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We consider two stochastic partial differential equations

duε(t) = (Lruε(t) + fr (t)) dV r
εt + (Mkuε(t) + gk(t)) ◦ dY k

t , ε = 0,1,

driven by the same multidimensional martingale Y = (Y k) and by different
increasing processes V r

0 , V r
1 , r = 1,2, . . . , d1, where Lr and Mk are second-

and first-order partial differential operators and ◦ stands for the Stratonovich
differential. We estimate the moments of the supremum in t of the Sobolev
norms of u1(t) − u0(t) in terms of the supremum of the differences
|V r

0t − V r
1t |. Hence, we obtain moment estimates for the error of a multistage

splitting-up method for stochastic PDEs, in particular, for the equation of the
unnormalized conditional density in nonlinear filtering.

1. Introduction. Stochastic partial differential equations (SPDEs) appear in
many real-world applications. There are several methods of finding solutions
numerically: for instance, finite difference method, Galerkin’s approximation,
finite element method and Wiener chaos decomposition (see, e.g., [4, 5, 8, 13, 17]
and the references therein). One of the most promising methods is the splitting-
up method introduced in the context of SPDEs in [1] and further developed
in [2, 3, 14]. Error estimates are given in [3] and [9] in the case of the filtering
equations. The methods of these papers are based on semigroup theory and, as
it seems to the authors, are not extendible to the general situation of filtering
equations. Here we present an approach to proving the rate of convergence for the
splitting-up method, which is based on stochastic calculus and not on semigroup
theory. This not only allows us to improve some results of [1–3, 9] in the direction
of convergence in sup norm, but also to put forth the splitting-up method for
general filtering equations.

Let us loosely describe the splitting-up method and our approach to it. In the
situation of [3] the splitting-up method is stated in the following way. Assume that
we are given independent one-dimensional Wiener processes wk

t , k = 1, . . . , d0,
first-order operators Mk, k = 1, . . . , d0, and a a second-order elliptic operator L

acting on functions defined on R
d . Let the coefficients of L and Mk be independent

of time and suppose that we want to solve the equation

du(t, x) = Lu(t, x) dt + Mku(t, x) ◦ dwk
t , x ∈ R

d, t > 0,(1.1)
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on [0, T ], with some initial data u0 = u0(x), where ◦ stands for the Stratonovich
differential.

Let Tn := {ti = iT /n : i = 0,1,2, . . . , n} be a partition of the interval [0, T ] for
a fixed integer n ≥ 1. Set δ := T/n and define the approximation un(t) for t ∈ Tn,
by un(0) = u0,

un(ti+1, ·) = PδQti ti+1un(ti , ·)(1.2)

recursively, where {Pt : t ≥ 0} and {Qst : 0 ≤ s ≤ t} denote the solution operators
corresponding to the equations

dv(t, x) = Lv(t, x) dt, v(0, x) = v(x)(1.3)

and

dṽ(t, x) = Mkṽ(t, x) ◦ dwk
t , ṽ(s, x) = v(x),(1.4)

respectively. In this way the approximation of (1.1) in each interval [ti , ti+1] is
split into two steps: solving the degenerate SPDE (1.4) and taking its solution at
time ti+1 as the initial value at time ti while solving PDE (1.3) again on [ti , ti+1].
In [3] these steps are called correction and prediction steps, and it is proved that
under appropriate conditions

max
t∈Tn

E‖u(t) − un(t)‖2
0 ≤ N/n2,(1.5)

where ‖·‖0 is the usual L2 norm in R
d .

Instead of going back and forth in time, we propose to stretch out the time scale
by using the time scales At(n) and Bt(n), defined by

At(n) :=
{

kδ, for t ∈ [
2kδ, (2k + 1)δ

)
,

t − (k + 1)δ, for t ∈ [
(2k + 1)δ, (2k + 2)δ

)
,

Bt(n) := At+δ(n),

and to consider the equation

dvn(t, x) = Lvn(t, x) dAt(n) + Mkvn(t, x) ◦ dwk
Bt (n).(1.6)

Obviously, vn(2t) = un(t) and u(t) = ūn(2t) for t ∈ Tn, where ūn := u(Bt (n), x)

satisfies

dūn(t, x) = Lūn(t, x) dBt (n) + Mkūn(t, x) ◦ dwk
Bt (n).(1.7)

Equations (1.6) and (1.7) suggest and make possible using stochastic cal-
culus to estimate E supt≤T ‖vn(2t) − ūn(2t)‖p

0 , which gives an estimate for

E maxt∈Tn ‖un(t) − u(t)‖p
0 . One of our results (Theorem 2.3, stated and proved
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in Section 2) says that for each T > 0 and p > 0, there is a constant N such that

E max
t∈Tn

‖un(t) − u(t)‖p
0 ≤ N/np(1.8)

for all integers n ≥ 1. By a straightforward modification of the proof of this
estimate, we can see that it also holds for the approximation defined by un(ti+1) :=
Qti ti+1Pδun(ti) in place of (1.2).

We thus improve (1.5) by taking the maximum inside the expectation and
allowing any p > 0 in place of 2. Moreover, we also get estimate (1.8) in the
case of time-dependent random operators L and Mk . We also do not require L to
be uniformly elliptic. It can just be degenerate elliptic with smooth coefficients.
Our assumptions on the smoothness of the coefficients of L and Mk are the same
as in [3] when we prove (1.8). Under higher smoothness assumptions, we prove
that in (1.8) one can replace the L2 norm of un(t)−u(t) with the Hm norm. Then,
if m is large enough, the Sobolev embedding theorems provide estimates of the
sup norm in x of un(t) − u(t) and its derivatives. Thus, in particular, we estimate
un − u uniformly in t ∈ Tn and x ∈ R

d .
In the explanation of our approach to the splitting-up method, we used

the Stratonovich differential in the equations above. In fact, in our results
we consider more general equations than (1.1). In particular, in place of
the Stratonovich differential Mkuk(t, x) ◦ dwk

t in (1.1), which is just a short
notation for 1

2MkMku(t, x) dt +Mkuk(t, x) dwk
t with the stochastic Itô differential

Mkuk(t, x) dwk
t , we consider the more general term L0u(t, x) dt +Mku(t, x) dwk

t

with a second-order differential operator L0. Correspondingly, in place of (1.4), we
consider dṽ(t, x) = L0ṽ(t, x) dt + Mkṽ(t, x) dwk

t , and we assume the stochastic
parabolicity (see Assumption 2.5) for this equation, which is satisfied in the special
case L0 := 1

2MkMk of (1.4). In this connection we note that it is well known that,
in general, this equation is not solvable if the stochastic parabolicity is not satisfied
(see [11]). In particular, it is not well posed when L0 = 0.

We also establish a multistage splitting-up method, by which we mean the
following. Assume that L in (1.1) is the sum of a finite number of elliptic operators,
say L = L1 + L2, where L1 is a second-order elliptic operator and L2 is a first-
order one. Define now the approximation un by

un(ti+1) = P(2)
δ P(1)

δ Qti ti+1un(ti),

such that v(t) := P(i)
t v denotes the solution of (1.3) with Li in place of L. By our

theorem estimate (1.8) remains valid.
The paper is organized as follows. In Section 2 we introduce our general setting

but state the results only for the case of time-independent data. In this way the
reader will not be overwhelmed right away with some quite technical details. In
this section we also prove Theorem 2.3 on the basis of Theorem 2.1, which,
in turn, is proved in Section 4, after we prepare some auxiliary facts in Section 3.
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In Section 5 we generalize Theorem 2.1 for time-dependent and random coeffi-
cients, which allows us to establish the splitting-up method for general filtering
equations in Section 6.

In conclusion, we introduce some notation used everywhere below. Throughout
the paper d , d0, d1 are fixed integers, K , T are fixed finite positive constants, p is
a fixed number in (0,∞) and

Di = ∂/∂xi, Dij = ∂2/∂xi ∂xj .

Let (�,F ,P ) be a complete probability space and let Ft , t ≥ 0, be an
increasing filtration of sub-σ -fields of F , such that F0 is complete with respect
to (F ,P ). By P we denote the σ -field of predictable subsets of � × (0,∞)

generated by Ft . We assume that on � we are given a continuous Ft -martingale
Yt = (Y 1

t , . . . , Y
d0
t ).

We always assume the summation convention over repeated integer-valued
indices.

2. The case of time-independent coefficients. For ε = 0,1 and r =
0,1, . . . , d1 (notice r can be 0), let V r

t,ε be continuous increasing processes de-
fined for t ∈ [0, T ]. Consider the following equation:

du(t, x) = (
Lru(t, x) + fr(t, x)

)
dV r

t,ε

+ (
Mku(t, x) + gk(t, x)

)
dY k

t

(2.1)

for t ∈ (0, T ], x ∈ R
d with initial condition u(0, x) = u0ε(x), where the operators

Lr and Mk are written as

Lr = aij
r (t, x)Dij + ai

r(t, x)Di + ar(t, x), Mk = bi
k(t, x)Di + bk(t, x).

