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Consider an inhomogeneous contact process on Z1 in which the
Ž . Ž .recovery rates d x at site x are i.i.d. random variables bounded above

Ž Ž . .while the infection rate is a constant « . The condition uP ylog d x ) u

ª q` as u ª q` implies the survival of the process for every « ) 0.

1. Introduction and main results. In recent years, there have been a
Ž wnumber of papers on contact processes in random environments see 3, 4,

x.6]8 . These processes are of intrinsic interest as examples of interacting

particle systems with random parameters. They are also closely related to
Ž w x.various disordered systems arising in statistical mechanics see, e.g., 1 .

In this paper, we will be primarily concerned with the one-dimensional

contact process in a random environment. This is a Markov process with state
� 4Zspace 0, 1 with transitions

1 ª 0 at site x with rate d xŽ .

and

0 ª 1 at site x with rate r x h x q 1 q l x h x y 1 ,Ž . Ž . Ž . Ž .

where h is the state of the process. We will assume that the local environ-
Ž Ž . Ž . Ž .. Ž . Žments d x , r x , l x are i.i.d. random vectors on some V, FF, P with for

. Ž . Ž .simplicity the r x ’s and the l x ’s taking the nonrandom values « and « .1 2

Ž .We shall also assume that the d x ’s are strictly positive. We denote by
j � jŽ . 4 jŽ .h s h x : x g Z the contact process at time t with initial state h x s 1t t 0

for x s j and 0 for x / j and by S j the event that h j survives for all t ) 0t

Ž j .i.e., for every t ) 0, h is not identically zero .t

We say that the contact process survives with infection rates « and « if1 2

either of the following equivalent statements is valid:

� Ž . 4 j1. For P-a.e. d x : x g Z , S has positive probability for every j.
� Ž . 4 02. For a set of d x : x g Z of positive P-probability, S has positive

probability.
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We leave the demonstration of the equivalence as an exercise. Under mild
Ž .conditions on the tails near ` and 0 of the common distribution of the

Ž . Ž .d x ’s, one has extinction nonsurvival for sufficiently small « and « and1 2

w xsurvival for sufficiently large « and « . In particular, 7 implies the former1 2

Ž Ž .. w xresult on extinction if E ylog d x - ` and 8 implies the latter result on
Ž Ž .2 .survival if E d x - `.

w xHowever, sufficiently fat tails can change these conclusions. From 7 , one
Ž .has extinction for all « , « no matter how large if one has a sufficiently fat1 2

Ž . Ž Ž ..tail at ` and not too big a tail at 0 so that E ylog d x s y`. The main

result of this paper is the next theorem, which gives conditions that imply the
Žopposite extreme, that is, survival for all positive « , « no matter how1 2

. Ž .small . We call this persistent survival. Equivalently by a scaling of time
Ž . Ž .one may regard « , « as fixed, take d x s ud x and ask for conditions on1 2 0

� Ž .4 Ž .d x which imply survival for all u no matter how big . The next theorem0

provides such a condition, valid even when one of « , « vanishes.1 2

THEOREM 1. Suppose that

1.1 uP ylog d x ) u ª ` as u ª `Ž . Ž .Ž .

Ž . Ž Ž . .and also for simplicity that P d x F d s 1 for some d - `. Then the
Ž .contact process survives as long as max « , « ) 0.1 2

Ž .Hypothesis 1.1 requires a bit more on the tail at 0 than what is needed to
Žw Ž .xq.have E ylog d x s `, which is equivalent to

q`

1.2 P ylog d x ) u du s `.Ž . Ž .Ž .H
1

On the other hand we do not need to require both « and « to be positive;1 2

survival occurs even in a process with infection spreading only in one

direction.

We remark that the effects of fat tails on d-dimensional contact processes

in random environments are quite different for d G 2 than for d s 1. In

particular, for d G 2, one always has survival for sufficiently large transmis-

sion rates, regardless of how fat the tail at ` of the recovery rate distribution.

