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TRANSIENCE OF SECOND-CLASS PARTICLES
AND DIFFUSIVE BOUNDS FOR ADDITIVE FUNCTIONALS

IN ONE-DIMENSIONAL ASYMMETRIC EXCLUSION PROCESSES

BY TIMO SEPPÄLÄINEN1 AND SUNDER SETHURAMAN2

University of Wisconsin and Iowa State University

Consider a one-dimensional exclusion process with finite-range transla-
tion-invariant jump rates with nonzero drift. Let the process be stationary with
product Bernoulli invariant distribution at density ρ. Place a second-class
particle initially at the origin. For the case ρ �= 1/2 we show that the time
spent by the second-class particle at the origin has finite expectation. This
strong transience is then used to prove that variances of additive functionals
of local mean-zero functions are diffusive when ρ �= 1/2. As a corollary to
previous work, we deduce the invariance principle for these functionals. The
main arguments are comparisons of H−1 norms, a large deviation estimate
for second-class particles and a relation between occupation times of second-
class particles, and additive functional variances.

1. Introduction. Informally, the simple exclusion process updates the motion
of a collection of indistinguishable random walks on the lattice Z

d such that
jumps to already occupied vertices are suppressed. These systems have had
application to a wide variety of scientific problems in physics, traffic, queuing,
biology, etc. In this paper, we exploit a connection between the diffusive behavior
of occupation times, say, at a fixed location on the lattice, and the recurrence-
transience properties of so-called second-class particles in the exclusion model to
prove results in both directions.

Briefly, we survey some of the work for second-class particles and additive
functional fluctuations. The study of the fluctuations of occupation times, or more
generally that of additive functionals, for the exclusion process was begun by
Kipnis and Varadhan [6] where they proved an invariance principle to Brownian
motion under diffusive scaling for reversible processes in equilibrium which have
finite variance. Not all variances of additive functionals are diffusive and the exact
class of diffusive additive functionals for reversible models was characterized by
Sethuraman and Xu [16]. Notably, the occupation times in dimensions d = 1 and 2
are superdiffusive, but in the appropriate scales, t3/4 and

√
t log t respectively, their

fluctuations were described by Kipnis [5]. Varadhan later generalized the Kipnis–
Varadhan theorem to systems with mean-zero jump rates [18]. Subsequently, for
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models whose jump rates possess drift in d ≥ 3, diffusive variance bounds for
all additive functionals was proved along with an associated invariance principle
by Sethuraman, Varadhan and Yau [15]. Recently, in dimensions d = 1 and 2,
invariance principles for some additive functionals for models with drift were
proved provided their variances were diffusive by Sethuraman [13]. One of the
purposes of this article is to supply the needed variance estimates to complete the
story in dimension d = 1 when ρ �= 1/2 (Theorem 2.3). What remains is to capture
the variance behavior for models with drift in dimension d = 2 and also for d = 1
when the density is ρ = 1/2.

Roughly, a second-class particle in the exclusion system is a particle which
moves as a regular particle except that it also exchanges places with regular
particles which jump onto it. In other words, the second-class particle moves
from vertex i to j if it jumps to an open site at j or if a particle at j jumps
to the position i. Hence, the regular particles, first-class particles, do not “see”
the second-class particle. These particles make natural appearances in various
contexts such as in (1) the description of shocks and currents [2], (2) the proofs
of extremality of some invariant measures [9] and as mentioned, (3) the diffusive
behavior of additive functionals. In the third context, it is seen that the transience
of a second-class particle is equivalent to diffusive occupation-time variance
estimates. So, in particular, in dimensions d ≥ 3 by the variance bounds in [15],
one concludes that the second-class particle is transient. One of the main results in
this note is to show that in d = 1 for densities ρ �= 1/2 when the model has drift,
the second-class particle is also transient (Theorem 2.1). What is left open is the
recurrence–transience behavior of the particle in d = 1 when ρ = 1/2 and also in
d = 2 when the system has drift.

The method of proof of the two main results, Theorems 2.1 and 2.3, is to go
back and forth along the bridge linking diffusive additive functional behavior and
transience of second-class particles with the aid of two recent papers, one which
gives a microscopic variational formula for the second-class position in a specific
(K-)exclusion model [12], and one which proves that diffusive variances in one
process with drift is equivalent to diffusive variances in many other processes with
drift [14]. The strategy is to prove a second-class particle large deviation estimate
for a specific exclusion model with drift in d = 1 for ρ �= 1/2 following from a
variational relation proved in [12]. The large deviation result will imply diffusive
additive functional variance bounds for this model. Using [14], we then get that all
models with drift in d = 1 and ρ �= 1/2 have diffusive additive functional bounds.
Therefore, translating back, second-class particles in all models with drift in d = 1
and ρ �= 1/2 are also transient.

2. Definitions and results. To state more carefully the results, we now define
more exactly the exclusion model and the notion of a second-class particle. Let
� = {0,1}Z

d
be the configuration space and let η(t) ∈ � be the state of the process
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at time t . The exclusion configuration is usefully given in terms of occupation
variables η(t) = {ηi(t) : i ∈ Z

d} where ηi(t) = 0 or 1 according to whether the
vertex i ∈ Z

d is empty or full at time t . Let {p(i, j) : i, j ∈ Z
d} be the random

walk or particle transition rates. Throughout this article we concentrate on the
translation-invariant finite-range case: p(i, j) = p(j − i) and p(x) = 0 for |x| > R

some integer R < ∞. In addition, to avoid technicalities, we will also assume that
the symmetrization p̄(i) = (p(i)+p(−i))/2 is irreducible. Also, when R = 1, we
say that p and the associated process are nearest-neighbor.

The evolution of the system η(t) is Markovian. Let {Tt : t ≥ 0} denote the
process semigroup and let L denote the infinitesimal generator. By a local function
φ :� → R we mean a function of a finite number of coordinates.

On local functions φ, (Ttφ)(η) = Eη[φ(η(t))] and

(Lφ)(η) = ∑
i,j

ηi(1 − ηj )
(
φ(ηi,j ) − φ(η)

)
p(j − i),(2.1)

where ηi,j is the “exchanged” configuration, (ηi,j )i = ηj , (ηi,j )j = ηi and
(ηi,j )k = ηk for k �= i, j . The transition rate ηi(1 − ηj )p(j − i) for η → ηi,j

represents the exclusion property. The construction of the infinite particle system
follows from the Hille–Yosida theorem or by graphical methods [7].