To formulate our assumptions, we fix an integer m ≥ 0.

ASSUMPTION 2.1 (Smoothness of the coefficients). All the coefficients
a

ij
r (t, x), ai

r(t, x), ar(t, x), bi
k(t, x), bk(t, x) are predictable for any x ∈ R

d ,
and, for any (ω, t) ∈ � × (0,∞), their derivatives up to order m + 3 exist, are
continuous and by magnitude are bounded by K .

ASSUMPTION 2.2. The processes V r
t,ε are predictable V r

0,ε = 0, V 0
t,ε =: V 0

t is
independent of ε, and there is a predictable increasing process Vt such that

V0 = 0, VT ≤ K,
∑
r,ε

dV r
t,ε + d〈Y 〉t ≤ dVt(2.2)

in the sense of measures on [0, T ].
REMARK 2.1. Actually (2.2) is always satisfied with Vt = ∑

r,ε V r
t,ε + 〈Y 〉t ,

provided that this process is bounded by K on [0, T ]. Also notice that we single out
one of V r

t,ε with r = 0 in order to show later that we do not need Assumption 5.1
to be imposed on all the operators Lr .
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Equation (2.1) is supposed to be parabolic in the usual stochastic sense.

ASSUMPTION 2.3. For any ω ∈ �, ε = 0,1, x, λ ∈ R
d , we have

2aij
r (t, x)λiλj dV r

t,ε − bi
k(t, x)b

j
l (t, x)λiλj d〈Y k,Y l〉t ≥ 0

in the sense of measures on [0, T ]. (Recall that the summation convention is used
over repeated integer-valued indices and that r = 0,1, . . . , d1.)

We investigate the convergence of not only functions themselves but also of
their derivatives in L2. Therefore, we need the spaces Hn of L2 functions whose
generalized derivatives up to order n are also in L2. There are several ways to
introduce the norm and the inner product in Hn. We choose the following:

(u, v)n := ∑
|α|≤n

(Dαu,Dαv)0,

where (· , · )0 is the inner product in L2 and α = (α1, . . . , αd) are multi-indices,

|α| := α1 + · · · + αd, Dα := D
α1
1 · · ·Dαd

d .

ASSUMPTION 2.4. For each ω ∈ �, the functions fr(t) = fr(t, ·) are
weakly continuous as Hm+3-valued functions, gk(t) = gk(t, ·) are weakly con-
tinuous as Hm+4-valued functions, and the initial conditions u0ε satisfy u0ε ∈
L2(�,F0,H

m+3). Furthermore, fr and gk are predictable, and

E sup
t∈[0,T ]

‖f ‖p
m+3 + E sup

t∈[0,T ]
‖g‖p

m+4 + E‖u0‖p
m+3 ≤ K,

where ‖f ‖2
m+3 = ∑

r ‖fr(t)‖2
m+3 and ‖g‖2

m+4 = ∑
k ‖gk(t)‖2

m+4.

DEFINITION 2.1. By a solution of (2.1) with initial data u0, we mean an
L2-valued predictable function u(t) = u(t, ·) defined on � × [0, T ] such that

P

(∫ T

0
‖u(t)‖2

1 dt < ∞
)

= 1,

and for any φ ∈ C∞
0 , the equation(

u(t, ·), φ)
0 = (

u(0, ·), φ)
0

+
∫ t

0

[−(
aij
r Diu(s),Djφ

)
0

+ (
(ai

r − a
ij

rxj )Diu(s) + aru(s) + fr(s),φ
)
0

]
dV r

s,ε

+
∫ t

0

(
bi
kDiu(s) + bku(s) + gk(s),φ

)
0 dY k

s

holds for all t ∈ [0, T ] at once with probability 1.
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We know from (Itô’s formula) [6] that for any solution u there exists a solution ū

such that ū(t, ·) is a continuous L2-valued function for each ω and for any
φ ∈ C∞

0 , the equation (u(t, ·), φ)0 = (ū(t, ·), φ) holds for all t ∈ [0, T ] at once with
probability 1. This is the reason why henceforth we only consider L2-continuous
versions of solutions.

THEOREM 2.1. Under Assumptions 2.1–2.4, for ε = 0,1, (2.1) with initial
condition u0ε has a unique solution uε(t). Furthermore, uε(t) is weakly continuous
in Hm+3 for each ω and

E sup
t∈[0,T ]

‖uε(t)‖p
m+3 ≤ N,

where N depends only on d , d0, d1, K , p, m and T .

This theorem is a particular case of Theorem 3.1. The following is the basic tool
of proving our estimate of convergence for the splitting-up method.

THEOREM 2.2. Let a
ij
r , ai

r , ar , bi
k, bk, b, fr , and gk be independent of t . Then

under Assumptions 2.1–2.4, there is a constant N depending only on d , d0, d1, K ,
p, m and T , such that

E sup
t∈[0,T ]

‖u1(t) − u0(t)‖p
m ≤ N(E‖u01 − u00‖p

m + Ap),(2.3)

where

A = sup
ω∈�

max
t∈[0,T ] max

r
|V r

t,1 − V r
t,0|.

Theorem 2.2 is proved in Section 4. Now we give its application to the splitting-
up method along the lines discussed in the Introduction. In (0, T ]×R

d we consider
the following equation:

du(t, x) =
d1∑

r=1

(
Lru(t, x) + fr(t, x)

)
dt + (

L0u(t, x) + f0(t, x)
)
dV 0

t

+ (
Mku(t, x) + gk(t, x)

)
dY k

t ,

(2.4)

with the same operators Lr and Mk as above and initial condition u(0, x) = u0(x).

ASSUMPTION 2.5. Assumptions 2.1 and 2.4 are satisfied. The process V 0
t is

predictable continuous increasing and starting at 0. We have V 0
T + 〈Y 〉T ≤ K . The

matrices (a
ij
r ) are nonnegative, and, for any ω ∈ �, x,λ ∈ R

d , we have

2a
ij
0 (t, x)λiλj dV 0

t − bi
k(t, x)bj

r (t, x)λiλj d〈Y k,Y r〉t ≥ 0

in the sense of measures on [0, T ].
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By u(t) we denote the unique solution of (2.4) with initial condition u(0, x) =
u0(x), which exists owing to Theorem 2.1.

Next set Tn := {ti := iT /n : i = 0,1,2, . . . , n}, δ := T/n for an integer n ≥ 1,
and define the approximation u(n), by u(n)(0) := u0,

u(n)(ti+1) := P(d1)
δ · · · P(2)

δ P(1)
δ Qti ti+1u

(n)(ti), i = 0,1,2, . . . , n − 1,(2.5)

where P(γ )
t ψ := v(t), γ = 1,2, . . . , d1, and Qstψ := ṽ(t) denote the solutions of

the equations

dv(t, x) = (
Lγ v(t, x) + fγ (x)

)
dt, t ≥ 0,

dṽ(t, x) = (
L0ṽ(t, x) + f0(x)

)
dV 0

t + (
Mkṽ(t, x) + gk(x)

)
dY k

t , t ≥ s,

respectively, with initial conditions v(0, x) = ψ(x) and ṽ(s, x) = ψ(x), respec-
tively.

THEOREM 2.3. Let a
ij
r , ai

r , ar, b
i
k, bk, b, fr and gk be independent of t . Then

under Assumption 2.5, there is a constant N depending only on d, d0, d1,K,p,m

and T , such that

E max
t∈Tn

‖u(n)(t) − u(t)‖p
m ≤ Nn−p

for all n ≥ 1.

PROOF. Set d ′ := d1 + 1, fix an integer n ≥ 1 and let δ := T/n. According to
our idea, we change time by using the following function:

κ(t) :=



t − kd1δ, for t ∈ [kd ′δ, (kd ′ + 1)δ], k = 0,1, . . . ,

(k + 1)δ, for t ∈ [(kd ′ + 1)δ, (k + 1)d ′δ], k = 0,1, . . . ,

0, for t ≤ 0.
Define

Ȳ k(t) := Y k
κ(t), F̄t = Fκ(t), V̄ 0

t,0 = V̄ 0
t,1 := V 0

κ(t),

V̄ r
t,0 := κ(t), V̄ r

t,1 := κ(t − rδ) for r = 1,2, . . . , d1.

