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A SHORT AND ELEMENTARY PROOF OF THE MAIN
BAHADUR-KIEFER THEOREM

By Jonn H. J. EINMAHL

Eindhoven University of Technology

A short proof of the lower bound in the strong version of the famous
Theorem 1A in Kiefer (1970) on the Bahadur—Kiefer process is presented.
The proof is elementary and, in particular, does not use strong approxima-
tions.

Let U}, U,,... be a sequence of independent uniform-(0,1) random variables
and, for each n € N, let

1 n
Fn(t) = ; Z 1[0,t]([Ji)’ 0<t< 1’
i=1

be the empirical distribution function at stage n. The uniform empirical
process will be written as

a,(t) =n'?(F,(t) —t), 0<t<1l; a,(t)=0 fort<Oor¢>1.
Also, for each n € N,
Q,(¢t) =inf{s: F,(s) =t}, 0<t<1l, @,0)=0,
denotes the empirical quantile function, and we write
B.(¢) =n'2(Q,(t) —¢t), O0<t<l1,

for the corresponding uniform quantile process. The so-called Bahadur—Kiefer
process is defined by

R, (t) = a,(t) + B,(t), 0<t<l.
This process is introduced in Bahadur (1966); in Kiefer [(1970), Theorem 1A]
the “in-probability-analogue” of the following statement is proved:
n'/* IR,
1/2 ”a ||1/2 =

(1)

lim a.s.,
nx (log n)

where || fll = sup,_, ., |f(?)| for any real-valued function f on [0,1]. In the
latter paper a proof of (1) itself is claimed but not presented. However, it is
proved in Shorack (1982) that, indeed, the expression on the left in (1) (with
lim replaced by limsup) is not larger than 1, almost surely (note that
ll, Il = Il B,ID, whereas in a recent paper by Deheuvels and Mason (1990) it is
established that the same expression is not smaller than 1, almost surely.
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The short and elegant proof in Shorack (1982) is based on the Kiefer process
strong approximation of «,, but in Shorack and Wellner [(1986), pages
590-591] a similar, direct proof of the “upper-bound part” is given. The
ingenious and generally applicable proof of the “lower-bound part” [which
finally led to a complete proof of (1)] in Deheuvels and Mason (1990) is very
technical; moreover, it is again based on a strong approximation of «,,.

It is the purpose of this note to give a new, short proof of the lower-bound
part of (1). That is, we will prove that

(2) liminf— " VBl
1m in > a.s.
n—= (log n)l/2 lla,|I*?

Our proof is rather easy and not based on strong approximations. It uses as
tools the following well-known facts on empirical and quantile processes,
although most of them are not required at their full strength.

FacT 1 [Mogul’skii (1979)]. We have

T
(3) liﬂiff(l(’gl(’g n)"?la,ll = gz as

Facr 2 (Easy). We have

4 18, + a,°Q,ll=n"1? as.

Fact 3 [Kiefer (1970)]. We have
(5) lim supn'/*(log n) '*(loglog n) IRl = 2" V* as.
Define the oscillation modulus of «, by

w,(a) = sup la,(t) —a,(s), 0<acx<l;
t—s<a
O<s<t<1

let {a,)7_; be a sequence of positive numbers with ¢, |0 and na, 1.

Fact 4 [Mason, Shorack and Wellner (1983)]. If log(1/a,)/loglog n —
¢ €[0,®), then

(6) lim sup “n( )

= (2(1 +¢))? as.
n-» (a,loglogn) (2 )

1/2

Facr 5 [Stute (1982)]. If log(1/a,)/loglogn — « and na,/logn — o,
then

wn(an)

lim
n== (a,log(1/a,))"?

=272 as.

(7)
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Facr 6 [Mallows (1968)]. If (Ny,..., N,), £ € N, has a multinomial distri-
bution with parameters m and p,,..., p,, where m € N and p,,..., p, are
nonnegative with Z{f‘: 1p; = 1, then, for all Ay,..., A,

k
P(N, <XA,...,N, <)) < [IP(N, < )).
i=1

Fact 7 [Kolmogorov (1929)]. Let m € N and ¢ € (0, 2). Then for every
8 > 0 there exist K,, K, € (0,%) such that, for K,t'/? < A < K,m'/?¢,

(1+8)1

P(am(t) > )\) = exp(—m).

Facrt 8 [Dvoretzky, Kiefer and Wolfowitz (1956) and Massart (1990)]. Let
n € N. Then, for all A > 0,
(8) P(lla,ll > 1) < 2exp(—2A%).

ProoOF OF (2). Let I denote the identity function on [0, 1]. First we will
show that, as n — oo,

o
(9) H Bn + a, O(I — —172) ‘ = ﬁ((log n)3/4(10g10g n)1/8n73/8) as.
n

To prove (9), first observe that by (4) and @, = I + B,/n"/? we have that

Now using (5) and (7) yields (9). Observe that it immediately follows from (9)
and (3) that for a proof of (2) it is sufficient to show that

172 as.

