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ON ASYMPTOTIC ERRORS IN DISCRETIZATION OF PROCESSES

BY J. JACOD, A. JAKUBOWSKI AND J. MÉMIN

Université Paris 6, Nicholas Copernicus University and Université de Rennes-1

We study the rate at which the difference Xn
t = Xt − X[nt ]/n between

a process X and its time-discretization converges. When X is a continu-
ous semimartingale it is known that, under appropriate assumptions, the rate
is

√
n, so we focus here on the discontinuous case. Then αnXn explodes

for any sequence αn going to infinity, so we consider “integrated errors” of
the form Yn

t = ∫ t
0 Xn

s ds or Z
n,p
t = ∫ t

0 |Xn
s |p ds for p ∈ (0,∞): we essen-

tially prove that the variables sups≤t |nYn
s | and sups≤t nZ

n,p
s are tight for

any finite t when X is an arbitrary semimartingale, provided either p ≥ 2 or
p ∈ (0,2) and X has no continuous martingale part and the sum

∑
s≤t |�Xs |p

converges a.s. for all t < ∞, and in addition X is the sum of its jumps
when p < 1. Under suitable additional assumptions, we even prove that the
discretized processes nYn[nt ]/n and nZ

n,p
[nt ]/n converge in law to nontrivial

processes which are explicitly given.
As a by-product, we also obtain a generalization of Itô’s formula for

functions that are not twice continuously differentiable and which may be
of interest by itself.

1. Introduction. Let X be a càdlàg real-valued process on a space (�,F ,

(Ft )t≥0,P ), and consider the associated discretized process X̃n and the “error
process” Xn:

X̃n
t = X[nt]/n, Xn

t = Xt − X̃n
t ,(1.1)

where [r] denotes the integer part of any positive real r . It is well known that
X̃n converges pathwise to X for the Skorokhod J1 topology. Then a natural
question arises, namely at which rate does this convergence take place.

When X is continuous, then sups≤t |Xn
s | is in between half the modulus of

continuity of X for the size 1/n and this modulus over the time interval [0, t],
so the problem above is solved in a trivial way (see Remark 7 for discussion of this
case). On the other hand, as soon as X has discontinuities, the error process Xn

does not even converge to 0 in the Skorokhod sense, and we thus have to use a
different sort of measurement for the discrepancy if we wish to obtain convergence
rates.

A possibility among others is to consider integrated errors of the following type,
where p ∈ (0,∞):

Yn(X)t =
∫ t

0
Xn

s ds, Zn,p(X)t =
∫ t

0
|Xn

s |p ds.(1.2)
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Let us start with the case when X is a Lévy process, with Lévy exponent ϕX ,
that is, E(eiuXt ) = etϕX(u). Then one can prove in a very elementary way (see
Section 2) the following.

THEOREM 1.1. If X is a Lévy process with Lévy exponent ϕX , then nYn(X)

converges finite-dimensionally (but not functionally, unless X is continuous) in law
to another Lévy process Y , whose Lévy exponent is ϕY (u) = ∫ 1

0 ϕX(uy) dy.

The process Y is continuous iff X itself is continuous, and otherwise we cannot
have functional convergence (in the J1 Skorokhod sense) since the processes
nYn(X) are always continuous themselves.

Note that the laws of all Yt are s-selfdecomposable, or equivalently of “class U,”
a class of infinitely divisible distributions introduced by Jurek [5]: see in particular
Theorem 2.9 in Jurek [6]. Conversely any Lévy process with s-selfdecomposable
distribution may be obtained as the limit of processes nYn(X) as above.

Of course Yn(X) is not a genuine measure of the discrepancy, since there might
be compensations between positive and negative contributions within the integral.
So let us examine Zn,p(X). For this we denote by (b, c,F ) the characteristics
of the law of X1 w.r.t. some truncation function h (a bounded function with
compact support, equal to the identity in a neighborhood of 0), that is ϕX(u) =
iub − u2c

2 + ∫
(eiux − 1 − iuh(x))F (dx). Then we set for p ∈ (0,∞):

V
p
t =


∑
s≤t

|�Xs |p, if p �= 2,

[X,X]t = ct + ∑
s≤t

|�Xs |2, if p = 2.
(1.3)

Observe that V
p
t is either a.s. infinite for all t > 0, or a.s. finite for all t . The later

holds always when p ≥ 2, and when p < 2 it holds if and only if F integrates
x �→ |x|p near the origin. In this case, the process V p is again a Lévy process,
whose Lévy exponent is denoted by ϕV p .

THEOREM 1.2. If X is a Lévy process, then the sequence nZn,p(X) converges
finite-dimensionally in law to a Lévy process Zp whose Lévy exponent is ϕZp(u) =∫ 1

0 ϕV p(uy) dy, in the following cases:

(i) p ≥ 2,
(ii) 1 < p < 2, if c = 0 and F integrates x �→ |x|p near the origin,

(iii) 0 < p ≤ 1, if c = 0 and b = ∫
F(dx)h(x) and F integrates x �→ |x|p near

the origin. (Note that in this case we have Xt = ∑
s≤t �Xs .)

This result is somewhat unexpected: one would rather imagine that there exists
a sequence un going to infinity and such that

∫ t
0 |unX

n
s |p ds converges in law, or is
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tight, for all p in a suitable range; here, the sequence un is un = n1/p, depending
on p, and thus there is no “convergence rate” in the usual sense.