Consider the equations

duε(t) = (
Lruε(t) + fr

)
dV̄ r

t,ε + (
Mkuε(t) + gk

)
dȲ k

t , ε = 0,1,(2.6)

with u0(0, x) = u1(0, x) = u0(x). It is easy to see that Assumptions 2.2 and 2.3
also hold with Ȳ k and V̄ r

ε (ε = 0,1) in place of Y k and V r
ε , respectively. Thus, by

Theorem 2.1 the solutions u0 and u1 exist, and by virtue of Theorem 2.2, there is
a constant N depending only on d, d0, d1,p,m,K and T , such that

E sup
t∈[0,T d ′]

‖u1(t) − u0(t)‖p
m ≤ N sup

t∈[0,T d ′]
sup
r≤d1

|κ(t + rδ) − κ(t)|p = NT pn−p,

which implies the theorem, since clearly u0(d
′t) = u(t) and u1(d

′t) = u(n)(t) for
t ∈ Tn. �
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REMARK 2.2. We can define the approximation u(n) by splitting up in any
order; that is, we can define u(n) by

u(n)(ti+1) := P(d1)
δ · · · P(l+1)

δ Qti ti+1P(l)
δ · · · P(2)

δ P(1)
δ u(n)(ti )

in place of (2.5). Then one can easily see from its proof that Theorem 2.3 remains
valid.

3. Auxiliary results. First, we consider the equation

du(t, x) = (
Lu(t, x) + f (t, x)

)
dVt + (

Mku(t, x) + gk(t, x)
)
dY k

t(3.1)

for t ∈ (0, T ], x ∈ R
d with initial condition u(0, x) = u0(x), where T ∈ (0,∞) is

a fixed number and the operators L and Mk are written as

L = aij (t, x)Dij + ai(t, x)Di + a(t, x), Mk = bi
k(t, x)Di + bk(t, x).

For convenience, we enumerate some further assumptions regarding (3.1). Fix an
integer m = 1,2, . . . and remember that by K we denote a fixed positive constant.

ASSUMPTION 3.1 (Smoothness of the coefficients). All the coefficients
aij (t, x), ai(t, x), a(t, x), bi

k(t, x), bk(t, x) are predictable for any x ∈ R
d , and,

for any (ω, t) ∈ � × (0,∞), their derivatives up to order m and for aij up to order
2 ∨ m exist, are continuous and by magnitude are bounded by K .

ASSUMPTION 3.2 [Stochastic parabolicity of (3.1)]. The process Vt is
increasing, continuous, predictable, V0 = 0, and VT ≤ K . We have d〈Y 〉t ≤ dVt

and for any x,λ ∈ R
d , in the sense of measures on [0, T ],
2aijλiλj dVt − bi

kb
j
r λ

iλj d〈Y k,Y r〉t ≥ 0.

ASSUMPTION 3.3. In (3.1) the function f is predictable Hm valued, gk are
predictable Hm+1 valued, u0 is Hm valued and F0 measurable. Furthermore, for
l ≤ m and

Kl(t) :=
∫ t

0

{‖f (s)‖2
l + ‖g(s)‖2

l+1
}
dVs,

where f (s) = f (s, ·), g(s) = g(s, ·) and ‖g(s)‖2
l+1 := ∑

k ‖gk(s)‖2
l+1, we have

E‖u0‖p
m + EKp/2

m (T ) < ∞.

Solutions of (3.1) are always understood according to Definition 2.1.

THEOREM 3.1. Under Assumptions 3.1–3.3 there exists a unique solution
of (3.1) with initial condition u0. In addition, u(t) is weakly continuous in Hm

for each ω and, for any integer l ∈ [0,m],
E sup

t∈[0,T ]
‖u(t)‖p

l ≤ NE‖u0‖p
l + NEK

p/2
l (T ),(3.2)

where N depends only on d, d0, K, m, p and T .
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PROOF. If p = 2, the theorem is quite similar to Theorem 3.1 of [12] and can
be proved by the same method. The only difference is that Vt = t and Yt is a
d1-dimensional Wiener process in [12]. Actually one can also obtain our
Theorem 3.1 for p = 2 quite formally from Theorem 3.1 of [12]. Indeed, replacing
Vt with Vt + t [and multiplying the corresponding coefficients by dVt/(dVt + dt)]
allows us to assume that Vt is strictly increasing. After that a time change reduces
the whole situation to the one with Vt = t . To deal with Yt , one uses the fact that
any continuous martingale can be written as a stochastic integral against a Wiener
process.

For p �= 2, we reproduce part of the proof of Theorem 3.1 of [12]. It is worth
noting that in [12] Lp(Rd) norms of solutions are estimated. Although we could do
the same in our situation, we do not know how to apply these estimates to derive
error estimates for Lp(Rd) norms for the splitting-up method. Nevertheless, we
know how to derive error estimates for expectations of the pth powers of L2(R

d)

norms. This is why we only state and prove those estimates in our theorem.
As in the proof of Theorem 3.1 of [12], by adding into the equation ε
udVt

if necessary, we may assume that ‖u(t)‖2
m+1 is integrable over � × [0, T ] against

dP × dVt . Then, by using Itô’s formula and integrating by parts, we get that, if
u(t) is our solution, then

d
∑
|α|≤l

‖Dαu(t)‖2
0 ≤ N

(‖u(t)‖2
l + ‖f (t)‖2

l + ‖g‖2
l+1

)
dVt

+ 2
∑
|α|≤l

(
Dαu(t),Dα[Mku(t) + gk(t)])0 dY k

t .
(3.3)

Here, due to Assumption 3.1 and the Leibnitz formula,

(
Dαu,Dα(bi

kDiu)
)
0 = 1

2

∫
Rd

bi
kDi |Dαu|2 dx + ∑

|β|+|γ |=|α|
(Dαu, cβγ

α Dγ u)0,

where c
βγ
α are bounded functions. Integrating by parts, we see that
∣∣(Dαu(t),Dα[Mku(t) + gk(t)])0

∣∣ ≤ N‖u(t)‖2
l + N‖u(t)‖l‖g(t)‖l .

Now we write (3.3) in the integral form, raise both parts to the p/2th power and
use the Burkholder–Davis–Gundy inequality. We also use that, if p ≥ 2, then, by
Hölder’s inequality,

(∫ τ

0
‖u‖2

l dVt

)p/2

≤ δq sup
t≤τ

‖u‖p
l + δ−2/pN

∫ τ

0
‖u‖p

l dVt(3.4)

for any δ ∈ (0,1), q ∈ R and stopping time τ ≤ T , where the first term on the right-
hand side can even be dropped. Finally, we notice that (3.4) holds for p ∈ (0,2)



SPLITTING-UP METHOD 573

as well with q = 2/(2 − p) since, by Young’s inequality for any δ > 0,

(∫ τ

0
‖u‖2

l dVt

)p/2

≤ sup
t≤τ

‖u‖(2−p)p/2
(∫ τ

0
‖u‖p

l dVt

)p/2

≤ δ2/(2−p) sup
t≤τ

‖u‖p
l + δ−2/pN

∫ τ

0
‖u‖p

l dVt .

Then we obtain that, for any stopping time τ ≤ T ,

E sup
t≤τ

‖u(t)‖p
l

≤ 2E‖u0‖p
l + 1

4E sup
t≤τ

‖u(t)‖p
l + NE

∫ τ

0
‖u(t)‖p

l dVt

+ NEK
p/2
l (τ ) + NE

(∫ τ

0

(‖u(t)‖4
l + ‖u(t)‖2

l ‖g(t)‖2
l+1

)
dVt

)p/4

.

The last term is less than

NE sup
t≤τ

‖u(t)‖p/2
l

(∫ τ

0

(‖u(t)‖2
l + ‖g(t)‖2

l+1
)
dVt

)p/4

≤ 1
4E sup

t≤τ
‖u(t)‖p

l + NE

∫ τ

0
‖u(t)‖p

l dVt + NEK
p/2
l (τ ).

Thus,

E sup
t≤τ

‖u(t)‖p
l ≤ 4E‖u0‖p

l + NE

∫ τ

0
‖u(t)‖p

l dVt + NEK
p/2
l (τ ),

and (3.2) follows by the stochastic version of Gronwall’s inequality. The theorem
is proved. �

We are going to use Theorem 3.1 for estimating the difference of solutions of
two equations of type (3.1). Namely, let

(aij
ε , ai

ε, aε, fε, b
i
kε, bkε, gkε, u0ε),(3.5)

where ε = 0,1, be two sets of data satisfying Assumptions 3.1–3.3 for ε = 0,1.
Continue these data linearly with respect to ε on [0,1] so that we can now use the
same notation (3.5) for any ε ∈ [0,1]. Let Lε and Mkε be the operators L and Mk

constructed on the basis of a
ij
ε , ai

ε, aε and bi
kε, bkε. We will be interested in the

difference u0 − u1, where uε is defined as the unique solution of

duε(t, x) = (
Lεuε(t, x) + fε(t, x)

)
dVt

+ (
Mkεuε(t, x) + gkε(t, x)

)
dY k

t ,
(3.6)
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with initial data u0ε. Notice that Assumption 3.2 is satisfied for Lε and Mkε with
any ε ∈ [0,1]. This follows from the fact that

bi
kεb

j
rελ

iλj d〈Y k,Y r〉t
is a nonnegative quadratic, hence convex function of ε. Therefore, Theorem 3.1
implies the following:

LEMMA 3.2. The function uε exists, is unique and

sup
ε∈[0,1]

E sup
t∈[0,T ]

‖uε(t)‖p
m ≤ sup

ε∈[0,1]
NE

(‖u0ε‖p
m + Kp/2

m (T )
)
,(3.7)

where N depends only on d, d0, K, m, p and T .