This is because there is always an embedded one-dimensional system with

recovery rates bounded above. On the other hand, such an embedding argu-

ment can be used for d G 2 to give a fairly simple proof that a fat tail at 0 for
Ž w x.the recovery rate does imply persistent survival see 1, 3 . A sufficient

Žcondition on the tail for d G 2 obtainable by essentially the arguments of
w x.Theorem 1.8 of 1 is that

1.3 ud P ylog d x ) u ª ` as u ª `.Ž . Ž .Ž .

Although a proof of persistent survival for the d s 1 contact process in a

random environment, as given in this paper, is to our knowledge new, there

have been a number of closely related results for d s 1. For example, it
w x Ž Ž ..follows from Liggett’s results 8 that E ylog d x s q` implies what might
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be called persistent weak survival. Namely, that for all positive « , « , in the1 2
U Ž .process h with initial state . . . 111000 . . . , the location r of the rightmost 1t t

satisfies lim sup r s q`. From our point of view, these results give thet ª` t

Ž .‘‘wrong’’ conclusion for the right process i.e., the contact process . As pointed

out by the referee, it appears to be an open problem to determine whether
Ž Ž .. w Ž .xE ylog d x s q` suffices as a replacement for 1.1 to yield the right

conclusion, that is, persistent survival as in Theorem 1.

w xThere are also d s 1 results of 1 which give the right conclusion but for
w x Žthe ‘‘wrong’’ processes. A contact process on Z may be regarded 5 see

. w . �Ž .4Section 3 below as a directed percolation model on Z = 0, ` s x, t
Ž .directed in the positive t direction in which survival corresponds to percola-

w x Ž .tion. The results of 1 apply to among others undirected percolation models
Ž . Žon Z = y`, ` in which, roughly speaking, infection can go backward as

. Žwell as forward in time and imply persistent percolation see especially
w x. Ž .Theorems 1.7 and 3.2 of 1 under the stronger requirements than 1.1 that

u
1.4 P ylog d x ) u ª ` as u ª `,Ž . Ž .Ž .

log u

Ž Ž .. w xproviding that also E d x - `. Thus in addition to extending the 1 result

on persistent percolation to the directed model, we also succeed in eliminat-
Ž w x.ing for the contact process and for the models of 1 the log u factor from

Ž .1.4 , which one previously suspected was not needed because of the d G 2
Ž .condition 1.3 .

The remainder of the paper is organized as follows. In Section 2, we state
Žand prove the analogue of Theorem 1 for discrete time contact processes i.e.,

.for directed percolation . The proof is based on a construction which relates

percolation in these models to coverings of a half-line by random intervals. In

Section 3, we prove the continuous time result, Theorem 1, by reducing its

proof to the discrete time result of Section 2.

Ž .2. Survival for discrete time. In this section we consider doubly
q q �Ž . � 44directed percolation on Z = Z s x, t : x, t g 0, 1, 2, . . . . There are only

Ž . Ž .two type of edges, both directed: right edges from x, t to x q 1, t which are
Ž .open with probability « not depending on x or t and otherwise closed, and

Ž . Ž . Žup edges from x, t to x, t q 1 which are open with probability p notx

.depending on t and otherwise closed. The edges are open or closed indepen-
� q4dently of each other. For given « and p s p : x g Z , we denote byx

Q s Q the probability distribution for the independent percolation system.« , p

Ž .We take « g 0, 1 and the p ’s as independent random variables with ax

w .common distribution supported on 0, 1 . We denote by P the probability

distribution for the random environment p.
ˆx Ž .Let S denote the event for the percolation model with given « , p that

Ž .there is an infinite directed path of open edges starting from x, 0 . Note that
Ž .since « - 1, any such infinite path must P-a.s. have t-coordinates tending to

ˆ ˆx q ˆinfinity. Let S denote the union of S over all x in Z ; S is the event that
Ž .percolation occurs for given « and p . The percolation model may be re-



C. M. NEWMAN AND S. B. VOLCHAN414

garded as a discrete time contact process in which open right edges spread
Ž .infection to the right while closed up edges correspond to recovery. From

ˆŽ .that point of view, survival means that Q S ) 0 for P-a.e. p. The following« , p

theorem is our analogue of Theorem 1. We note that it has no hypothesis
Ž .analogous to the upper bound d on the d x ’s in Theorem 1. Indeed, in this

discrete time context p is allowed to vanish with positive probability. Inx

Ž .continuous time of course, analogously letting d x take the value q` with

positive probability would preclude survival.