The equilibria for the exclusion system are well known. As the exclusion model
is conservative, in that random-walk particles are neither destroyed nor created,
one expects a family of invariant measures indexed according to particle density ρ.
In fact, let Pρ , for ρ ∈ [0,1], be the infinite Bernoulli product measure over Z

d with
marginal Pρ{ηi = 1} = 1 − Pρ{ηi − 0} = ρ. It is shown in [7] that {Pρ :ρ ∈ [0,1]}
are invariant for L. In fact, it is proved in [9] that the Pρ for ρ ∈ [0,1] are also
extremal in the convex set of invariant measures for L.

Let the path measure with initial distribution Pρ be given by Pρ . Let Eµ be
expectation with respect to the measure µ. When the context is clear, we will
denote Eµ for µ = Pρ , or Pρ as simply Eρ .

We now turn to the definition of a second-class particle in the exclusion set-up.
Consider two initial configurations η and η̃ such that η̃i = ηi for all i �= 0 and
η̃0 = 1 − η0 = 1. Let η(t) and η̃(t) be the corresponding exclusion configurations
at time t ≥ 0. By the basic coupling, or “attractive” nature of exclusion processes
[7], we may couple the two processes so that η(t) and η̃(t) also differ at exactly
one vertex at any time t ≥ 0. Let R(t) be the position of this discrepancy, or extra
particle in the η̃(t) system, at time t . Then R(t) describes a second-class particle.
This can be read from the joint generator L̂ of the (η̃(t),R(t)) system acting on
test functions,

(L̂φ)(η̃, r) = ∑
i,j �=r

[
η̃i (1 − η̃j )p(j − i)

](
φ(η̃i,j , r) − φ(η̃, r)

)
+ ∑

k

[
η̃r−kp(k) + (1 − η̃r−k)p(−k)

](
φ(η̃r,r−k, r + k) − φ(η̃, r)

)
.
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Here, the rate η̃r−kp(k) + (1 − η̃r−k)p(−k) represents two possible movements,
namely when a dominant particle in the η̃ configuration moves to the discrepancy
position r and when the discrepancy particle jumps to an empty site at r − k. The
difficulty in the analysis of R(t) is that it is not Markovian in general with respect
to its own history. However, it is notable that when the jump rate p is symmetric,
then the rate for r → r − k simplifies to η̃r−kp(k) + (1 − η̃r−k)p(−k) = p(k) so
that in this case R(t) is a bona fide symmetric random walk.

We now describe the connection between occupation times and second-class
particles known in the folklore. Consider the exclusion system in equilibrium Pρ .
Let f (η) = η0 − ρ be the centered occupation function. Let us compute the
variance of the occupation time of the origin up to time t ,

Eρ

[(∫ t

0

(
η0(s) − ρ

)
ds

)2]
= 2

∫ t

0
(t − s)Eρ[f (η(s))f (η(0))]ds.

We may expand the kernel further,

Eρ[f (η(s))f (η(0))] = Eρ[η0(s)η0(0)] − ρ2

= ρ
{
Pρ[η0(s) = 1 | η0(0) = 1] − Pρ[η0(s) = 1]}

= ρ(1 − ρ)
{
Pρ[η0(s) = 1 | η0(0) = 1]
− Pρ[η0(s) = 1 | η0(0) = 0]}.

To rewrite the last difference further, we couple the initial measures Pρ(· | η0 = 1)

and Pρ(· | η0 = 0) through the basic coupling so that the two systems differ in
only one position at any later time. This discrepancy position is of course the
second-class position in a sea of regular particles distributed initially according to
Pρ(· | η0 = 0). The last line, therefore, under the coupling measure P̄ρ is restated
as ρ(1−ρ)P̄ρ [R(s) = 0]. Evidently then the occupation-time variance satisfies the
following relation with the expected occupation time of the second-class particle:

lim
t→∞

1

t
Eρ

[(∫ t

0
(η0(s) − ρ)ds

)2]
= 2ρ(1 − ρ)

∫ ∞
0

P̄ρ[R(s) = 0]ds.(2.2)

This calculation motivates the following definition.

DEFINITION 2.1. The second-class particle is Pρ -recurrent or transient at 0
if, respectively, ∫ ∞

0
P̄ρ[R(s) = 0]ds = ∞ or < ∞.

One of the main results in this paper is the following.

THEOREM 2.1. For simple exclusion processes in d = 1 with finite-range
translation-invariant jump rates p which have drift,

∑
i ip(i) �= 0, the second-class

particle is Pρ -transient at 0 when the equilibrium density ρ �= 1/2.
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Central to the proof of this theorem is the large deviation estimate below, of
interest in its own right.

THEOREM 2.2. For the simple exclusion process in d = 1 with totally asym-
metric nearest-neighbor translation-invariant jump rates p such that p(1) = 1 and
p(i) = 0 for all i �= 1, there exist constants A = A(ε,ρ) and C = C(ε,ρ) > 0 such
that for all t > 0,

P̄ρ

[|R(t) − (1 − 2ρ)t| > εt
] ≤ Ae−Ct .

The coefficient v(ρ,p) = (1 − 2ρ)
∑

i ip(i) (which reduces to 1 − 2ρ in the
above theorem) is the limiting velocity of the second-class particle. It was proved
by Ferrari [1] that

lim
t→∞

R(t)

t
= v(ρ,p) a.s. (P̄ρ)(2.3)

for nearest-neighbor translation-invariant processes. Our proof of Theorem 2.2 is
independent of Ferrari’s law of large numbers and so gives another proof of (2.3)
in the totally asymmetric case. At ρ �= 1/2, the limit (2.3) gives transience in the
usual sense,

P̄ρ

[
R(·) visits 0 finitely many times

] = 1.(2.4)

But, unfortunately, we could not directly convert (2.4) to Pρ -transience at the
origin. The converse holds however. As the jump rates of R(t) are bounded,∑

k

[
ηr−kp(k) + (1 − ηr−k)p(−k)

] ≤ ∑
k

[
p(k) + p(−k)

]
< ∞

uniformly in the environment, we can couple an independent exponential r.v.
U having intensity

∑
k[p(k) + p(−k)] with the jump time variable τ each time

the second-class particle visits the origin. Therefore,∫ ∞
0

P̄ρ[R(t) = 0]dt ≥ 1∑
k[p(k) + p(−k)] Ēρ

[
# visits R(·) makes to the origin

]
and so, Pρ -transience implies usual transience. A similar argument shows that
recurrence, in the usual sense,

P̄ρ

[∃ {tn}, tn ↑ ∞ such that R(tn) = 0
] = 1,

implies Pρ -recurrence.
Other related results on the second-class particle are that R(t) is Pρ -recurrent

in d = 1,2 when the jump rate is mean zero,
∑

i ip(i) = 0. Also, in d ≥ 3, R(t) is
Pρ -transient no matter what the jump rate p is. See [13] Section 6 for details and
extensions.

