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We develop a new technique to prove the conditional CLT for the
weighted bootstrap mean. Through 0-1 laws, we show that this condi-
tional CLT can be derived from an unconditional one which easily arises
(conditioning with respect to the weights) from the standard Lindeberg
CLT.

1. Introduction. This paper follows our works [Arenal-Gutiérrez,
Cuesta-Albertos and Matran (1995a, b)] exploring the unconditional proper-
ties of the bootstrap. The study of these properties is motivated by the
following simple observation. “Bootstrap convergence” is, roughly, a tail event
for the sequence of data so, appealing to the Kolmogorov 0-1 law, we can
produce conditional results from easier unconditional results.

To prove an unconditional bootstrap central limit theorem (CLT in the
sequel), we use conditioning with respect to the weights first. This produces a
triangular array of row-independent variables, and the asymptotic behavior
of their sum can be easily obtained (see Theorem 3.1) through the standard
Lindeberg CLT. On the other hand a 0—1 law argument obtained in Section 2
(from some lemmas of independent interest) gives the conditional statement
from the unconditional one.

The use of 0-1 law arguments for the bootstrap was pioneered by Giné and
Zinn (1989) (see Lemma 2.2 below). Also let us note in passing that the use of
unconditional properties to obtain conditional ones has already been impli-
citly used in connection with the application of the Ledoux—Talagrand—Zinn
inequality to the exchangeably weighted bootstrap general empirical process,
in Praestgaard and Wellner (1993). Another 0-1 law for the bootstrap is
implicit in Csérgé (1992) and Arenal-Gutiérrez, Cuesta-Albertos and Matran
(1995a); both are in relation to the strong law of large numbers (SLLN) for
Efron’s bootstrap mean.

The interest of using different resampling schemes for bootstrap has been
often made apparent, as in Rubin (1981), Efron (1982), Wu (1986) and Lo
(1993), and in the last few years its study has received a considerable impulse
by means of a unified general treatment, as in Mason and Newton (1992),
Einhmahl and Mason (1992), Haeusler, Mason and Newton (1992),
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Praestgaard and Wellner (1993), Huskova and Janssen (1993), Hall and
Mammen (1992) or Barbe (1994).

Note that our conditions E1-E5 are less restrictive than in the available
results on weighted bootstrap. In particular, they are less restrictive than
conditions A1-A5 in Praestgaard and Wellner (1993) (although the main
reason for those more restrictive conditions arises from the Banach space
setting, searching for tightness properties for the weighted bootstrap empiri-
cal process). Therefore this avoids the use of Hajek’s CLT, which is [since
Mason and Newton (1992)] the key technique for the weighted bootstrap CLT.

Given a sequence {X,},,_; of independent random variables with common
law #(X,) and distribution function F, we consider a sequence {w,},_, =
{(w,(1),...,w,(n))}, _; of independent vectors of random weights, indepen-
dent of the data sequence and satisfying the following, for a given sequence of
numbers {m(n)},_, such that m(n) — o

E1. The components of the vectors w, are exchangeable for every n;
E2. w,(j) = 0 for all n, j, and X}_,w,(j) = 1, for all n;
E3. Var w,(1) = 01 /m(n)n);

E4. max1<J<n1/m( ) lw,(j) — l/ni
E5. m(n)X7_ (w,(j) — 1/n)2 —p c?

Note that, by E1 and E2, Cov(w,(), wn(z)) = —varw,(1)/(n — 1).
Some additional notation follows. By X, and X we denote, respectively,
the usual and bootstrap sample means,

X, and X} = ) w,(J)X,.

— 1
X = -
ni-1 j=1

n

ek

A superscript » indicates that the sequence of data {X},_, is considered
fixed. We use this notation also for the means X and X}“. Weak conver-
gence of probability measures is denoted by — :

As a final remark, we want to point out the additional advantage of the
technique which applies to non-i.d. random variables under some general
conditions regarding the uniform square-integrability of the sequence {X,} |
(Theorem 3.3).

2. Zero-one laws for the bootstrap mean. Our interest is to get 0-1
laws to obtain conditional properties from uncondltlonal ones in the line of
the following lemma.

' LEMMA 2.1. Let {X,},_ 1' be an arbitrary sequence of random variables
" and {w,},_, be a sequence of random weights fulfilling conditions E1-E3.

Then the event T ={w: /(ym (X*‘” X“’)) —,} is a tail event with
respect to {X,}, _ .
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Proor. Applying Chebyshev’s inequality, we get

(AT - o) HLED [ 1)

&
so, for a fixed & > 1,

1
lim ( max ym(n) |w,(j) — —}) = 0 in probability.
n

n-o\1<j<k

Note that there are no hypotheses about the increasing order of the
sequence {m(n)},_,. If this order is “small,” then /m(n) max, _;_,lw,())|
and y/m(n) /n will converge to zero in probability, but if it is “large,” none of
these two convergences is true.

