G ket @ Tkt - Z0) for all ZpL oz 1 Tt 2 2 0,
k=1,...,n. Using induction, we get, therefore, that

l I n L
2.19) EY H/(X1,.... X)) <)Y cl(bi— fita)) + Y_ H'(ai, ..., an)

j=1 j=li=1 j=1
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for all (X,n) € M3°"(n,h, f,a,b). Similarly, if the functions ﬁ;k are con-
cave and nondecreasing in v > 0 for z1, ..., Zk—1, Zk+15--->2n > 0, and c,ﬁ >0,
k=1,...,n, then (2.19) holds for all (X,n) € Mjr“’n(n,h,f,a,b). To fin-
ish the proof of (2.17) and (2.18), it suffices to bring an example of a se-
quence of r.v.’s Xg,;, > 0 with Ehg(Xg,) = hix(ar), Efx(Xim) = bx, such that
EHI(z1, ... 2k=1, Xkm Tkt 1s - - -2 2n) = (b — frla)) + HI (21, ..., zk—1, ax,
Zk+1, ---,2n)asm —ooforall j=1,...,landall zy, ..., Zk—1, Zkt1,---»> 2Zn = 0.
If fi(ax) = by, then it suffices to take Xy, = ax. Let fi(ar) < by. Set 6, = %
P(Xgm=ar) =1—38p, P(Xim = bim) :8:17 P(Xim =0) =6, — 5:1, where

« _ hi(ar)dm bi — fi(ap) (1 — 3m)>
" hi(bkm) hi(ai)dm '
It is not difficult to see that by, > ax, 0 <65 < &n, 6m — 0, bym — i,

Jibrm) 8y, = Gr(brm)hi(ar)dm = b — fr(ax)(1 —8p) — by — fir(ax) asm — oo.
We have that, forall j =1, ...,1,

b =67

EHj(Zl,---,Zk—l,ka,Zk+1,---,Zn)
:Hj(ZI,---,Zk—l,ak,Zk+1,---,Zn)(l_Sm)

(2.20) +H 21 2k 1002kt s 20) B — 85)

+(Hj(Zl,--ka—l,bkm,Zk-i—l,-n,Zn)_C]{fk(bkm))g;;

+ ¢ fi(bum) 8%,
Since (H/(z1, . cos Zh=1s By Tkt 1 -5 20) — ci fie(bum))8)y = (H' (z1, ..., zk—1,
Brms Zkt1s -« - » Zn0) ) Fi Brm) — € fi (Bkm) 8, — 0 as m — oo, from (2.20) we get
that EHY/ (21, ..., Zk—1s Xk 2kt 1s - - » Zn) = €j bk — frla) +HY (21, ..., zx—1,
g, Zk+1,---,2n) asm —oo forall j=1,...,0 and all zy,...,2k—1, Zk+1s---,
7z, >0. O

REMARK 2.1. The essence of Lemma 2.5 and its proof is that the ex-
trema of the expectations of the statistics H J(X1,...,X,) over the classes
M3°"(n, h, f,a,b) and M)"(n, h, f,a,b) are attained simultaneously and the se-
quence of the extremal random vectors is the same for all those statistics. For ex-
ample, by Lemmas 2.5 and 2.6, if a,b > 0, a’ <b, z1;,22: >0, i=1,...,1, 1 <
t<2,1<s<tort>2,t—1<s <t, then the suprema of E(Zﬁzl(qu—i-Zzi)’)
over all nonnegative r.v.’s X with EX® = a*, EX' = b and over all nonnegative
r.v.’s X with EXS <a®, EX' < b are given by Zle Z;(b—a") + Zﬁzl(zlia +
22i)". As we will see in the next section, the above fact is important in the problems
of determining extrema of expectations of functions of sums of multilinear forms
over classes of r.v.’s with fixed moment characteristics.
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According to Lemmas 2.6 and 2.7, the assumptions of Lemma 2.5 are
satisfied for powers of sums of nonnegative variables and for moments of
linear combinations of independent symmetric Bernoulli r.v.’s. The notation in
Lemmas 2.6 and 2.7 is the same as that in Lemma 2.5.

LEMMA 2.6. Let I = 1. If H'(x1,...,x;) = = x)', fr(x) = x,

hi(x)=x%, 1<t <2, 0<sp<t—1lort>2,0<s<1,k=1,...,n,then
Vp = 400, c,l =—1, k=1,...,n, and the functions ﬁ;k(m,...,Zk—l, U, Zk+1s
.oyZn), k=1,...,n, are concave in v > 0 for 71, ..., Zk—1, Zkt1»++-»2n = 0. If
H'(xq, ... x,,)_(z X)) fk(x)—x’ he(x) =x%, 1<t <2, 1<sg<tor
t>2,t—1<s; <t, then vy = +00, ck =1,k=1,...,n, and the functions ﬁ;k
are concave and nondecreasing in v > 0 for z1, ..., Zk—1, Zk+1s - - -» Zn = 0.
PROOF. Itis evident that vy = +00, k =1, ..., n. The relations for c,l follow

from the fact that lim,_, ;oo (v + z)"/v" =1 for z > 0. To complete the proof, it
suffices to show that the function g(v) = (W/s + 2)" — v'/5 is convex in v > 0
forz>0if l <t <2, 0<s<t—1lort>2,0<s <1, and is concave and
nondecreasinginv >0forz >0if l <t <2, 1 <s<tort>2,t—1<s<t.
It is not difficult to see that d’>g(v)/dv? = t/s>v'/S72((1 + u)' ~2(t +u) — t —
s((1 +u)~! — 1)), where u = z/v'/. From (2.12) and (2.13), it follows that
t—D((A+w)T-D<U4+w)2t+u)—t<A+uw)'—1forl <t <2,
u>0,and 1+u) ' —1<A4+uw)2@¢+u)—t<@—DA+u)"-1
for t > 2, u > 0. The above inequalities imply that d?g(v)/dv? > 0if 1 <t <2,
O<s<t—lort>20<s<1,andd?’g(v)/dv> <0if l <t <2, 1<s<t
ort>2,¢t—1<s <t. The property that the function g(v) is nondecreasing if
l<t<2,1<s<tort>2,t—1<s <t follows from its concavity and the fact
that lim,—, 1 50 g(v) = 400. 0

LEMMA 2.7. Letl=1.1If H'(x1,...,x,) = —E| Y7 xieil', fi(x) = x7,

hk(x)—xs 3<t<4,0<sp,<t—2o0rt>4,0<s; <2, k—l,...,n,then
= 400, ck——l k=1,...,n, and the functions H31k(Z1,...,Zk_1,U,Zk+1,
,n), k=1,...,n, areconcaveinv>0f0rz1,...,zk_l,zk+1,...,z,,20.If
Hl(xl,...,xn) E|Zl yxigil'y fi(x) =xt, hp(x) =x%, 2 <t <4,2<sp <t
ort>4,t—2<s <t, then vy = +oo,c,l:l,k=1,...,n,andthefunctions
H31k are concave and nondecreasing in v > 0 for z1, ..., Zk—1, Zk+1s - - -» Zn = 0.
PROOF. It is evident that vy = 400, k =1,...,n, and lim,_, ;», E|ve +

z|"/v! = 1; that is, the relations for c,l hold. To complete the proof, it suffices
to show that the function g(v) = E|v!/*e 4 z|' — v'/* is convex in v > O for
z>0if3<t<4, 0<s<t—2o0rt>4, 0<s <2, and is nondecreasing
and concavein v >0forz>0if2 <t <4, 2<s<tort>4,t—2<s <t
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It is not difficult to see that d2g(v)/dv> =t/s?v'/S"2(E|1 + ue|'~2(t + ue) —t —
S(E|1 4+ ue|'~2(1 + ue) — 1)), where u = z/v'/5. From (2.14)~(2.16), it follows
that E|1 4+ ue|"~2(t +ue) —t <2(E|1 +ue|""2(1 +ue) — 1) fort € (2,4),u > 0,
E|l4ue|2(t+ue)—t > (t —2)(E|1 +ue|">(1 +ue) —1) fort € [3,4),u > 0,
and 2(E|1 + ue|'2(1 + ue) — 1) < E|1 + ue|"~2(t +ue) —t < (t —2)(E|1 +
ue|'"2(1 + ue) — 1) for t > 4,u > 0. This implies that dzg(v)/dv2 >0 if
3<t<4,0<s<t—2ort>4,0<s<2 andd’g(v)/dv?> <0if2 <t <4,2<
s<tort>4,t—2<s <t. The property that the function g(v) is nondecreasing
mv>0for2<t<4, 2<s<tandt>4,t—2<s <t follows from the fact
that lim,_, { 5 g(v) = 400 and the concavity of g(v). [

A sequence of .v.’s (X},) on a probability space (€2, I, P) with a nondecreasing
sequence of o-algebras Jp = (J, Q) CJ;--- CJ,--- C Jis called (I,)-adapted
if X, is J,-measurable for n > 1. An (3J,)-adapted sequence (S,) of integrable
r.v.’s is called a martingale [with respect to (3,)] if E(S, | Iu—1) = Sp—1, n > 1.
A sequence (X,), where X,, = S, — S,—1, is called a martingale difference [of
the martingale (S,)]. A martingale difference (X,,) is conditionally symmetric if
X, and —X,, have the same distribution on the o -algebra J,,_1.

In what follows, the conditionally symmetric martingale difference properties
of a sequence (X,) are meant to be satisfied with respect to the o-algebras
S0=(2,2), Jr=0X1,..., Xp), k>1.