This behavior is due to the jumps of X, and is already present when X is a
Poisson process. In this case indeed, for all n big enough (depending on the path),
Xn takes only the values 0 and 1 and thus Zn,p(X)t = Yn(X)t does not depend
on p and equals the Lebesgue measure of the set {s : 0 ≤ s ≤ t, Xn

s �= 0}.
The above two theorems can be generalized in three directions. First, we can

obtain functional convergence in law for the processes nYn(X) and nZn,p(X),
provided we discretize them in time; so we will consider in fact the following
processes:

Ỹ n(X)t = nYn(X)[nt]/n, Z̃n,p(X)t = nZn,p(X)[nt]/n.(1.4)

Second, we obtain joint convergence in law for the triples (X̃n, Ỹ n(X), Z̃n,p(X))

towards a limit of the form (X,Y,Z): this gives more insight, in particular be-
cause it makes the dependence of Y or Zp upon X explicit. Even slightly stronger
than this, we obtain stable convergence in law of the pair (Ỹ n(X), Z̃n,p(X)), a no-
tion introduced by Renyi [8] and for which we refer to [4]. Third, we extend
the results for X being a semimartingale, for which we still use the notations
(1.2) and (1.4).

We can state two results: the first one is a tightness result, true for any
semimartingale X; the second one is a limit theorem and needs additional structure
for X, and also for the underlying probability space. We always denote by
(B,C, ν) the predictable characteristics of X, w.r.t. a fixed truncation function h

(see, e.g., [4] for this notion). Two conditions will play a role below. The first
one is ∫ t

0

∫
{|x|≤1}

|x|pν(ds, dx) < ∞ a.s., ∀ t ∈ R+.(1.5)

This is always satisfied for p ≥ 2, and if it holds for some p it also holds for all
p′ > p. This condition is equivalent to the following one (see Section 3 below):∑

s≤t

|�Xs |p < ∞ a.s., ∀ t ∈ R+.(1.6)

The second condition makes sense as soon as the previous one holds for some
p ≤ 1:

Bt =
∫ t

0

∫
h(x)ν(ds, dx) a.s., ∀ t ∈ R+.(1.7)

When (1.5) holds for p = 1 and C = 0, then (1.7) is equivalent to having Xt =
X0 + ∑

s≤t �Xs . Note that (1.7) does not depend on the chosen truncation h.
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THEOREM 1.3. Let X be a semimartingale.

(a) The sequence of two-dimensional processes (X̃n, Ỹ n(X)) is tight ( for the
Skorokhod J1 topology), and further the sequence of real random variables
sups∈[0,t] |nYn(X)s | is tight for all t < ∞ and nYn(X)t − Ỹ n(X)t → 0 a.s. for
each t such that P (�Xt = 0) = 1.

(b) The sequence of three-dimensional processes (X̃n, Ỹ n(X), Z̃n,p(X)) is
tight in the following three cases:

(i) p ≥ 2,
(ii) 1 ≤ p < 2, when C = 0 (equivalently Xc = 0) and (1.5) holds,

(iii) 0 < p < 1, when C = 0 and (1.5) and (1.7) hold.

Further the sequence of real random variables sups∈[0,t] nZn,p(X)s is tight for
all t < ∞, and nZn,p(X)t − Z̃n,p(X)t → 0 in probability for each t such that
P (�Xt = 0) = 1.

REMARK. We can of course extract convergent subsequences in (a) and (b)
above, but the original sequences themselves do not converge in general. Take
for example the deterministic process Xt = 1[a,∞](t), where a is an irrational
number; then Ỹ n(X)t = 1 + [an] − an for all t ≥ a + 1/n, and the sequence
(1 + [na] − na)n≥1 does not converge.

For describing the limiting processes of the above sequences, when we can
prove that they converge, we need additional notation. Recall that we can write
our semimartingale as

Xt = X0 + Bt + Xc
t +

∫ t

0

∫
h(x)(µ − ν)(ds, dx)

+
∫ t

0

∫ (
x − h(x)

)
µ(ds, dx),

(1.8)

where Xc is the continuous martingale part of X and µ is its jump measure. We
also denote by (Tn) a sequence of stopping times which exhausts the jumps of X:
that is, Tn �= Tm if n �= m and Tn < ∞, and �Xs �= 0 iff there exists n (necessarily
unique) such that s = Tn.

We consider an extension of the original space, on which we define a Brownian
motion W and a sequence (Un) of variables uniformly distributed over [0,1], all
mutually independent and independent of F . We consider the random measure on
R+ × R × [0,1]:

µ̂(ds, dx, du) = ∑
n≥1:Tn<∞

ε(Tn,�XTn,Un)(ds, dx, du),

whose predictable compensator is

ν̂(ds, dx, du) = ν(ds, dx) ⊗ du.(1.9)
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We also need two additional properties. First, we say that the martingale
representation property holds w.r.t. X if any martingale on our original space
can be written as Nt = N0 + ∫ t

0 vs dXc
s + ∫ t

0
∫
R

U(s, x)(µ − ν)(ds, dx) for some
predictable process v and some predictable function U on � × R+ × R. Next, we
consider a factorization property of the characteristics (B,C, ν), namely that

Bt(ω) =
∫ t

0
bs(ω)ds,

Ct (ω) =
∫ t

0
cs(ω) ds, ν(ω, ds, dx) = ds × Fs(ω,dx).