Now we have

/(Wé(wn(j) - %)X) >y 8,

where 8, denotes the probability measure concentrated at 0. Hence if we
write u(w) as the limit law for w in T,

r= {wz /(Wé (wnm - %)X) ~y M(w)}
- {w:/(m > (wn(j)—%)xj“) ~u M(w)},

J=k+1

so that I is a tail event. O

The following 0-1 law, which is extracted from the proof of Theorem 1 in
Giné and Zinn (1989), shows that the asymptotic distribution, if it exists, is
the same for almost every (a.e.) w.

LEMMA 2.2. Let {X,},_, be a sequence of independent random variables
and {w,},_, be a sequence of random weights fulfilling conditions E1-E3. If

/(\/m(n) (X',’L"” - X;{))) -, o) as,
then there exists a measure u such that p(w) = p a.s.
PrOOF. Let I be a countable measure-determiniﬁg set of bounded contin-

uous functions. For example, I = {x — exp(itx): t € Q).
Then, for every f € 3, |

ffd/(\/m(n) é(w,,(j) -~ %)X;)) - [fdp(w) forae. o



0-1 LAW APPROACH TO THE BOOTSTRAP CLT 535

Applying the same scheme as in the previous lemma, we get

ffd/(,/m(n) i (wn(j)—%)xjw)—)/fdﬂ(w) for a.e. »;

J=k+1

so [fdu(w) is a tail variable, hence a constant. Since J is measure determin-
ing, there is a fixed deterministic measure u such that u(w) = u for a.e. w.
O

The following lemmas give the key of our argument. The first proves the
a.s. tightness for the laws of the normalized sums, and the second proves the
weak equivalence (~, ) of these laws for two different realizations of the data
sequence. This weak equivalence means that the two sequences have the
same weak limits for the same subsequences of subscripts.

LEMMA 2.3. Let {X,},_; be a sequence of independent identically dis-
tributed random variables with finite variance, and {w,}, _, be a sequence of
random weights fulfilling conditions E1-E3. Then in a probability-1 set the

sequence {/(/m(n) (X} — X))}, _, is tight.

PROOF. Note that the set ), where the sequence is tight can be expressed
as

Q= k61 NCJI 61 {w: P(\/m(n) (X',’f‘” —X’,‘{’) ZN) < %}

On the other hand, by Markov’s inequality (and taking into account the
elementary inequality 2ab < a? + b?),

P(ym(n)|Xz* - X2| > C)

<2 £ xoyvaru v L xex Con(, (7))
K 1 n 2 0Yo

o |n 5 e 5N )
K'1pr

<S—— X (Xiw)z’
S CPn

where the right-hand side converges a.s. (by the SLLN) to K'EX?/C>.
Therefore, by enlarging C if necessary we get that P-a.e. w belongs to (.
O

iy

LEMMA 2.4. Let {X,},_, be a sequence of independent identically dis-
tributed random variables with finite variance, and let {w,}, _, be a sequence
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of random weights satisfying conditions E1-E3. There exists a probability-1
set () such that, for every w, o' € Q,,

{/(Wjil (wn(-]) B %)ij)}x

n=1

~ {/(WZ (10a) - %)X)}

n=1
(the two sequences of laws are weakly equivalent)

Proor. Exchangeability of the weights immediately leads to the equiva-

lence of bootstrappmg the sample or the ordered sample. In particular, letting
X4y ---» X, denote the ordered sample, we have

/(WZ( i - 3) m) (\/’_Z( n(j)—%)x;u),

so it is sufficient to show that, for every pair w, ' in a probability-1 set

n

,}gx;m(n)E(jgl( 0) = 3 )35~ X (w0 - ) (,))2=0-

=1
Let us now consider the set

1 1
Q, = {w — Z (X)? - EX? and — Z 8xe =/ (X, )}
i=1 i=1

The Glivenko—Cantelli theorem and the SLLN assure that ), has probabil-
ity 1. Then, if 0, o' € Q,, from E3 we have

m(n)E(é( w,(J) = )( & X<°}3))2

1 n
= K(; Z (X5 — (J)) X (X -

) n(n _ 1) (t))( (J) X(HJ);))
= i<j

K/

n

J
n
Z (X(J) X(lj)) ’
Jj=1

<

and the last term converges to zero because

12 N ‘ 2
o ;( G = X&) =f01(F71(“’ t)y —F, (o', 1)) dt

Where F,;Y(w, ) is the quantile representation of (1/n)X}_

10x0. In fact,
lim (F, (w,t) -

FyY (o, t)) = (F'Y(t) -F'(t))' =0 as,
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and in mean, because the uniform integrability which arises from
(Fy Y (w,) = Fy Y(o',) < 2((F N (00) + (B (o' )))
and the convergence in mean to 2(F~1)? of the last term. O

We can now prove the following theorem, which makes it possible to obtain
a conditional convergence from an unconditional one. Observe that in the
theorem as well as in the preceding lemmas we only use conditions E1, E2
and E3 on the weights. '

THEOREM 2.1. Let {X,},_, be a sequence of independent identically dis-
tributed random variables with finite variance, and let {w,},_, be a sequence
of random weights fulfilling conditions E1-E3. If

/(Ym(n) (Xf - X,)) =, wo then £(Ym(n) (X - X2)) = v as.

