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SECOND PHASE CHANGES IN RANDOM m-ARY SEARCH TREES
AND GENERALIZED QUICKSORT: CONVERGENCE RATES

BY HSIEN-KUEI HWANG

Academia Sinica

We study the convergence rate to normal limit law for the space
requirement of random m-ary search trees. While it is known that the random
variable is asymptotically normally distributed for 3 ≤ m ≤ 26 and that the
limit law does not exist for m > 26, we show that the convergence rate is
O(n−1/2) for 3 ≤ m ≤ 19 and is O(n−3(3/2−α)), where 4/3 < α < 3/2 is
a parameter depending on m for 20 ≤ m ≤ 26. Our approach is based on
a refinement to the method of moments and applicable to other recursive
random variables; we briefly mention the applications to quicksort proper and
the generalized quicksort of Hennequin, where more phase changes are given.
These results provide natural, concrete examples for which the Berry–Esseen
bounds are not necessarily proportional to the reciprocal of the standard
deviation. Local limit theorems are also derived.

1. Introduction. Probabilistic analysis of data structures and algorithms has
received increasing recent attention. Roughly, the first goal has been to determine
the complexity of the structures or algorithms in terms of simple mathematical
functions; the analysis may in turn introduce intriguing random structures as
well as challenging probabilistic problems. The problems we study in this paper
will be seen to have such a character. We are concerned in this paper with the
Berry–Esseen bounds (convergence rates in Kolmogorov distance) for the space
requirement of random m-ary search trees, which is shown to exhibit a new
“phase change” when m grows. Our method of proof is also applicable to more
general search trees and quicksort algorithms for which more “phase changes” are
unveiled.

We start from the binary search trees, which are one of the simplest and most
fundamental data structures in computer algorithms. A binary search tree is a
binary, rooted, labeled tree in which the labels in the left subtrees of any node x

are all less than that of x, and those in the right subtrees are all greater than that
of x. This property enables one to perform easily queries like “Is the key y in the
tree?” Also it is easy to devise algorithms for inserting a new key and for deleting a
node in the tree. Although binary search trees have poor performance in the worst-
case (e.g., when the tree is a chain of nodes), they are efficient when the tree is
constructed from a random sequence; see Mahmoud (1992).
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Such a data structure is prototypical and admits many different varieties of
extensions such as AVL trees, m-ary search trees, quadtrees and k-d trees, on the
one hand, and quicksort and its many variants, on the other hand; see Sedgewick
(1980), Gonnet (1991), Mahmoud (1992), Devroye (1999). We first describe m-ary
search trees, which are the main object of study of this paper; variants of quicksort
are briefly mentioned later.

Given a sequence of n keys, an m-ary search tree (m ≥ 2) is constructed as
follows. If n = 0 then the tree is empty; if 1 ≤ n ≤ m − 1 then the tree consists
of only a single internal node holding these keys in increasing order; if n ≥ m,
then the first m − 1 keys stay in an internal node (called root node) in increasing
order, which are used to direct the remaining keys into the m branches: keys
lying between the ith and the (i + 1)st keys go to the (i + 1)st branch, where
0 ≤ i ≤ m − 1 and, for convenience of description, the (imaginary) 0th and the
(m + 1)st keys are −∞ and +∞, respectively; keys in each subtree are then
constructed recursively; see Figure 1 for an illustration and Mahmoud (1992) for
more details.

It is visible from Figure 1 that the space requirement (the total number of nodes
to store the given keys) depends on the order of the input, and that the number of
keys in each node varies from 1 to m − 1. Given n keys, it is straightforward to
see that the space requirement varies between n/(m − 1) and mn/(2m − 2) [see
Mahmoud and Pittel (1989)]. Between these two extremes, what is the “typical
behavior” of the storage requirement? To answer this question, we introduce

FIG. 1. The ternary (left) and quaternary (right) search trees constructed from the sequence
{2,7,9,8,5,1,3,10,4,6}.
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the usual uniform probability model by assuming that the input is a sequence
of n independent and identically distributed random variables with a continuous
distribution. Given such a random input, the m-ary search tree constructed from
it is called a random m-ary search tree (of n keys) and the storage requirement is
then a random variable for m ≥ 3, denoted by Xn. Note that Xn ≡ n for m = 2.

In addition to computer algorithms, random search trees also surfaced natu-
rally in several different fields such as evolutionary trees, diffusion models, ran-
dom fragmentation processes, collision processes; see Aldous (1994), Barlow,
Pemantle and Perkins (1997), Ben-Naim, Krapivsky and Majumdar (2001) and
the references therein for further information.