THEOREM 2. Suppose that

2.1 uP ylog 1 y p ) u ª ` as u ª `.Ž . Ž .Ž .x

Ž .Then percolation occurs a.s. for any « ) 0. That is,

ˆQ S s 1 for P-a.e. p.Ž .« , p

REMARK. We leave it as an exercise to show that the conclusion of the
ˆ0Ž .theorem also implies that Q S ) 0 for P-a.e. p.« , p

PROOF OF THEOREM 2. Our strategy is to relate directed percolation to
q Ž .covering of the half-line R by random intervals see Proposition 3 below .

w xThis follows the approach of 2 to a different percolation model, except there

the object was to prove absence of percolation.
˜ Ž .Let us denote by P the joint distribution of p and the « , p -percolation

˜ ˜model, and let us denote by S the event in the joint probability space V that

Ŝ occurs for the percolation model. Thus

˜ ˜ ˆ2.2 P S s Q S P dp .Ž . Ž .Ž . Ž .H « , p

To obtain the conclusion of the theorem, it clearly suffices to show that
˜ ˜Ž .P S s 1.

˜ ŽTo do so we make a recursive construction in V. We start with step 0 see
. Ž .Figure 1 . Let Y be the largest y such that every up edge between 0, 0 and0

Ž . i Ž .0, y is open. Let D i s 1, . . . , Y be the largest d such that every right0 0

Ž . Ž .edge between 0, i and d, i is open and let

2.3 R s max D1 , . . . , DY0 ,Ž . Ž .0 0 0

providing Y G 1. If Y s 0, set R s 0. For 1 F x F R , let H x be the0 0 0 0 0

largest i such that D i G x; for x ) R , let H x s 0. Note that H x is mono-0 0 0 0

Ž .tonic nonincreasing in x. We set K s R and note that if K G 1, then0 0 0

Ž x . Ž .each site x, H with 1 F x F K is reached from 0, 0 by an open directed0 0

Ž .path and there is no yet known obstruction to continuing the open directed
Ž x .path past x, H anywhere into the northeast quadrant, other than a single0

closed right edge on the horizontal line at height H x. We say that step 0 fails0

if K s 0 and succeeds if K G 1. This completes the zero-th step of the0 0

construction.
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FIG. 1. Step 0 of the recursive construction. Edges with complete lines are open and edges with
Ž 1 Y0. Ž . Ž 1 2 .dashed lines are closed. In this example, D , . . . , D s 2, 6, 1, 0, 0 and H , H , . . . s0 0 0 0

Ž .3, 2, 2, 2, 2, 2, 0, 0, . . . .

Ž . xThe jth step is quite similar see Figure 2 . Given H for x G j andjy1

K G j y 1, we proceed as follows. Let Y be the largest y such that everyjy1 j

Ž j . Ž j . i Ž j
up edge between j, H and j, H q y is open. Let D i s H qjy1 jy1 j jy1

j . Ž .1, . . . , H q Y be the largest d such that every right edge between j, ijy1 j

Ž .and j q d, i is open and let

2.4 R s max D i : H
j

q 1 F i F H
j

q Y ,Ž . ž /j j jy1 jy1 j

providing Y G 1. If Y s 0, set R s 0. For j q 1 F x F j q R , let H x be thej j j j j

largest i such that j q D i G x; for x ) j q R , let H x s H x . Again H x isj j j jy1 j

Ž . Žnonincreasing in x. We now set K s max K , j q R . If K G j q 1 i.e., ifj jy1 j j

.either R ) 0 or else K already exceeded j before the jth step , then wej jy1

say that step j succeeds; otherwise step j fails. This completes the jth step of

the construction.

