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WITH A NOISE TERM1

By Carl Mueller

University of Rochester

We consider the equation

ut = uxx + uγẆ, t > 0, 0 ≤ x ≤ J,

u(0,x) = u0(x),

u(t, 0) = u(t,J) = 0,

where Ẇ = Ẇ(t,x) is two-parameter white noise. We show local existence

and uniqueness for unbounded initial conditions satisfying certain condi-

tions. Our results are motivated by earlier work, which showed that, for

large γ, solutions of this equation can blow up. One would wish to show that

solutions can be extended beyond blowup, and our results can be viewed

as a step in that direction.

1. Introduction. Consider the equation

ut = uxx + uγẆ, t > 0, 0 ≤ x ≤ J,

u(0,x) = u0(x),

u(t, 0) = u(t,J) = 0.

(1.1)

Here, Ẇ = Ẇ(t,x) is two-parameter white noise. We assume that the initial

function u0(x) is nonnegative and continuous. It was shown in Mueller (1991)

that (1.1) has a unique nonnegative solution for 0 ≤ t < τ, where τ is the

blowup time described below.

In Mueller and Sowers (1993) and Mueller (1991), it was shown that blow-

up can occur with positive probability if γ is sufficiently large, but cannot

occur if γ < 3/2. We say that blowup occurs if there exists some random time

τ such that lim supt↑τ supx∈[0,J] u(t,x) = ∞. Blowup is a common feature of

partial differential equations, but the above references seem to contain the

first results for blowup caused by noise. The noise term Ẇ may push the

solution either up or down, so it is not immediately obvious that solutions

blow up.

In the case of deterministic PDE’s, solutions can sometimes be continued

beyond blowup. For example, the papers of Evans and Spruck (1991) and

Sethian (1985) deal with this phenomenon. One could ask the same question

about SPDE’s such as (1.1). We do not answer the question of continuation

beyond blowup for (1.1). Instead, we take a step in that direction by showing
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378 C. MUELLER

that in some cases (1.1) can be solved if the initial function u0(x) is unbounded

or even a measure. If γ < 3/2 we show that solutions exist if u0(x)dx is re-

placed by a finite nonnegative measure. We call the class of such measures

M. For larger values of γ, we require that u0(x) be a nonnegative function

in Lp for some p > 2γ. If it could be shown that u(t,x) was in the cor-

rect Lp-space at the time of blowup, then we could prove continuation after

blowup.

Our guess is that solutions can be continued beyond blowup in the case

of large γ. In Mueller and Sowers (1993), the function u(t,x) is compared

to a smaller function v(t,x), where v is a step function in the variable x.

Furthermore, v(t,x) blows up after u(t,x) does. It is not hard to show that

v ∈ L2γ(dtdx); (1.1) can be expressed as an integral equation involving uγẆ.

The square variation of this integral involves the integral of u2γ. Therefore,

continuation beyond blowup is not ruled out, since v ∈ L2γ.

Next, we discuss the rigorous meaning of (1.1). Indeed, we do not expect

solutions to be differentiable in t or x. We regard (1.1) as a shorthand for the

following integral equation [we are following the formalism of Walsh (1986)]:

u(t,x) =
∫ J

0
G(t,x,y)u0(y)dy

+
∫ t

0

∫ J

0
G(t− s,x,y)uγ(s,y)W(dyds).

(1.2)

Here, G(t,x,y) is the fundamental solution of the heat equation on [0,J], with

Dirichlet boundary conditions, and the final integral in (1.2) is an integral with

respect to a martingale measure, as in the theory of Walsh (1986). Observe that

the first term on the right-hand side of (1.2) is well defined even if u0(y)dy

is replaced by a finite measure. For later use, we label the last term in (1.2).

Actually, we use a modification of this term which is easier to deal with; later

we will see that control of this modified term is all that we need. Let

N(t1, t2,x) =
∫ t2

t1

∫ J

0
G(t2 − s,x,y)(u(s,y) ∧L)γW(dyds),(1.3)

where a ∧ b denotes the minimum of a and b.