Letm; >1,i=1,...,n,and let f;;:R—>R, j=1,....m;,i=1,...,n,
H :R" — R, be arbitrary functions. Let X1, ..., X, ber.v.’s with E| f;; (X;)| < oo,
J=1....m, i=1,...,n Fix values ¢;; € R, j=1,....m;, i =1,...,n.
Set Mi(n, f,o) ={(X,n):E(f;;( X)) | X1,..., X)) =cij, j=1,....m;,i =
L...,n}, Ma(n, f,o) ={(X,n):E(f;;( X)) | X1,....Xi—) Z<c¢j,j=1,...,m,,
i =1,...,n}. Denote by Mzon(n,f, ¢), k = 1,2, the subsets of My(n, f,c),
k =1, 2, respectively, consisting of nonnegativer.v.’s X, ..., X,, and by szm(n,
f,c),k=1,2, the subsets of My (n, f,c), k = 1,2, respectively, consisting of con-
ditionally symmetric martingale differences X1, ..., X,. Let Uir(ckts .-, Ckmy)»
k=1,...,n, be the sets of r.v’s X; such that Efy;(Xy) =cxj, j=1,...,my,
k=1,...,n, let UZk(ckl,...,ckmk), k=1,...,n, be the sets of r.v.’s X} such
that Efy;(Xy) <ckj, j=1,....mr, k=1,...,n, andletU?,?n(ckl, ..., Ckmy) and
U?Zm(ckl, cesCkm ), i =1,2, k=1,...,n, be the subsets of Uir(ckis - .-, Ckmy)»
i=1,2,k=1,...,n, consisting of nonnegative and symmetric r.v.’s, respectively.

non Sym

LEMMA 2.8. Let g, gy :R"™ — R, k=1,...,n, be some functions,
let Y"(ck1, - - -, Chkmy) and Y;ym(ckl,...,ckmk), k=1,...,n, be independent
nonnegative and symmetric r.v.’s, respectively, with distributions depending on
Ckls---sChkmys k=1,...,n, and leti € {1,2}. If EH (21, ..., Zk—1, Xk, Th41s---»
Zn) < g0 (Ck1s ooy Chmy) F EH (21, ooy 2h—1, YEOU(Ch1y -+ Chmg) s Tk s -+ -5 Zn)
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—non
for all Xy € U, (ckis--. Ckm) and all zy,...,2k—1,2k+1,---,2n = 0,
k=1,...,n, then

n
EH(Xy,....Xn) <> g (ck1, - .-, Comy)
k=1

+EH(Y7M e, - Cmy)s -, YN ents - Camy,)

forall (X,n) € M;™"(n, f,0). If EH(z1, -, 21, Xis Tt 1 20) S 81 (Gt
s Chmg) + EH(@Z1, oo 2k 1, Y (CkLs o Chmg)s Tkt ds -+ Zn) for all Xg €

F7Sym
U,-,Z (ck1s - Com) and all zy, ..., Zk—1, 241, .-, Zn €ER k=1,...,n, then

n
EH(XI’ »Xn) 5 Zglzym(ckla ""Ckmk)
k=1

+ EH(Ylsym(cll’ ceey C1m1)7 R Y;ym(cﬂ17 R Cnm,,))
forall (X,n) e H?ym(n, fio).

PROOF. Let i € {1,2}. Suppose that EH (21, ..., Zk—1, Xk» Zkt1s +-+»2n) =
gzym(ckl, ces Ckm) FEH(z1, 0y 21 Y:ym(ckl, eevs Chmg)s Tht1s - - - > Zn) Torall
Xy € U?Zm(ckl,...,ckmk) and all zy,...,2k—1, Zk+15----Zn €ER, k=1,...,n.
Let Xi,..., X;—1 be arbitrary symmetric r.v.’s and let Y,fym(ckl,...,ckmk),
Yksf?(ckﬂ,l, ooy Ch gy )s - e oo Y,fym(c,,l, ..., Cnm,) be independent symmetric
r.v.’s independent of Xy, ..., Xx—1. Then,fork=n,n—1,..., 1, we have that, for
all symmetric r.v.’s X independent of Y, ,:ﬁl, .., Y,"™ and such that E( Jij (Xg) |
Xi,....Xk—)=ckj, j=1,....my, ifi =1, and E(fi;(Xp) | X1, ..., Xp—1) <
ckj, j=1,...,my, ifi =2,

EH(Xl, e X1, Xk, Y;ilil(ck+1,1, . "’ck+1,mk+1)’ el Y;ym(cnl, e, Cnm,,))
=E(E(H(X1,..., Xk—1, X, chsi_r?(ck+1,1, ooy Cht lmgs )
R Y;ym(cnl, ... »Cnm,,))‘le e, Xk—l))
< g (Ck1y -+ Chmy)

+E(E(H(X17 ""Xk—lv Yksym(cklv "'7ckMk)’

sym
Vi (Cht 1y - vs Chtlmgyy)s
tee Y;ym(cnlv cee Cnm,,))’XI» cee Xk—l))
sym
= g7 " (Ckls -+ s Chimy)

+EH(X17 "'7Xk—1’ Y]:ym(cklv "'7ckMk)v

sym S
Yo (Ch 1,15+ os ChtLmg) -0 Yo (Cnls oo Cnm,))-
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By induction, we obtain

n
EH(Xy,....X)) <) g (Ckls- - Ckmy)
k=1

+EH(Y1§ym(Cll’ ---,Clml), ey Y;ym(cnla ---,Cnmn))

for all (X,n) € M;ym(n, f,¢). The rest of the lemma might be proven in a
completely similar way. [

3. Sharp moment inequalities for sums of dependent nonnegative random
variables, conditionally symmetric martingale differences and multilinear
forms. We begin by providing some notation and introducing classes of functions
closely linked to the results in Section 2 that will be needed throughout this section.
In what follows, Z denotes the standard normal r.v. and, for d > 0, 0(d), 01(d) and
6>(d) denote independent Poisson r.v.’s with parameter d. Denote by & the class
of continuous functions ¢ : R — R such that there exists a constant C = C(¢) for
which

(3.1 ¢ (a1 +a2)| < C(1+ g (anl)(1 + lp(a2)]). ai,az €R.

The class @ includes, for example, all even continuous functions ¢ : R — R such
that the function |¢ (x)| is nondecreasing on R, and the function In|¢(x)|/x is
nonincreasing in x > xo € R4 [in other words, ® includes, basically, all functions
growing not faster than an exponent, and, in particular, it includes all powers
¢ (x) = |x|", t > 0].

Let f € J and h € Q. Denote G = f/h. Let a;,b; >0, f(a;) <b;, i =
1,...,n.

Denote by DV the class of functions f € J, h € Q ¢ and nonnegative
nondecreasing convex functions ¢ € ® such that f(0) = 0 and the function
) (G ') +2) — d)(z))/h(G_l(v)) is concave and nondecreasing in v > 0 for
z > 0, and denote by D® the class of differentiable convex functions f € J
with f(0) = 0 and nondecreasing functions ¢ : Ry — R such that the function
¢ (v +2z) — f(v) is concave and nondecreasing in v > 0 for z > 0. By Lemma 2.3,
the class DY) includes the functions f) =¢w) =", h(v) =v°, where 1 <
f<2, 0<s<t—1lort>2 0<s<1.Let D® be the class of twice-
differentiable functions f € J with f(0) = 0 such that the function f”(v) is
nonnegative and nonincreasing on Ry, limy— 400 f(v +2)/f(v) =1forall z >0
and limy_, 40 f(v)/v = +00. It is not difficult to see that if f € D® and ¢ = f,
then f, ¢ € D@ . Indeed, if the function f”(v) is nonincreasing, then f” (v +z) <
f”(v) for all v,z > 0, and, therefore, f(v 4+ z) — f(v) is concave in v > 0 for
z > 0. From Proposition 16.B.3 in Marshall and Olkin (1979), it follows that the
convexity of f implies that the function f(v-+z)— f(v) is nondecreasingin v > 0
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for z > 0. Indeed, it suffices to consider z > 0; according to the proposition, the
convexity of f implies that

fld-ox+ay) = f&x) _fO) = fBx+A =By
o - B

for all x,y € R} and all o, 8 € (0,1). Taking, for 0 < x; < x2 and z > O,
x=x1,y=x2+2z, a=p=2z/(x2—x1 +2), we get f(x; +2)— f(x) <
fx2+2) — f(x2), 0 < x1 < x2, z > 05 that is, the function f(v + z) — f(v)
is nondecreasing in v > 0 for z > 0. The class D® includes all functions v’,
1 <t < 2. Moreover, it includes all the following modifications of power functions
multiplied by the logarithm: f}(v) = v’ lnv—av(%—l—bvo—c, v >, f1(v) =a(v—
v0)? + b(v — vg) — avi + bvp, 0 < v < vg, where 1 <t <2, vy > 1=/ Q=17
a =05 — vy *Invg + 2t — D), b= v 'Invg + v~!, ¢ = vfjInwy
[the function f}(v) and the function f>(v) below are defined differently for small
and large values of v]. Indeed, we have that, for v > vy, fl’(v) =t Mnv+o L,
@) =t —Dv' 2 Inv+ @2t — D' =2, f"(v) = v (@t —1)(t —2) Inv+3t> —
6142). Since vg > e@ =2/~ e obtain that £{”(v) <0, f{'(v) = 0, f{(v) >0
for v > vy. For 0 < v < vg, f]{(v) =2a(v—vo) + b, f{'(v) =2a and, therefore,
fi), f{(v) =0, 0 <v < vy (again, since vy > e(2t_2)/(2t_’2)) and f{'(v) is
nonincreasing on (0, vg). Moreover, f1(0) =0 and the definitions of a, b and ¢
assure smoothness of the function fi: f{'(vo—) = 2a = f{'(vo+), f{(vo—) =
b= fl’(v0+), f1(vo—) = bvg — av% = f1(vo+). Relations limy_, ;o f1(v + 2)/
fi(w) =1 for all z> 0 and limy_, o0 f1(v)/v = 400 are evident. In addition
to that, D@ includes the modification of the first power multiplied by the
logarithm f>(v) =vlnv+0.5,v>1, fH(v) = 0.5v2,0 < v < 1; and the function
fav) =@+ Dn(v + 1) — v, v > 0. Indeed, we have that f,(0) = 0, and
Hwy=lmv+1,v>1 fHlv)=v,0<v =<1, Ffv)=1/v,v>1, fv)=1,
0 < v < 1. Moreover, f>(v) is smooth in the sense that f>(1—) = 0.5 = f2(14),
H=)=1= f;(0+), f,’(1-) =1= f)'(14). Therefore, f>(v) is nondecreasing
and f3'(v) is nonincreasing and nonnegative. Similarly, f3(0) =0, and f;(v) =
In(v 4+ 1), f3'(v) =1/(v + 1), v > 0; that is, f3(v) is a nondecreasing function
such that f3'(v) is nonincreasing and nonnegative. The relations lim,_, ;o f; (v +
7)/fi(v) =1for all z> 0 and lim,_, 1 f;(v)/v=+00, i =2,3, are obvious.

In the inequalities throughout the rest of the paper, the extremal cases of
the estimates +00 < 400, —00 < 400 and —o0 < —oo are considered to be
valid inequalities; we, therefore, do not include assumptions on the finiteness of
moments of the summand r.v.’s that ensure the finiteness of moments of sums of
the r.v.’s into formulations of the results.

The following theorem gives the exact analogues of the Burkholder—Rosenthal
inequalities for expectations of functions of sums of dependent nonnegative r.v.’s
with bounded conditional moments.
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THEOREM 3.1. If f,h,¢ € DU, then the following exact inequality holds:

3.2) E(j)(Xn:Xi) < E¢|:9(1)max (f_1<2n:bi),h_l(2n:h(ai))>}
i=1 i=1 i=1

for all nonnegative rv.’s Xy,..., X, with E(h(Xg) | X1,..., Xk—1) < h(ax),
E(fX) | X1,...,Xk—1) <bi, k=1,....n. If f,¢ € DD, then the following
exact inequality holds:

(3.3) E¢<in) <Y Ef(X) +¢<Zai) - f/<0+)<2ai)
i=1 i=1

i=1 i=1

for all nonnegative rv.’s Xi,..., X, with E(Xg | X1,...,Xp—1) < ag, k=
1,...,n, where f'(0+) =lim,_o4 f(x)/x. If f € D® and, in addition to that,
f(0+) =0, then the following exact inequality holds:

(3.4) Ef(ZXi) §2max<ZEf(X,~),f(Zai>)
i=1 i=1 i=1
for all nonnegative rv.’s Xi,...,X, with E(Xg | X1,...,Xp—1) < ag, k=

1,...,n.