(1.10)

Observe that any Lévy process X satisfies (1.10) with bs(ω) = b and cs(ω) = c

and Fs(ω,dx) = F(dx), and also the martingale representation property when the
filtration is the one generated by X itself.

THEOREM 1.4. Assume (1.10) and the martingale representation property
w.r.t. X. Then the sequence (Ỹ n(X), Z̃n,p(X)) converges stably in law to a limiting
process (Y,Zp) [and thus (X̃n, Ỹ n(X), Z̃n,p(X)) converges in law to (X,Y,Zp)],
in the following three cases:

(i) p ≥ 2,
(ii) 1 < p < 2 and C = 0 (equivalently Xc = 0) and (1.5) holds,

(iii) 0 < p ≤ 1 and C = 0 and (1.5) and (1.7) hold.

In these cases the limiting process can be defined on the above extension of our
space by

Yt = 1

2
Bt + 1

2
Xc

t + 1√
12

∫ t

0

√
cs dWs

+
∫ t

0

∫
R

∫
[0,1]

h(x)u(µ̂ − ν̂)(ds, dx, du)

+
∫ t

0

∫
R

∫
[0,1]

(
x − h(x)

)
uµ̂(ds, dx, du),

(1.11)

Z
p
t =


1
2Ct +

∫ t

0

∫
R

∫
[0,1]

ux2µ̂(ds, dx, du), if p = 2,∫ t

0

∫
R

∫
[0,1]

u|x|pµ̂(ds, dx, du), if p �= 2.
(1.12)

Moreover, the pairs (nY n(X),nZn,p(X)) converge finite-dimensionally stably in
law to (Y,Zp).

We can also write the last integral in (1.11) and the integrals in (1.12),
respectively, as follows:∑

n≥1:Tn≤t

Un

(
�XTn − h(�XTn)

)
,

∑
n≥1:Tn≤t

Un|�XTn |p,
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but such a simple expression is in general not available for the second stochastic
integral arising in (1.11).

REMARKS. (1) Of course the expressions for Y and Zp do not depend on
the particular choice of the truncation function h, since changing h changes B

accordingly.
(2) When X is a Lévy process, the triple (X,Y,Zp) is also a Lévy process

(on the extended space), and an elementary computation shows that the Lévy
exponents of Y and Zp are ϕY (u) = ∫ 1

0 ϕX(uy) dy and ϕZp(u) = ∫ 1
0 ϕV p(uy) dy:

hence Theorems 1.1 and 1.2 are particular cases of Theorem 1.4. When X is
not a Lévy process the pair (Y,Zp) is not a Lévy process either, but it is an
F -conditional process with independent increments, in the sense of [2].

(3) If we are interested only in the convergence in law of (X̃n, Ỹ n(X), Z̃n,p(X))

to (X,Y,Zp), it is enough to have the martingale representation property
w.r.t. X holds for the filtration generated by X itself (which may be smaller
than the original one). More generally, we could probably drop the martingale
representation property, which is a priori unrelated with our result. But this would
require results which are not explicitly stated in [2].

(4) There is a gap between Theorems 1.3 and 1.4: when p = 1 we have tightness
as soon as C = 0 and (1.5) holds, while for the convergence of (Z̃n,p) we need in
addition (1.7). When (1.5) does not hold for some p ∈ (0,2) we do not know
whether the sequence (Z̃n,p) is tight, but since then the last expression in (1.9) is
infinite we conjecture that it is not the case.

(5) We could prove even more, indeed: let p be as in Theorem 1.4. The family

Zn,p′
(X)t is defined simultaneously for all values of p′, while the Z

p′
t ’s are defined

simultaneously for all p′ ≥ p, and further these processes depend continuously
on p′. Then we could prove that the pair (Ỹ n(X), (Z̃n,p′

(X))p′≥p) converges
stably in law to (Y, (Zp′

)p′≥p), on the Skorokhod space of functions taking their
values in R × C([p,∞),R) equipped with the product of the usual topology
on R and the local uniform topology on the space C([p,∞),R) of real-valued
continuous functions on [p,∞).

(6) When X is continuous and unless p = 2 the limiting process Zp vanishes.
In fact, one could prove that for any p ≥ 0 the sequence (np/2Zn,p(X))n is
tight as soon as X is a continuous semimartingale, and it converges in law if in
addition (1.10) holds.

(7) The limiting processes obtained in Theorem 1.4 are reminiscent of those
in [3], but the context is different: in the quoted paper, and unlike here, we
have genuine rates of convergence. However, it is quite likely that any type
of discretization for discontinuous processes gives rise to the same kind of
limiting processes, after a normalization which of course depends on the way the
discretization is done.
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The paper is organized as follows: in Section 2 we give an elementary proof of
Theorem 1.1, which does not use Theorem 1.4. In Section 3 we give an extension
of Itô’s formula which has interest of its own and which allows us to prove the
result when p < 2. Then Theorems 1.3 and 1.4 are proved in Sections 4 and 5
respectively.

2. An elementary proof of Theorem 1.1. Set Yn = Yn(X) and Ỹ n =
Ỹ n(X) [recall (1.4)]. It is well known that when X is a Lévy process with
exponent ϕX , then

∫ t
0 Xs ds has an infinitely divisible law with characteristic

exponent
∫ t

0 ϕX(us) ds. Then the characteristic exponent of nYn
t − Ỹ n

t is∫ t−[nt]/n

0
ϕX(nus) ds = 1

n

∫ nt−[nt]
0

ϕX(ul) dl,

which goes to 0 as n → ∞. Hence nYn
t − Ỹ n

t goes to 0 in probability, and we are
left to prove that the sequence Ỹ n converges finite-dimensionally to Y .