By the recursive construction of m-ary search trees and the probability model,
X0 = 1, Xn = 1 for 1 ≤ n ≤ m − 1, and

Xn
d= X

[1]
I1

+ · · · + X
[m]
Im

+ 1, n ≥ m,

where (X[1]
n ), . . . , (X[m]

n ), (I1, . . . , Im) are independent and the (X[i]
n )’s have the

same distribution as (Xn). Here [see Mahmoud and Pittel (1984)]

P (I1 = j1, . . . , Im = jm) = 1( n
m−1

) ,
for all tuples of nonnegative integers (j1, . . . , jm) such that j1 + · · · + jm =
n − m + 1. [Briefly, there are

( n
m−1

)
ways of choosing m − 1 keys for the root

node and the m subtrees are independent and equi-distributed.]
Let Pn(u) := E(eXnu). Then the above description translates into

Pn(u) =




1, if n = 0,

eu, if 1 ≤ n ≤ m − 1,
eu( n

m−1

) ∑
j1+···+jm=n−m+1

j1,...,jm≥0

Pj1(u) · · ·Pjm(u), if n ≥ m.
(1.1)

It is known that the limit law of the random variable Xn exhibits a “phase
change” at m = 26: it is normal for 3 ≤ m ≤ 26 and does not exist for m > 26;
see Mahmoud and Pittel (1989), Lew and Mahmoud (1994), Chern and Hwang
(2000) (referred to as CH in the sequel due to frequent citations) for details. Our
aim in this paper is to improve the weak convergence in the case of normal limit
law by proving the following theorem.

THEOREM 1. Let �(x) denote the standard normal distribution. Then

sup
−∞<x<∞

∣∣∣∣P
(

Xn − E(Xn)√
Var(Xn)

< x

)
− �(x)

∣∣∣∣
(1.2)

=
{

O(n−1/2), if 3 ≤ m ≤ 19,

O(n−3(3/2−α)), if 20 ≤ m ≤ 26,
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where 4/3 < α < 3/2 denotes the real part of the second largest zero(s) (in real
part) of the indicial polynomial

z(z + 1) · · · (z + m − 2) − m! = 0.(1.3)

The approximate values of α and 3(3/2 − α) are shown in Table 1.
The case when m = 3 is proved in CH using a direct analytic approach, but that

approach (based on exact solvability of the associated partial differential equation)
is not likely to be extended to cover more cases.

The O-terms in (1.2) are, up to implied constants, optimal since they are
proportional to E(Xn − E(Xn))

3/(Var(Xn))
3/2, and E(Xn − E(Xn))

3 is linear
for 3 ≤ m ≤ 19 and asymptotic to n3α−3 times a periodic function of logn for
20 ≤ m ≤ 26; see (2.21) and (2.23). We will indeed derive a more precise local
limit theorem for Xn; see (2.29).

Technically, while the line �(z) = 3/2 divides the normal and nonexistence
behavior (first phase change), the line �(z) = 4/3 separates “good” convergence
rate to “poor” ones (second phase change).

The result (1.2) not only gives concrete instances for which the Berry–Esseen
bound is not proportional to the reciprocal of the standard deviation, but also sheds
further light on the change of limit laws at m = 26 since the convergence rates are
becoming poorer and poorer as m increases from 19 to 26, as shown in Table 1.

Then a natural question is “Why phase change?” We argued in CH that the main
cause of the first phase change lies in the periodicity of the second-order term in the
asymptotic expansion of E(Xn), which in turn is due to the second largest zeros of
the polynomial (1.3). A very rough intuitive interpretation is as follows. Observe
first that Xn is degenerate for n < m and that the calculation of Xn for large n

involves a large number of terms of Xj ’s with j < m by recursive decomposition.
The contribution of the increasingly small degeneracy then leads to the change of
the limit laws when m grows.

We proved in CH the asymptotic normality of Xn for 3 ≤ m ≤ 26 by the
method of moments; we extend that method of moments here but instead of

TABLE 1
Numeric values of α and 3(3/2 − α) for m from 20 to 26

m α 3(3/2 − α)

20 1.34892881 0.45321354
21 1.38079786 0.35760639
22 1.40936978 0.27189065
23 1.43512896 0.19461309
24 1.45847025 0.12458925
25 1.47971848 0.06084455
26 1.49914326 0.00257020
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the “asymptotic transfers” established there (using analytic approach), we will
develop more elementary tools for handling inequalities. For other approaches
to the asymptotic normality of recursive random variables, see Pittel (1999)
(inductive approximation approach), Mahmoud (2002) (urn models), Neininger
and Rüschendorf (2001) (contraction method), Devroye (2002) (Stein’s method)
and the references therein. The essential difference between the method of
moments and the approach proposed in this paper is that for the method of
moments, we need asymptotics for the central moments E(Xn −E(Xn))

k for each
k ≥ 0 (independent of n), while for the convergence rate, we need explicit upper
bounds for E(Xn − E(Xn))

k for all k ≥ 0 ( possibly dependent on n).
Our proof of Theorem 1 is sketched as follows. We start by defining the scaled

moment generating function

φn(y) := e−σ 2
n y2/2E

(
e(Xn−µn)y

) = e−µny−σ 2
n y2/2Pn(y),

where µn := E(Xn) and σ 2
n := Var(Xn), which satisfies, by (1.1), φn(y) = 1 for

0 ≤ n ≤ m − 1 and for n ≥ m,

φn(y) = 1( n
m−1

) ∑
j1+···+jm=n−m+1

j1,...,jm≥0

φj1(y) · · ·φjm(y)e�(j)y+δ(j)y2
,(1.4)

where

�( j) := 1 + µj1 + · · · + µjm − µn,

δ( j) := 1
2

(
σ 2

j1
+ · · · + σ 2

jm
− σ 2

n

)
.