If all the steps 0, 1, . . . , j succeed, then there is an open directed path from
Ž . Ž x . Ž0, 0 to each x, H with j q 1 F x F K which can be continued to thej j

. Ž .northeast, as after step 0 . If step l with l - j fails but steps l q 1, . . . , j all
Ž . Ž x .succeed, then there is an open directed path from l q 1, 0 to each x, Hj

with j q 1 F x F K , which can be continued. If step j fails, then H x ' 0 forj j

x G j q 1 and step j q 1, as already defined, searches for directed paths from
Ž .j q 1, 0 . We conclude that if all but finitely many steps succeed, then
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FIG. 2. The recursive construction after step 3. In this example, Y and R are as indicated,3 3
3 Ž i 3 3 . Ž . Ž x . Ž .H s 3 and D : H q 1 F i F H q Y s 0, 1, 4, 1 while H : x G 4 s 7, 6, 6, 6, 0, 0, . . . .2 3 2 2 3 3

Also Y s 5, R s 6 as in Figure 1, while Y s 1, R s 0 and Y s 2, R s 2.0 0 1 1 2 2

˜ ˜Ž .directed percolation i.e., the event S occurs in V. This is so because for some
Ž .l, there will be an open directed path from l q 1, 0 to the vertical line

y = Zq for every y G l q 1 and thus there must be an infinite open directed
Ž .path from l q 1, 0 .

From our definitions of R , K and step failure, we may restate thisj j

conclusion as follows. Consider the collection of closed intervals on the
q w . w xcontinuous half line R s 0, ` of the form I s j, j q R . Then directedj j

percolation occurs if the I ’s cover all but a bounded portion of Rq; that is, ifj

`

2.5 0, ` _ I is bounded.Ž . . D j

js0

˜A crucial feature of our recursive construction in V is that the R ’s arej

independent and identically distributed random variables. This is because

after j y 1 steps, we have no information about the value of p or about thej

Ž j .status of the edges to the northeast of j, H , except for right edges on thejy1
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horizontal line at height H
j

. The common distribution of the R ’s is that ofjy1 j

w Ž .xa random variable on some probability space V*, FF *, P*

max D1 , . . . , DY , if Y G 1,Ž .
2.6 R sŽ . ½ 0, if Y s 0,

where D1, D2, . . . are i.i.d. with the geometric distribution

2.7 P* D i G d s « d for d s 0, 1, 2, . . . ,Ž . Ž .

Ž i . Žand Y independent of the D ’s has the distribution geometric, conditional
.on a random parameter px

y
2.8 P* Y G y s E p for y s 0, 1, 2, . . . .Ž . Ž . Ž .Ž .x

Here E denotes expectation with respect to the P of the random environment
Ž . Ž . Ž . Ž .as in 2.1 , and 2.6 is a consequence of 2.3 and 2.4 .

Ž .According to Proposition 3 stated and proved later in this section , to show

˜Ž .that 2.5 occurs P-almost surely, we need only verify that for any « ) 0
Ž .in 2.7 ,

2.9 lim inf rP* R ) r ) 1.Ž . Ž .
rª`

Ž .We will show that this is a consequence of 2.1 .

Ž . Ž .From 2.6 ] 2.8 , we have for r s 1, 2, . . . ,

`
y

1P* R G r s 1 y P* Y s y P* D - rŽ . Ž . Ž .Ý
ys0

`
y yrs 1 y E 1 y p p 1 y «Ž . Ž . Ž .Ž .Ý x x

ys0

1 y px
s 1 y E

r1 y p 1 y «Ž .x

2.10Ž .

rp «x
s E .

r1 y p q p «x x

Ž . Ž .Setting V s ylog 1 y p and c s ylog « , the last expression in 2.10 mayx

be rewritten, using integration by parts, to yield

yV1 y e
2.11 P* R G r s EŽ . Ž .

yV yVqcr1 y e q e

`
y2vycr vycr ycrw xs e e y e q 1 P V ) v dv.Ž .H

0

Ž .However, from 2.1 , we have that for any g - `, there is some v - ` so that0

2.12 P V ) v G grv for v G v .Ž . Ž . 0
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Ž .Inserting this into 2.11 , letting v9 s v y cr and taking a limit yields

lim inf rP* R ) r s lim inf rP* R G rŽ . Ž .
rª` rª`

` g ry2v 9 v 9 ycrw xG lim inf e e y e q 1 dv9H
v9 q crrª` v ycr0

`g gy2v 9 v 9w xG e e q 1 dv9 s .H
c cy`

Ž . ŽSince 2.12 is valid for any g - `, we conclude that for any c - ` i.e., for any
. Ž . Ž .« ) 0 , lim inf rP* R ) r is q` and hence 2.9 has been verified. It only

remains to prove the following proposition about random coverings.