Theorem 3.1 implies the following corollary. The results in, it in the case
of independent r.v.’s and s = 1, were obtained by Ibragimov and Sharakhmetov
(1998) [see also Ibragimov (1997)].

COROLLARY 3.1. The constants in the following inequalities are exact:

n t n n !
(3.5) E(ZXk) §2max<ZEX,i,<Zak> )
=1 k=1 k=1

for all nonnegative rv.’s Xi,..., X, with E(Xg | X1,...,Xp—1) < ag, k=
1,....n, 1 <t <?2;

n t n n t/s
(3.6) E(ZXk) 5E9’(1)max<2bk, (Zai> )
k=1 k=1 k=1
for all nonnegative rv.’s Xy,..., X, with E(X} | X1,..., Xx—1) < aj, E(X,’( |

Xi,...,. Xpee))<br,k=1,...,n, 1<t <2,0<s<t—1lort>2,0<s<1.

REMARK 3.1. The fact that the functions f, and f3 defined above belong
to the class D® is important because this fact and Theorem 3.1, together
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with the property that f;(04) = f;(0+) = 0, imply that the best constant in
Rosenthal’s inequality Ef (3" X;) < A(f)max(}_7_; Ef(X;), f(QX7_; a;)) for
nonnegative r.v.’s X1,..., X, with E(Xg | X1, ..., Xk—1) < ai and the entropy-
type functions f> and f3 is equal to 2. On the other hand, the best constant in
Rosenthal’s inequality (1.1) is obviously equal to 1 for r = 1: A*(1) = 1. This
means that even the addition of a logarithm to the first power f(v) = v changes
the best constant in Rosenthal’s inequality from 1 to 2. One can show, in a similar
way, that even the addition of the mth iteration of the logarithm In,, v, where
Ingv =v,In, v =Inlny,_yv, m=1,2,..., to f(v) = v implies the jump in the
best constant in Rosenthal’s inequality.

PROOF OF THEOREM 3.1. Let f, h,¢ € DM Fix numbers Dy, Ay, My > 0.
For f € J, h € Qy, denote by U°"(Dy,, A ) the set of independent nonnegative
rv’s Xi,...,X,, n>1, suchthat "' | Eh(X;) = h(Dp), YI Ef(X;) = Ay,
denote by U;°"(Dy, Ay) the set of independent nonnegative r.v.’s X1, ..., X,,
n > 1, such that Y7 | Eh(X;) < h(Dy), >.7_; Ef(X;) < Ay, and denote by
U™ (Myy) the set of independent nonnegative r.v.s Xi,..., X,, n > 1, such
that rllax(f(h_l(zl'~’:1 Eh(X))), Y i_| Ef(X;)) = Myy. Let U3°"(Dy, Ay) and
Uj°"(Dy, Ay) be the subsets of U"(Dy, Ay) and Uy°"(Dy,, A ), respectively,
consisting of identically distributed r.v.’s.

From Lemmas 2.2 and 2.8, it follows that if f, &, ¢ € DO then

(3.7) maxEqb(ZX,-)=E¢<ZV,-(h,f,a,-,b,-)),
i=1

(Xom) i=1

where max is taken over all nonnegative r.v.’s X1, ..., X, with E(h(Xy) | X1, ...,
Xi—1) <h(ay), E(f(Xp) | X1,..., Xp—1) <by, k=1,...,n. From Theorem A.1
(see also Remark A.1) and Lemma 2.2, it follows that

sup E¢(§X,.)

(X,n)eU™(Dp,Ay) i=1

- s E¢(ix,.)

X,n)eUM™(Dy, A i—

(3_8) ( )E 3 (nh f) i=1

:supE¢<Z Vi(h,f,h_l(h(Dh)n_l),Afn_l)>
n

i=1

= sup E¢ (G—l(Af/h(Dh)) Zx(d/n)),

i=1

where d = h(Dh)/h(G_l(Af/h(Dh))) and X;(d/n) are defined at the end of the
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Appendix and, in addition to that, according to Theorem A.1 and (2.10),

sup E¢><ix,~>

(X,n)eU3°"(Dp,Ay) i=1

= sup Eqb(ZXi)
i=1

(X,m)eU,*"(Dp,Ay)

39 = sup sup E¢>(Zx,~>
)

0<A’f§Af,0<D;l§Dh (X,n)eUi’O“(D;l,A} i=1

= sup sup E¢<Z Vi(h, £~ (h(DR)n ™), ’fn‘l))

no0<A’ <Ay, 0<Dj, <Dy, i=1

—suqus(Zv (h, fLh~ (h(Dh)n_l),Afn_l)).

i=1

Let0(Dy, Af) = Q(h(Dh)/h(G_l(Af/h(Dh)))). From (A.6), it follows that

3.10) suqus(G—l(Af/h(Dh))ZE(d/;ﬂ)
) n i=1

= E¢(G™' (A s/ h(Dy))0(Dp, Ay)).
Using (3.8)—(3.10), we get that

sup Eqb(ZXi)
i=1

(311) (X,n)EU/?O“(Dh,Af) _
= E¢(G YA/ h(Dp)O(Dp, Ayp)),  k=1,2.
Using the evident inequalities

sup E¢(Xn: X,-)

(X,m)eU" (f =1 (Mpf), Mpy) i=1

(3.12) < sup E¢<in>

(X,n)eUmo™(Mpy) i=1

< sup E(j)(ZXi)

(X,n)eUS ™ (f =1 (Mpuf), My z) i=1

and relations (3.11), we get that

(3.13) sup (ZX) M6 (D).

(X.n) U™ (My,) Pt
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From (3.7) and (3.13), it follows that (3.2) holds and is exact. Now let f, ¢ € D®.
From Lemmas 2.1 and 2.8, it follows that

(3.14) {naxE( (Zx ) — Zf(Xi)) =¢>(Za,~) - fla),
i=1 i=1 i=1

where max is taken over all nonnegative r.v.’s Xy,..., X,, with E(Xy | X1,...,
Xr—1) <ag, k=1,...,n. From (3.14) and the inequality f(x) > f'(0+)x,
x € Ry, implied by the convexity of f, it follows that

n n n n
(3.15) E<¢<in) — Zf(X») < ¢<Zai) — f/<0+)<2ai)

i=1 i=1 i=1 i=1
for all nonnegative r.v.’s Xi,..., X, with E(Xg | X1,...,Xk—1) < ar, k =
1,...,n. Moreover, (3.15) is sharp as follows from the choice of r.v.’s X; =
1/n as., k=1,...,n, and the fact that lim, ., nf(1/n) = f'(0+). Therefore,
(3.3) holds and is exact. From (3.15) and the fact that if f = ¢ € DO then
f.¢ € D@ it follows that if f € D® and f'(0+) = 0, then (3.4) holds for
all nonnegative r.v.’s X1, ..., X, with E(Xy | X1,..., Xk—1) <ar, k=1,...,n.
From Theorem A.1 and Lemma 2.5, it follows that if h(x) =x, f € D® and
f'(0+) = 0, then (concerning the definitions of classes M3°" and M;°", see
Section 2)

sup Ef(ixi)

(X,n)eU*™(Dp,Ay) i=1

(3.16) = sup sup Ef(ZXz)
i=1

n o (X.n)eME™(n,h, f,Dy/n.Ag/n)
=sup(As+ f(Dp) —nf(Dy/n))
n

= Ay + f(Dp),

sup Ef(Xn:X,)

(X,n)eU3°"(Dp, A ) i=1

n
(3.17) = sup sup Ef<ZXi>
n(X,n)eM(n.h, f.Dp/n,Ay/n) i=1
= sup sup (A’f + f(Dy,) —nf(D),/n))
0<A’<Ay.0<D)<D; "
=Ayr+ f(Dp).

From (3.12), (3.16) and (3.17), we get

n
(3.18) sup Ef(ZXl) =2Myy,
(X.meU™ My~ \j=|

that is, (3.4) is exact. [l
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Using Lemmas 2.1, 2.2 and 2.8, Theorem A.l and relation (A.7) similarly
to the proof of Theorem 3.1, we get that analogues of relations (3.2) and (3.3)
hold in the case of conditionally symmetric martingale differences with bounded
conditional moments. In particular, we obtain that the results concerning analogues
of (3.3) for independent symmetric r.v.’s obtained in Figiel, Hitczenko, Johnson,
Schechtman and Zinn (1997) and Ibragimov and Sharakhmetov (1995, 1997)
hold for conditionally symmetric martingale differences with bounded conditional
moments as well. Moreover, Theorem 3.2, which generalizes and complements the
results obtained by Utev (1985), Figiel, Hitczenko, Johnson, Schechtman and Zinn
(1997) and Ibragimov and Sharakhmetov (1995, 1997), holds.

Denote by D™ the class of functions f € J, h € Q r and nonnegative functions
¢ € ® such that £(0) =0,

(3.19) E¢(xe)+ Ep(ajer +arer +xe) > Ep(arer + xe2) + E¢p(are; + x¢e3),

ai,az, x € R, and the function (E¢(G~'(v)e + z) — ¢(z))/h(G~'(v)) is non-
negative, concave and nondecreasing in v > 0 for z € R. Examples of func-
tions f,h,¢ € D@ are given by f(v) = v', h(v) = v*, ¢(v) = |v|’, where
3<t<4,0<s<t—2ort>4,0<s <2 (see Lemma 2.4 and Remark 3.2).

THEOREM 3.2. If f,h,¢ € D@ then the following exact inequality holds:

E¢<ZX><E¢>[01(O.5) 92(05)max< (Zb,), (ghm,}))}

for all conditionally symmetric martingale differences X1, ..., X, with E(h(| X¢])|
Xiyooos Xp—1) Sh(ap), ECf(IXkDIX1s ooy Xk—1) Sbp, k=1,...,n.