PROOF. Since the sequence {#(y/m(n) (X}* — X))}, _, is tight in a prob-
ability-1 set (Lemma 2.3), applying Prohorov’s theorem we have that for
every w in that set there exists a weak convergent subsequence for each
given subsequence. Lemmas 2.4 and 2.2 assure that the subsequence and its
weak limit do not depend on w.

On the other hand, for every x such that u({x}) = 0,

fP(‘/m(nkj) (Xre-%s) < x) P
- P(yfm(e) (i, — K, ) <) = w(== =],

and, by the dominated convergence theorem,

[P(‘/m—(n;j()?:: - %2 ) _<_x) dP - v(—, x],

for every x such that v({x}) = 0, so v = u. Then every subsequence converges
to the same measure, u, and the theorem is proved. O

3. Conditional CLT for the bootstrap mean. In this section we obtain
a conditional CLT for the bootstrap mean and an extension for non-i.d.
variables. Using the results given in the preceding section, we only need an
unconditional CLT which is obtained conditioning not with respect to the
data sequence but with respect to the weights.

THEOREM 3.1. Let {X,},_, be a sequence of independent identically dis-
tributed random variables such that Var X, = o2. If {w,},,_, is a sequence of
" weights fulfilling conditions E1-E5, then

/(Ym(n) (XF - X,)[{wa(i))i-1) =0 N(0,¢%?) in probability.
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ProOF. It is straightforward to show that each increasing subsequence
{n,};_, of positive integers has some subsequence {n, };_; such that condi-
tions E4 and E5 hold a.s., and the random variables

1
\/m(nki) (wnki(J) - ;L_,:)Xj’ J=1,2,...,n;,

i

under the conditional distribution given {wnk (M 4, satisfy a.s. the Linde-
berg condition for the CLT, so that

Jr(ne) (%, - X, )

S
n,

<wnki(j)};ii1 -, N(0,1) as.

Therefore the result follows from the fact that the sum of the conditional
variances is

ng, 1 2
2 = otm(n,) ¥ ( wn () - —) ,

ny
which converges a.s. to c%r2. O

COROLLARY 3.1 (Unconditional CLT). Let {X,},_; be a sequence of inde-
pendent identically distributed random variables such that Var X, = =o? If
{w,}7_, is a sequence of weights fulfilling conditions E1-E5, then

/(Ym(n) (X3 - X,)) =, N(O,c%?).

We can now get immediately the following conditional CLT as a conse-
quence of this corollary and Theorem 2.1.

THEOREM 3.2 (Conditional CLT). Let {X,},_, be a sequence of indepen-
dent identically distributed random variables such that Var X, = o®. If
{w,}._, is a sequence of weights fulfilling conditions E1-E5, then

/(Ym(n) (X3 - X2)) =, N(0,¢%?) as.

The same idea can be used to prove a CLT for nonidentically distributed
centered random variables. The only additional conditions we need are a kind
of uniform integrability of the sequence {X?},,_; and the following change of
condition E5 on the weights [with Var(X,) = O'iz]l

£ (w,(§) — (1 z
E5'. mn) J(ll(/bl:z)(ZJ);’=la(2 /m) % — ¢? in probability.
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Now, in order to check Lindeberg’s condition, it is easy to show that

1 ™
- 2 m(n,,)
sﬁk‘ = f{l‘/m(nki)(w"“(j)—l/nki)Xj|>ssnki} ;

2
. 1 2
X(wnki(.]) - n_) | X;|” dP
converges to zero by the uniform integrability of the sequence {X2}_,.

If there exists a function ¢: R — R such that o(z)/t 1o when ¢ oo,
sup, ., El¢(X?)] < ® and ¥ _,1/¢(n) <  [in particular, {X?}_, becomes
uniformly integrable; see Landers and Rogge (1987)], then

1 n
lim — (X2 EX?) =0 as.
n—w n
so we have an a.s. tightness condltlon as in Lemma 2.3.

Finally, a result similar to Lemma 2.4 can be obtained using the previous
condition and the Glivenko—Cantelli theorem for triangular arrays [Shorack
(1979), Theorem 2.1], so we can state the following theorem.

THEOREM 3.3. Let{X,}, _, be a sequence of independent random variables
with zero means such that there exists a function ¢: R — N verifying ¢(¢)/t 1
when t 1o, sup, ., El <p(X2)] <wand ¥, _,1/¢(n) < . Suppose that for some
constant K> 0, K < 0 fori=1,2,.... If {w,},_, is a sequence of weights
fulfilling conditions E1-E4 and E5', then

ym(n) (X*“’ —X,‘L")
V(l/n)zz—la
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