The open cases are when the jump rate has drift in d = 2, and in d = 1 with
ρ = 1/2. The latter situation is quite tantalizing as there seems to be intuition for
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both Pρ -recurrence and Pρ -transience. On the one hand, it should be Pρ -recurrent
due to the analogy with random walk with zero velocity. But, on the other hand,
there could be a remnant of the ballistic behavior of second-class particles in a
rarefaction fan which leads to transient behavior. That is, it might be possible
that R(t) flips a fair coin and on the basis of the toss would end up eventually
exclusively on the left or right of the origin. See [3] for details about the rarefaction
fan behavior. The referee of this article, however, points out that R(t) in this
case is conjectured to be superdiffusive, with order Ē1/2[R2(t)] = O(t4/3) ([17],
page 265) which should exclude this ballistic behavior.

We now turn to our results for the diffusive behavior of additive functionals. Let
f be a local mean-zero function, Eρ[f ] = 0. Define

Af (t) =
∫ t

0
f (η(s)) ds

as the additive functional of f up to time t . Denote the variance of Af (t) as
σ 2

t (f, ρ,p) = Eρ[(Af (t))2] and denote also the limiting variance, if it exists,

σ 2(f,ρ,p) = lim
t→∞ t−1σ 2

t (f, ρ,p).

THEOREM 2.3. For simple exclusion processes in d = 1 with finite-range
translation-invariant jump rates p with drift,

∑
i ip(i) �= 0 and density ρ �= 1/2,

we have, for any local mean-zero function f , that σ 2(f,ρ,p) exists and
σ 2(f,ρ,p) < ∞.

The finiteness of the limiting variance gives the following corollary.

COROLLARY 2.1. In the case of Theorem 2.3, we have the weak convergence
to Brownian motion B in C[0,∞),

lim
α→∞α−1/2

∫ αt

0
f (η(s)) ds = B

(
σ 2(f,ρ,p)t

)
.(2.5)

Some remarks on the history of Corollary 2.1 are in order. The limiting variance
σ 2(f,ρ,p), or diffusion coefficient, has been itself an object of much attention.
Only in a few specific cases has it been explicitly computed, and for the most part
almost all the theoretical work has concentrated on existence proofs. Below, some
of the results are summarized.

When p is symmetric in all d ≥ 1, the coefficient is known to be well
defined and is positive for all nonconstant local functions f , and in fact half the
diffusion coefficient is also the square of the H−1 norm of f , σ 2(f,ρ,p)/2 =
‖f ‖2−1(ρ,p) [6]. Conditions on f guaranteeing ‖f ‖−1(ρ,p) < ∞ were later
established in [16] (see proof of Lemma 4.1 for explicit formulas). In particular,
as noted in the Introduction, the occupation function f (η) = η0 − ρ is not in H−1
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in dimensions d = 1 and 2, the correct orders in d = 1,2 being superdiffusive,
σ 2

t (η0 − ρ,ρ,p) ∼ t3/2 and t log t [5].
For asymmetric but mean-zero p, it is shown, for all d ≥ 1 and all nonconstant

local f , that 0 < σ 2(f,ρ,p) < ∞ if and only if f ∈ H−1(ρ, p̄) [18, 13].
Also, for asymmetric p with drift, it is proved that 0 < σ 2(f,ρ,p) < ∞ exists

in d ≥ 3 for all (nonconstant) mean-zero local functions f [15, 13] (the same
condition as for symmetric p in d ≥ 3). In d = 1,2, however, less precise results
are known. It is shown that 0 < σ 2(f,ρ,p) exists when f is nonconstant and
increasing; existence and finiteness of σ 2(f,ρ,p) are also shown when f =
f+ − f−, the difference of two increasing mean-zero functions whose variances
are finite, σ 2(f±, ρ,p) < ∞ [13]. Notably, though, it is not shown in [13] when
0 < σ 2(f,ρ,p) < ∞ occurs in general.

However, it is shown in [14] that for every p there is a nearest-neighbor jump
rate p′ such that, if both σ 2(f,ρ,p) and σ 2(f,ρ,p′) exist, then σ 2(f,ρ,p) is
bounded (positive) if and only if σ 2(f,ρ,p′) is bounded (positive).

The contribution of Theorem 2.3 above therefore is the statement that
σ 2(f,ρ,p) < ∞ for local mean-zero f when d = 1, ρ �= 1/2 and p has drift.
The open problem left then is to characterize σ 2(f,ρ,p) in d = 2, and in d = 1
for ρ = 1/2, when p possesses drift.

Existence and finiteness of the diffusion coefficient is half the question, the other
half being “Does a central limit theorem hold?” The answer is basically “Yes.”

Kipnis and Varadhan established the invariance principle (2.5) for p symmetric
when f ∈ H−1 by martingale approximation [6]; when f /∈ H−1, some invariance
principles are proved in superdiffusive scalings [5, 13]. When p is asymmetric
but mean-zero, Varadhan generalized this method and proved the invariance
principle for f such that σ 2(f,ρ, p̄) < ∞ [18]. When p is asymmetric with drift,
the invariance principle was established for all mean-zero local functions f in
d ≥ 3 [15]. In d = 1,2 when p has drift, the invariance principle was proved
for increasing mean-zero f ∈ L2(Pρ) such that σ 2(f,ρ,p) < ∞ and also for
functions of the form f = f+ − f−, the difference of local increasing mean-zero
functions whose variances are finite, σ 2(f±, ρ,p) < ∞, through techniques with
associated r.v.’s [13]. Corollary 2.1 extends this result to all mean-zero local f in
d = 1 when ρ �= 1/2 and p has drift. Still open, however, are the cases in d = 2,
and d = 1 when ρ = 1/2, when p is with drift.

The plan of the paper is the following: in Section 3, we prove the hard estimate
Theorem 2.2. In Section 4, we prove the rest of the results, Theorems 2.1 and 2.3
and Corollary 2.1 in short succession.