REMARK 3.2. It is not difficult to show that if a function ¢:R — R
is twice differentiable, then (3.19) follows from the condition of convexity
of the function E¢”(x¢). Indeed, let E¢”(xs) be a convex function. Denote
glay,az,x) = E¢(are1 + axer + x¢),ay,a2, x € R. Since (—|ay| + |az| + x,
lai| — |az] + x) < (lay| + |az| + x, —|ai| — |az| + x) (see the definition of
the majorization relation < in the Appendix), from the convexity of E¢”(x¢),
Proposition 3.C.1 in Marshall and Olkin (1979) and the property that the joint
distribution of the r.v.’s &1, & and ¢ and the r.v.’s g1¢, &2¢ and ¢ is the same (one
can show that the latter property holds in a straightforward fashion; it is also
implied by the fact that arbitrary r.v.’s assuming two values form a multiplicative
system if and only if they are mutually independent; see Remark 3.5),
follows that 32g(a1 az,x)/daidar = E¢N(a181 +arey +xe)erey = E¢ "((a181 +
arer + x)e)erey > 0. According to Marshall and Olkin (1979), page 150, this
inequality means that the function g(ay, a», x) is L-superadditive in ap, as; that
is, gay + by,ap + by, x) + glay — by,ap — by, x) > g(ay + by,ap — by, x) +
glay — by,ay + by, x) for all aj,az,x € R, by,br > 0. Setting in the latter
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inequality a; = b; = |a/|/2,i = 1,2, we obtain that E¢ (xe) + E¢(a}e1 + aser +
xe) > E¢(aje1 +xe)+ E¢(aye +xe) forall af, aj, x € R; that is, the function ¢
satisfies condition (3.19).

Furthermore, using, in addition to the above, Lemmas 2.4 and 2.7, taking into
account Remark 3.2 and using the exact Khintchine inequality E|>"_, a;&;|" <
IAVAN O aiz)t/2 foralla; eR,i=1,...,n, t > 2 [see Haagerup (1982)], we
obtain the following corollary. This corollary in the case of independent r.v.’s and
s = 2 was obtained independently by Figiel, Hitczenko, Johnson, Schechtman and
Zinn (1997) and Ibragimov and Sharakhmetov (1995, 1997).

COROLLARY 3.2. The constants in the following inequalities are exact:

. " n t/2
> Xe| <1+ E|Z|") max (ZEIXkI’, (Zai> )
k=1

k=1 k=1

t

(3.20) E

for all conditionally symmetric martingale differences (Xy) with E(X,%le, e
X)) <al, k=1,....n,2<t <4

n n n Z/S
> X 5E|91(0.5)—92<o.5)|lmax<2bk,(Za;> )

k=1 k=1 k=1

t

3.21) E

for all conditionally symmetric martingale differences (Xy) with E (| X¢|*| X1, ...,
Xk—l)faiv E(|Xk|l|X1"Xk—l)fbkvkzlaanv 3§t<470<s§t_2
ort>4,0<s <2.

Suppose that f € D®. Then, by the condition that f”(v) is nonnegative, and,
therefore, f(v) is convex, we have that Ef (3", X;) > f(O_}_; EX;) for all
nonnegative .v.’s X1, ..., X,, using Jensen’s inequality. Moreover, since f(x)/x
is nondecreasing on R [it also follows from the fact that f”(v) is nonnegative],
we have that f(ax) < af(x) for all « € [0, 1] and all x € R and, therefore,
fx)+ f(y) < f(x+y)forall x, y € Ry;indeed, it suffices to consider x, y > 0:

(x+y))+f(

X
X+Yy

y
X+Yy

s+ £ = ()

x y .
Smf(X+Y)+mf(x+)’)—f(x+)’)-

The latter inequality implies that Ef(3""_; X;) > >-"_; Ef(X;) for all nonneg-
ative r.v.’s X1, ..., X,. Combining the above with relation (3.4), we obtain the
following result.

COROLLARY 3.3.  The following decoupling inequality holds: Ef (3_7_; X;)
<2Ef(>", X;) for all functions f € D® and all nonnegative rv.’s X1, ..., X,
Xi,..., Xy with E(Xi | X1,...,Xi—1) <EX;, Ef(X)) <Ef(X;),i=1,...,n.



652 V. H. DE LA PENA, R. IBRAGIMOV AND SH. SHARAKHMETOV

Similarly, from Corollaries 3.1 and 3.2 and the lower Rosenthal bounds
EQ X' = max(3)_ EX!, 21, EX;)") for all nonnegative r.v.’s X, ...,
X, with finite fth moment, + > 1 (note that independence of the r.v.’s is
not necessary here), and E|>""_; X;|" > max(3_"_, E|X;|", 7, EXf)f/z) for

all independent symmetric r.v.’s Xq,..., X, with finite fth moment, r > 2, it
follows that the best constants A*(¢) and B:‘ym(t) from the Introduction dominate

the best constants in decoupling inequalities for dependent nonnegative r.v.’s
and conditionally symmetric martingale differences with bounded conditional
moments. More precisely, the following corollary holds.

COROLLARY 3.4. The inequality E|Y'_, X;|' < CH)E| X", X;|" holds

with the constant C(t)=2fgr all nonnegative r.v.’s X1,...,Xn,)~(1,...,)~(n with
E(X; | X1,....,Xi—1) < EX;, EX! <EX!,i=1,...,n, 1 <t <2; with the
constant C(t) = E6'(1) folf all nonnegative rv.’s X1,...,X,, f(l)?n with

EX;| Xy,...,X;21) <EX;, E(Xlt | X1,...,Xi—1) SEX;, i=1,....,n,t>2;
with the constant C(t) = 1 + E|Z|" for a conditionally symmetric martingale
difference X1, ..., X, and a sequence of independent symmetric rv.’s X1, ..., X,
with E(X? | X1,...,Xi—1) < EXX E|X;|' < EIX;|',i=1,...,n, 2 <t <4
with the constant C(t) = E|61(0.5) — 6,(0.5)|" for a conditionally symmetric
nzartingale difference X1, ..., X,, and a sequence of independent symmetric r.v.’s
X1, ..., Xy with E(X? | X1, ..., Xi—1) < EX?, E(X;|'|X1, ..., Xi—1) < E|X;|',
i=1,....,n,t>4.

REMARK 3.3. The classes of nonnegative r.v.’s and conditionally symmet-
ric martingale differences with bounded conditional moments are quite wide.

For example, if X;, k = 1,...,n, is a sequence of independent nonnega-
tive r.v.’s on a probability space (2,3, P) with EX} < oo, and 7 is a stop-
ping time with respect to o(X1,...,Xy), Kk =0,1,...,n [we assume that

o(X1,...,Xr) = (&,9Q) for k = 0], then, for the r.v.'s X; = Xl (z > k),
k=1,...,n [I(-) is the indicator function], E(Xx | X1,..., Xs—1) < EXx,
E(f(,’{ | X1,..., Xx—1) < EX}. Similarly, if Xz, k =1,...,n, is a sequence
of independent symmetric r.v.’s on (2,3, P) with E|X;|" < oo, and 7 is a
stopping time with respect to o(Xi,...,Xr), Kk =0,1,...,n, then the se-
quence )~(k = Xyl(t = k), k=1,...,n, is a conditionally symmetric mar-
tingale difference with respect to o(Xy,..., Xx), k=0,1,...,n, and E(f(,% |
X1, Xko1) < EXZ E(IXkl' | X1, ..., Xk—1) < E|X¢|'. Moreover, if Xy, k =
1,...,n, is a sequence of independent symmetric r.v.’s with E|X;|" < oo, and
vk—1, k=1,...,n, are 0(Xy, ..., X;_1)-measurable r.v.’s such that |v;_1| <1,
then the sequence vi_1Xj; is a conditionally symmetric martingale difference
with respectto o (X1, ..., Xx), k=0,1,...,n, and E(v,%_lX,f | X1,..., Xk—1) <
EX,%, E(Jvg—1 Xk|" | X1, ..., Xx—1) < E|Xy|". Therefore, the results in Corollar-
ies 3.1-3.4 hold for the randomly stopped sums Y ;' X and the martingale trans-
forms Yy, vk—1 Xk.



SUMS OF MULTILINEAR FORMS 653

REMARK 3.4. Let J0=(3,2) CJ1---C3J,--- C I and let (X,) be a
sequence of (3J,)-adapted r.v.’s on a probability space (€2, 3, P). According to
Kwapient and Woyczynski [(1992), pages 104—105] there exists (maybe on a dif-
ferent probability space) a sub-o-field J of 3 and a sequence X, of (3,,)-adapted
r.v.’s such that, foreachn, L(X,, | Sn—1) = L(X, | 3u—1) = L(X,, | J). Hitczenko
(1994c¢) showed that for any sequence of nonnegative (3, )-adapted r.v.’s (X},) the
following inequality holds and the constant 2/~ in it is exact: E(YX7_; X;)! <
2=VE(C!_ | X1)!, t > 1. Moreover, according to Hitczenko (1994a), the follow-
ing more general inequality is valid: E| Y7, X;|' < L'E| Y, X;|', t > 1, for
all (3,)-adapted r.v.’s (X,), where L is an absolute constant. Using the above
domination inequalities and the sharp moment inequalities for sums of indepen-
dent r.v.’s that follow from the results presented in this section, one can easily ob-
tain, similarly to de la Pefia and Zamfirescu (2002), moment estimates for sums of
adapted r.v.’s and martingales. For example, from the former domination inequal-
ity and Corollary 3.1, it follows that inequality (1.4) holds with the constant 2" if
1 <t<2,and 2'~'EQ'(1) if t > 2. Similarly, the latter domination inequality and
Corollary 3.2 imply that inequality (1.5) holds with the constant L' (1 + E|Z|") if
2 <t<4,and L'E|6,(0.5) — 6,(0.5)|" if t > 4. Using the fact that the actual rate
of growth of ||0(1)]|; and [|61(0.5) — 62(0.5)]|; is t/Int as t — oo [see the calcu-
lation of the asymptotics of Bell numbers in Sachkov (1996) and the derivation
of the asymptotics of the best constant in Rosenthal’s inequality for independent
symmetric r.v.’s in Ibragimov and Sharakhmetov (1997)], from the above we ob-
tain a new proof of the property that [e.g., Hitczenko (1990)] the actual rate of
growth of the best constants in Burkholder inequalities for L;-norms of sums of
adapted nonnegative r.v.’s and martingales is 7/ In ¢.

Let 1 <s <t and let Xy, ..., X;, be independent r.v.’s with finite #th moment.
Fix values a;, b; > 0,al <b;,i =1,...,n. Set

MM, s,t,a,b) = {(X,n): E|X;|' =af, E|X;|'=b;, i =1,...,n},
My, s, t,a,b)={(X,n):E|Xi|’ <a}, EIX;|' <b;, i=1,...,n}.