Now comes an estimate of u1 − u0.

THEOREM 3.3. Let m ≥ 3 and p ≥ 1. Then, for any integer l ≥ 0,

E sup
t∈[0,T ]

‖u1(t) − u0(t)‖p
l ≤ sup

ε∈[0,1]
E sup

t∈[0,T ]
‖vε(t)‖p

l ,(3.8)

where vε is the unique solution of the following equation obtained by formal
differentiation of (3.6):

dvε(t, x) = (
Lεvε(t, x) + L′uε(t, x) + f ′(t, x)

)
dVt

+ (
Mkεvε(t, x) + M ′

kuε(t, x) + g′
k(t, x)

)
dY k

t ,
(3.9)

with initial condition u′
0, where the primed functions are introduced according to

w′ = w1 − w0. Furthermore,

sup
ε∈[0,1]

E sup
t∈[0,T ]

‖vε(t)‖p
m−2 < ∞.(3.10)

PROOF. Owing to (3.7), the functions f̃ = L′uε + f ′ and g̃k = M ′
kuε + g′

k

satisfy Assumption 3.3 with m − 2 ≥ 1 in place of m. Hence, the existence and
uniqueness of vε and estimate (3.10) follow from Theorem 3.1.

While proving (3.8) for a fixed l, we may and will assume that the right-hand
side is finite. Furthermore, notice that to prove (3.8) it suffices to show that vε is
the derivative of uε in an appropriate space. To make this precise, for a function wε

and h such that ε, ε + h ∈ [0,1] define δhwε = (wε+h − wε)/h. It turns out that it
suffices to show that, for any ε ∈ [0,1],

E sup
t∈[0,T ]

‖δhuε(t) − vε(t)‖p
0 → 0,(3.11)

whenever h → 0 in such a way that ε + h ∈ [0,1].
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Indeed, assume that (3.11) holds and let Rn := nl(n − 
)−l , n > 0. Notice
that ‖Rnh‖l ≤ N‖h‖0 for h ∈ L2, where N is independent of h. Therefore, (3.11)
implies that, for any n > 0,

E sup
t∈[0,T ]

‖δhRnuε(t) − Rnvε(t)‖p
l → 0.

Since p ≥ 1, it easily follows that

E sup
t∈[0,T ]

‖Rnu0(t) − Rnu1(t)‖p
l ≤ sup

ε∈[0,1]
E sup

t∈[0,T ]
‖Rnvε(t)‖p

l .

By using the Fourier transform, one proves ‖Rnh‖l ≤ ‖h‖l for h ∈ Hl , and also
that if h ∈ L2 and

N0 := lim inf
n→∞ ‖Rnh‖l < ∞,

then h ∈ Hl and ‖h‖l ≤ N0. After these observations to get (3.8), it only remains
to use Fatou’s lemma.

Now we prove (3.11). Simple manipulations show that the function

rεh(t) := δhuε(t) − vε(t)

satisfies

drεh(t) = [
Lεrεh(t) + L′(uε+h(t) − uε(t)

)]
dVt

+ [
Mkrεh(t) + M ′

k

(
uε+h(t) − uε(t)

)]
dY k

t .

Hence, by Theorem 3.1, for a constant N independent of ε and h,

E sup
t∈[0,T ]

‖δhuε(t) − vε(t)‖p
0 ≤ NE

(∫ T

0
‖uε+h(t) − uε(t)‖2

2 dVt

)p/2

,

which by the interpolation inequality ‖h‖2 ≤ N‖h‖1/3
0 ‖h‖2/3

3 , Hölder’s inequality
and (3.7) is less than a constant times

(
E sup

t∈[0,T ]
‖uε+h(t) − uε(t)‖p

0

)1/3

.

Finally, observe that qεh(t) := uε+h(t) − uε(t) satisfies

dqεh(t) = [Lεqεh(t) + hL′uε+h(t) + hf ′(t)]dVt

+ [Mkqεh(t) + hM ′
kuε+h(t) + hg′

k(t)]dY k
t

and, by Theorem 3.1 and (3.7),

E sup
t∈[0,T ]

‖uε+h(t) − uε(t)‖p
0 ≤ Nhp → 0

as h → 0. This proves (3.11) and finishes the proof of the theorem. �
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4. Proof of Theorem 2.2. Remember that Vt is introduced in Assumption 2.2
and let

V r
t,ε = εV r

t,1 + (1 − ε)V r
t,0, ρr

tε = dV r
t,ε/dVt (≤ 1),

Lε = ρr
tεLr, fε = ρr

tεfr , Mkε = Mk, gkε = gk.

Then (2.1) becomes (3.6). Next define

aij
ε = ρr

tεa
ij
r , ai

ε = ρr
tεa

i
r , aε = ρr

tεar .

Notice that

aij
ε λiλj dVt = aij

r λiλj dV r
t,ε.

It follows that the assumptions of our equation (3.6), stated before Theorem 3.3,
are satisfied with m + 3 in place of m. This theorem implies that in order to prove
Theorem 2.2 it suffices to show that, for any ε ∈ [0,1],

E sup
t∈[0,T ]

‖vε(t)‖p
m ≤ N(E‖u01 − u00‖p

m + Ap),

where vε(t) satisfies vε(0) = u01 − u00 and is the unique solution of (3.9). The
latter in our case becomes

dvε(t) = Lrvε(t) dV r
t,ε + (

Lruε(t) + fr(t)
)
dAr

t + Mkvε(t) dY k
t ,(4.1)

where Ar
t = V r

t,1 − V r
t,0 and, of course, uε(t) is the unique solution of (2.1) with

the above-defined V r
t,ε and initial data u0ε = εu01 + (1 − ε)u00.

Next we need two lemmas. Remember that H−1 is the space of distributions
which is dual to H 1 and there is a natural way to extend (v,u)0 by continuity from
v,u ∈ L2 to v ∈ H−1, u ∈ H . This extension of the inner product in L2 is denoted
by 〈v,u〉 or 〈u, v〉. Similarly, for any positive integer m the inner product (·, ·)m in
Hm can be extended by continuity to a duality 〈·, ·〉m between Hm−1 and Hm+1.
Set

qkl
t := d〈Y k,Y l〉t /dVt , ãij

ε := aij
ε − 1

2bi
kb

j
l q

kl
t .

Define the quadratic forms

[v]2
m = [v]2

m(t) = (ãij
ε Div,Djv)m + Cm‖v‖2

m, v ∈ Hm+1,(4.2)

where C0 = 0 and, if m ≥ 1, Cm is a constant to be specified later in such a way
that the right-hand side of (4.2) is nonnegative, so that notation (4.2) makes sense.
We polarize [v]2

m to define the corresponding bilinear forms

4[v,w]m = [v + w]2
m − [v − w]2

m, v,w ∈ Hm+1.

To simplify the notation, write

vα = Dαv, vαi = DαDiv, vαij = DαDij v.



SPLITTING-UP METHOD 577

Then

(u, v)m = ∑
|α|≤m

(uα, vα)0.

Quite often we deal with finite sums
∑

αβ aαβvαvβ with uniformly bounded
coefficients aαβ . Let H denote the set of such forms. For ξ, η ∈ H we write ξ ∼ η

if there is a form

ζ = ∑
|α|≤m

vαP αv, P αv = ∑
|β|≤m

aαβvβ,(4.3)

such that the integrals (over R
d ) of ξ − η and ζ are the same and |aαβ | can

be estimated in terms of d , d0, d1, m and K . Forms of type ζ are particularly
interesting because their integrals are estimated through a constant under control
times ‖v‖2

m.