Although the recurrence relation is not explicitly solvable for m ≥ 4 (see CH),

it will suffice to study the “moments” φn,k := φ
(k)
n (0). These numbers satisfy the

same type of recurrence equations obtained from (1.4) by successive differentia-
tion at y = 0. Using these recurrences, we then show that for all k ≥ 0,

|φn,k| ≤ k!Ak ·
{

nk/3, if 3 ≤ m ≤ 19,

nk(α−1), if 20 ≤ m ≤ 26,

where A > 0 is a suitably large constant. These estimates are the hard part of the
proof and will enable us to derive precise estimate for the characteristic function
of (Xn − µn)/σn when the parameter is small. Another inductive argument is
then applied to derive a uniform estimate for the characteristic function. We then
conclude Theorem 1 by the Berry–Esseen smoothing inequality [see Berry (1941);
Esseen (1945); Petrov (1975)]. The estimates we derived are also strong enough to
obtain a local limit theorem (of moderate-deviations type); see (2.29).

This approach is easily extended to recurrences appearing in the analysis of
quicksort algorithms, which are the most widely used general-purpose sorting al-
gorithms (for arranging given keys in increasing order). Quicksort was considered
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to be among the ten best algorithms in the 20th century “with the greatest influence
on the development and practice of science and engineering”; see Dongarra and
Sullivan (2000). The original quicksort proper invented by Hoare (1962) works,
similar to the construction of binary search trees, as follows. Choose first a key
from the input as the pivot; partition the input into three parts corresponding to
keys whose values are less than, equal to, and larger than the pivot, respectively;
then sort recursively the parts with smaller and larger keys until each part contains
only one key (which is sorted). This version, although efficient for random input,
suffers from several drawbacks such as quadratic cost in the worst case, inefficient
when the input is near-sorted, nonstable for equal keys (the relative order of equal
keys may not be preserved) and so on. Thus many schemes have been proposed to
improve these; see Sedgewick (1980), Gonnet (1991).

Among the many variants of quicksort, we consider here Hennequin’s general-
ized quicksort, where a random sample of m(t + 1) − 1 elements are first chosen
and then the (t + 1)st, 2(t + 1)th, . . . , and (m − 1)(t + 1)th smallest elements in
this sample are used to partition the remaining elements into m subgroups as in the
branching construction of m-ary search trees; the m subgroups are sorted recur-
sively until the file sizes are less than some threshold; then a final run of insertion
sort completes the sorting task; see Hennequin (1989, 1991) for further details.

Assume as usual that the input is a sequence of independent and identically
distributed random variables with a common continuous distribution. Then the cost
measures of Hennequin’s generalized quicksort satisfy recurrences of the type

Yn
d= Y

[1]
J1

+ · · · + Y
[m]
Jm

+ Tn, n ≥ m(t + 1),(1.5)

with suitable initial conditions, where m ≥ 2 and t ≥ 0 are integers, Tn is
some random variable (called “toll function”), (Y [1]

n ), . . . , (Y [m]
n ), (J1, . . . , Jm) are

independent and the (Y [i]
n )’s have the same distribution as (Yn). Here

P (J1 = j1, . . . , Jm = jm) =
(j1

t

) · · · (jm

t

)
( n
m(t+1)−1

) ,

for all tuples of nonnegative integers (j1, . . . , jm) such that j1 + · · · + jm =
n − m + 1. See Hennequin (1989, 1991) or CH for more information.

For simplicity, we consider the special case when Tn = 0 for n ≤ m(t + 1) − 1
and Tn = 1 for n ≥ m(t + 1). Then Yn denotes the number of partitioning stages
used by Hennequin’s generalized quicksort [see Hennequin (1989, 1991)]. Phase
changes of the limit laws of Yn have been derived in CH; we will describe the
“second phase changes” of Yn in Section 3. The same phase changes subsist for
other cost measures of linear mean (see CH).

Another application to the quicksort proper [(m, t) = (2,0) in the generalized
quicksort] is mentioned in Section 4:

Zn
d= ZUn + Z∗

n−1−Un
+ Tn, n ≥ 2,(1.6)



PHASE CHANGES IN RANDOM TREES 615

where Un is uniformly distributed over {0,1, . . . , n − 1}. Unlike the preceding
cases where either m or t varies, we consider the case when the “toll function” Tn

varies and examine the effect of such a variation. The picture of such random
variables has been investigated in Devroye (2002), Hwang and Neininger (2002)
and is as follows. If the “toll function” is small, say O(n1/2), then, under proper
conditions, the limit law is normal; if the “toll function” is large, say �n1/2, then
the limit law is nonnormal (under appropriate conditions). This 1/2-threshold for
asymptotic normality is further strengthened by the 1/3-threshold in which the rate
to normality is O(n−1/2) if the “toll function” is 	 n1/3 and becomes slower for
larger “toll functions.” As before, the main “determinant” is the order of the third
central moment. This consideration will clarify the connection of this order and
the convergence rate to normality.

While the practical usefulness of m-ary search trees is limited due to its
poor storage utilization [E(Xn/n) ∼ 1/(2/2 + 2/3 + · · · + 2/m) > 1/(m − 1);
see (2.7)], they naturally introduce several intriguing phenomena and many
challenging probabilistic problems. We derived the limit laws in CH by an analytic
approach and the convergence rate and local limit theorems in this paper using only
elementary tools. Tools are still lacking for, say large deviations problems: what
are the rate functions for the large deviation principles for Xn for m ≥ 4? [The
result for m = 3 can be derived by the “quasi-power” approximation obtained in
CH and the main result in Hwang (1996).] More phase changes are likely to appear.