Let M} ™ (n,5,t,a,b), k= 1,2, be the subsets of M"(n,s,1,a,b), k=1,2,
respectively, consisting of nonnegative r.v.’s, and let szm’md(n, s, t,a,b), k=
1,2, be the subsets of M,icnd(n,s,t,a,b), k = 1,2, respectively, consisting of
symmetric r.v.’s. Let Vi (s, t, a1, by), ..., Vu(s, t,a,, b,) be independent r.v.’s with
distributions P (Vi(s, t,ak, bx) = 0) = 1 — (a}/bx)*/ "=, P(Vi(s,t,ax, by) =
(br/aD)!V =) = (af /br)*/ "™, k = 1,...,n, and let Wi(s,t,a1,by),...,
W, (s, t, ay, by) be independent r.v.’s with distributions P (Wi(s, t, ag, by) = 0) =
1 — (al /b)) P(Wi(s, t,ag, b) = (bi/ai)V/ =) = P(Wi(s, t, ag, br) =
— (b /aD)V =) = Lal /o) k=1, ... 0.
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Let 0 <m < n. Denote (we assume below that ¢;, .

Fim,n,s,t,a,b,c)

t
m
:E(Z Z Cil,...,ijvil(svtaailvbil)"'Vi[(svtaailabil)) s

= const for [ =0)

=0 1<ii<--<ij<n

Gi(m,n,s,t,a,b,c)

> Y (bfr —aﬁ;)

qg=01<ji<-<js<nr=1

m t
x Z Z Clisesfgoitsennsi—g @iy " Qip_g | >

l_qll<’“<i/—q€{ls \{]19 ’Jti

- < il =n, [ = Oa cee,m, Ciﬂ(l),...,iﬂ([) = Ciy,...,ip» 1 = il <
- < i; <n, for all permutations 7 : {1 I} —= {1 I, 1=2,....,m
p

Cip,ip 20, 1 <y < -
Fy(m,n,s,t,a,b,c)

m
=E Z Z iy, Wi (s, t,ai,,bi)) -

=0 1<ij<--<ij<n

: Wil(sv z, ail’ bil)

Go(m,n,s,t,a,b,c)

S SID S (TS

qg=01<ji<-<js<nr=1

m t
xE|Y Z Ctaenngeitsemmit—q iy ** Qiy_y €y -~ Eip_y |
I=qiy<-<ij—ge{l,...n\{j1,--, Jg}
ci,.p €R 1<ip<--- < i <n,l=0,...,m, Cin(ysommingy = Citennits 1<i) <
- <i; <n, for all permutations 7 : {1, ...,[} = {1 JI=2,....m

THEOREM 3.3. Let ¢;y,.; >0, 1 <ij <---

< <n, 1 =0,....m.If
l<t<2,0<s<t—1lort>2,0<s<1,then

(X,m)eM{™™ ™ (n,s,t,a,b)  \1=01<ij<--<ij<n

=Fi(m,n,s,t,a,b,c), k=1,2,

m t
(3.22) Sl:}p E(Z Z Cil,-..,iIXil "'Xi1>

t
m
inf E Ciy,oii X: - X;
(323) (X,ﬂ)éM?on’ind(n,s,t,a,b) (Z Z Iy 20 ll)

[=01<ij<---<ij<n

=Gi(m,n,s,t,a,b,c).
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Ifl<t<2,1<s<tort>2,t—1<s<t,then

(3.24) sup E(Z Do Cip

X,)eMP™ ™ s t,a,b)  \I=01<ij<--<ij<n

=Gi(m,n,s,t,a,b,c), k=1,2,

(3.25) inf E(Z Do G

XmeM*™ ™ ms.r.a.b)  \]1Z0 1<iy < <ij<n
=F(m,n,s, t,a,b,c).

THEOREM 3.4. Letc;, . .
t<4,0<s<t—2o0rt>4,0<s<2,then

m
sup E
(X,n)eMZym’md(n,s,t,a,b) 1=01<ij<--<ij<n

=Fm,n,s,t,a,b,c), k=1,2.

(3.26)

If3<t<4,0<s<t—2o0rt>4,0<s <2, then

m
inf E|>
X,m)eM>™ ™ 1 5 1.a.b) ; ;
, 1 ,$.0h,a, =0 1<ij<--<ij<n
=Gy(m,n,s,t,a,b,c).

(3.27)

If2<t<4,2<s<tort>4,t—2<s<t,then

m
sup E
X,meM™ ™ (n,5,1,a,b) 11=01<ij<<ij<n

=Gy(m,n,s,t,a,b,c), k=1,2.

(3.28)

If3<t<4,2<s<tort>4,t—2<s <t,then

m
inf E|Y
X,m)eM¥™ ™ 4 5 1.a.b) ; ;
) 1 ,S,0ha, =0 1<ij<--<ij<n
=Fm,n,s,t,a,b,c).

(3.29)

2 D Cied

Z Ciq,ii

oY ci

Z Ciy,..

t
l[Xi1 e Xi[

t
llXil : Xll

t
llXil : Xll

t
i Xiy e X

655

s €R 1<ii<---<iy<n, 1=0,....mIf2 <

REMARK 3.5. It is important that the quantity G, has a simple struc-
ture in a particular case of sums of multilinear forms, namely, in the case of

. . —h
generalized moving averages Z;’:l’” CiXign Xithy Xithy, 0 < hy < ---
hm<n—1¢ eR i=1,....,n—hy. Let & = &i4n Eithy " Eithy | =

<
1,

....n — hy. It is not difficult to see that the r.v.’s 8;" i =1,...,
n — hy,,, are mutually independent. Indeed, we have that the r.v.s & satisfy
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the conditions P(g; = 1) = P(e; = —1) = % i=1,....,n — hy. In addi-

tion to that, for arbitrary 1 < ji < --- < j.<n —hy, c=1,...,n — hy,

the r.v. €j,15, is independent of the r.v'S € 1hys. s &jithms> Ejothys € jothas
/

’ —
cos Ejadhys -+ vs Ejethys Ejothys - -1 Ejethys and, therefore, Eejl---sjc =

ETlici T2 €jitn = E€jigm E Tl jin [zt [T0 €jn = 0 = Ee;l e
Ee}l_ (i.e., 81{, i=1,...,n — hy, is a multiplicative system of order 1). Since
I =t)=0+1¢)/2, i e{—1,1},i=1,....,n — hy as. [I(-) is the indicator
function], the latter relation implies that

P(S;-l =tjl,...,8/- tjc)=EI(8;~l =tjl)---1(6‘;-c=tjc)

Je

= EI(S}I =tjl)---EI(8}v :tjc)

= P(S;I =l‘j1)~~~P(8;-C =1j.),
tip,oontjp €{=11}, 1 <= j1<--<je<n—hy c=1,....,n — hy; that
is, the r.v.’s s;, i=1,...,n — hy, are mutually independent [Sharakhmetov
(1997) proved a more general fact, namely, that arbitrary r.v.’s assuming « + 1
values form a multiplicative system of order « if and only if they are mutu-
ally independent]. The above means, in particular, that in the case of gener-
alized moving averages Z;’:_I}"” CiXivn Xivhy - Xighy, 0<hy <. < hp <
n—1, ¢ eR, i=1,...,n — hy,; that is, for sums of multilinear forms
Dm0 2t <iy<<ip<n Ciyoniy Xiy - Xy With ¢y 5 =0, 1 <iyp <o <ij<n,l=
0,....m—1;¢i. i,=0,G1,....0im)F(G+h1,...,j+hpy), j=1,....,n—hy;
Cithy,.sithy =Ci» 1 =1,...,n— hy, the quantity G is just a sum of moments of
linear combinations of independent symmetric Bernoulli r.v.’s. Moreover, indepen-
denceofe}, i =1,...,n—hy, implies that all moment and probability inequalities
and limit theorems for linear combinations of independent Bernoulli r.v.’s hold for
generalized moving averages in independent Bernoulli r.v.’s. An application of the
above facts is given in Theorem 3.10.

The following theorems give exact analogues of Rosenthal’s inequalities for
sums of multilinear forms in nonnegative r.v.’s.

THEOREM 3.5. Let ¢, . ;; >0, 1 <i1 <---<ip<n, 1 =0,...,m,
Cin(tyremminy = Citroonifs 1 <i; <---<ij; <n, for all permutations 7w :{1,...,1} —
{1,...,1}, 1 =2,...,m. The constants in the following inequality are exact:

m t
E(Z Z Ciy,..., iIXil"'Xil>

=0 1<ij<--<ij<n

m q
330 =y > JlEX]

q=01<ji<--<js<nr=1

m
X (Z > Cltsorigritreit—q E Xy "'EXizq)

I=qij<-<ij—ge{l,...n]\{J1,.-. Jg}

t
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for all independent nonnegative r.v.’s X1, ..., X, with finite tth moment, 1 <t < 2.
THEOREM 3.6. Let ¢, . ;; >0, 1 <ij <---<ip<n, 1 =0,...,m,
Cin(tyvomminy = Citromniys 1 <iy <---<i] <n, forall permutations 7w :{1,...,l} —

{1,...,1}, 1 =2,...,m. The following inequality holds:

q
max Z H EX t~r

q=0,....m I<ji<-<jg<nr=1

m
x (Z > Ctrensdgpitsit—g EXiy » o

I=qii<-<ij—ge(l,...n\{J1,.-, Jgq}

m
SE(Z Z Ciy, .oy Xiy "'Xil)

[=01<ij<--<ij<n

t

t
EX,-,_q)

(3.31)
q
<(m+ )q:rg??im Z l_[ L
I<ji<-<jg<nr=1
m
x (Z Z Cj],...,jq,il,...,il_q
I=q i1 < <ij—g€{l.n]\[j1. e Jg )
t
X EX,‘l cee EXi1q>
for all independent nonnegative r.v.’s X1, ..., X, with finite tth moment, 1 <t < 2.

Theorems 3.7 and 3.8 provide a link between Rosenthal’s and Khintchine’s
inequalities for sums of multilinear forms in independent symmetric r.v.’s and give

analogues of Rosenthal’s bounds for those objects.

Letepr, ..., &pn, p=1,...,m, be independent symmetric Bernoulli r.v.’s and
let Kh*™®8(m,t) and Kh*%(m, 1), t > 0, denote the best upper constants in
Khintchine’s inequalities for sums of regular and decoupled multilinear forms in

independent symmetric Bernoulli r.v.’s, respectively:

t

E

=

m
ST ciigi g

1=01<ij<--<ij<n

m t/2
Kh*f@%(m,zw(z > 2)

[=01<ii<--<ij<n
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t

m
E|Y" > Ciiflic e

=0 1<ij<--<ij<n

m
gKh*dec(m,t)E<Z > 02)

[=01<i;<--<ij<n

t/2

for all ¢;,, . ;, € R. The existence of such constants follows from Khintchine’s
inequalities for multilinear forms [e.g., McConnell and Taqqu (1986), Krakowiak
and Szulga (1986), de la Pefia (1992) and Ibragimov and Sharakhmetov(1998,
1999, 2000)].