Now each process Ỹ n has (nonstationary) independent increments, and for all
s < t the variable Ỹ n

t − Ỹ n
s has the same law as Ỹ n

un(s,t) for some un(s, t) going

to t − s. Therefore it is enough to prove that Ỹ n
tn

converges in law to Yt as soon
as tn → t . But the Ỹ n

i/n − Ỹ n
(i−1)/n are i.i.d. (when i = 1,2, . . .) with characteristic

exponents
∫ 1/n

0 ϕX(us) ds, hence

E
(
exp

{
iuỸ n

tn

}) = exp
{
[ntn]

∫ 1/n

0
ϕX(uns) ds

}
= exp

{ [ntn]
n

∫ 1

0
ϕX(uy) dy

}
,

and the result readily follows.

3. An extension of Itô’s formula. Let X be any semimartingale. The process
H(p)t = ∑

s≤t |�Xs |p1{|�Xs |≤1} has bounded jumps and admits the left-hand side
of (1.5) for predictable compensator. Hence (1.5) holds if and only if H(p) is
a.s. finite-valued: since obviously

∑
s≤t |�Xs |p1{|�Xs|>1} < ∞ for all t , we have

that (1.5) and (1.6) are equivalent.
For proving Theorems 1.2 and 1.3 we need to apply Itô’s formula with the

function f (x) = |x|p , which is not of class C2 when p < 2. To be more precise,
remember that

f (Xt) − f (X0) =
∫ t

0
f ′(Xs−) dXs + 1

2

∫ t

0
f ′′(Xs−) dCs + W(f )t(3.1)

for any C2 function f , where

W(f )t =
∑
s≤t

ηf (Xs−,�Xs) and ηf (x, y)=f (x + y)−f (x)−f ′(x)y.(3.2)

Here since (1.6) holds for p ≥ 2 and ηf (x, y) behaves at most like y2 for small y,
the sum defining W(f )t is a.s. absolutely convergent.



ON ASYMPTOTIC ERRORS IN DISCRETIZATION OF PROCESSES 599

We would like to have (3.1) for more general functions f , without additional
terms like local times (in contrast with the generalized Itô’s formula for convex
functions f when X is continuous). Since f ′′ explicitly shows in (3.1) unless
C = 0, we will have to assume first that C = 0 (or equivalently Xc = 0), in which
case (3.1) becomes

f (Xt) − f (X0) =
∫ t

0
f ′(Xs−) dXs + W(f )t .(3.3)

If further (1.5) for p = 1 and (1.7) hold, then indeed Xt = X0 + ∑
s≤t �Xs ; then

the first derivative in (3.1) also disappears and we have

f (Xt ) − f (X0) = ∑
s≤t

(
f (Xs− + �Xs) − f (Xs−)

)
.(3.4)

The next result shows indeed that (3.3) or (3.4) hold for functions f which
are not C2 but have some weaker regularity, in connection with the reals p for
which (1.5) holds. Recall that g is said to be Hölder continuous with index ρ if for
all K > 0 there is a constant CK such that |g(x + y) − g(x)| ≤ CK |y|ρ whenever
|x| ≤ K and |y| ≤ 1.

THEOREM 3.1. Assume that (1.5) holds for some p ∈ [0,2) and that C = 0.

(i) (3.3) holds when p ∈ (1,2) and f is a differentiable function whose
derivative f ′ is Hölder continuous with index p − 1, and also when p = 1 and
f is the difference of two convex functions, provided that in this case we take
everywhere f ′ to be the right derivative (or everywhere the left derivative).

(ii) (3.4) holds when p ∈ (0,1) and f is Hölder continuous with index p,
and also when p = 0 and f is an arbitrary function, if in both cases we assume
further (1.7).

Of course (ii) with p = 0 is trivial, since then X has finitely many jumps only on
finite intervals: it is given here for completeness. In general, the conditions on f

are exactly the conditions under which the right-hand sides of (3.3) or (3.4) are
meaningful. For the next proof, and also further on, we need the sets

�t,K =
{

sup
s≤t

|Xs | ≤ K

}
which satisfy lim

K↑∞�t,K = �.(3.5)

PROOF. (i) Let p ∈ [1,2). By hypothesis there are constants CK such that
|f ′(x + y) − f ′(x)| ≤ CK |y|p−1 whenever |x| ≤ K and |y| ≤ 1 (when p = 1
we take for example the right derivative f ′, which is locally bounded). Then the
definition of ηf allows to deduce |ηf (x, y)| ≤ CK |y|p for all |x| ≤ K and |y| ≤ 1:
this and (1.6) imply that the series defining W(f )t is absolutely convergent on
each set �t,K , hence everywhere.
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Denote by fn the convolution of f with a C∞ nonnegative function φn with
support in [0,1/n] and integral 1: we have fn → f and f ′

n → f ′ pointwise
[with f ′ the right derivative in case (ii)]. We have

|x| ≤ K, |y| ≤ 1 
⇒ ∣∣ηfn(x, y)
∣∣ ≤ CK+1|y|p−1(3.6)

for all n. Further each fn is C∞, so the usual Itô’s formula yields

fn(Xt ) − fn(X0) =
∫ t

0
f ′

n(Xs−) dXs + W(fn)t .(3.7)

The left-hand side of (3.7) converges to the left-hand side of (3.3) because
fn → f pointwise. Since f ′

n → f ′ as well and since by (3.6) the sequence (f ′
n)

is locally bounded, uniformly in n, the stochastic integral in (3.7) converges to
the stochastic integral in (3.3), in probability (dominated convergence theorem
for stochastic integrals). Finally, ηfn(Xs−,�Xs) → ηf (Xs−,�Xs) pointwise and
|ηfn(Xs−,�Xs)| ≤ CK+1|�Xs)|p for all s ≤ t on the set �t,K , so an application
of the dominated convergence theorem yields that W(f )nt → W(f )t pointwise,
and we are done.