3. Proof of large deviation bound Theorem 2.2. Now we restrict ourselves
to the totally asymmetric, nearest neighbor case, so p(1) = 1 and p(i) = 0 for
i �= 1. If ρ = 0 or 1, R(t) is a Poisson process and the desired estimate is trivial.
So we assume ρ ∈ (0,1). To prove Theorem 2.2 we turn to the variational coupling
representation of the totally asymmetric exclusion process.
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3.1. The second-class particle in the variational coupling. To describe this
coupling, we will need to recall some details of the graphical construction of the
exclusion model. We perform this construction of the exclusion process η(t) in
terms of a collection {Di : i ∈ Z} of mutually independent rate 1 Poisson jump
time processes on the time line (0,∞). Let (	,F ,P ) denote a probability space
on which the {Di} are defined, and independently of them the initial configuration
(ηi(0) : i ∈ Z) of the exclusion process. In the construction we represent η(t) in
terms of “current particles.” These form a process z(t) = (zi(t) : i ∈ Z) of labeled
particles that move on Z subject to the constraint

0 ≤ zi+1(t) − zi(t) ≤ 1 for all i ∈ Z and t ≥ 0.(3.1)

In the graphical construction, zi attempts to jump one step to the left at epochs
of Di . If the execution of the jump would produce a configuration that violates
(3.1), the jump is suppressed. We can summarize the jump rule like this:

If t is an epoch of Di , then

zi(t) = max
{
zi(t−) − 1, zi−1(t−), zi+1(t−) − 1

}
.(3.2)

We arrange things so that η gives the increments of z. Given the initial
configuration {ηi(0)}, the initial configuration {zi(0)} is defined on 	 by

z0(0) = 0, zi(0) = ∑
1≤j≤i

ηj (0) for i > 0

and(3.3)

zi(0) = − ∑
i<j≤0

ηj (0) for i < 0.

The choice z0(0) = 0 is merely a convenient normalization. Any random choice
independent of {ηi(0)} and {Di} would do.

We can construct the process z(t) by applying the jump rule (3.2) inductively to
jump times, once we exclude an exceptional null set of “bad” realizations of {Di}.
We always assume that the realization {Di} satisfies these requirements:

1. There are no simultaneous jump attempts.
2. Each Di has only finitely may epochs in every bounded time interval.
3. Given any t1 > 0, there are arbitrarily faraway indices i0  0  i1 such that

Di0 and Di1 have no epochs in the time interval [0, t1].
These properties are satisfied almost surely, so the evolution z(t), 0 ≤ t < ∞, is

well defined for almost every realization of {Di}. Then the process η(t) is defined
for t > 0 by

ηi(t) = zi(t) − zi−1(t).(3.4)

It should be clear that η(t) operates as an exclusion process with jump probabilities
p(1) = 1 and p(i) = 0 for i �= 1. The z-process represents the current of η, for
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zi(0) − zi(t) equals the number of exclusion particles that have jumped across the
bond (i, i + 1) during the time interval (0, t].

For the variational coupling we construct a family {wk :k ∈ Z} of auxiliary
processes on the space 	. Each wk(t) = (wk

i (t) : i ∈ Z) is a process of the same
type as z(t). The initial configuration wk(0) depends on the initial position zk(0),

wk
i (0) =

{
zk(0), i ≥ 0,

zk(0) + i, i < 0.
(3.5)

The processes {wk} are coupled to each other and to z through the Poisson
processes {Di}. However, the jump rule for wk includes a translation of the index
at epochs t of Di+k :

wk
i (t) = max

{
wk

i (t−) − 1,wk
i−1(t−),wk

i+1(t−) − 1
}
.(3.6)

The increments process wk
i−k(t) − wk

i−k−1(t) represents an exclusion process
where initially the lattice is full from site k to the left, and empty from site k + 1
to the right. The point of introducing the processes {wk} lies in this “variational
coupling” lemma.

LEMMA 3.1. For all i ∈ Z and t ≥ 0,

zi(t) = sup
k∈Z

wk
i−k(t) a.s.(3.7)

This lemma is proved by induction on jump times, assuming properties (1)–(3)
above for {Di}. For details, see [11], Lemma 4.2.

For Theorem 2.2 we need deviation bounds for the processes wk . For this we
decompose wk into a sum of the initial position defined by (3.5) and the increment
determined by the Poisson processes through (3.6). To this end, define a family of
processes {ξk} by

ξk
i (t) = zk(0) − wk

i (t) for i ∈ Z, t ≥ 0.

The process ξk does not depend on zk(0), and depends on the superscript k only
through a translation of the i-index of the Poisson processes {Di}. Initially

ξk
i (0) =

{
0, i ≥ 0,

−i, i < 0.
(3.8)

Dynamically, at epochs t of Di+k ,

ξk
i (t) = min

{
ξk
i (t−) + 1, ξ k

i−1(t−), ξk
i+1(t−) + 1

}
.

We think of ξk as a growth model on the upper half plane, so that ξk
i gives the

height of the interface above site i. It can be equivalently defined by specifying
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that each ξk
i advances independently at rate 1, provided these inequalities are

preserved:

ξk
i (t) ≤ ξk

i−1(t) and ξk
i (t) ≤ ξk

i+1(t) + 1.(3.9)

In terms of ξ , (3.7) can be expressed as

zi(t) = sup
k∈Z

{
zk(0) − ξk

i−k(t)
}
.(3.10)

Next we include the second-class particle R(t) in the variational coupling
picture. Recall the definition of R(t) as the location of the unique discrepancy
between two processes η and η̃ that initially agree everywhere except at R(0),
where η̃R(0)(0) = 1 − ηR(0)(0) = 1. [Earlier we took R(0) = 0 but that is not
necessary for what follows here.]

We define η and η̃ by (3.4), in terms of processes z and z̃ that initially satisfy

z̃i (0) = zi(0) for i ≤ R(0) − 1
and

z̃i (0) = zi(0) + 1 for i ≥ R(0).

It may happen that z̃0(0) �= 0, but that is of no consequence. We make the
processes z and z̃ obey the same Poisson processes {Di} through the jump
rule (3.2), so this is the basic coupling. One can prove that at all times t ≥ 0 there
is a unique discrepancy marked by R(t),

z̃i (t) = zi(t) for i ≤ R(t) − 1

and

z̃i (t) = zi(t) + 1 for i ≥ R(t).

(3.11)

Using (3.11), we prove a variational representation for R(t).

PROPOSITION 3.1. Almost surely, for all t ≥ 0,

R(t) = inf
{
i ∈ Z : zi(t) = zk(0) − ξk

i−k(t) for some k ≥ R(0)
}
.(3.12)

PROOF. The claim (3.12) will follow from proving

if i < R(t), then zi(t) > zk(0) − ξk
i−k(t) for all k ≥ R(0)(3.13)

and

if i ≥ R(t), then zi(t) = zk(0) − ξk
i−k(t) for some k ≥ R(0).(3.14)

To contradict (3.13), suppose i < R(t) and zi(t) = zk(0) − ξk
i−k(t) for some

k ≥ R(0). Then by (3.11),

z̃i (t) = z̃k(0) − ξk
i−k(t) − 1,
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which contradicts the variational formula (3.10) for process z̃. This contradiction
proves (3.13).