THEOREM 3.7. Let ¢;),.; € R, 1 iy <---<ip<n, 1 =0,...,m,
Cin(yrommingy = Ciremnsits 1 <iy <---ij <n, for all permutations w:{1,...,l} —
{1,...,1}, I =2,...,m. The following inequality holds:

m

Z Z Cip,oif Xiy - X

1=01<ij<--<ij<n

m—1 q
<Y 3 Kn(m—q,0[[EIX, |

(332) q=0 1§j1<~~~<jq§n r=1

m
2 2 2
X (Z Z le ----- quila---silquXil '“EXin>

I=qii<--<ij—ge(l,...n]\{J1,.... Jq}

m
+ Y [lEX

I<ij<--<ipm<nr=1

E

t/2

for all independent symmetric r.v.’s X1, ..., X,, with finite tth moment,2 <t < 4.

THEOREM 3.8. Let ¢;,.; € R, 1 <ij <---<ip<n, 1 =0,...,m,
Cin(tysomminy = Citronifs 1 <i; <---<ij <n, for all permutations 7w :{1,...,1} —
{1,...,1}, 1 =2,...,m. The following inequalities hold:

q
max > [TEX,I

q=0,..., 1<ji<<je<nr=l1

m
2 2 2
X (Z Z cjl ----- quila---vilquXil “.EXilq>

I=qii<--<ij—ge(l,...n}\{J1,.... Jq}

t/2

m
Yo 2 XX

=0 1<ij<--<ij<n

(333) <FE
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< (1 + Y Kh*™(q, t))

q=1

q
X max Z l_[E|Xjr|l

G=tseees I<ji<-<jg<nr=1
m
2
I=q iy <-<ij—g€{l,...n}\{j1,.., Jq}
12
x EX} .- EX? )
1 l—gq
for all independent symmetric rv.’s X1, ..., X,, with finite tth moment,2 <t < 4.

REMARK 3.6. Using the fact that sums of decoupled multilinear forms
Zf”ZOZf’lzl---Zgzlcil ..... i X1, - X1i;, where Xp1,..., Xpn, p=1,...,m,
are independent r.v.’s, can be represented as sums of regular multilinear forms
with many zero coefficients, we obtain that analogues of Theorems 3.3-3.8 hold
for sums of decoupled multilinear forms as well. Using Lemma 2.8, we also ob-
tain, as in the case of sums of r.v.’s, that analogues of the above theorems hold for
sums of multilinear forms in nonnegative r.v.’s and conditionally symmetric mar-
tingale differences with bounded conditional moments and nonrandom conditional
moments.

Theorem 3.9 gives new decoupling inequalities for sums of multilinear forms
that complement the results obtained in McConnell and Taqqu (1986), de la Pefia
(1992) and de la Pefia and Montgomery-Smith (1995) [here and in what follows,
Ck=nl/(k!(n — k)!), 0 <k <nl.

THEOREM 3.9. Letc;, . .;€R, 1 <ij<---<iy<n, 1 =0,...,m. The
following decoupling inequalities hold:

t
m
(m+ 1)_1E<Z Z Ci],...,ilxl,il "'Xl,i1>

[=01<ij<--<ij=<n

m
(334) < E(Z Z Cil ..... i[Xil "'Xi[)

[=01<ii<--<ij<n
m m !
t
= (Z(an) )E(Z Z Ciy, ..., i1X1,i1"'X1’i1>
q=0 =0 1<ij<--<ij<n

for all independent nonnegative r.v.’s X1, ..., X, Xp1,..., Xpp, p=1,...,m,
with finite tth moment, 1 <t < 2, such that, for i = 1,...,n, the rv.’s Xp;,
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p=1,...,m, and X; have the same distribution,
m -1 m !
(1 + ZKh*dec(q,t)> E Z Z Ci] ..... i1X1,i1 "'Xl,il
q=1 =0 1<ij<--<ij<n
m '
(335) <F Z Z Ciy,..., ,'[X,'1 ---X,'[
=0 1<i;<--<ij<n

m m
< (1 + Z(C?,,)’Kh*reg(q,t)>E oY cinaXu o X

g=1 =0 1<ij<--<ij<n
for all independent symmetric rv.’s Xy,..., X, Xp1,..., Xpp, p=1,...,m,
with finite tth moment, 2 <t < 4, such that, for i =1,...,n, the rv.’s X,;,
p=1,...,m, and X; have the same distribution.

According to the following theorem, the best constants in Khintchine—
Marcinkiewicz—Zygmund inequalities for generalized moving averages in inde-
pendent symmetric r.v.’s do not depend on the order m and are the same as in the
independent case.

THEOREM 3.10. Let0<hy <--- < hy,. The best constants fh}k(t, m) and
fhz(t, m) in the following Khintchine—Marcinkiewicz—Zygmund inequalities
n—hy, 1/2
Khl(t,m)E< > cfxghlxﬁhz---xﬁhm)
i=1

t

n—hy,

<E Z CiXivhy Xithy - Xithy,
i=1

n—hpy l‘/2
§Kh2(t,m)E< > ci2X3+h1Xl2+h2---Xi2+hln>

i=1
foralln > hy,, cieR,i=1,...,n— hy, and all independent symmetric r.v.’s
X1, ..., X with finite tth moment, t > 0, are given by Khi(t,m) = Khi(t) =
202710 <t <19, Khj(t,m) = Khi(t) = E|Z|', t9 <t <2, Khi(t,m) =
Khi(t)=1,t>2, Kh3(t,m) =Kh3(t)=1,0<t <2, Kh3(t,m) = Khj(t) =
E|Z|", t > 2, where ty is the nontrivial solution of the equation T'((ty + 1)/2) =
['(3/2), '(x) is the Gamma-function, I'(x) = 0+°° *le=tdt and Z is the
standard normal r.v.

REMARK 3.7. From Theorem 3.10, it follows that in the case of generalized
moving averages, one can set Kh*¢(m — q,t) = E|Z|', ¢ =0,...,m — 1,
Kh*&(q,1) = E|Z|', g =1,...,m, in inequalities (3.32) and (3.33).
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PROOF OF THEOREMS 3.3 AND 3.4. Relations (3.22) and (3.25) follow from
Lemmas 2.2 and 2.3, relations (3.26) and (3.29) follow from Lemmas 2.2 and 2.4.
Let us prove (3.24). We first consider the case m = 2 in order to illustrate the
general argument. Suppose that | <¢ <2, | <s<tort>2,¢t—1<s<t. Let
ai,bi >0,al <bj,i=1,...,n,and let cx,c;j=c¢j; >0, k=0,1,...,n, 1<
i < j <n. Determine the extrema of ET! (X1, ..., X,,), .where T(Xq,...,X,) =
co+ 21y ¢iXi+ Y 1<i<j<ncijXi X j, over the sets M,ilon’md(n, s, t,a,b),k=1,2.
We have

T(Xi,...,Xn)
(3.36) n—1 n—1
=Xp|cn+ D cinXi | +co+ Y cXi+ Y cijXiX;.
i=1 i=1 I<i<j<n-—1

Let@ = (ar,....,a)), B = (by,....b). I =1,...,n—L.Forl=1,...,nandr.v.s
Xi,...,. X1 € M,?(’n’md(l — l,s,t,ﬁl_l,El_l), denote by HF(a;, by) the class

of nonnegative r.v.s X; independent of Xy, ..., X;_1 and such that EX] =aj,
EX]=0b if k=1, and EX] < a}, EX] < b if k = 2. Using (3.36) and
Lemmas 2.5 and 2.6, we get that, for all r.v’s Xi,...,X,—1 € M]Iclon’md(n -

-—n—1

1,S7t,an_17b ),
sup  ET'(Xy,...,X»)
XneH,I,((ansbn)

n—1 4
= (b —a,i)E(cn + Zcmxi)

i=1

n—1 n—1 4
+E<an<cn+2cinXi>—I—co—l-Zc,-X,'—l- Z CiJ'X,'XJ'>
i=1 i=1 1<i<j<n-1

n—1 ¢

= (b —a;>E<cn + Zcmx,») +ET'(X1..... Xyot.an), k=12,

i=1

From the same lemmas (see also Remark 2.1), it follows therefore that, for all r.v.’s
X1, Xug € MMM (0 —2,5,1,a 25" ),

sup sup  ET'(Xy,...,Xp)
Xn—leH,Ilcfl(an—lvhn—l) Xn EH,I;(anabn)

=Cp_yy(bn—1 —ay_)(by —ay)

n—2 4
+ (by — a,tl)E<cn +cp—1nan-1+ Z CinXi>

i=1
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n—2 4
+ (bp—1 — ai,_l)E<Cn—l +cpp—1an + Z Ci,n—IXi>
i=1

+ ET[(Xla ~~~7Xn—2, an—han)'

Continuing in the same way, we get that, for all r.v’s Xi,...,X;_| €

Mg s @l B,

sup  --- sup sup  ET'(Xy,...,X,)
XIEHlk(al,bl) Xn— IEH _1(@n—1,bn— I)XHEHi]z((aVl’bVl)

= > ciji—apb;—aj

I<i<j<n
n -1 !
+Z(b a)E(cJ—i- Z cljal—i-ZcU )
j=l i=li#]j i=1

+ET'(X1,.... Xi—1, a1, ...,a,), k=1,2.

Therefore, sup, )EM]?on,ind(n’s’t’a’b)ETt<X1,...,Xn):ZI<l<J<n ci;(bi —aj) x

(bj —a’; ) + Z,_l(b,‘ — af)(ci + Z?zl,j#i c,-jaj)’ +Tay,az,...,a,),k=1,2,
and we get that (3.24) holds in the case m = 2.