NOTATION. The symbol [zn]f (z) represents the coefficient of zn in the Taylor
expansion of f (z). The generic symbols ε, c,K (without subscript) will denote,
respectively, suitably small, absolute, and large positive constants whose values
may vary from one occurrence to another. For convenience, we also index these
symbols with subscripts to denote constants with fixed values.

2. Convergence rate to the normal limit law. We prove Theorem 1 in this
section.

Mean and variance. Define µ := 1/(2Hm−2), where Hn := ∑
1≤j≤n 1/j . The

mean µn of Xn satisfies [see Mahmoud and Pittel (1989); Mahmoud (1992); CH]

µn = µn +
{

O(1), if 3 ≤ m ≤ 13,

O(nα−1), if m ≥ 14,
(2.7)

since α − 1 > 0 for m ≥ 14; see Table 2.
The variance σ 2

n of Xn satisfies [see Mahmoud and Pittel (1989); Mahmoud
(1992)]

σ 2
n =




σ 2n + O(1), if 3 ≤ m ≤ 13,

σ 2n + O(n2α−2), if 14 ≤ m ≤ 26,

ω(logn)n2α−2 + o(n2α−2), if m > 26,

(2.8)
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TABLE 2
Approximate values of α for 3 ≤ m ≤ 20

m 3 4 5 6 7 8 9 10 11

α −3 −2.5 −1.5 −0.7682 −0.2663 0.1007 0.3665 0.5685 0.7262

m 12 13 14 15 16 17 18 19 20

α 0.8523 0.9552 1.0406 1.1125 1.1738 1.2267 1.2727 1.3131 1.3489

where σ > 0 is a constant (see CH) and ω(u) is a bounded periodic function. Note
that the variance is linear for 3 ≤ m ≤ 26 and larger than linear if m > 26 (since
2α − 2 > 1).

Recurrence of φn,k. From (1.4), we deduce that, for k ≥ 1,

φn,k =



0, if 0 ≤ n ≤ m − 1,
m( n

m−1

) ∑
0≤j≤n−m+1

(
n − 1 − j

m − 2

)
φj,k + ψn,k, if n ≥ m,(2.9)

where

ψn,k := ∑
i0+···+im+2im+1=k

0≤i1,...,im<k

k!
i0!i1! · · · im!im+1!

× 1( n
m−1

) ∑
j1+···+jm=n−m+1

j1,...,jm≥0

φj1,i1 · · ·φjm,im�( j)i0δ( j)im+1 .(2.10)

By definition,

φn,0 = 1 and φn,1 = φn,2 = 0.(2.11)

Also by (2.7) and (2.8), we have

|�( j)| ≤ K1(n
α−1 ∨ 1),

|δ( j)| ≤ K2(n
2α−2 ∨ 1),

(2.12)

uniformly for any tuples j = (j1, . . . , jm), where K1,K2 > 0 are constants
independent of n and j.

We need tools for handling asymptotics of the recurrence

an = m( n
m−1

) ∑
0≤j≤n−m+1

(
n − 1 − j

m − 2

)
aj + bn, n ≥ m,(2.13)

with suitable initial conditions. To avoid ambiguity in the following discussions,
we may, by modifying the values of bn if necessary, take an := bn for n < m.
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Asymptotic transfers for the recurrence (2.13). We bridge the asymptotics
of bn to that of an using the following result.

PROPOSITION 1. Assume that an satisfies (2.13). (i) The conditions

bn = o(n) and
∑
n

bnn
−2 < ∞,(2.14)

are both necessary and sufficient for an ∼ c0n, where

c0 := 1

Hm − 1

∑
j≥0

bj

(j + 1)(j + 2)
;

(ii) if |bn| ≤ c1n
υ , where υ > 1, then

|an| ≤ Kc1

1 − m!/((υ + 1) · · · (υ + m − 1))
nυ,(2.15)

uniformly in υ , where K > 1 is a constant independent of υ .

Unlike the method of moments used in CH, we need in (ii) more explicit upper
bounds instead of asymptotic equivalent and o-estimate.

We first prove a lemma for handling the case of small υ .

LEMMA 1. Assume that an satisfies (2.13). If |bn| ≤ c2
(n+υ

n

)
for n ≥ 0, where

υ > 1, then

|an| ≤ c2

1 − m!/((υ + 1) · · · (υ + m − 1))

(
n + υ

n

)
.(2.16)

PROOF. Observe first that (2.16) holds for n < m by definition. Assume that
|aj | ≤ K3

(j+υ
j

)
for 0 ≤ j ≤ n − 1, n > m. Then

|an| ≤ K3m( n
m−1

) ∑
0≤j≤n−m+1

(
n − 1 − j

m − 2

)(
j + υ

j

)
+ c2

(
n + υ

n

)

= K3m( n
m−1

) [zn−1] zm−2

(1 − z)m−1

1

(1 − z)υ+1 + c2

(
n + υ

n

)

= K3m! �(υ + 1)

�(υ + m)

(
n + υ

n

)
+ c2

(
n + υ

n

)

≤ K3

(
n + υ

n

)
,

solving the last inequality gives

K3 ≥ c2

1 − m!�(υ + 1)/(�(υ + m))
= c2

1 − m!/((υ + 1) · · · (υ + m − 1))
.