To prove (3.14), let i ≥ R(t). Suppose that for some k < R(0), z̃i (t) = z̃k(0) −
ξk
i−k(t). Then by (3.11),

zi(t) + 1 = zk(0) − ξk
i−k(t).

This contradicts (3.10), so it must be that z̃i (t) = z̃k(0) − ξk
i−k(t) for some

k ≥ R(0). Again by (3.11), this implies zi(t) = zk(0) − ξk
i−k(t). This proves

(3.14). �

3.2. Auxiliary results. As mentioned, all the processes ξk have the same
distribution, because the effect of the superscript k is only to translate the index
of the Poisson jump time processes {Di}. Let us write ξ to simultaneously denote
any one of them. A law of large numbers is given by

lim
t→∞ t−1ξ[tx](t) = g(x) almost surely,(3.15)

where g is defined by

g(x) =


−x, x < −1,

(1/4)(1 − x)2, −1 ≤ x ≤ 1,

0, x ≥ 1.

(3.16)

This result goes back to Rost [8]. For ξ we have these large deviation bounds.

PROPOSITION 3.2. Let x ∈ R and ε > 0. Then there exists a finite positive
constant C such that for all t > 0,

P
(
ξ[tx](t) ≥ tg(x) + tε

) ≤ exp(−Ct2)(3.17)

and

P
(
ξ[tx](t) ≤ tg(x) − tε

) ≤ exp(−Ct).(3.18)

PROOF. We can infer this proposition from the results in Seppäläinen [10] via
a simple mapping of the lattice. The first step is to convert ξ into a last-passage
model. Define the passage times Li,j by

Li,j = inf{t ≥ 0 : ξi(t) ≥ j}(3.19)

for i ∈ Z and j ≥ max{0,−i}. From the rules of ξ we infer the boundary conditions
L−i,i = Li,0 = 0 for i ≥ 0, and the equation

Li,j = max
{
Li−1,j ,Li,j−1,Li+1,j−1

} + Yi,j for j > max{0,−i},
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where Yi,j is a rate 1 exponential waiting time, independent of the L-variables in
braces on the right-hand side. Applying this relation inductively leads to

Li,j = max
π

∑
u∈π

Yu,(3.20)

where the maximum is over lattice paths π = {(0,1) = (i0, j0), (i1, j1), . . . ,

(in, jn) = (i, j)} that take three types of steps:

(im+1, jm+1) − (im, jm) = (−1,1), (0,1), or (1,0) for each m.

Equations (3.19) and (3.20) give two different constructions of the process {Li,j }:
in (3.19) in terms of the Poisson processes {Di}, but in (3.20) in terms of the
i.i.d. exponential random variables {Yi,j }. The last-passage formulation (3.20) is
convenient for large deviation analysis. Corresponding to (3.15) and (3.16) we
have the strong law of large numbers,

lim
t→∞ t−1L[tx],[ty] = γ (x, y) ≡ (√

x + y + √
y
)2

for y > 0 ∨ (−x).(3.21)

The connection between the limits in (3.15) and (3.21) is, naturally enough, that
the limiting interface g is a level curve of the limiting passage time γ (x, g(x)) = 1
for −1 ≤ x ≤ 1.

Now (3.17) and (3.18) will follow from proving

P
(
L[tx],[ty] ≤ tγ (x, y) − tε

) ≤ exp(−Ct2)(3.22)

and

P
(
L[tx],[ty] ≥ tγ (x, y) + tε

) ≤ exp(−Ct).(3.23)

This is exactly what is proved in [10] for a passage-time process {Tk,l : (k, l) ∈ N
2}

that is essentially the same as {Li,j : i ∈ Z, j ≥ 1 + (0 ∨ (−i))}. Here N =
{1,2,3, . . .} is the set of natural numbers. To define Tk,l , let {Wk,l : (k, l) ∈ N

2}
be i.i.d. exponential mean 1 random variables, and set

Tk,l = max
σ

∑
u∈σ

Wu,(3.24)

where the maximum is over lattice paths σ = {(1,1) = (k0, l0), (k1, l1), . . . ,

(kn, ln) = (k, l)} in N
2 that take only upright steps,

(km+1, lm+1) − (km, lm) = (0,1) or (1,0) for each m.

To find the correspondence between Li,j and Tk,l , observe first that the optimal
path π in (3.20) never uses a (0,1)-step because such a step can be replaced by a
(−1,1)-step followed by a (1,0)-step. So in (3.20), let us consider only paths π

with steps (−1,1) and (1,0). Let  be the bijective map from {(i, j) ∈ Z × N :
j ≥ 1 + (0 ∨ (−i))} onto N

2 given by (i, j) = (i + j, j). Then under  and −1

the paths π and σ map onto each other. If in (3.24) we take Wk,l = Y−1(k,l), then
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Li,j = T(i,j ). Combining Theorems 4.1, 4.2 and 4.4 in [10] gives the estimates
(3.22) and (3.23) with L replaced by T , and with γ (x, y) replaced by the limit
γ̃ (x, y) = (

√
x + √

y)2 of t−1T[tx],[ty] . Via  the estimates for T become exactly
(3.22) and (3.23) for L. �

REMARK. From the work of Johansson [4] one can get better estimates for
the distribution of T[tx],[ty], but this is not needed for our purposes.

LEMMA 3.2. Fix k < l. Then almost surely ξk
i−k(t) ≤ ξ l

i−l(t) for all i ∈ Z and
t ≥ 0.

PROOF. The statement is valid at time t = 0 by (3.8), and consequently valid
at all t ≥ 0 because the coupling preserves ordering. (Note that both ξk

i−k and ξ l
i−l

jump at epochs of Di .) �

LEMMA 3.3. Let a < x − 1 < x + 1 < b. Then there exists a finite constant
C ∈ (0,∞) such that for all t > 0,

P

(
z[tx](t) �= max[ta]≤k≤[tb]

{
zk(0) − ξk[tx]−k(t)

}) ≤ exp(−Ct).

PROOF. The initial arrangement (3.8) and the constraint (3.9) together imply
that for j > 0, the first jump of ξj cannot happen before the first jump of ξj−1 and
correspondingly for j < 0. Since waiting times are exponential, it follows that for
any j ∈ Z, the time when ξj first jumps is distributed as the sum of |j | + 1 i.i.d.
rate 1 exponential random variables. Since j = [tx] − [ta] and j = [tx] − [tb]
both satisfy |j | ≥ t (1 + δ) for some δ > 0 for large enough t , standard i.i.d. large
deviation bounds give

P
(
ξ

[ta]
[tx]−[ta](t) = 0 and ξ

[tb]
[tx]−[tb](t) = [tb] − [tx]

)
≥ 1 − e−Ct .