(ii) When p < 1 we write (3.4) as f (Xt) − f (X0) = W(f )t with W(f ) given
by (3.2) and ηf (x, y) = f (x + y) − f (x): we again have |ηf (x, y)| ≤ CK |y|p
for all |x| ≤ K under our assumptions, so W(f ) is well defined. Also, the
convergence argument works as for (i), with (3.6) unchanged and (3.7) replaced
by fn(Xt ) − fn(X0) = W(fn)t . �

Let us now specialize the above results when f (x) = |x|p . For each p ∈ R, we
define the following function on R:

ρp(x) =


|x|p sign(x), if p > 0,

sign(x), if p = 0,

0, if p < 0,

where sign(x) equals 1 if x ≥ 0 and equals −1 if x < 0. Then for p > 0 we define
the processes

W
p
t = ∑

s≤t

ψp(Xs−,�Xs) where

ψp(x, y) = |x + y|p − |x|p − pρp−1(x)y,

(3.8)

with the convention W
p
t = +∞ whenever the sum above is not absolutely

convergent.
Then suppose that (1.5) holds for some p ∈ (0,∞) (this is always the case when

p ≥ 2). In this case Wp is a.s. finite-valued, and if further C = 0 when p < 2
and (1.7) holds when p < 1, by applying (3.1) when p ≥ 2 and Theorem 3.1 when
p < 2 we get

|Xt |p −|X0|p =p

∫ t

0
ρp−1(Xs−) dXs + p(p −1)

2

∫ t

0
|Xs−|p−2 dCs +W

p
t(3.9)

(if p < 2 the second integral above vanishes, and the first integral as well if p < 1).
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4. Proof of Theorem 1.3. We assume that X is an arbitrary semimartingale
with characteristics (B,C, ν), and take a p > 0. If p < 2 we assume that (1.5)
holds and that C = 0; if p < 1 we assume further that (1.7) holds.

First, by Itô’s formula, we have for t ∈ ( i
n
, i+1

n
] [recall (1.1) for Xn]:∫ t

i/n
Xn

r dr =
(
t − i

n

)
(Xt − Xi/n) −

∫ t

i/n

(
r − i

n

)
dXr =

∫ t

i/n
(t − r) dXr.(4.1)

Similarly, if we set

W
n,p
t = ∑

s≤t

ψp(Xn
s−,�Xs),

an application of (3.9) for the process X̃n gives for t ∈ ( i
n
, i+1

n
]:∫ t

i/n
|Xn

r |p dr

(4.2)

=
∫ t

i/n
(t − r)

(
pρp−1(X

n
r−) dXr + p(p −1)

2
|Xn

r−|p−2 dCr +dWn,p
r

)
.

Then if we set

φn(s) = i + 1 − ns if
i

n
< s ≤ i + 1

n
, φn(0) = 0

and

Ỹ ′n(X)t =
∫ t

0
φn(s) dXs,(4.3)

we have, by (4.1),

Ỹ n(X)t = Ỹ ′n(X)[nt]/n,

nY n(X)t = Ỹ ′n(X)t − φn(t)(Xt − X[nt]/n).
(4.4)

Similarly, if

Z̃′n,p(X)t =
∫ t

0
φn(s)

(
pρp−1(X

n
r−) dXr + p(p − 1)

2
|Xn

r−|p−2 dCr + dWn,p
r

)
,

we get, by (4.2),

Z̃n,p(X)t = Z̃′n,p(X)[nt]/n,

nZn,p(X)t = Z̃′n,p(X)t − φn(t)
(
Z̃′n,p(X)t − Z̃′n,p(X)[nt]/n

)
.

(4.5)

Finally, let us introduce the following process [the same as (1.3) in the Lévy
case], which is a.s. finite-valued:

V
p
t =


∑
s≤t

|�Xs |p, if p �= 2,

[X,X]t = Ct + ∑
s≤t

|�Xs |2, if p = 2.
(4.6)
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Now, for any K > 0 there is a constant CK (depending also on p) such that
when |x| ≤ 2K , then |pρp−1(x)| ≤ CK and p(p−1)

2 |x|p−2 ≤ CK if p ≥ 2 and
|ψp(x, y)| ≤ CK |y|p . Consider the triple Un = (X, Ỹ ′n(X), Z̃′n,p(X)): on the
set �T,K of (3.5), and over the time interval [0, T ], its components are stochastic
integrals of predictable processes, depending on n but smaller than CK , with
respect to X and to C, plus (for the third component) the process

∫ t
0 φn(s) dW

n,p
s

whose total variation satisfies for t ≤ T :

CKV
p
t −

∫ t

0
φn(s)|dWn,p

s | is nondecreasing.

Then it is an easy consequence of Theorem VI-5.10 of [4], with the Condition (C3),
plus the last part of (3.5), that the three-dimensional sequence Un is tight for the
Skorokhod topology, and in particular, the real random variables sups≤t |Un

s | are
tight for all t < ∞.