,8n+an0(l+£)

/2

‘zn

(10) lim inf Tl (= an/n ) =l >1 as
n—w (logn)"/? e, 1™ B o
Set, for 0 <t < 1,
if | | -
t t) >
e e g
an( ) - 1 " | | 1
—, ) < .
logn if e (1) log n

Define the following grid on [0, 1]: L, = i/llogn],i=0,1,...,[log n], where
[ x] denotes the integer part of x € R. From (3) and (6) we have that
maXOSig[log n]|an( ti,n)' _

lim =1 a.s.
n—o eIl
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Moreover, from (6), (7) and (3), it follows that

1 p—
im n—/4 max sup o (t — M)
n—» (10g n)l/z O<ix<[logn—1] b <t<tini1 " nt/?
a,(t) _1/2
—an(t—w ||an|| = 0 a.s.
Hence, instead of proving (10), it suffices to prove that
nl/4
lim inf
n-=  (log n)1/2
- 1/2
(11) maXOSig[logn]flSuptiyngtgtHlyn an(t - an(ti,n)/n / ) - an(t)|
X _ 1/2
maxOgig[logn]'“n(h,n)'
>1 a.s.

Using the Borel-Cantelli lemma, a proof of (11) is established if we show
that, for all £ € (0,1), X, _5 PA, < =, where

o= 22 - o)

A = {nt/* max sup

' 1/2
O<i<[logn]-1 ¢ <t<t n'/

i+1,n

< ((1 ~ ), max [@(t,,)llog n)l/z}.

0<i<[logn

Write
Cn = Cn(cl,n’c2,n7""c[logn]fl,n) = {an(ti,n) = Ci,n’ 1 = l =< [log T’L] - 1}’

¢;, €[—logn,logn] and ¢, , is such that nt,, + n'/?¢c;, €{0,1,...,n} and
such that nt;, + n'/? ¢, , is nondecreasing in i (observe that PC, > 0). Set

i,n

log n )’
and, on C,, let ¢, be the smallest ¢; ,,0 < i < [log n], such that |a,(t; )| = ¢,;

i,n’

write d, = a,(t,) and d, = @,(t,); set t. =¢t, + 1/[logn] and d/, = «,(¢,).
Now we have

c, = ( ~max |Ci,n|) \Y%
1<i<[logn]—1

P(A,IC,) <P(n'* sup la,(v) — a,(u)l

U7u=En/n1/2

(12) tnSuSUSt,n

< ((1 - #)¢,logn)"’C,|.

Write m, = n/[log n] + n'/2(d/, — d,) and note that, on C,, m, = n(F,(¢,) —
F (t,)); obviously |m [log nl/n — 1| < 2(log n)?n~/? - 0 as n — «. Now it is
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not hard to see that, on C,, the process @,, defined by

&, (5) = (mi)l/z{an(tn + [10; . ) —(d(1—s) + d’ns)}, 0<s<1,

n

is a uniform empirical process based on m, observations. Hence the right-
hand side of (12) can be written as

mn
Pl sup[Z)2E, () - & ()
s—r=¢,[log nln"1/2 n
O<r<s<l1
(13) +d,[log n](d, — d,)n""/?

< ((1 - ¢)¢, log n)“).

Now observe that

In1/4d, [log n](d, — d,)n""/?)

s < 2¢/2(log n)**n-1/4

(¢, logn)
<2(logn)’n"V* >0 asn — .

Therefore, for large n, the expression in (13) is bounded from above by

m, \1/2
P n1/4( ) sup la,, (s) — a,, (1)l
n s—r=¢,llog nln~1/2
(14) O<r<s<l1

1 1/2
s((l—as)énlogn) ,
which by Fact 6 is less than or equal to

o

n nl/Z

1 172\ |\ n*/?/(og n)?
s((l—ae)énlogn) )} .

It is easy to check that, for large n, Fact 7 applies to the probability in (15).
This yields, with & = ¢/4, the following upper bound for the expression in
(15):

(15)

9 -

__,e/8
(16) (1 — n*(l*«9/4)/2)”1/2/(10,2n)2 < eXp( n ) - 1

(logn)®| = n?
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We are now ready to complete the proof. Combining (12)—(16), we have
P(A,IC)) < 1/n? (n large). Set D, = {||a,|l > log n} and note that (8) implies
that PD, < 1/n%(n > 4). Hence, for large n,

PA, <P(A, N Df) + PD,<(sup*P(A,IC,)) + PD,
(17) 1 1 2

<S5+ —=—
n?2  n? n?’

where sup*® denotes the supremum over all C, as defined before. Now, of
course, X, _5PA, < « because of (17). This proves (11) and hence (2). O
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