LEMMA 4.1. There is a constant Cm with C0 = 0 depending only on K , d ,
d0, d1 and m such that the right-hand side of (4.2) is nonnegative. Furthermore,
for m ≥ 1, any multi-indices α, β , γ satisfying α = β + γ , |β| ≥ 1 and |α| ≤ m,
and any v ∈ Hm+1, we have (ã

ij
ε Div)αvαj ∼ ã

ij
ε vαivαj and

Iαβγ := ã
ij
εβvγ ivαj ∼ ã

ij
εβvγ ij vα ∼ 0.(4.4)

PROOF. Notice that the assertion of the lemma holds true for m = 0 due to
Assumption 2.3 saying that ãε is a nonnegative matrix (Vt -a.e.). For m ≥ 1 and
m ≥ |α| ≥ 1, use the Leibnitz formula to get

(ãij
ε Div)αvαj = ãij

ε vαivαj + ∑
β+γ=α,|β|≥1

cαβγ Iαβγ ,

where cαβγ are certain constants. Since the first term on the right-hand side is
nonnegative, it only remains to prove (4.4).

Integrating by parts allows us to carry the derivative with respect to xj from
vα to ã

ij
εβvγ i . Observe that ã

ij
εβj is bounded by a constant, under control, since

|β| + 1 ≤ m + 1. It follows that Iαβγ ∼ −ã
ij
εβvγ ij vα , and it only remains to prove

Iαβγ ∼ 0.
If |β| ≥ 2 in Iαβγ , then vγ ij is the derivative of v of order at most m. In this

case, Iαβγ ∼ 0 and we may concentrate on |β| = 1. In that case, due to ã
ij
ε = ã

j i
ε ,

we have

Iαβγ = ã
ij
εβvγ iD

βvγj = 1
2 ã

ij
εβDβ(vγ ivγj ),

and integrating by parts shows that Iαβγ ∼ 0 again. The lemma is proved. �

In particular, we now have |[v,w]m| ≤ [v]m[w]m (dVt -a.e.) for all v,w ∈
Hm+1, m ≥ 0.
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LEMMA 4.2. There exists a constant N depending only on d , d0, d1, m and K ,
such that, for any v ∈ Hm+1, u ∈ Hm+3, h ∈ Hm+2, ε ∈ [0,1]:

(i) for any r , k, we have

|(v,Lrh)m| + |〈Lrv,h〉m| + |(v,LrMku)m| + |(Mkv,Lru)m|
≤ N‖v‖m(‖h‖m+2 + ‖u‖m+3);

(4.5)

(ii) almost everywhere with respect to dVt ,

p(v, v) := 2〈v,Lrv〉mρr
tε + (Mkv,Mrv)mqkr

t + 2[v]2
m ≤ N‖v‖2

m;(4.6)

(iii) for any i almost everywhere with respect to dVt ,

|qi(v,u)| ≤ N‖u‖m+3([v]m + ‖v‖m),(4.7)

where

qi(v,u) = (〈Lrv,Liu〉m + 〈v,LiLru〉m)ρr
tε + (Mkv,LiMru)mqkr

t .

PROOF. One can easily get estimate (4.5) by Cauchy’s inequality combined
with integration by parts. The proof of (ii) is very similar to that of Lemma 2.1
in [12]. We may (and will) assume that v ∈ Hm+2. Then the left-hand side of
inequality (4.6) minus 2[v]2

m is the integral over R
d of

Q := ∑
|α|≤m

{
2ρr

tεvα(Lrv)α + qkr
t (Mkv)α(Mrv)α

} =: ∑
|α|≤m

Qα.

By integrating by parts, we obtain

2vai
εvi ∼ ai

ε(v
2)i ∼ −ai

εiv
2 ∼ 0,

and similarly, for |α| ≤ m,

vα(ai
εvi)α ∼ vαai

εvαi ∼ 0, vα(aεv)α ∼ 0,

(bi
kvi )α(brv)α ∼ 0, (bkv)α(brv)α ∼ 0.

Hence, upon defining L0
r v = aijDij v and M0

k v = bi
kDiv, we get

Qα ∼ {
2ρr

tεvα(L0
r v)α + qkr

t (M0
k v)α(M0

r v)α
}
.(4.8)

If m = 0, then the only possible value for α is 0 and the integral on the right-
hand side of (4.8) equals −2[v]2

0, which implies (4.6). Therefore, in the remaining
part of the proof we assume that m ≥ 1.

For m ≥ |α| ≥ 1 define �(α) as the set of couples of multi-indices (β, γ ) such
that |β| = 1 and α = β + γ and define the constants cαβγ from the equality

Dα(φψ) = φDαψ + ∑
�(α)

cαβγ (Dβφ)Dγ ψ + · · · ,
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where the missing terms are those that contain the derivatives of ψ of order at most
|α| − 2. Then, for m ≥ |α| ≥ 1, owing to qkr

t = qrk
t , we obtain

qkr
t (M0

k v)α(M0
r v)α = qkr

t (bi
kvi)α(bj

r vj )αqkr
t

∼ qkr
t bi

kvαib
j
r vαj + 2qkr

t

∑
�(α)

cαβγ bi
kβvγ ib

j
r vαj .

Upon remembering that bi
k are twice differentiable and |β| + 1 = 2 and |γ | + 1 =

|α| ≤ m, we get

qkr
t bi

kβvγ ib
j
r vαj ∼ −qkr

t bi
kβvγ ij b

j
r vα = −1

2qkr
t (bj

r b
i
k)βvγ ij vα.

Furthermore,

2ρr
tεvα(L0

r v)α ∼ 2vαaij
ε vαij + 2

∑
�(α)

cαβγ vαa
ij
εβvγ ij .

After these computations (4.8) and Lemma 4.1 yield

Qα ∼ −2vαiã
ij
ε vαj + 2

∑
�(α)

cαβγ ã
ij
εβvγ ij vα ∼ −2(ãij

ε Div)αvαj .

Thus,

p(v, v) =
∫

Rd
Qdx + 2[v]2

m = ∑
|α|≤m

(vα,P αv)0,(4.9)

where P α are some operators as in (4.3). This proves (4.6).
To prove (4.7), we polarize (4.9) and get

〈Lrv,w〉mρr
tε + 〈v,Lrw〉mρr

tε + (Mkv,Mrw)mqkr
t + 2[v,w]m

= 1
2

∑
|α|≤m

[(vα,P αw)0 + (wα,P αv)0].

We plug in w = Liu to obtain

qi(v,u) + 〈v, (LrLi − LiLr)u〉mρr
tε

+ (
Mkv, (MrLi − LiMr)u

)
mqkr

t + 2[v,Liu]m
= 1

2

∑
|α|≤m

[(Dαv,P αLiu)0 + (DαLiu,P αv)0].

Hence, we obtain (4.7) by Cauchy’s inequality and by integration by parts, after
noticing that (LrLi − LiLr) and (MrLi − LiMr) are third- and second-order
operators, respectively. The lemma is proved. �
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LEMMA 4.3. Define

Jt = Jtε =
∫ t

0

(
vε(s),Liuε(s) + fi(s)

)
m dAi

s.

Then there exists a constant N depending only on d , d0, d1, K , p, m and T such
that, for any stopping time τ ≤ T ,

E sup
t≤τ

(
Jtε −

∫ t

0
[vε]2

m(s) dVs

)p/2

+

≤ 1
8E sup

t≤τ
‖vε(t)‖p

m + N

(
Ap + E

∫ τ

0
‖vε(t)‖p

m dVt

)
.

(4.10)

PROOF. We want to estimate Jtε through A without using the variations of Ai
t .

Therefore, we integrate by parts with respect to s or alternatively use Itô’s formula
(see [6]). We also remember that the coefficients of Lr and fr are independent of t .
Then we obtain

Jt = (
vε(t),Liuε(t) + fi(t)

)
mAi

t − J1t − · · · − J4t ,(4.11)

where Jit are defined by the following formulas in which we drop the argument s

whenever it does not lead to any confusion:

J1t =
∫ t

0
Ai

s{〈Lrvε,Liuε + fi〉m + 〈vε,Li(Lruε + fr)〉m}dV r
s,ε,

J2t =
∫ t

0
Ai

s

(
Mkvε,Li(Mruε + gr )

)
m d〈Y k,Y r〉s,

J3t =
∫ t

0
Ai

s

{
(Mkvε,Liuε + fi)m + (

vε,Li(Mruε + gr)
)
m

}
dY k

s ,

2J4t = 2
∫ t

0
Ai

s(Ljuε + fj ,Liuε + fi)m dAj
s

=
∫ t

0
(Ljuε + fj ,Liuε + fi)m d(Ai

sA
j
s ).

By Lemma 4.2 and Young’s inequality,

J1t + J2t ≤ NA

∫ t

0
{‖uε‖m+3[vε]m + ‖vε‖m(‖f ‖m+2 + ‖g‖m+3 + ‖uε‖m+3)}dVs

≤
∫ t

0
[vε]2

m dVs +
∫ t

0
‖vε‖2

m dVs

+ NA2
∫ t

0

{‖uε‖2
m+3 + ‖f ‖2

m+2 + ‖g‖2
m+3

}
dVs.