Further, Lemma 2.2 of [3] and its proof yield that if the sequence Un is
tight, then so is the sequence of discretized processes (Un[nt]/n)t≥0: in view of
(4.4) and (4.5), this finishes the proof of the first and second claims in (a) and (b)
of Theorem 1.3.

Finally, let t be such that P (�Xt = 0) = 1. Then obviously X[nt]/n → Xt a.s.,
and Z̃′n,p(X)[nt]/n − Z̃′n,p(X)t → 0 in probability, so the last claims in (a) and (b)
follow from the last equalities in (4.4) and (4.5) and from 0 ≤ φn ≤ 1.

5. Proof of Theorem 1.4. In this section we assume that X satisfies (1.10)
and the martingale representation property. Let p > 0: if p < 2 we assume C = 0
and (1.5), and if p ≤ 1 we assume further (1.7). By virtue of Lemma 2.2 of [3]
(and of its proof), in order to obtain Theorem 1.4 it is enough to prove that the pair
(Ỹ ′n(X), Z̃′n,p(X)) converges stably in law to (Y,Zp).

If C′ = C when p �= 2 and C′ = 0 when p = 2, we observe that

Z̃′n,p(X)t − Ỹ ′n(V p)t

=
∫ t

0
φn(s)

(
pρp−1(X

n
s−) dXs + p(p − 1)

2
|Xn

s−|p−2 dC′
s

)
+ ∑

s≤t

φn(s)
(
ψp(Xn

s−,�Xs) − |�Xs |p)
.

(5.1)

We have that Xn
s− → 0, hence ψp(Xn

s−,�Xs) − |�Xs |p → 0 when p �= 1 and
C′ = 0 when p ≤ 2 and |ψp(Xn

s−,�Xs) − |�Xs |p| ≤ (CK + 1)|�Xs |p for
s ≤ T on the set �T,K of (3.5): therefore the dominated convergence theorems
for stochastic and ordinary integrals and series yield that sups≤t |Z̃′n,p(X)s −
Ỹ ′n(V p)s | → 0 in probability as soon as p �= 1. When p = 1 the property (1.7)
yields Xt = X0 + ∑

s≤t �Xs ; therefore (5.1) writes as

Z̃′n,1(X)t − Ỹ ′n(V 1)t = ∑
s≤t

φn(s)
(|Xn

s− + �Xs | − |Xn
s−| − |�Xs |).
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Exactly as before, the last sum above goes to 0 in probability, uniformly over each
finite time interval, hence again sups≤t |Z̃′n,1(X)s − Ỹ ′n(V 1)s | → 0 in probability:
so in all cases we are left to proving that the pair (Ỹ ′n(X), Ỹ ′n(V p)) converges
stably in law to (Y,Zp) [recall (4.3) for the definition of Ỹ ′n(V p)].

Let us also state the following trivial consequence of (4.3), of 0 ≤ φn ≤ 1 and
of the very definition of Emery’s topology (see, e.g., the books of Dellacherie and
Meyer [1] or Protter [7] for a definition of this topology, also called “topology of
semimartingales”):

LEMMA 5.1. If U(q) is a sequence of semimartingales converging to a
limiting semimartingale U in Emery’s topology as q → ∞, then we have for all
ε > 0 and t ∈ R+:

lim
q

sup
n

P

(
sup
s≤t

∣∣Ỹ ′n(U(q))s − Ỹ ′n(U)s
∣∣ ≥ ε

)
= 0.

Below we choose a truncation function h which is Lipschitz continuous and
with h(x) = x if |x| ≤ 1 and h(x) = 0 if |x| > 2. For any q ≥ 2 set Rq = {x : 1

q
<

|x| ≤ q} and

X(q)t = X0 + Bt + Xc
t +

∫ t

0

∫
{|x|>1/q}

h(x)(µ − ν)(ds, dx)

+
∫ t

0

∫
{|x|≤q}

(
x − h(x)

)
µ(ds, dx).

(5.2)

We associate with X(q) the process V (q)p defined as in (4.6), that is,

V (q)
p
t =


∑
s≤t

|�X(q)s |p, if p �= 2,

[X(q),X(q)]t = Ct + ∑
s≤t

|�X(q)s |2, if p = 2.
(5.3)

Then X(q) and V (q)p converge to X and V p for Emery’s topology as q → ∞
[compare (5.2) with (1.8)]. Similarly, on our extended space we define the
processes [recall (1.11) and (1.12)]:

Y (q)t = 1

2
Bt + 1

2
Xc

t + 1√
12

∫ t

0

√
cs dWs

+
∫ t

0

∫
{|x|>1/q}

∫
[0,1]

h(x)u(µ̂ − ν̂)(ds, dx, du)

+
∫ t

0

∫
{|x|≤q}

∫
[0,1]

(
x − h(x)

)
uµ̂(ds, dx, du),

(5.4)



604 J. JACOD, A. JAKUBOWSKI AND J. MÉMIN

Z(q)
p
t =


1
2Ct +

∫ t

0

∫
Rq

∫
[0,1]

ux2µ̂(ds, dx, du), if p = 2,∫ t

0

∫
Rq

∫
[0,1]

u|x|pµ̂(ds, dx, du), if p �= 2.