This completes the induction. �
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LEMMA 2. If x, y ≥ 0, then

n−1
∑

0≤j≤n−1

jx(n − 1 − j)y

(2.17)
≤ 2nx+y �(x + 1)�(y + 1)

�(x + y + 2)
;

more generally,

1( n
�−1

) ∑
j1+···+j�=n−�+1

j1,...,jm≥0

j
x1
1 · · · jx�

�

≤ 2�−1(� − 1)!nx1+···+x�
�(x1 + 1) · · ·�(x� + 1)

�(x1 + · · · + x� + �)
,

(2.18)

for x1, . . . , x� ≥ 0 and � ≥ 2.

PROOF. First write the sum as a Stieltjes integral,

n−1
∫ n−1

0
vx(n − 1 − v)y d�v,

and then crudely bound the integral by

2n−1
∫ n

0
vx(n − v)y dv;

making a change of variables yields a beta integral and thus (2.17).
The general version (2.18) follows by an induction on �. �

PROOF OF PROPOSITION 1. Case (i) is proved in CH. We prove case (ii).
Consider first the case when υ is small, say υ ≤ m + 1. Then by the asymptotic

formula (
n + υ

n

)
= nυ

�(υ + 1)

(
1 + O(n−1|υ|2)),

we deduce that

c3�(υ + 1)

(
n + υ

n

)
≤ nυ ≤ c4�(υ + 1)

(
n + υ

n

)
,

uniformly for 1 ≤ υ ≤ m + 1, for some constants 0 < c3 < c4 < ∞. Thus

|bn| ≤ c1n
υ ≤ c1c4�(υ + 1)

(
n + υ

n

)
,
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and we apply Lemma 1, obtaining

|an| ≤ c1c4�(υ + 1)

1 − m!/((υ + 1) · · · (υ + m − 1))

(
n + υ

n

)

≤ Kc1

1 − m!/((υ + 1) · · · (υ + m − 1))
nυ,

where K = c4/c3.
For υ ≥ m + 1, we use a different argument. Assume that |aj | ≤ K4j

υ for
1 ≤ j ≤ n − 1. Then by induction, we have

|an| ≤ m( n
m−1

) ∑
0≤j≤n−m+1

(
n − 1 − j

m − 2

)
K4j

υ + c1n
υ

≤ K4
m(m − 1)

n

∑
0≤j≤n−m+1

(
1 − j

n − 1

)m−2

jυ + c1n
υ

≤ 2K4
m(m − 1)

n

∫ n

0

(
1 − x

n

)m−2

xυ dx + c1n
υ

= 2K4m! �(υ + 1)

�(υ + m)
nυ + c1n

υ

≤ K4n
υ,

where we used (2.17). Solving the last inequality for K4 gives

K4 ≥ c1

1 − 2m!�(υ + 1)/(�(υ + m))
= c1

1 − 2m!/((υ + 1) · · · (υ + m − 1))
.

Since υ ≥ m+1, the inequality (υ +1) · · · (υ +m−1) > 2m! holds for m ≥ 3, and
thus the denominator is bounded away from zero for m ≥ 3. By suitably tuning the
constants involved if needed, we deduce (2.16). �

LEMMA 3. Define

Sm(k) := ∑
i1+···+im=k
i1,...,im≥0

�(i1ᾱ + 1) · · ·�(imᾱ + 1)

�(kᾱ + m)
, m ≥ 2; k ≥ 0.(2.19)

Then for k ≥ 0,

Sm(k) ≤ Km−1
5

(kᾱ + 1) · · · (kᾱ + m − 1)
, m ≥ 2.(2.20)
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PROOF. Consider first the case m = 2. By interchanging integration and
summation and by summing the integrand, we obtain

S2(k) = ∑
0≤j≤k

∫ 1

0
xjᾱ(1 − x)(k−j)ᾱ dx

= 2
∫ 1/2

0

(1 − x)(k+1)ᾱ − x(k+1)ᾱ

(1 − x)ᾱ − xᾱ
dx

≤ (
2 + o(1)

) ∫ ∞
0

e−kᾱx dx

≤ K5

kᾱ + 1
.

By induction, for m ≥ 3,

Sm(k) = ∑
0≤j≤k

�(jᾱ + 1)�((k − j)ᾱ + m − 1)

�(kᾱ + m)
Sm−1(k − j)

≤ Km−2
5

(kᾱ + 2) · · · (kᾱ + m − 1)

∑
0≤j≤k

�(jᾱ + 1)�((k − j)ᾱ + 1)

�(kᾱ + 2)

≤ Km−1
5

(kᾱ + 1) · · · (kᾱ + m − 1)
.