PROPOSITION 3. Let R , R , R , . . . be i.i.d. nonnegative integer-valued0 1 2

Ž .random variables on V*, FF *, P* such that

2.13 lim inf rP* R ) r ) 1.Ž . Ž .0
rª`

w xThen the intervals j, j q R almost surely cover all but a bounded portionj

of Rq.

Ž .PROOF. Let A be the event that k, k q 1 is not covered by any of thek

w x Ž .random intervals j, j q R . We must show that, under 2.13 , only finitelyj

many A ’s occur. However,k

P* A s P* R F k , R F k y 1, . . . , R F 0Ž . Ž .k 0 1 k

k k

s P* R F i s 1 y P* R ) iŽ . Ž .Ž .Ł Ł0 0
is0 is0

2.14Ž .
k

F exp y P* R ) iŽ .Ý 0ž /
is0

F exp yc log k for large k ,Ž .

Ž .where the last inequality follows from 2.13 , with c ) 1. Summing over k

and applying the Borel]Cantelli lemma completes the proof. I

3. Survival for continuous time. In this section we prove the continu-

ous time result, Theorem 1, by showing that it is a consequence of the

discrete time Theorem 2, proved in the last section. Our strategy is to

construct a coupling between the continuous and discrete time processes. The

coupling is based on the well-known graphical representation of the contact
w xprocess as a continuous time directed percolation model 5 .

We first note that to prove Theorem 1, we may, without loss of generality,
Ž .assume that « s 0 and « ) 0 so that as in our discrete time model1 2

� 4Zq

infection is transmitted only to the right, and then take as state space 0, 1 .

The graphical representation then utilizes independent Poisson processes on
q q Ž .the time line R : one for each x g Z with rate d x which generates ‘‘cuts’’
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�Ž x . 4 q q ² :at the locations x, U : n s 1, 2, . . . in Z = R and one for each x, x q 1n

Ž x . Ž x .with rate « which generates ‘‘arrows’’ from x, T to x q 1, T for n s2 n n

1, 2, . . . . Cuts correspond to recovery from infection and arrows to rightward

spread of infection. The contact process survival event S0 corresponds to the
Ž .graphical event that there is an infinite directed path starting from 0, 0

moving upward in time without crossing cuts and moving rightward in space

only over arrows. We need to show that S0 has positive probability.

In order to construct our coupling, we will generate the Poisson process of

cuts as follows. We begin by dividing Zq= Rq into portions above and below

the 458 line:

3.1 Lqs x , s : s ) x , Lys x , s : s F x .� 4 � 4Ž . Ž . Ž .

We first generate the cuts in Ly; these will play no role in our coupling. Then,

independently of the cuts in Ly, we will generate the cuts in Lq in a rather

special way. Roughly speaking, this will be based on the ‘‘thinning’’ property
Ž .of Poisson processes. To generate a process of rate d x , one may begin with a

Poisson process of higher rate 2d and then thin it out by independently

rejecting the original higher rate Poisson occurrences with probability 1 y
Ž . Ž .d x r 2d . We say ‘‘roughly speaking’’ because we will focus on certain

� 4 Ž x qintervals of the form x = j, j q 2 in L . We only generate and reject

or accept the earliest higher rate occurrence in those intervals, after which
Ž .we generate occurrences at the correct rate d x .

q Ž . q qThe intervals in L we focus on will be indexed by x, t in Z = Z and

defined as

� 43.2 II x , t s x = x q 2 t , x q 2 t q 2 .Ž . Ž . Ž

Ž .For each such interval, we take independently for different intervals in-
Ž . Ž . Ž . Ž .dependent random variables H x, t , h x, t , H x, t , H x, t , . . . , where0 1 2

y1Ž . Ž . Ž .H x, t is exponential with mean 2d , h x, t takes the values 0 and 10