(5.5)

Then Y (q) and Z(q)p go to Y and Zp for Emery’s topology as well. So by virtue
of Lemma 5.1 it is then enough to prove that for any fixed q we have stable
convergence in law of (Ỹ ′n(X(q)), Ỹ ′n(V (q)p)) to (Y (q),Z(q)p).

Below, we fix q ∈ N
�. We choose two other truncation functions h′ and h′′

that are Lipschitz continuous and satisfies h′(x) = x if |x| ≤ q and h′′(x) = x if
|x| ≤ qp . Since the processes Y (q) and Z(q)p have jumps smaller than q and qp

respectively, we easily deduce from (5.4) and (5.5) that the characteristics of
the triple (X,Y (q),Z(q)p) (w.r.t. the truncation function h on R

3 having the
components h, h′ and h′′) are (B̂, Ĉ, η), given by

B̂ =
 B

B ′/2
B ′′/2

 , Ĉ =
 C C/2 0

C/2 C/3 0
0 0 0

(5.6)

where, with the notation G
p
t = ∫ t

0 ds
∫
Rq

Fs(dx)|x|p ,

B ′
t = Bt +

∫ t

0

∫
Rq

(
x − h(x)

)
ν(ds, dx),

B ′′ =
{

C + G2, if p = 2,

Gp, if p �= 2,

(5.7)

and

η([0, t] × A) =
∫ t

0
ds

∫
R

Fs(dx)

∫ 1

0
1A

(
x,ux1Rq (x), u|x|p1Rq (x)

)
du.(5.8)

Note that these characteristics are predictable on the original probability space and
not only on the extended space.

Next we set for simplicity Un = Ỹ ′n(X(q)) and U ′n = Ỹ ′n(V (q)p). In view
of (4.3), (5.2), (5.3) and of the fact that the jump measure of X(q) is the restriction
of the jump measure of X to R+ × Rq , it is an easy computation to check that
the characteristics of the triple (X,Un,U ′n) w.r.t. the truncation function h are
(B̂n, Ĉn, ηn), given by

B̂n =
 B

B ′n
B ′′n

 , Ĉn =
 C C′n 0

C′n C′′n 0
0 0 0

(5.9)
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where

B ′n
t =

∫ t

0
φn(s) dBs −

∫ t

0
φn(s)

∫
{|x|≥q}

(
x − h(x)

)
ν(ds, dx),

(5.10)

B ′′n
t =

∫ t

0
φn(s) dB ′′

s ,

C′n
t =

∫ t

0
φn(s) dCs, C′′n

t =
∫ t

0
φn(s)

2 dCs(5.11)

and

ηn([0, t]×A)=
∫ t

0
ds

∫
R

Fs(dx)1A

(
x,φn(s)x1Rq (x),φn(s)|x|p1Rp(x)

)
.(5.12)

Finally, we also introduce the following processes, taking values in the set of all
symmetric nonnegative 3 × 3 matrices and nondecreasing in this set:

Ht = Ĉt +
∫ t

0

∫
R3

(hh
∗
)(x, y, z)η(ds, dx, dy, dz),

Hn
t = Ĉn

t +
∫ t

0

∫
R3

(hh
∗
)(x, y, z)ηn(ds, dx, dy, dz),

where h
∗

denotes the transpose of the row vector-valued function h.
Note that the extension on which our limiting processes are defined is trivially

a “very good extension” in the sense of [2]. By assumption we also have the
martingale representation property w.r.t. X. Then, by virtue of Theorem 2.1 of [2],
in order to prove our convergence result it is enough to prove the following three
convergences (pointwise in ω) for all t ∈ R+ and every function g which is
bounded Lipschitz on R

3 and null on a neighborhood of 0:

sup
r≤t

|B̂n
r − B̂r | → 0,(5.13)

Hn
t → Ht,(5.14) ∫ t

0

∫
R3

g(x, y, z)ηn(ds, dx, dy, dz) →
∫ t

0

∫
R3

g(x, y, z)η(ds, dx, dy, dz).(5.15)

Let us prove an auxiliary result: If f is a locally integrable (w.r.t. Lebesgue
measure) function on R+, then for each t > 0 we have for any α > 0:

sup
r≤t

∣∣∣∣∫ r

0
φn(s)

αf (s) ds − 1

α + 1

∫ r

0
f (s) ds

∣∣∣∣ → 0.(5.16)

Indeed,
∫ i/n
(i−1)/n φn(s)

α ds = 1
n(α+1)

, so for any u < v we have | ∫ v
u φn(s)

α ds −
v−u
α+1 | ≤ 2

n
. It follows that (5.16) holds when f is piecewise constant. For a general

(locally integrable) f there exists a sequence of piecewise constant function f m
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on R+ which converges in L1 for the Lebesgue measure on any compact interval
[0, t] to f . Since 0 ≤ φn ≤ 1 we clearly have as m → ∞:

sup
n

∫ t

0
φn(s)

α|f (s) − fm(s)|ds → 0.

Then (5.16) holds for f as well.
In view of (1.10) and of (5.7) and (5.10), we readily obtain (5.13).
Next we turn to (5.15). We prove a stronger form, namely when g is

bounded, Lipschitz continuous and g(0,0,0) = 0, and when the process Lt =∫ t
0
∫
R

g(x,0,0)ν(ds, dx) is well defined (i.e., the integral defining Lt is absolutely
convergent): when g is null on a neighborhood of 0 and bounded, all these
conditions are obviously satisfied.