This proves (2.20). �

Estimate of φn,3. We first determine the order of φn,3 = E(Xn − µn)
3, which

plays the determinant role in the rate (1.2).
By the definition of ψn,3 by (2.10) and (2.11), (2.12), we obtain

ψn,3 = 1( n
m−1

) ∑
j1+···+jm=n−m+1

j1,...,jm≥0

(
6�( j)δ( j) + �( j)3)

= O(n3α−3 + 1);
it follows by Proposition 1 that

φn,3 ∼ c5n,(2.21)

for 3 ≤ m ≤ 19 and

φn,3 = O(n3α−3),

if 20 ≤ m ≤ 26, since 3α − 3 > 1 for m > 19. For simplicity, define

ᾱ :=
{

1/3, if 3 ≤ m ≤ 19,

α − 1, if 20 ≤ m ≤ 26,
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so that we can write

|φn,3| ≤ K6n
3ᾱ, 3 ≤ m ≤ 26.(2.22)

Note that by refining the analytic approach given in CH, we can show that, for
20 ≤ m ≤ 26,

φn,3 ∼ (logn)n3α−3,(2.23)

where (u) is a continuous, periodic function of bounded fluctuation; the details
being laborious and uninteresting are omitted here. [Roughly, we first write

E(Xn − µn)
3 = E

(
Xn − µ(n + 1)

)3 − 3E
(
Xn − µ(n + 1)

)2(
µn − µ(n + 1)

)
+ 2

(
µn − µ(n + 1)

)3
,

and then apply the same arguments as in CH to derive more precise approximations
for E(Xn − µ(n + 1))3.]

An upper bound for φn,k . We now proceed by induction to show that

|φn,k| ≤ k!Aknkᾱ,(2.24)

where A > 0 is a sufficiently large constant to be specified later. The inequal-
ity (2.24) holds with A > (K6/6)1/3 for 0 ≤ k ≤ 3 by (2.11) and (2.22).

By (2.12), (2.22) and induction, we have

|ψn,k| ≤ k! ∑
i0+···+im+2im+1=k

0≤i1,...,im<k

K
i0
1 K

im+1
2

i0!im+1! Ai1+···+imni0ᾱ+2im+1ᾱ

× 1( n
m−1

) ∑
j1+···+jm=n−m+1

j1,...,jm≥0

j
i1ᾱ
1 · · · j imᾱ

m .

By applying (2.18), we obtain

|ψn,k| ≤ 2m(m − 1)!k!nkᾱ
∑

i0+···+im+2im+1=k
0≤i1,...,im<k

K
i0
1 K

im+1
2

i0!im+1! Ai1+···+im

× �(i1ᾱ + 1) · · ·�(imᾱ + 1)

�((i1 + · · · + im)ᾱ + m)

≤ 2m(m − 1)!eK1+K2k!nkᾱ
∑

i1+···+im≤k
0≤i1,...,im<k

Ai1+···+im
�(i1ᾱ + 1) · · ·�(imᾱ + 1)

�((i1 + · · · + im)ᾱ + m)

≤ 2m(m − 1)!eK1+K2k!nkᾱ
∑

0≤p≤k

ApSm(p),
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where Sm(p) is defined in (2.19). By (2.20), we deduce that
∑

0≤p≤k

ApSm(p) ≤ Km−1
5

∑
0≤p≤k

Ap

(pᾱ + 1) · · · (pᾱ + m − 1)

≤ K
Ak

(kᾱ + 1) · · · (kᾱ + m − 1)
.

It follows that

|ψn,k| ≤ K6

(kᾱ + 1) · · · (kᾱ + m − 1)
k!Aknkᾱ.

Transferring this bound to φn,k via (2.15), we obtain

|φn,k| ≤ K6

(kᾱ + 1) · · · (kᾱ + m − 1) − m! k!Aknkᾱ.(2.25)

Thus if
K6

(kᾱ + 1) · · · (kᾱ + m − 1) − m! ≤ 1,

for k > k0, then (2.24) holds for k > k0. It remains to tune the value of A so that
(2.24) holds for 4 ≤ k ≤ k0. Define

Ar :=
(

K6

6

)1/3 ∏
4≤j≤r

(
K6

(j ᾱ + 1) · · · (j ᾱ + m − 1) − m!
)1/j

, 4 ≤ r ≤ k0.

Observe that (2.25) relies only on Aj , j < k. Thus (2.25) can be written as

|φn,r | ≤ K6

(rᾱ + 1) · · · (rᾱ + m − 1) − m! r!Ar
r−1n

rᾱ = r!Ar
rn

rᾱ.

The proof is complete by taking A = Ak0 . �

An estimate for the difference of the characteristic functions. Consider now
the characteristic function

ϕn(y) := E
(
e(Xn−µn)iy/σn

) = e−µniy/σnPn(iy/σn) = e−y2/2φn(iy/σn).

By (2.24), ∣∣ϕn(y) − e−y2/2∣∣ = e−y2/2 |φn(iy/σn) − 1|

≤ e−y2/2
∑
k≥3

|φn,k|
k!σ k

n

|y|k

≤ e−y2/2
∑
k≥3

(
Anᾱσ−1

n |y|)k

≤ Ke−y2/2|y|3n−3/2+3ᾱ,

(2.26)
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if |y| ≤ ε0n
1/2−ᾱ. We need another estimate for |ϕn(y)| for larger |y|.

Note that from (2.26) we have

|ϕn(y)| ≤ e−y2/2(
1 + K|y|3n−3/2+3ᾱ

)
≤ e−y2/2+K|y|3n−3/2+3ᾱ

for |y| ≤ ε0n
1/2−ᾱ. In terms of Pn(iu), this yields

|Pn(iu)| ≤ e−σ 2
nu2/2+K|u|3n3ᾱ

for |u| ≤ ε1n
−ᾱ , u ∈ R.