To prove the lemma, it remains to check that on the event{
ξ

[ta]
[tx]−[ta](t) = 0 and ξ

[tb]
[tx]−[tb](t) = [tb] − [tx]

}
we have

z[tx](t) = max[ta]≤k≤[tb]
{
zk(0) − ξk[tx]−k(t)

}
.

This follows from the constraints on ξ and from (3.1): for k < [ta],
zk(0) − ξk[tx]−k(t) = zk(0) ≤ z[ta](0) = z[ta](0) − ξ

[ta]
[tx]−[ta](t)
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and for k > [tb],
zk(0) − ξk[tx]−k(t) = zk(0) − (k − [tx]) ≤ z[tb](0) − ([tb] − [tx])

= z[ta](0) − ξ
[tb]
[tx]−[tb](t).

This shows that indices outside the range [ta] ≤ k ≤ [tb] cannot alter the
supremum. �

3.3. Proof of Theorem 2.2. Now return to the setting of Theorem 2.2. Fix
ρ ∈ (0,1). Place initially a second-class particle at the origin, so R(0) = 0 and
η0(0) = 0 with probability 1. For i �= 0 the initial occupation variables ηi(0) are
i.i.d. with P (ηi(0) = 1) = ρ. And then the initial configuration {zi(0)} is defined
by (3.3), with z−1(0) = z0(0) = 0. Theorem 2.2 is proved in two steps, the lower
tail and upper tail estimate. We let A and C denote finite positive constants whose
values may change from one inequality to the next but never depend on t .

3.3.1. Lower tail bound. Let r = 1 − 2ρ throughout the proof, and ε > 0. In
this subsection we prove

P
(
R(t) ≤ tr − tε

) ≤ A exp(−Ct).(3.25)

By statement (3.14) and Lemma 3.3 applied to x = r − ε, we get

P
(
R(t) ≤ tr − tε

)
≤ P

(
z[t (r−ε)](t) = zk(0) − ξk[t (r−ε)]−k(t) for some k ≥ 0

)
≤ e−Ct + P

(
z[t (r−ε)](t) = zk(0) − ξk[t (r−ε)]−k(t) for some 0 ≤ k ≤ bt

)
.

Check that ρy − g(r − ε − y) is strictly decreasing for y ≥ −ε. Choose δ > 0 so
that

−ρε − g(r) ≥ ρy − g(r − ε − y) + 5δ for all y ≥ 0.(3.26)

Choose a partition 0 = y0 < y1 < · · · < yn = b of [0, b] so that yi+1 − yi < δ for
all i. Then it follows that

−tρε − tg(r) ≥ tρyi − tg(r − ε − yi−1) + 4δt

(3.27)
for all t > 0, 1 ≤ i ≤ n.

Note that, by the ordering of the zk’s and by Lemma 3.2,

zk(0) − ξk[t (r−ε)]−k(t) ≤ z[tyi ](0) − ξ
[tyi−1]
[t (r−ε)]−[tyi−1](t)

(3.28)
for all [tyi−1] ≤ k ≤ [tyi].
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Continue the estimation from above. First use (3.28), and note that by (3.10) that
z[t (r−ε)](t) ≥ zj (0) − ξ

j
[t (r−ε)]−j (t) for j = −[tε]. Then use (3.27):

P
(
R(t) ≤ tr − tε

)
≤ e−Ct +

n∑
i=1

P
(
z[t (r−ε)](t) = zk(0) − ξk[t (r−ε)]−k(t)

for some tyi−1 ≤ k ≤ tyi

)
≤ e−Ct +

n∑
i=1

P
(
z[t (r−ε)](t) ≤ z[tyi ](0) − ξ

[tyi−1]
[t (r−ε)]−[tyi−1](t)

)

≤ e−Ct +
n∑

i=1

P
(
z−[tε](0) − ξ

−[tε]
[t (r−ε)]+[tε](t) ≤ z[tyi ](0) − ξ

[tyi−1]
[t (r−ε)]−[tyi−1](t)

)

≤ e−Ct +
n∑

i=1

{
P

(
z−[tε](0) ≤ −tρε − δt

)
+ P

(
ξ

−[tε]
[t (r−ε)]+[tε](t) ≥ tg(r) + δt

)
+ P

(
z[tyi ](0) ≥ tρyi + δt

)
+ P

(
ξ

[tyi−1]
[t (r−ε)]−[tyi−1](t) ≤ tg(r − ε − yi−1) − δt

)}
≤ Ae−Ct .

In the last step we use Proposition 3.2 for the probabilities involving ξ , and
standard i.i.d. large deviation estimates for the probabilities involving z.

3.3.2. Upper tail bound. It remains to prove

P
(
R(t) > tr + tε

) ≤ A exp(−Ct).(3.29)

The argument is similar. By statement (3.13) and Lemma 3.3 applied to x = r + ε,
we get

P
(
R(t) > tr + tε

)
≤ P

(
z[t (r+ε)](t) > zk(0) − ξk[t (r−ε)]−k(t) for all k ≥ 0

)
≤ P

(
z[t (r+ε)](t) = zk(0) − ξk[t (r−ε)]−k(t) for some k < 0

)
≤ e−Ct + P

(
z[t (r+ε)](t) = zk(0) − ξk[t (r+ε)]−k(t) for some at ≤ k < 0

)
.

Check that ρy − g(r + ε − y) is strictly increasing for y ≤ ε. Choose δ > 0 so that

ρε − g(r) ≥ ρy − g(r + ε − y) + 5δ for all y ≤ 0.(3.30)

Choose a partition a = y0 < y1 < · · · < yn = 0 of [a,0] so that yi+1 − yi < δ for
all i. Then

tρε− tg(r) ≥ tρyi − tg(r +ε−yi−1)+4δt for all t > 0, 1 ≤ i ≤ n.(3.31)
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Reasoning as we did for the lower tail,

P
(
R(t) > tr + tε

)
≤ e−Ct +

n∑
i=1

P
(
z[tε](0) − ξ

[tε]
[t (r+ε)]−[tε](t) ≤ z[tyi ](0) − ξ

[tyi−1]
[t (r+ε)]−[tyi−1](t)

)

≤ e−Ct +
n∑

i=1

{
P

(
z[tε](0) ≤ tρε − δt

)
+ P

(
ξ

[tε]
[t (r+ε)]−[tε](t) ≥ tg(r) + δt

)
+ P

(
z[tyi ](0) ≥ tρyi + δt

)
+ P

(
ξ

[tyi−1]
[t (r+ε)]−[tyi−1](t) ≤ tg(r + ε − yi−1) − δt

)}
≤ Ae−Ct .