Next notice that, by Lemma 4.2,∣∣(Mkvε,Liuε + fi)m + (
vε,Li(Mruε + gr)

)
m

∣∣
≤ N‖vε‖m(‖uε‖m+3 + ‖f ‖m+1 + ‖g‖m+2).
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Therefore, by the Burkholder–Davis–Gundy inequality,

E sup
t≤τ

|J3t |p/2 ≤ NAp/2E

(∫ τ

0
‖vε‖2

m(‖uε‖2
m+3 + ‖f ‖2

m+1 + ‖g‖2
m+2) dVt

)p/4

≤ NAp/2E sup
t∈[0,T ]

(‖uε(t)‖p/2
m+3 + ‖f (t)‖p/2

m+1 + ‖g(t)‖p/2
m+2

)

×
(∫ τ

0
‖vε‖2

m dVt

)p/4

.

We use Cauchy’s inequality, (3.7), the argument about (3.4) and our assumptions
and infer that

E sup
t≤τ

|J3t |p/2 ≤ NAp + 1
16E sup

t≤τ
‖vε(t)‖p

m + NE

∫ τ

0
‖vε‖p

m dVt .

It follows that the left-hand side of (4.10) is less than

1
8E sup

t≤τ
‖vε(t)‖p

m + NAp + NE

∫ τ

0
‖vε‖p

m dVt + NE sup
t≤τ

|J4t |p/2,

and to prove the lemma it only remains to estimate J4t .
We integrate by parts again and find that

2J4t = (
Ljuε(t) + fj ,Liuε(t) + fi

)
mAi

tA
j
t − R1t − R2t − R3t ,(4.12)

where

R1t = 2
∫ t

0
Ai

sA
j
s 〈Lj(Lruε + fr),Liuε + fi〉m dV r

s,ε,

R2t =
∫ t

0
Ai

sA
j
s

(
Lj (Mkuε + gk),Li(Mruε + gr )

)
m d〈Y k,Y r〉s,

R3t = 2
∫ t

0
Ai

sA
j
s

(
Lj(Mkuε + gk),Liuε + fi

)
m dY k

s .

Since 〈Lj(Lruε + fr),Liuε + fi〉m is readily estimated through ‖uε‖2
m+3 +

‖f ‖2
m+1, we see that

E sup
t≤τ

|R1t + R2t |p/2 ≤ NAp.

Furthermore, the Burkholder–Davis–Gundy inequality obviously implies that the
same estimate holds for R3t . Hence, E supt≤τ |J4t |p/2 ≤ NAp. The lemma is
proved. �

PROOF OF THEOREM 2.2. Applying the differential operator Dα to both
sides of (4.1), using Itô’s formula (see [6]) for ‖Dαvε(t)‖2

0 and summing over



582 I. GYÖNGY AND N. KRYLOV

all |α| ≤ m, we get

d‖vε(t)‖2
m = 2〈vε(t),Lrvε(t)〉m dV r

t,ε + 2
(
vε(t),Lruε(t) + fr(t)

)
m dAr

t

+ (
Mkvε(t),Mrvε(t)

)
m d〈Y k,Y r〉t + 2

(
vε(t),Mkvε(t)

)
m dY k

t .

By using Lemma 4.2(ii), we obtain

d‖vε(t)‖2
m ≤ −2[vε]2

m dVt + N‖vε‖2
m dVt + 2 dJt + 2(vε,Mkvε)m dY k

t ,

where Jt is defined in Lemma 4.3. Here, as before, integrating by parts implies
that |(vε,Mkvε)m| ≤ N‖vε‖2

m. Hence, by Lemma 4.3 and the Burkholder–Davis–
Gundy inequality,

E sup
t≤τ

‖vε(t)‖p
m ≤ NE‖u01 − u00‖p

m + 4E sup
t≤τ

(
Jtε −

∫ t

0
[vε]2

m dVs

)p/2

+

+ NE

(∫ τ

0
‖vε(t)‖4

m dVt

)p/4

≤ NE‖u01 − u00‖2
m + 1

2E sup
t≤τ

‖vε(t)‖p
m

+ NAp + NE

∫ τ

0
‖vε(t)‖p

m dVt + NE

(∫ τ

0
‖vε(t)‖4

m dVt

)p/4

for any stopping time τ ≤ T . The last term here is estimated through [see (3.4)]

NE sup
t≤τ

‖vε(t)‖p/2
m

(∫ τ

0
‖vε(t)‖2

m dVt

)p/4

≤ 1
4E sup

t≤τ
‖vε(t)‖p

m + NE

∫ τ

0
‖vε(t)‖p

m dVt,

which implies

E sup
t≤τ

‖vε(t)‖p
m ≤ NE‖u01 − u00‖p

m + NAp + NE

∫ τ

0
‖vε(t)‖p

m dVt .

Now we get

E sup
t≤τ

‖vε(t)‖p
m ≤ NE‖u01 − u00‖p

m + NAp

by a stochastic version of Gronwall’s lemma. If p ≥ 1, this finishes the proof
of (2.3) owing to Theorem 3.3.

To deal with p ∈ (0,1), we notice that a careful analysis of the above proof
of (2.3) shows that

E sup
t≤τ

‖u1(t) − u0(t)‖2
m

≤ NE‖u01 − u00‖2
m

+ NA2E

{
‖u01‖2

m+3 + ‖u00‖2
m+3 + sup

t≤τ

(‖f (t)‖m+3 + ‖g(t)‖m+4
)2

}
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for any stopping time τ ≤ T , and, furthermore (a.s.),

E

{
sup
t≤τ

‖u1(t) − u0(t)‖2
m

∣∣∣F0

}

≤ N‖u01 − u00‖2
m + NA2(‖u01‖2

m+3 + ‖u00‖2
m+3

)

+ NA2E

{
sup
t≤τ

(‖f (t)‖m+3 + ‖g(t)‖m+4
)2

∣∣∣F0

}
.

A standard transformation of such inequalities (see, for instance, the derivation of
Theorem 3.6.8 from Lemma 3.6.3 of [10]) shows that, for any δ ∈ (0,1) (a.s.),

E

{
sup
t≤τ

‖u1(t) − u0(t)‖2δ
m

∣∣∣F0

}

≤ N‖u01 − u00‖2δ
m + NA2δ

(‖u01‖2δ
m+3 + ‖u00‖2δ

m+3
)

+ NA2δE

{
sup
t≤τ

(‖f (t)‖m+3 + ‖g(t)‖m+4
)2δ

∣∣∣F0

}
.

Upon taking here δ = p/2 and taking the expectations of both parts of the last
inequality, we arrive at (2.3). The theorem is proved. �

5. The case of time-dependent coefficients. Here we consider (2.1), keeping
Assumptions 2.1–2.4 and assuming that the following condition also holds, in
which

h(t, x) = (
aij
γ (t, x), ai

γ (t, x), aγ (t, x), fγ (t, x) :γ = 1,2, . . . , d1, i, j = 1, . . . , d
)
.

In this section we stipulate that Greek integer-valued indices run through
1,2, . . . , d1.

ASSUMPTION 5.1. There exists a continuous Ft -martingale

Zt = (Z1
t , . . . ,Z

d2
t ),

and for any x ∈ R
d there exist bounded predictable functions

hr(t, x) = (
aij
γ r(t, x), ai

γ r(t, x), aγ r (t, x), fγ r (t, x)
)

defined on � × (0, T ] for r = 0,1, . . . , d2, such that:

(i) d〈Z〉t ≤ dVt ,
(ii) h(t, x) = h(0, x) + ∫ t

0 h0(s, x) dVs + ∫ t
0 hr(s, x) dZr

s ,

for all ω and t , where, as usual, the summation in r is carried over all possible
values, which in this case are 1,2, . . . , d2. Furthermore, hr are continuously
differentiable with respect to x up to order m+1 and |Dβhr | ≤ K for |β| ≤ m+1.
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THEOREM 5.1. Under Assumptions 2.1–2.4 and 5.1 there is a constant N

depending only on d , d0, d1, d2, K , p, m and T , such that

E sup
t∈[0,T ]

‖u1(t) − u0(t)‖p
m ≤ N(E‖u01 − u00‖p

m + Ap).