By definition, |Pn(iu)| = 1 for 0 ≤ n ≤ m and

Pn(iu) = ∑
1≤j≤n−m+1

(m
j

)(n−m
j−1

)
( n
m−1

) ei(j+1)u, m ≤ n ≤ 2m − 2,

for real u. Thus

|Pn(iu)| ≤ e−ε2(n+K8)u
2
,(2.27)

for |u| ≤ ε1n
−ᾱ and n ≥ m + 1, where K8 > 1 is a suitably chosen constant to be

specified later.

A uniform estimate for the characteristic function. We now show by induction
that the same estimate (2.27) holds for |u| ≤ ε3, where 0 < ε3 < π is sufficiently
small.

Take ε3 := ε1n
−ᾱ
0 , where n0 is a large constant. Then, if |u| ≤ ε1n

−ᾱ , then
|u| ≤ ε3 for n ≤ n0, so that (2.27) holds for m + 1 ≤ n ≤ n0 and |u| ≤ ε3. By
induction using (1.1),

|Pn(iu)|
≤ 1( n

m−1

) ∑
j1+···+jm=n−m+1

j1,...,jm≥0

|Pj1(iu)| · · · |Pjm(iu)|

≤ 1( n
m−1

) [zn−m+1]
(

1 + z + · · · + zm + ∑
j≥m+1

e−ε2(j+K8)u
2
zj

)m

= 1( n
m−1

) [zn−m+1]
(

e−ε2K8u
2

1 − e−ε2u
2
z

+ ∑
0≤j≤m

(
1 − e−ε2(j+K8)u

2)
zj

)m

= e−ε2(n−m+1)u2( n
m−1

) [zn−m+1]
(

e−ε2K8u
2

1 − z
+ ∑

0≤j≤m

(
1 −e−ε2(j+K8)u

2)
eε2ju2

zj

)m

= e−ε2(n+K8)u
2(

e−ε2(m−1)(K8−1)u2 + Rn(u)
)
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for n > n0, where we used the relation [zk]f (xz) = xk[zk]f (z) and

Rn(u) := 1( n
m−1

) ∑
0≤�<m

(
m

�

)
e−ε2(�K8−K8−m+1)u2 [zn−m+1](1 −z)−�

×
( ∑

0≤j≤m

(
1 − e−ε2(j+K8)u

2)
eε2ju2

zj

)m−�

.

Since both m and u are finite and for � < m, k ≥ 0,

[zn−m+1](1 − z)−�zk =
(

n − m + � − k

� − 1

)
≤

(
n − 1
m − 2

)
= m − 1

n

(
n

m − 1

)
,

we have Rn(u) = O(n−1); on the other hand, for ε1n
−ᾱ ≤ |u| ≤ ε3,

u2 ≥ ε2
1n

−2ᾱ � n−1.

Thus we first take n0 so large that

max|u|≤π
|Rn(u)| ≤ K9/n,

for n ≥ n0; then we take K8 such that the inequality

e−ε2(m−1)(K8−1)u2 ≤ 1 − 2K9/n

holds for n ≥ n0 and ε1n
−ᾱ ≤ |u| ≤ ε3. This completes the induction and

proves (2.27) for |u| ≤ ε3.
We now extend the range from |u| ≤ ε3 to |u| ≤ π . The same argument as above

applies provided that we can show that

|Pn(iu)| ≤ e−ε2(n+K8)u
2
, ε3 ≤ |u| ≤ π,

for m+1 ≤ n ≤ n0. This follows easily from (i) the span of Xn is 1 (by induction);
and (ii)

|Pn(iu)| ≤ 1 − ε4,

for ε3 ≤ |u| ≤ π . (Indeed, we need only tune the value of K8 if needed.)
In terms of the characteristic function ϕn(y), we have

|ϕn(y)| ≤ e−εy2
,(2.28)

uniformly for |y| ≤ πσn.
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Berry–Esseen smoothing inequality. We now apply the Berry–Esseen smooth-
ing inequality [see Petrov (1975)], which states for our problem that

sup
−∞<x<∞

∣∣∣∣P
(

Xn − E(Xn)√
Var(Xn)

< x

)
− �(x)

∣∣∣∣
= O

(
T −1 +

∫ T

−T

∣∣∣∣ϕn(y) − e−y2/2

y

∣∣∣∣dy

)
,

where T is taken to be εn3/2−3ᾱ. By the two estimates (2.26) and (2.28), we easily
have∫ T

−T

∣∣∣∣ϕn(y) − e−y2/2

y

∣∣∣∣dy

= O

(
n−3/2+3ᾱ

∫ ε0n
1/2−ᾱ

−ε0n
1/2−ᾱ

e−y2/2y2 dy +
∫ εn3/2−3ᾱ

ε0n
1/2−ᾱ

e−Ky2 + e−y2/2

y
dy

)

= O
(
n−3/2+3ᾱ) + O

(
n−1/2+ᾱe−εn1−2ᾱ

)
.

This proves Theorem 1. �

Local limit theorem. By the inversion formula

P (Xn = k) = 1

2π

∫ π

−π
e−ikyPn(iy) dy

= 1

2πσn

∫ πσn

−πσn

e−ixy
(
1 + O(|y|σ−1

n )
)
ϕn(y) dy,

where k = �µn + xσn, we deduce, by splitting the integral similarly as above, the
following local limit theorem.