Ž . Ž . Ž . Ž . Ž .with probabilities 1 y d x r 2d and d x r 2d and each H x, t for j G 1j

Ž .y1 Ž .is exponential with mean d x . The cuts within II x, t are then located as

follows. Define

3.3 U x , t s H x , t q ??? qH x , t .Ž . Ž . Ž . Ž .m 0 m

Ž . Ž . Ž .If H x, t ) 2, then there are no cuts within II x, t . If H x, t F 2 and0 0

Ž . Ž .h x, t s 0, then the set of cut locations within II x, t is

3.4 x , x q 2 t q U x , t : m G 1 and U x , t F 2 .� 4Ž . Ž . Ž .Ž .m m

Ž . Ž . Ž .If H x, t F 2 and h x, t s 1, then in addition to the cuts given by 3.4 ,0

Ž Ž ..there is one more cut located at x, x q 2 t q H x, t . Note that there are no0

Ž . Ž . Ž .cuts within II x, t if h x, t s 0 and H x, t ) 2, regardless of the value of1

Ž .H x, t .0

With the above process for generating all cuts and with the Poisson

processes of arrows independent of all cuts, we can now determine the open

and closed edges of our coupled directed percolation model on Zq= Zq. We
Ž . Ž . Ž .define the up edge from x, t to x, t q 1 to be open if h x, t s 0 and
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Ž . Ž .H x, t ) 2; otherwise, it is closed. This up edge from x, t is thus open with1

probability

d xŽ .
3.5 p s 1 y exp y2d x .Ž . Ž .x ž /2d

Ž . Ž . Ž .We define the right edge from x, t to x q 1, t to be open if H x, t ) 20

Ž .and there is at least one arrow from the upper half of II x, t to the bottom
Ž . Ž xhalf of II x q 1, t i.e., for some n, the arrow time coordinate T is inn

Ž x. Ž . Ž .x q 2 t q 1, x q 2 t q 2 ; otherwise the right edge from x, t to x q 1, t is
Ž .closed. This right edge from x, t is thus open with probability

3.6 « s exp y2 2d 1 y exp y« .Ž . Ž . Ž .2

The point of these definitions is twofold. First, this is an independent

directed percolation model}that is, all the edges are open or closed indepen-

dently of each other. Second, each open edge in the discrete time model

implies the existence of a corresponding path for the spread of infection in the
Ž .original model. Specifically, an open up edge from x, t implies there are no

Ž .cuts within II x, t , so any infection present anywhere in the bottom half of
Ž . Ž .II x, t will still be present everywhere in the top half of II x, t . Similarly,

Ž . Ž .an open right edge from x, t implies there are no cuts within II x, t and an
Ž . Ž .arrow from the upper half of II x, t to the lower half of II x q 1, t ; thus

Ž .any infection present anywhere in the bottom half of II x, t will be spread to
Ž .some part of the bottom half of II x q 1, t . We conclude that occurrence of

ˆ0 wthe event S in the discrete time model i.e., existence of an infinite directed
Ž .x 0open path starting at 0, 0 implies the occurrence of the survival event S in

wthe continuous time model i.e., survival for all time of an infection starting
Ž .xat 0, 0 .

ˆ0To complete the proof of Theorem 1, we need to show that S has positive
Žprobability for any « ) 0. This we will do by applying Theorem 2 and the2

.remark following it . Our discrete time model is of the type treated in
Ž . Ž .Theorem 2, with « given by 3.6 strictly positive, and i.i.d. p ’s given by 3.5 .x

Ž .It remains only to show that the condition 2.1 on the distribution of p ,x

Ž .needed for our discrete time result, follows from the hypothesis 1.1 on the
Ž .distribution of d x . However, this is an immediate consequence of inequali-

Ž .ties following easily from 3.5 :

d xŽ .
3.7 p G 1 y 1 y 2d x G 1 y Cd x ,Ž . Ž . Ž .Ž .x ž /2d

y1Ž .where C s 2d q 2, so that

3.8 y log 1 y p G ylog d x y C9,Ž . Ž . Ž .x

where C9 s log C. The proof is now complete. I
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