Let us now turn to the case of arbitrary m. Let us use induction on the number
of r.v.’s X1, ..., Xy. Suppose we have already proven relation (3.24) for all sums
of multilinear forms of order not greater than m, 1 <m <n — 1, in the case of
n — 1 r.v.’s; that is, suppose that the relation

t
m
sup 1 (Z Z Ciy,..., ,'[X,'1 "'X,'[>
n— )

(X,n—1)eMp™ ™ (n—1,5,1,a 1=01<ij<--<ij<n—1

m q
=, 2 Jle,-d)

q=01<ji<--<js<n—1r=1

m t
X Z Z Cloedgritserii—g @iy = " Qip_g | >

I=q iy <-<ij—g€{l,...n=1\{j1,.... Jq}

is valid. From Lemmas 2.5 and 2.6, we get that, for all r.v.’s X1, ..., X,,—1 from
—n—1

the class Mnonmd( —1,s,t,a" L p" ),

(3.37) sup E(Z Z Ciy,oiy Xiy Xi;)

XneH,]f(an,hn) =0 1<ij<--<ij<n
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m—1 t
= (b, — a,i)E( Z Z Ciyyoign Xiy o Xi1>

=0 1<ij<--<ij<n—1

t
m

+E<E<Z Z Cip,oip Xiy -0 X X,,:an>>
1=01<iy<--<ij<n

[note that E(f(X1,..., X,) | Xp =ay) = f(X1,..., Xy—1,a,)]. From the induc-
tion hypothesis, it follows that (we assume ¢;, . 2=0)

corlm,s
m
sup E(E(Z Z Cil,...,iIXil
Y 1=0 1<ij <--<ij<n .
X, = a,,))

(X,n—1)eM™ ™ (i—1,5,1,a~ b
m
- cup E(z S G
)

(X,n—1)eM™™ ™ —1,5,1,a"1 """ 1=0 1<iq <-<ij<n—1

X

t
+ Ciy,.oipn@n) Xy -+ Xi,)

m q
= Z Z l_[<bjr _a;r)

q=01<ji<--<js<n—1r=1

m
x (Z > (Chtrgritvmiig

I=qiy<-<ij—g€{l,...n=1N\{j1,.... Jq} t
+ lev---,quil7---J.Iquna”)ail T ailq)

m q
S SN SR (O'S
q=01

<j1<-<jg<n—1lr=1

m t
X (Z Z lev---vquilv---vilfqail e ailfq :

I=q iy < <ij—g€{l,cc, W\ {1, -ws Jig}
Moreover,

m—1 t
sup E( Z Z Ci[,...,i],nXl‘l N Xi])
)

(Xn—DeMM ™ ;1 5 a1 5" 1=0 1<ij<--<ij<n—1

m—1 q
339 =Y > [1®), —a!)

qg=01<ji<-<js<n—1r=1

t

m—1
X ( Z Z Cllsiirdgsitsemil—g.n@iy * ailq) .

I=q iy <-<ij—g€{l,...n—=1]\{j1,....Jq}
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From (3.37)—(3.39) and Lemmas 2.5 and 2.6 (see also Remark 2.1), it follows
that

m t
sup E(Z Yoo i Xy Xi1>

(X,m)eM{™™ ™ (. 5,t,a,b)  \1=01<ij<--<ij<n

m q

_ R

=2 2 lei-dp
q=01<ji<-<js<n—1r=1

t

m
X Z Z le ----- quila---silfqail T ailq)

I=qiy<-<ij—ge{l,...n]\{J1,.-. Jg}

m—1 q
+ln=a ), ). [l®i—d))

q=01<ji<-<js<n—1r=1

m—1 t
X Z Z Cltyensfgoitsennsi—g.n@iy " Qig_y

I=q iy <-<ij—g€{l,...n=11\{j1,.... jq}

m q
=2 2 [le,-d)
q:01§j1<~~~<jq§nr:1
t

m
X (Z Z Cltreargoitsemmsi—g @iy * " ailq) )
I=q iy < <ij—g €{1, e R\ {1 s-es g}
where the next to the last term is the case when j, 41 =n, 1 < jj <--- < j; <
n—1 ¢g=0,1,...,m — 1, missing to complete the sum. The fact that
relation (3.24) is obviously valid for sums of multilinear forms in one r.v.
completes the proof by induction. Relations (3.23), (3.27) and (3.28) might be
proven in a similar way [to prove (3.27) and (3.28), one uses Lemma 2.7 instead
of Lemma 2.6]. 0O

PROOF OF THEOREMS 3.5-3.10. Inequality (3.30) immediately follows
from relation (3.24). Let ¢;,,..; =0, 1 <ij <---<iy<n, 1 =0,....,m — 1,
Citomnim = (g0 (1/qH(1/(m =)D ™', 1 <iy <+ <iy <n, andleta; = b; =
1/n,i=1,...,n. From relation (3.24) it follows that

m
sup E(Z Z Ciy,..., i[Xil Xil)

X,)eM!™ ™, 1,1,a,b)  \I=01<ij<--<ij<n

m m t
TR POC=VR
q=0

I=q

t
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.....

< 1 ( 1 )l t 1
~ - cl,...,m = 1.
g=0 q' (I’I’l - 51)'

Moreover, for all r.v.’s (X, n) € M?On’ind(n, 1,t,a,b),

SO (1

qg=01<j; <~~~<jq§n r=1

t
m
X (Z > Cltsorigrityeomsit—g E Xy "'EXizq>

I=qii<-<ij—ge(l,...n}\{J1,.... Jq}

m
=D CinU(Cin™ "Dy ) ~ 1

This proves exactness of the constants in inequality (3.30). The right-hand side
of inequality (3.31) is an evident consequence of (3.30). The left-hand side
of inequality (3.31) easily follows from the nonnegativity of the r.v’s Xi,
..., X, and Jensen’s inequality. Inequality (3.32) follows from relation (3.28).
The upper bound in (3.33) is an immediate consequence of (3.32). The lower

estimate is an evident consequence of the lower Khintchine bound E(} ] x
Zl§i1<~~<i1§n Cizl ,,,,, i,Xl‘zl "'Xizl)t/z = E|Z;n:021§i1<m<il§nci1 ----- iin1 "'Xi1|t7
t > 2, implied by Jensen’s inequality. Let us prove (3.34). Let us again consider
first the case m = 2. Let ¢, ¢;j =c¢j; 20, k=0,1,...,n, 1 <i < j <n.
From (3.30) (see Remark 3.6) and the left-hand side of inequality in (3.31), it

follows that
n
E<CO+ZCiX1i+ Z Cinlinj)
i=l I<i<jzn
< Y cEX|Xh;

I<i<j<n

t
n n
+ > EX|; (ci + > cijExzj)
i=1

j=i+1

t

n j-1 g !
+ZEXt2j(ZC,'jEX1,'> +< > EXuEXz])

Jj=1 i=l1 I<i<j<n
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t
n n
< Z ijEX;X;-+ZEX£<CZ'+ZC,']‘EXJ'>

1<i<j<n i=1 i

+ ( > EXiEXj>l

I<i<j<n
n t
§3E<C()+Zcixi + Z C,'inXj) .
i=1 I<i<j<n

From (3.30) and the nonnegativity of X1, ..., X1,, X21, ..., X2, it also follows
that
t

n
E(CO+ZCiXi + Z Cinin)

i=1 I<i<j=n

t
n n
< Z C%EX;X;—FZEX;(C,'—f—ZCiJ'EXJ)

l<i<j<n i=1 i

+ ( > EXiEXj>t

1<i<j<n

t

A

n n
—1
S x2S e (o 3 o)
i=1

I<i<j<n j=i+l

n j—1 t t
+2f—1ZEX’2j<ZcUEX1,~) +< > EXliEX2j>

j=1 i=1 l<i<j<n
t

5(2+2t)E( Z C,‘lel‘ij).

1<i<j<n

Therefore, (3.34) holds for m = 2. Let us now turn to the case of arbitrary
m. Let ¢iy iy >0, 1<iy <---<ip<n, 1 =0,....m, Ci ) .ir»y = Cit..igs
1 <iy <---i; <n, for all permutations 7 :{1,...,I} —> {1,...,l},[=2,...,m.
It is obvious that

q
2. [IEx,

I<ji<-<jgsnr=1

m
X (Z > Ctronrigoitremit—q E Xy "'EXizq)

I=q iy <--<ij—g€{l,...n}\{J1..... Jq}
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q
Z Z Z l_[ EX;rvijr

1<ji <~~~<jq§m lfijl <~~~<ijq <nr=1

m
x| 2 > it [1 0 EXk
l:jq 1§ip§nqip1 <ip2,P1<P2, k=1,..., l,k#jl,~~~9jq

p.p1,P2=L,. L, pFj1ss g

for all independent nonnegative r.v.’s X1,..., X,, Xp1,..., Xpy, p=1,...,m,
with finite 7th moment, 1 <7 <2, such that, fori =1,...,n, X,;, p=1,...,m,
and X; have the same distribution. This inequality, the estimate

m
E(Z Z cil,...,i1X1,i1 "'Xl,il)

=0 1<i;<--<ij<n

3D S [1Ex,

q=01<ji < <jg<m1<ij <-<ij, <nr=1

t

m

x| Y > Ciy ooy I EXk,iy

I=jq 1<ip=<n,ip, <ip,.p1<p2, k=1,...LLk#j1,....Jq
p.p1p2=1,. L, pF# 1,0 Jg

for all independent nonnegative r.v.’s X1, ..., Xp,, p=1,...,m, with finite rth
moment, 1 <t < 2, implied by (3.30) (see Remark 3.6) and the left-hand side
inequality in (3.31) imply that

m t
E(Z Z Ciy,..., i1X1,i1 "'Xl,i1>

=0 1<ij<--<ij<n
m t
f(m—l—l)E(Z Yoo ai, i/Xil"'Xi1> :
[=01<i;<--<ij<n

Similarly, from the inequality (X, z¢)' < N'™'SW 2 for zx > 0, k =
l,...,N,t>1, it follows that

q
2. [IEx,

I<ji<-<josnr=1

m
b (Z > Cltronrigoitsmit—q E Xy "'EXizq)

I=qiy<-<ij—ge(l,...n}]\{J1.....Jq}

t



668 V. H. DE LA PENA, R. IBRAGIMOV AND SH. SHARAKHMETOV

q
ey Y Y [lex,

1<ji<-<jqg<m1<ij <"’<ijq <nr=1

m
x| Y > Ciyyooiy I1 E Xy
I=j4 I<ip<n,ip, <ip,,p1<pa2; k=1,...Lk#j1,....Jq

p,p1,p2=1,....L,p#j1,.... Jq

This, together with inequality (3.30) and the inequality

q
max max Z l_[ EX 5}, i

=0,....m1<ji<-<j,<m . .
q =J1 Jg= 151j1<’“<qu <nr=1

m
x| 3 3 Ciy.i I1 E Xy
l:jq lfipfn,ipl <ip2,p1<p2, k=1,..., Lk j1 ey Jq

p.p1,p2=1,....1,p#j1,.... Jq

m '
SE(Z Z Ciyeniy X 1,4 "'Xl,i1> ’

=0 1<ij<--<ij<n

which follows from the nonnegativity of X,i,...,X,,, p=1,...,m, and
Jensen’s inequality, imply that

m
E(Z o i Xip -X,,)

[=01<ii<--<ij<n

t

t

m m
< (Z(C,q,,)t>E(Z o i X ~~~X1,i,) ;
q=0 [=01<i;<--<ij<n

that is, inequality (3.34) holds. Decoupling inequalities (3.35) might be proven
in a similar way, with the help of the inequalities Z,](v:l |zl < IZ,ivzlzklt <
N1 Z/iv:l |zt for zx € R, k=1,..., N, t > 1, estimate (3.32), left-hand side
inequality (3.33) and their implications for sums of decoupled mulitilinear forms.
Theorem 3.10 follows from the results of Haagerup (1982) and independence of
therv’s el =¢&i1n, - €ighy, i =1,...,n —hy (Remark 3.5). [

APPENDIX
Auxiliary results on extremal properties of sums of independent random

variables with fixed sum of tails of distributions. Let J be the o-algebra of
Borel subsets of R and let A be the class of finite positive o -additive measures A
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on J such that A({0}) =0. Set Ay ={A e A:A(B)=A(BNR,),BeJ}, Ar =
{, € A:X(B) = A(—B), B € J}. For a measure 1 € A denote by T (1) the r.v.
with characteristic function Ee!’T™ = exp(ff:j(e”x — 1 dr(x)). Let A1 € Aq,
Az € Aj. Set [here, as in Section 3, (X,n) denotes a set of independent r.v.’s
X1,..., X

Wih) = H(X, n):n > 1, X; is nonnegative,

2 P(Xie B\{0)=21(B). B e%}

i=1

Wi(kp) = H(X, n):n>1, X; is symmetric,

n
> P(X;e B\{0}) =12(B),B ¢ 3}
i=1
Denote by W»(%;), j = 1,2, the subsets of W;(X;) consisting of identically
distributed r.v.’s.