THEOREM 2. Uniformly for x = o(n1/2−ᾱ),

P (Xn = �µn + xσn) = e−x2/2
√

2π σn

(
1 + O

(
(1 + |x|3)n−3/2+3ᾱ

))
.(2.29)

3. Second phase changes in generalized quicksort. Let m ≥ 2 and t ≥ 0 be
two fixed integers. We consider in this section Yn, the number of partitioning stages
used by the generalized quicksort of Hennequin [see Hennequin (1989, 1991)].
Recall that, by (1.5), Qn(u) := E(eYnu) satisfies the recurrence

Qn(u) =




1, if 0 ≤ n ≤ m(t + 1) − 1,

eu
∑

j1+···+jm=n−m+1
j1,...,jm≥0

(j1
t

) · · · (jm

t

)
( n
m(t+1)−1

) Qj1(u) · · ·Qjm(u),

if n ≥ m(t + 1).
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TABLE 3
All pairs of integers (m, t) for which Yn are asymptotically normally distributed

m 2 3 4 5 6 7 8,9 10, . . . ,13 14, . . . ,26

t 1, . . . ,58 0, . . . ,19 0, . . . ,10 0, . . . ,6 0, . . . ,4 0, . . . ,3 0,1,2 0,1 0

The thresholds separating normal limit law from nonexistence of limit law
for Yn are derived in CH and are repeated in Table 3.

Define the set S1 of integer pairs (m, t) by Table 4.

TABLE 4
All pairs of integers (m, t) for which the Berry–Essen bounds are O(n−1/2)

m 2 3 4 5 6 7 8,9,10 11, . . . ,19

t 1, . . . ,43 0, . . . ,14 0, . . . ,7 0, . . . ,4 0, . . . ,3 0,1,2 0,1 0

Define the set S2 of integer pairs (m, t) by Table 5.

TABLE 5
All pairs of integers (m, t) for which the Berry–Essen bounds are of the form O(n−3(3/2−a)),

where 4/3 < a < 3/2. Note that there is no such pair when m = 10,14, . . . ,19

m 2 3 4 5 6 7 8,9 11,12,13 20, . . . ,26

t 44, . . . ,58 15, . . . ,19 8,9,10 5,6 4 3 2 1 0

THEOREM 3.

sup
−∞<x<∞

∣∣∣∣P
(

Yn − E(Yn)√
Var(Yn)

< x

)
− �(x)

∣∣∣∣
(3.30)

=
{

O(n−1/2), if (m, t) ∈ S1,

O(n−3(3/2−a)), if (m, t) ∈ S2,

where 4/3 < a < 3/2 denotes the real part of the second largest zero(s) (in real
part) of the indicial polynomial

z(z + 1) · · · (z + m(t + 1) − 2) − m
(m(t + 1) − 1)!

t ! z · · · (z + t − 1) = 0.(3.31)

The proof follows the same line of arguments used for Xn and is omitted here;
see CH for estimates and tools needed.
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4. Second phase change in quicksort recurrence. We consider in this
section random variables Zn associated with the cost of quicksort proper,
namely (1.6), which, defining Rn(u) := E(eZnu), translates into the recurrence

Rn(u) = 1

n

∑
0≤j<n

Rj(u)Rn−1−j (u)Wn,j (u), n ≥ 1,

with R0(u) := 1, where n−1 ∑
0≤j<n Wn,j (u) := E(eTnu), Tn being the “toll

cost” used to divide the original problem into two smaller problems. If E(Tn) =
O(

√
nL(n)), where L(n) is slowly varying, then under suitable conditions on Tn,

Zn is asymptotically normally distributed; see Devroye (2002), Hwang and
Neininger (2002). We derive convergence rates in this section under slightly
stronger conditions. Note that we allow explicit dependence of Tn on the rank
of the “partitioning key” j .

THEOREM 4. If

|E(T k
n )| ≤ τkn

kβ, k = 1,2, . . . ,

where 0 ≤ β < 1/2 and the sequence {τk} satisfies
∑

k τkε
k/k! < ∞ for some

ε > 0, then

sup
−∞<x<∞

∣∣∣∣P
(

Zn − E(Zn)√
Var(Zn)

< x

)
− �(x)

∣∣∣∣

=



O(n−1/2), if 0 ≤ β < 1/3,

O(n−1/2 log n), if β = 1/3,

O
(
n−3(1/2−β)

)
, if 1/3 < β < 1/2.

The same method of proof extends to the case β = 1/2 for which the
convergence rate drops from polynomial to logarithmic; we content ourselves
with the current version for simplicity. Since the proof does not require any new
argument, we omit it.

While our approach applies well to the normal range, it is unclear how it can
apply to the range when the limit law exists and is not normal [roughly, when
E(Tn) � n1/2]. The simplest concrete example is Tn ≡ n − 1; in this case Zn is
the total number of comparisons used by the quicksort proper. A convergence rate
for Kolmogorov distance of order n−1/2+ε was recently derived by Fill and Janson
(2002). It is generally conjectured that the true rate should be of order n−1 logn,
but no proof has yet been found.
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