This completes the proof of Theorem 2.2.

4. Proofs of Theorems 2.1, 2.3 and Corollary 2.1. The strategy of proof
of the main theorems is to use the second-class estimate and relation between
occupation times and second-class particles, Theorem 2.2 and (2.2), to establish
Theorem 2.3 for the particular totally asymmetric exclusion process in d = 1 where
p(1) = 1 and p(i) = 0 for i �= 1. Then, quoting a variance comparison result
(Proposition 4.2 below), we generalize the particular case to the full statement
of Theorem 2.3. Then, using again the relation between occupation times and
second-class particles (2.2), we get Theorem 2.1. Corollary 2.1 follows as an easy
consequence.

We will need a few preliminary results proved in [2], [13] and [14]. For I =
(i1, . . . , ik) ⊂ Z

d composed of distinct vertices and k ≥ 1, define “centered” and
“monotone” k-point functions respectively as

C
ρ
I (η) = (ηi1 − ρ)(ηi2 − ρ) · · · (ηik − ρ)

and
M

ρ
I (η) = (ηi1ηi2 · · ·ηik ) − ρk.

It is useful to note that the monotone functions M
ρ
I (η) are increasing local

functions of η. Observe now, for any local function f (η), that there exists K =
Kf < ∞ such that f can be represented in terms of a finite linear combination of
centered or monotone functions,

f = Eρ[f ] +
K∑

k=1

∑
|I |=k

αIC
ρ
I

= Eρ[f ] +
K∑

k=1

∑
|I |=k

βIM
ρ
I

with respect to some constants αI and βI .
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LEMMA 4.1. For any exclusion process with finite-range jump rates p and
any ρ ∈ [0,1] we have the following variance estimates. There exists a constant
D1 = D1(ρ,p) such that, for all I ⊂ Z

d such that |I | = k, we have

σ 2
t (C

ρ
I , ρ,p) ≤ D1t,

when k ≥ 3 in d = 1; k ≥ 2 in d = 2, and k ≥ 1 in d ≥ 3. Also, there exist constants
D2 = D2(ρ,p) and D3 = D3(ρ,p) such that, for all i ∈ Z

d ,

σ 2
t (C

ρ
i − C

ρ
0 ) ≤ D2t

and for all i, j ∈ Z
d ,

σ 2
t (C

ρ
(ij) − C

ρ
(01)) ≤ D3t.

PROOF. The proof follows directly from [13], Lemma 3.9 [which bounds
σ 2(f,ρ,p)t ≤ 10t‖f ‖−1(ρ, p̄) for local f ] and [13], Lemma 3.4 [which bounds

‖f ‖−1(ρ, p̄) < ∞ ⇐⇒



Eρ[f ], ∑
|I |=1

αI ,
∑

|I |=2

αI = 0, when d = 1,

Eρ[f ], ∑
|I |=1

αI = 0, when d = 2,

Eρ[f ] = 0, when d ≥ 3,

in terms of the centered basis representation]. �

Evidently, from this lemma and the inequality (a + b)2 ≤ 2a2 + 2b2, the only
variances of centered functions not bounded in d = 1 are those of C

ρ
0 and C

ρ
(01),

and in d = 2 of C
ρ
0 . The next lemma gives a relation between the two functions in

d = 1.

LEMMA 4.2. We have in d = 1 that

(η0 − ρ)(η1 − ρ)

= [ρ(1 − ρ) − η0(1 − η1)] + (1 − 2ρ)(η0 − ρ) + ρ[(η0 − ρ) − (η1 − ρ)].

The proof follows from easy algebra.
In d = 1, the function c(η) = η0(1 − η1) arises in the study of the particle

current across the bond 0 − 1. Let N0,1(t) be the number of particles which
cross from 0 to 1 in time t . Then N0,1(t) is a counting process with compensator
Ac(t) = ∫ t

0 p(1)η0(s)(1 − η1(s)) ds so that M0,1(t) = N0,1(t) − Ac(t) is a square
integrable martingale with Eρ[M2

0,1(t)] = p(1)ρ(1 − ρ)t . The current has been
intensively studied in [2].
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LEMMA 4.3. For the totally asymmetric nearest-neighbor exclusion process
in d = 1 with jump rate p, p(1) = 1 and p(i) = 0 for i �= 1, we have that

lim
t→∞

1

t
Eρ

[(
N0,1(t) − p(1)ρ(1 − ρ)t

)2] = ρ(1 − ρ)|1 − 2ρ|

and so, for all large t ,

σ 2
t

(
c(η) − ρ(1 − ρ),ρ,p

) ≤ 3ρ(1 − ρ)[1 + |1 − 2ρ|]t.

PROOF. The variance of N0,1(t) is explicitly computed in [2], Theorem 1.
With the variance bound and the square martingale estimate, the inequality
(a + b)2 ≤ 2a2 + 2b2 gives the last line.

Alternatively, one can bypass the careful computation in [2] by observing that
N0,1(t) has negatively correlated increments and therefore has variance O(t).
Indeed, let N1,0(t) be the number of particles crossing from 1 to 0 in time t and
write

Eρ

[(
N0,1(t) − ρ(1 − ρ)t

)(
N0,1(t + s) − N0,1(t) − ρ(1 − ρ)s

)]
= Eρ

[(
N0,1(t) − ρ(1 − ρ)t

)
Eη(t)[N0,1(s) − ρ(1 − ρ)s]]

=
∫

E∗
η[N1,0(t) − ρ(1 − ρ)t]Eη[N0,1(s) − ρ(1 − ρ)s]dPρ

by time reversal at time t in the last line where ∗ refers to the reversed process (for
which also Pρ is invariant).

Now, the functions φ(η) = E∗
η[N1,0(t) − ρ(1 − ρ)t] and ψ(η) = Eη[N0,1(s) −

ρ(1 − ρ)s] have opposite monotonicities. That is, suppose η and η′ are two
configurations such that ηi = η′

i for all i �= x and ηx = 1 − η′
x = 0 for an x ≤ 0.

By the basic coupling, the extra particle at x in the η′ configuration is a second-
class particle. Let N ′

0,1(t) be the number of particles crossing from 0 to 1 in time t

for the process begun at η′. A moment’s thought now convinces that when the
second-class particle is to the left of 0 or to the right of 1 at time t , the numbers
N0,1(t) = N ′

0,1(t) and N0,1(t) = N ′
0,1(t) + 1, respectively. Therefore, ψ increases

if η is increased to the left of 0. Also, putting the extra particle initially at x ≥ 1
gives by an analogous argument that ψ decreases if η is increased to the right
of 1. Similarly, as the jump rates are reversed in the adjoint process, we have that
φ decreases (increases) when η is increased to the left of 0 (increased to the right
of 1).