Set γs(ω) = Fs(ω,Rq), which is finite-valued and Lebesgue-locally integrable.
Any finite measure being the image of Lebesgue measure on an appropriate
interval, and since (ω, s) �→ Fs(ω,A) is predictable for any Borel set A, then
γ is a predictable process, and we can find a predictable map β = β(ω, t, v) from
� × R+ × R+ into Rq ∪ {0} such that

β(ω, t, v) = 0 ⇐⇒ v ≥ γt (ω),∫
Rq

f (x)Ft (ω, dx) =
∫ γt (ω)

0
f

(
β(ω, t, v)

)
dv

(5.17)

for any Borel and locally bounded function f . Then using (5.17), (5.8) and (5.12),
we see that the left- and right-hand sides of (5.15) are respectively Lt + δn(t) and
Lt + δ(t), where

δ(t) =
∫ t

0
ds

∫ γs

0
dv

∫ 1

0
g
(
β(s, v), uβ(s, v), u|β(s, v)|p)

du,(5.18)

δn(t) =
∫ t

0
ds

∫ γs

0
g
(
β(s, v),φn(s)β(s, v),φn(s)|β(s, v)|p)

dv,(5.19)

so it remains to prove that

δn(t) → δ(t).(5.20)

We fix ω. Let us denote by H the set of all functions on R+ × R+ of the form∑m
i=1 ai1Ai

, where ai ∈ R and the Ai’s are bounded rectangles and m ∈ N. We can
find a sequence βm of functions in H which converges to β in L1 for the two-
dimensional Lebesgue measure, on each compact subset of R+ × R+. We define
δ(m, t) and δn(m, t) by (5.18) and (5.19) again, with βm instead of β . Then since
g is Lipschitz and bounded, we have

|δ(t) − δ(m, t)| ≤ αm,K(t) + βK(t), |δn(t) − δn(m, t)| ≤ αm,K(t) + βK(t),

for all K > 0, where βK(t) = ‖g‖ ∫ t
0 (γs −K)+ ds and with αm,K(t) not depending

on n and going to 0 as m → ∞ for each K . Since further γ is Lebesgue-integrable
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over [0, t], we have βK(t) → 0 as K → ∞. Therefore we are left to prove that
δn(m, t) → δ(m, t) for all m and t .

In other words, we need to prove (5.20) when β ∈ H . But then we have
β(t, v) = ∑k

i=1 ai1(xi ,yi ](t)1(wi ,zi ](v) where ai ∈ R and where the rectangles
(xi, yi] × (wi, zi] are pairwise disjoint. Then since g(0,0,0) = 0, we get

δn(t) =
k∑

i=1

∫ yi∧t

xi∧t
(zi ∧ γs − wi ∧ γs)g

(
ai, φn(s)ai, φn(s)|ai|p)

ds,(5.21)

δ(t) =
k∑

i=1

∫ yi∧t

xi∧t
(zi ∧ γs − wi ∧ γs) ds

∫ 1

0
g(ai, uai, u|ai|p) du.(5.22)

If γ is piecewise constant, the two quantities in (5.21) and (5.22) differ at most
by 2r‖g‖∑k

i=1
zi−wi

n
, where r is the number of dicontinuities of the function γ

over the time interval [0, t]: this proves (5.20) when γ is piecewise constant,
and one deduces that it holds in general by approximating the locally integrable
function γ by a sequence of piecewise constant functions converging to γ in L1

for the Lebesgue measure.
So we have completed the proof of (5.20), hence of (5.15) when g is bounded,

Lipschitz continuous and g(0,0,0) = 0 and Lt is well defined.
It remains to prove (5.14). First, (5.6), (5.9) and (5.11) together with (5.16)

show that Ĉn
t → Ĉt for all t . Therefore it remains to prove that (5.15) holds

for the functions gij = h
i
h

j
, for i, j = 1,2,3. But these functions are bounded

Lipschitz null at 0, and the process Lt = ∫ t
0
∫
R

gij (x,0,0)ν(ds, dx) is well defined
(and indeed vanishes except when i = j = 1). So we can apply step 6 and we are
done.

Acknowledgments. We wish to thank Z. Jurek and an anonymous referee for
very valuable and constructive remarks.

REFERENCES

[1] DELLACHERIE, C. and MEYER, P. A. (1978). Probabilités et Potentiel II. Hermann, Paris.
[2] JACOD, J. (2003). On processes with conditional independent increments and stable convergence

in law. Séminaire de Probabilités XXXVI. Lecture Notes in Math. 1801 383–401. Springer,
New York.

[3] JACOD, J. and PROTTER, P. (1998). Asymptotic error distributions for the Euler method for
stochastic differential equations. Ann. Probab. 26 267–307.

[4] JACOD, J. and SHIRYAEV, A. N. (1987). Limit Theorems for Stochastic Processes. Springer,
Berlin.

[5] JUREK, Z. J. (1977). Limit distributions for sums of shrunken random variables. In Second
Vilnius Conference on Probability Theory and Mathematical Statists, Abstracts of
Communications 3 95–96. Vilnius.

[6] JUREK, Z. J. (1985). Relations between the s-selfdecomposable and selfdecomposable measures.
Ann. Probab. 13 592–609.



608 J. JACOD, A. JAKUBOWSKI AND J. MÉMIN

[7] PROTTER, P. (1990). Stochastic Integration and Differential Equations. A New Approach.
Springer, Berlin.

[8] RENYI, A. (1963). On stable sequences of events. Sankyā 25 293–302.
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