The following theorem refines and complements the results obtained in Utev
(1985).

As in the beginning of Section 3, ® is the class of continuous functions ¢ :
R — R satisfying condition (3.1). Let f € J, h € Oy (concerning the definitions
of the classes J and Q r, see the beginning of Section 2), f(0) =0, Dy, Ay >0,

and let, similarly to the proof of Theorem 3.1, Ul(l)(Dh, Ay) and Uz(l)(Dh, Ay)

be the sets of independent nonnegative r.v.’s X1q,..., X,, n > 1, satisfying the
conditions

n n
(A.1) Y Eh(Xi)=hDy), Y _Ef(Xi)=As

i=1 i=1
and

n n
(A2) SER(XiD <h(Dy), Y Ef(Xi) <Ay,

i=l i=1

respectively. Denote by Ul(z)(Dh, Ay) and Uz(z)(Dh, A ) the sets of independent
symmetric r.v.s X1,..., X, n > 1, satisfying inequalities (A.1) and (A.2), and
denote by Uéj)(Dh,Af) and Uij)(Dh,Af) the subsets of Ul(j)(Dh,Af) and
UZ(j )(Dh, Ay), j =1,2, respectively, consisting of identically distributed r.v.’s.
Let

A (D, Ap) = {)\ €A; :/_ h(|x]) dr(x) = h(Dp),
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o0
/ FUxD di(x) = Af},
—Q

AY (Dy, Ag) = {x e st [ h(xDdi) <Dy,

/_oof<|x|>dx<x>sAf}, i=12

THEOREM A.l. If a nonnegative function ¢ € ® is convex, and a nonnega-
tive function ¢y € ® satisfies condition (3.19) then

n n
sup E¢,~<Zx,~) = sup E@(Zx,»)
X,meU (D, Af) i=1 (X.n)eU) (D, Ay) i=1
= sup E¢;(T (L)), k,j=1,2.
reAd) (Dy,Af)

REMARK A.1. Theorem A.1 means that the following important fact holds:
in problems of determining extrema of expectations of functions ¢; of sums
of independent nonnegative r.v.’s with fixed sums of generalized moments and
expectations of functions ¢, of sums of independent symmetric r.v.’s with fixed
sums of generalized moments, it suffices to consider only identically distributed
L.V.’s.

Theorem A.1 immediately follows from the evident relations U k(j )(Dh, Ap) =

Useal (4, W1, U (Dy, Ay) = Uiead pyap W2, k=12, j =
1,2, and the followmg lemma.

LEMMA A.1. Letdje€ Aj, j=1,2, let a function ¢ € ® be convex and let
a function ¢, € ® satisfy condition (3.19). Iff::f lp;(x)|dAj(x) < o0, then
Elg; (T.)]| < oo.

A3
(A3 sup (ZX)<E¢J (T (1)), j=1,2.
)

(X,n)eWi(;

If, in addition to that, the functions ¢, j = 1,2, are nonnegative, then

(A4) sup )E¢J-(in>:E¢j(T(,\j)), j k=12
i=1

(X,n)eWi(;

Let us formulate some auxiliary results needed for the proof of Lemma A.1. For
avectora € R", denote by a1} > - - - > ay, its components arranged in descending
order.
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DEFINITION A.1 [Marshall and Olkin (1979)]. Let x, y € R". The vector x
is said to be majorized by the vector y (x < y) if Zf.‘zlxm = Zf'(:l Vil k=
L...,on—1, 30 xi1= 20 Vi)

DEFINITION A.2 [Marshall and Olkin (1979)]. Let A C R". A function
¢: A — Ris said to be S-convex (resp. S-concave) on A if (x < y) = (¢p(x) <
d(y)) [resp. (x < y) = (¢(x) = p(y))] forall x, y € A.

LEMMA A.2. A continuous function ¢1 : R4 — R is convex on Ry if and only

if

(n— 1)¢1(x)+¢1<zai +x>

i=1

(AS)

n
> ¢i1(ai+x), ai,....an, xRy, n>1
i=1

PROOF. Let ¢1 : R4 — R be a continuous and convex function on R;.. Then
from Proposition 3.C.1 in Marshall and Olkin (1979), it follows that >, ¢1(x;) is
an S-convex function on R’} . Since (a; +x, ..., a,+x) < (x,...,x, Y /_; a; +x),
this implies inequality (A.5). Let now a continuous function ¢ : R4 — R satisfy
inequality (A.5) and let 0 < y < z. Setting in (AS) n =2, x =y, a1 =a; =
(z — y)/2, we obtain that (¢1(y) + ¢1(2))/2 = ¢1((y + 2)/2); that is, the
function ¢ is convex. [

LEMMA A.3. A function ¢ :R — R satisfies condition (3.19) if and only if

(n—1E¢r(xe) + E¢2<Zai8i +x8>

i=1

n
ZZE¢2(ai81+x€2), ai,...,an, x €R, n>1.
i=1

The proof can be easily obtained by induction.

LEMMA A.4. Let XU, YD pe nonnegative r.v.’s, let X@ y? pe symmetric
rv.’s, let ¢1 € ® be a convex function and let ¢y € ® be a function satisfying
condition (3.19). Suppose that for j = 1,2 the rv. XY has a distribution
Aj € Aj, the rv.’s X(j),Y(j),T(Aj) are independent, and E|¢j(X(j))| < 00,
Elp; (YY) < co. Then E|¢p;(T(A;) + YP)| < 00 and E¢;(XV) + Y)) <
E¢;(T(Lj)+YV), j=1,2.
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PROOF. The distributions of the r.v.’s T(A;), j = 1,2, are the same as the
distributions of the r.v.’s 29(1) X; ) , respectively, where the r.v. 6(1) is independent
of Y/) and X Y ) X éj ). are sequences of independent r.v.’s with distributions A ;

independent of ¥ and 6(1). According to Lemma 3.4 in Utev (1985), from
the condition that ¢; € ® and, therefore, ¢; satisfy (3.1), it follows that, for

all ay,....ay € R, |¢;(C0 an)] < ¢} TIo (1 + Igj(@), j = 1,2, where
qj =max(1,2C(¢;)), C(¢;) are the constants in (3.1). Consequently,

E|¢p;(T (1)) + YY)

00 k
—e 'Y Elg; (ZX,.”) + Y(J)>
k=0 i=1

/K

o0
_ i i k
{1+ Elo;(rD) Y (a5 (1 + Elg i) i
k=0
=(1+Elp; (v D)) exp(q;(1 + Elg;(X;)) = 1) <00, j=1,2.
From Lemmas A.2 and A.3, it follows that

o0 k ) )
ey E@(ZX}” + Y(J)>/k!
k=1 i=1

00 k . ) )

>e 'Y (Z E¢;(xV + YD) — (k- 1)E¢j(Y(J))) /K
k=1 \i=1

— E(f)j(X(j) + Y(j)) — 6_1E¢j(Y(j)).

Therefore,

E¢j(T(hj)+ YY) = —1ZE¢> (ZX(’)-I—Y(”)/k'

2E¢j(x(f)+Y(f)), ji=1,2. O

PROOF OF LEMMA A.1. The inequalities in (A.3) are evident consequences
of Lemma A.4. Let us prove the relations in (A.4). Let ¢; € ® be a nonnegative
convex function, let ¢, € ® be a nonnegative function satisfying condition (3.19)
and let A; € Aj, j =1,2. It suffices to prove the exactness of upper bounds
in (A.4). Take n > max;—12A;(R). Let X M- X,(,i,) be independent nonnega-

1n>
tiver.v.’s and let X ﬁ) X ,(,%,) be independent symmetric r.v.’s such that P (X (J )

B\{0}) =n"'A;(B) for B€S, i=1,...,n,j=1,2. Then ¥V IP(X(J)
B\ {0}) = A;(B), and the characteristic function of the r.v. Y_/_; Xi(i) is given
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by (1+n~" [T(e™ — 1) dhrj(x))" = exp(J7X ("™ — 1)dAj(x)), j=1,2, as
n — oo. Since the functions ¢ are continuous, this implies that ¢; (3"7_; X l.(i)) —
¢;(T(x;)), j =1,2 (in distribution), as n — oo. Therefore [e.g., Billingsley
(1999), Theorem 3.4], liminf, .o E¢;(X7_, X)) > E¢ (T (1)), j=1,2. O

For n >d > 0, set Hd) = {(p1,...,pn):0 < p; < 1,i = 1,...,n,
>, pi =d}. Let Xi(p1),..., Xn(py) be independent r.v.’s with distribu-
tions P(X;(pi)) = 1) = pi, PXi(p;)) =0 =1 — p;,i =1,...,n, and let
Y1(p1),..., Yn(pn) be independent r.v.’s with distributions PYi(p) =1 =
PY;(pi)=—-1)=pi/2,PY;(p;)) =0)=1— p;,i =1,...,n. Then, for all
(p1>---,pn) € H(d) and B € 3, we have Yi 1 P(Xi(pi) € B\ {0}) = A(B),

i—1 P(Yi(pi) € B\ {0}) = A2(B), where A1({1}) =d, 22({1}) = ra({—1}) =
d/2, A\{(R) = A2(R) = d. The distributions of r.v.’s T(A1) and T (Ap) are the
same as distributions of r.v.’s 6(d) and 01(d/2) — 62(d/2), respectively. Using
Lemma A.1, we obtain that if ¢; € ® is a nonnegative convex function and ¢, € ¢

is a nonnegative function satisfying condition (3.19), then

sup E ( Y X (Pi))
i=1

(A.6) (P1,.,Pn)EH(d) )
:SlipE(f)l(ZYi(d/n)> = E¢1(9(d)) < 0,

i=1

sup E¢ ( Y (Pi))
i=1

= sup E¢2<2Yi (d/n)) = E(01(d/2) — 62(d/2)) < .

i=1
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