Finally, as Pρ is product measure, and therefore FKG, we have
∫

φ(η)ψ(η)

× dPρ ≤ Eρ[φ]Eρ[ψ] = 0. �

As a consequence, we have the following statement.
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LEMMA 4.4. For the totally asymmetric nearest-neighbor exclusion processes
in d = 1 with jump rate p, p(1) = 1 and p(i) = 0 for i �= 1, we have when ρ �= 1/2
that σ 2

t (C
ρ
01, ρ,p) ≤ D1t if σ 2

t (C
ρ
0 , ρ,p) ≤ D2t for some constants D1,D2. When

ρ = 1/2, already σ 2(C
ρ
01, ρ,p) ≤ D3t for some constant D3.

PROOF. The bounds for ρ �= 1/2 and ρ = 1/2 follow directly from Lem-
mas 4.2 and 4.3. �

We now state as a proposition the consequence of Theorem 2.2 using the
relation (2.2).

PROPOSITION 4.1. For the totally asymmetric nearest-neighbor exclusion
process in d = 1 with jump rate p(1) = 1 and p(i) = 0 for i �= 1, we have when
ρ �= 1/2 that

σ 2
t (C

ρ
0 , ρ,p) ≤ Dt

for some constant D = D(ρ).

PROOF. From Theorem 2.2 we have that the second-class particle is Pρ -tran-
sient when ρ �= 1/2 [⇔ v(ρ,p) �= 0] in d = 1. Therefore, from (2.2), we have
that

σ 2(C
ρ
0 , ρ,p) = lim

t→∞ t−1σ 2
t (C

ρ
0 , ρ,p) < ∞. �

One of the results from [13] is now quoted.

LEMMA 4.5. For exclusion processes in d ≥ 1 with finite-range jump rates p,
we have that σ 2(f,ρ,p) exists whenever f is an increasing mean-zero L2(Pρ)

function. In addition, if f = f+ − f− is the difference of two local increasing
mean-zero functions whose limiting variances are finite, σ 2(f±, ρ,p) < ∞, then
also σ 2(f,ρ,p) < ∞ exists.

PROOF. This follows from [13], Lemma 3.1 [which gives existence of
σ 2(f,ρ,p) when f is (nontrivial) increasing, mean zero, and in L2(Pρ)] and
[13], Lemma 3.2 [which proves existence of σ 2(f,ρ,p) < ∞ when f =
f+ − f− for f+ and f− which are local, increasing, mean zero and satisfy
σ 2(f±, ρ,p) < ∞]. �

An application of the results in [14] to limiting variances is the following.
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PROPOSITION 4.2. Consider the exclusion process in d ≥ 1 with finite-range
jump rates p. Define the nearest-neighbor jump rate p′, in terms of p, by

p′(±el) =


max

[
±el · ∑

i

ip(i),0

]
, when el · ∑

i

ip(i) �= 0,

1, when el · ∑
i

ip(i) = 0,

where el for 1 ≤ l ≤ d are the standard basis vectors of Z
d . With respect to the

exclusion model corresponding to p′, we have, when f is a local increasing mean-
zero function, that σ 2(f,ρ,p) < ∞ if and only if σ 2(f,ρ,p′) < ∞.

The proof is [14], Corollary 6.1.
Note in d = 1 that p′ reduces to a totally asymmetric nearest-neighbor jump

rate when p has drift, and to a symmetric one when p is mean zero.
The following proposition states one of the main weak convergence results in

d = 1,2 found in [13].

PROPOSITION 4.3. Consider exclusion processes with finite-range jump
rates p with drift in d = 1,2. Suppose that f = f+ − f− is the difference of
two increasing local mean-zero functions such that σ 2(f±, ρ,p) < ∞ so that,
by Lemma 4.5, σ 2(f,ρ,p) < ∞ exists. Then, with respect to initial configurations
given by Pρ , we have the weak convergence in C[0,∞) to Brownian motion B ,

lim
α→∞α−1/2Af (αt) = B

(
σ 2(f,ρ,p)t

)
.

The proof is part (i) of Theorem 1.1 of [13] for which the invariance principle
is proved directly in the uniform topology when p has drift.

We now prove the main results.

PROOF OF THEOREM 2.3. Let f be a mean-zero local function, Eρ[f ] = 0.
Then, by the monotone basis expansion, f can be decomposed into the difference
of two local increasing mean-zero functions, f+ and f−, where

f+ =
K∑

k=1

∑
βI ≥0

βIM
ρ
I

and

f− =
K∑

k=1

∑
βI<0

βIM
ρ
I .

We first show the theorem for the d = 1 totally asymmetric nearest-neighbor
model with p(1) = 1 and p(i) = 0 for i �= 1. In this case, when ρ �= 1/2,

σ 2
t (C

ρ
I , ρ,p) = O(t)(4.1)
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for all sets I from Lemmas 4.1 and 4.4, and Proposition 4.1. From Lemma 4.5, the
limits σ 2(f±, ρ,p) both exist, and from (4.1) and repeated use of the inequality
(a + b)2 ≤ 2a2 + 2b2, they are both finite. We can now apply Lemma 4.5 again to
get the statement of the theorem in this case.

Note also that it is trivial to see that the theorem holds in the totally asymmetric
nearest-neighbor model when the jumps are to the left instead of right, or when the
jump rate is different from unity.

We now consider the general finite-range model with jump rate p with drift
in d = 1. Observe that σ 2(h,ρ,p) exists for all local increasing mean zero h by
Lemma 4.5, and that

σ 2(h,ρ,p) < ∞ ⇐⇒ σ 2(h,ρ,p′) < ∞
by Proposition 4.2. As remarked after Proposition 4.2, p′ in d = 1 is a totally
asymmetric nearest-neighbor jump rate. For such rates, we have just proved that
σ 2(h,ρ,p′) < ∞ when ρ �= 1/2. In particular, we conclude σ 2(f±, ρ,p) < ∞.
The full theorem follows now, as before for the totally asymmetric nearest-
neighbor case, by invoking Lemma 4.5. �

PROOF OF COROLLARY 2.1. This follows directly from Theorem 2.3 and
Proposition 4.3. �

PROOF OF THEOREM 2.1. The Pρ -transience when ρ �= 1/2 for d = 1 exclu-
sion models with finite-range jump rates with drift follows from the occupation-
time relation (2.2) and the fact that σ 2(η0 − ρ,ρ,p) < ∞ (Theorem 2.3). �
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