PROOF. Obviously, we need only show that Lemma 4.3 remains valid. Define

Lγr = aij
γ rDij + ai

γ rDi + aγ r

and observe that, since A0
t ≡ 0 and now the coefficients of Lγ and fγ depend on

time, there will be three additional terms −J5t − J6t − J7t on the right-hand side
of (4.11) with

J5t =
∫ t

0
Aγ

s (vε,Lγ 0uε + fγ 0)m dVs,

J6t =
∫ t

0
Aγ

s (Mkvε,Lγ ruε + fγ r)m d〈Y k,Zr〉s,

J7t =
∫ t

0
Aγ

s (vε,Lγ ruε + fγ r)m dZr
s .

By following already familiar lines, we conclude that

E sup
t≤τ

|J5t |p/2 ≤ NAp/2E sup
t≤τ

‖vε‖p/2
m sup

t≤τ
(‖uε‖m+2 + K)p/2

≤ 1
64E sup

t≤τ
‖vε‖p

m + NAp.

The same estimate holds for J6t since

(Mkvε,Lγpuε + fγp)m = (vε,M
∗
k Lγpuε + M∗

k fγp)m,

where M∗
k is the formal adjoint of Mk and we can use that the coefficients of Lγp

and fγp are m + 1 times differentiable.
As far as J7t is concerned, it suffices to add that

E

(∫ τ

0
|Aγ

s (vε,Lγ ruε + fγ r)m|2 dVs

)p/4

≤ NAp/2E sup
t≤τ

‖vε‖p/2
m sup

t≤τ
(‖uε‖m+2 + K)p/2.

The only remaining changes to make in the proof of Lemma 4.3 now are related
to the fact that in (4.12) there will be the terms −R4t − R5t − R6t − R7t with

R4t = 2
∫ t

0
Aγ

s Aµ
s (Lµ0uε + fµ0,Lγ uε + fγ )m dVs,

R5t =
∫ t

0
Aγ

s Aµ
s (Lµruε + fµr,Lγ iuε + fγ i)m d〈Zr,Zi〉s,
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R6t = 2
∫ t

0
Aγ

s Aµ
s (Lµruε + fµr,Lγ Mkuε)m d〈Zr,Y k〉s,

R7t = 2
∫ t

0
Aγ

s Aµ
s (Lµruε + fµr,Lγ uε + fγ )m dZr

s .

Almost obviously all these terms can be estimated in the same way as in the
proof of Lemma 4.3. By this comment we finish the proof of Theorem 5.1. �

By using the above theorem, we can extend our result on splitting-up
approximations, Theorem 2.3, to SPDEs with time-dependent coefficients. Let
us consider the solution u(t) of (2.4) in (0, T ] × R

d , with initial condition
u(0, x) = u0(x), and remember that Tn := {ti = iT /n : i = 0,1,2, . . . , n}.

Since now Lr , fr , Mk , gk may depend on t , it is convenient to exhibit their
dependence on t following the example Lr(t). For γ = 1,2, . . . , d1 and s ∈ [0, T ],
let Pγ

t (s)ϕ denote the solution of the equation

dv(t) = (
Lγ (s)v(t) + fγ (s)

)
dt, t ≥ 0, v(0) = ϕ.(5.1)

Notice that the coefficients of Lγ and fγ are “frozen” at time s. Then u(n)(t) for
t ∈ Tn is defined recursively as follows: u(n)(0) = u0,

u(n)(ti+1) := Pd1
δ (ti+1) · · ·P2

δ(ti+1)P1
δ(ti+1)Qti ti+1

(
u(n)(ti)

)
(5.2)

for i = 0,1,2, . . . , n − 1, where δ = T/n and Qstϕ denotes the solution of the
equation

dṽ(t) = (
L0(t)ṽ(t)+f0(t)

)
dV 0

t + (
Mk(t)ṽ(t)+gk(t)

)
dY k

t , t ≥ s, ṽ(s) = ϕ.

THEOREM 5.2. Under Assumptions 2.5 and 5.1, there is a constant N

depending only on d , d0, d1, d2, K , p, m and T , such that

E max
t∈Tn

‖u(n)(t) − u(t)‖p
m ≤ Nn−p

for all integers n ≥ 1.

PROOF. The proof is almost exactly the same as that of the corresponding
statement, Theorem 2.3, in the time-independent case. We define d ′ := d1 + 1,
κ(t), V̄ r

t,ε and Ȳ k(t) in the same way. Consider the counterparts of (2.6)

duε(t) = (
Lr(κ(t))uε(t) + fr(κ(t))

)
dV̄ r

t,ε + (
Mk(κ(t))uε(t) + gk(κ(t))

)
dȲ k

t

for ε = 0, 1, with initial data uε(0) = u0.
Then it is almost obvious that the assumptions of Theorem 5.1 are satisfied with

the same constant K and with d ′T in place of T . We apply this theorem and after
that, as in the proof of Theorem 2.3, it only remains to observe that u0(d

′t) = u(t)

and u1(d
′t) = u(n)(t) for t ∈ Tn. The theorem is proved. �
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REMARK 5.1. We can define the approximation u(n) by

u(n)(ti+1) := Pd1
δ (ti+1) · · · Pl+1

δ (ti+1)Qti ti+1Pl
δ(ti) · · · P2

δ(ti)P
1
δ(ti)u

(n)(ti)

in place of (5.2), where 1 ≤ l ≤ d1 is a fixed integer. By obvious modifications of
the above proof, one can show that Theorem 5.2 also holds for this approximation.

REMARK 5.2. One can also define a splitting-up approximation for the
solution of (2.4) by

u(n)(ti+1) := Pd1
ti ti+1

· · · P2
ti ti+1

P1
ti ti+1

Qti ti+1

(
u(n)(ti)

)

in place of (5.2), where v(t) := Pγ
stϕ denotes the solution of the equation

dv(t) = (
Lγ v(t) + fγ (t)

)
dt, t ≥ s, v(s) = ϕ.(5.3)

By a straightforward modification of the proof of Theorem 5.2, one can see that it
also remains true for this approximation. We prefer the splitting-up approximation
defined by (5.2), because, in practice, it is usually more convenient to solve the
time-independent PDE (5.1) than to solve the time-dependent PDE (5.3).

Let Cl = Cl(Rd) denote the Banach space of functions f = f (x), x ∈ R
d ,

having continuous derivatives up to order l, such that ‖f ‖Cl :=
supx∈Rd

∑
|β|≤l |Dβf (x)| < ∞. We get the following corollary from the previous

theorem by Sobolev’s theorem on embedding of Hm into Cl .

COROLLARY 5.3. If Assumptions 2.5 and 5.1 hold with m > l + d/2 and
nonnegative integer l, then, for some N = N(d, d0, d1, d2,K,p,m),

E max
t∈Tn

‖u(n)(t) − u(t)‖p
X ≤ Nn−p

for all n ≥ 1, where X := Cl and ‖ ‖X denotes the norm in X.

The next corollary can be obtained easily by a standard application of the Borel–
Cantelli lemma.

COROLLARY 5.4. If Assumptions 2.5 and 5.1 hold with p > κ for some κ > 1,
then there is a random variable ξ , such that almost surely

max
t∈Tn

‖u(n)(t) − u(t)‖X ≤ ξn−1+1/κ

for all n ≥ 1, where X is Hm or where X := Cl if m > l + d/2.



SPLITTING-UP METHOD 587

6. An application to nonlinear filtering. Partially observable stochastic dy-
namical systems are often modeled by a pair Zt := (Xt , Yt ) of multidimensional
stochastic processes satisfying some stochastic differential equations with given
coefficients. Here Xt is a d-dimensional process, called the unobservable compo-
nent, or signal process, and Yt is a d0-dimensional process, called the observation
process. In a fairly general situation, the evolution of these processes is governed
by the equations

dXt = h(t,Xt , Yt ) dt + σ(t,Xt , Yt ) dwt + ρ(t,Xt , Yt ) dWt, X0 = ξ,

dYt = H(t,Xt , Yt ) dt + dWt, Y0 = η,
(6.1)

where h(t, x, y) ∈ R
d , σ(t, x, y) ∈ R

d×d̄ , ρ(t, x, y) ∈ R
d×d0 , H(t, x, y) ∈ R

d0

and (wt ,Wt) is a (d̄ + d0)-dimensional Wiener process, independent of the
F0-measurable random vectors ξ , η. The coefficients h, σ , ρ, H are assumed to
be bounded and globally Lipschitz in (x, y) ∈ R

d+d0 , uniformly in t ∈ [0, T ].
The classic problem of nonlinear filtering is to compute at time t the best mean

square estimate for ϕ(Xt) from the observations {Ys : 0 ≤ s ≤ t} for any given
bounded smooth functions ϕ. In other words, one wants to compute the conditional
expectation

E
(
ϕ(Xt)|Ys,0 ≤ s ≤ t

) =
∫

ϕ(x)P (t, dx)

from the data P (0, dx), h, σ , ρ, H and the observation {Ys, s ≤ t} for a given
function ϕ, where P (t, dx) denotes the conditional distribution of Xt , given
{Ys, s ≤ t}.

From [12] one obtains the following result. To formulate it, set α
ij
0 := 1

2(ρρ∗)ij ,

α
ij
1 := 1

2 (σσ ∗)ij and aij := α
ij
0 + α

ij
1 (i, j = 1,2, . . . , d), where ρ∗, σ ∗ denote the

transpose of the matrices ρ, σ .

THEOREM 6.1. Let m ≥ 1 be an integer. Assume that (i) aij have uniformly
bounded derivatives in x up to order m + 2, (ii) h and ρ have uniformly bounded
derivatives in x up to order m+ 1 and H have uniformly bounded derivatives in x

up to order m and (iii) the conditional distribution of ξ given η has a density p0
(with respect to Lebesgue measure), which belongs to Hm. Then the conditional
density πt (x) := P (t, dx)/dx exists and

πt (x) = p(t, x)/
(
p(t),1

)
0,

where p = p(t, x) is the unique solution of the equation

dp(t, x) = {
Dij

(
aij (t, x, Yt )p(t, x)

) + Di

(
hi(t, x, Yt )p(t, x)

)}
dt

+ {
Hk(t, x,Yt )p(t, x) + Di

(
ρik(t, x, Yt )p(t, x)

)}
dY k

t ,
(6.2)

with initial condition p0. Moreover, {p(t) : t ∈ [0, T ]} is a continuous
Hm−1-valued stochastic process and a weakly continuous Hm-valued stochastic
process.
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This theorem describes the analytical properties of the conditional density πt

and presents a way of computing the estimate for ϕ(Xt), via (6.2), called the
Zakai equation (or the Duncan–Mortensen–Zakai equation) for the unnormalized
conditional density pt .

To implement this result in practice, one has to develop numerical methods
to approximate the solution of (6.2) and needs to control the error of the
approximations. Therefore, various methods of approximation have intensively
been studied in the literature.

Notice that for (6.2) the condition of stochastic parabolicity (Assumption 3.2)
requires that the matrix 2aij − (ρρ∗)ij = (σσ ∗)ij be nonnegative definite. Clearly,
this is always satisfied. The degenerate case, σ = 0, is of special interest. In this
case, the representation of the solution of (6.2) by the method of characteristics
gives a relatively simple formula, which does not involve conditional expectation
(see [12]). Using this representation, one can obtain an approximation for the
solution of (6.2) with aij = α

ij
0 , and the error can also be estimated (see [3]).

This motivates the idea of splitting up (6.2) into the equations

du(t, x) = L0(t, Yt )u(t, x) dt + Mk(t, Yt )u(t, x) dY k
t(6.3)

and

dv(t, x) = L1(t, Yt )v(t, x) dt,(6.4)

where

L0(t, y)φ(x) := Dij

(
α

ij
0 (t, x, y)φ(x)

)
,

L1(t, y)φ(x) := Dij

(
α

ij
1 (t, x, y)φ(x)

) + Di

(
hi(t, x, y)φ(x)

)
,

Mk(t, Yt )φ(x) := Hk(t, x, y)φ(x) + Di

(
ρik(t, x, y)φ(x)

)
.

Let Pt (ti)ϕ denote the solution, starting from ϕ, of (6.4) with coefficients frozen
at t = ti , Yt = Yti , where ti := T i/n. Define the approximations pn(ti), p̄n(ti) for
ti ∈ Tn := {T i/n : i := 0,1,2, . . . , n} by pn(0) = p̄n(0) := p0,

pn(ti+1) := Pδ(ti+1)Qti ti+1pn(ti), p̄n(ti+1) := Qti ti+1Pδ(ti)p̄n(ti)

for i = 0,1,2, . . . , n − 1, where δ = T/n and Qstϕ denotes the solution of (6.3)
for t ≥ s, with initial condition v(s) = ϕ. To apply Theorem 5.2 to these
approximations, we need the following assumptions for a fixed integer m ≥ 0 and
real number p ≥ 0.

ASSUMPTION 6.1. The coefficients α0 = (α
ij
0 ) and α1 = (α

ij
1 ) have continu-

ous derivatives in x up to order m + 5, h = (hi) and ρ = (ρik) have continuous
derivatives in x up to order m + 4 and H = (H ik) has continuous derivatives in x

up to order m + 3. All these derivatives are bounded by the constant K .
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ASSUMPTION 6.2. The derivatives in x of α1 and h up to order m + 2 and
m + 1, respectively, have continuous first-order derivatives in t and continuous
second-order derivatives in y, which are bounded by the constant K .

ASSUMPTION 6.3. Almost surely p0 ∈ Hm+3 and E‖p0‖p
m+3 ≤ K .

THEOREM 6.2. Under Assumptions 6.1–6.3, there exists a constant N

depending only on d , d0, d̄ , K , p, m and T , such that

E max
t∈Tn

‖pn(t)−p(t)‖p
X ≤ Nn−p, E max

t∈Tn

‖p̄n(t)−p(t)‖p
X ≤ Nn−p(6.5)

for all integers n ≥ 1, where ‖ · ‖X denotes the norm in X := Hm.

PROOF. We rewrite (6.2) in the form of (2.4) as follows:

dp(t, x) = L0(t, Yt )p(t, x) dt + L1(t, Yt )p(t, x) dt

+ Mk(t, Yt )p(t, x) dWk
t ,

(6.6)

where

Lr(t, Yt )φ(x) := aij
r (t, x)Dij φ(x) + ai

r(t, x)Diφ(x) + ar(t, x)φ(x),

Mk(t, Yt )φ(x) := bi
k(t, x)Diφ(x) + bk(t, x)φ(x),

with random coefficients

a
ij
0 (t, x) := α

ij
0 (t, x, Yt ),

ai
0(t, x) := 2Djα

ij
0 (t, x, Yt ) + Hkρik(t, x, Yt ),

a0(t, x) := Dijα
ij
0 (t, x, Yt ) + HkDiρ

ik(t, x, Yt ) + HkHk(t, x,Yt ),

a
ij
1 (t, x) := α

ij
1 (t, x, Yt ), ai

1(t, x) := 2Djα
ij
1 (t, x, Yt ) + hi(t, x, Yt ),

a1(t, x) := Dijα
ij
1 (t, x, Yt ) + Dih

i(t, x, Yt ),

bi
k(t, x) := ρik(t, x, Yt ), bk(t, x) := Diρ

ik(t, x, Yt ) + Hk(t, x,Yt ).

Clearly, (6.6) satisfies Assumption 2.5 with V 0
t := t and Y k

t := Wk
t , and

Assumption 5.1 holds by virtue of the well-known Itô–Wentzell formula. Hence,
we can finish the proof by applying Theorem 5.2 and Remark 5.1 to (6.6). �

By Sobolev’s embedding and by the Borel–Cantelli lemma, we obtain the
following corollary.

COROLLARY 6.3. If Assumptions 6.1–6.3 hold with m > d/2 + l, where l ≥ 0
is an integer, then estimates (6.5) also hold with X := Cl(Rd) in place of Hm. If
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Assumptions 6.1 and 6.2 hold and E‖p0‖p
m+3 < ∞ for some p > κ and κ > 1,

then there is a finite random variable ξ , such that almost surely

max
t∈Tn

‖pn(t) − p(t)‖X ≤ ξn−1+1/κ, max
t∈Tn

‖p̄n(t) − p(t)‖X ≤ ξn−1+1/κ

for all n ≥ 1, with X := Hm, and if m > l + d/2, then also with X := Cl .

REMARK 6.1. In [3] a version of Theorem 6.2 is given in the time-
homogeneous situation, when the coefficients of (6.1) are independent of Yt ,
p = 2, m = 0, and with max’s in (6.5) being outside of expectations. However, the
number of derivatives required in [3] is smaller. We believe that the latter is actually
due to some kind of confusion, since in [3] the authors use a theorem from [12]
stated for the equations in the usual form, and (6.2) is written in conjugate form.

REMARK 6.2. One could easily consider the most general form of the signal-
observation equations (6.1). In particular, we can put a uniformly nondegenerate
smooth matrix-valued function G(t,Yt) in front of dWt . Then, under natural
assumptions on the smoothness of G, one can get a result similar to Theorem 6.2.
We have chosen not to deal with these generalizations just for simplicity of
notation. Finally, we note that by using weighted Sobolev spaces in place of Hm

one can extend our results to the case of SPDEs with unbounded coefficients.
These kinds of SPDEs are important from the point of view of applications, in
particular, in nonlinear filtering (see, e.g., [7, 15, 16] and the references therein).
However, for the sake of simplicity of presentation, we did not want to cover the
case of unbounded coefficients in this paper.
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