Let Ft denote the σ-field generated by the white noise Ẇ up to time t. In

other words, let

Ft = σ

{

∫ t

0

∫ J

0
w(s,x)W(dxds)

∣

∣

∣

∣

w ∈ C([0, t]× [0,J])

}

.

In the usual way, we also define Fτ for stopping times τ. Later, we will use the

strong Markov property of solutions, established in Mueller (1991), to start

solutions afresh at a stopping time τ,

u(τ+ t,x) =
∫ J

0
G(t,x,y)u(τ,y)dy

+
∫ t

0

∫ J

0
G(t− s,x,y)uγ(τ+ s,y)W(dyds).

(1.4)
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Note that in the integral equation (1.2), all of the terms are well defined as

long as u(t,x) is bounded. Of course, u0(x) may not be bounded if it is only a

finite nonnegative measure. However, since the heat kernel quickly smooths

out singularities, we expect that u(t,x) will soon become bounded. Our goal in

this paper is to find solutions u(t,x) of (1.1) which are bounded for t > 0 and

which decrease at a certain rate, which we specify below. Within this class, we

prove uniqueness. From now on, when we discuss solutions to (1.1), we mean

solutions in the above sense.

First we deal with the case γ < 3/2. Let

H1(t) = C1t
−1/2,

where C1 is a constant to be chosen later. We seek solutions u(t,x) of (1.1)

such that the following holds:

(A) For some stopping time τ > 0, t < τ implies sup0≤x≤J u(t,x) ≤ H1(t).

It will turn out that (A) implies that almost surely the function (s,y) 7→
G(t − s,x,y)uγ(s,y) lies in L2([0, t] × [0,J]), and so the right-hand side of

(1.2) is well defined.

Theorem 1.1. Suppose that 1 ≤ γ < 3/2, and let u0 be a nonnegative finite

measure on [0,J]. If C1 is large enough, then (1.1) has a unique solution.

More precisely, there exists an almost surely unique random function u(t,x)

satisfying (1.2) and (A) with probability 1.

Second, we consider the case γ ≥ 3/2. For this case, we cannot prove as

strong a result. Suppose that u0(x) ∈ Lp for some p > 2γ, and define

H2(t) = C2t
−1/p.

We seek solutions u(t,x) of (1.1) such that the following holds:

(B) For some stopping time τ > 0, t < τ implies sup0≤x≤J u(t,x) ≤ H2(t).

It will turn out that (B) implies that almost surely, for 0 ≤ t < τ, the function

(s,y) 7→ G(t− s,x,y)uγ(s,y) lies in L2([0, t]× [0,J]), and so the right-hand

side of (1.2) is well defined.

Theorem 1.2. Suppose that γ ≥ 3/2, p > 2γ and u0(x) ∈ Lp. If C2 is

large enough, then, up to time τ, (1.1) has a unique solution, where τ is the

stopping time mentioned in (B). More precisely, for 0 ≤ t < τ, there exists an

almost surely unique random function u(t,x) satisfying (1.2) and (B) with

probability 1.

We prove Theorem 1.1 in Section 2. The proof of Theorem 1.2 is in Section 3.

2. Proof of Theorem 1.1. In this section we deal with the case where

γ < 3/2 and u0 is a nonnegative finite measure. This is the easy case, and
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we use several of the arguments of Mueller (1991). For the purposes of this

section, we modify our original equation. Let

ūt = ūxx + [ū ∧H1(t)]
γẆ, t > 0, 0 ≤ x ≤ J,

ū(0,x) = ū0(x),

ū(t, 0) = ū(t,J) = 0.

(2.1)

The rigorous meaning of (2.1) is given in terms of an integral equation like

(1.2). We leave this to the reader. We will assume that ū0(x) is a bounded

continuous function. It is easy to modify the proofs of Mueller (1991) to show

that long time existence and uniqueness hold for the equation

ut = uxx + f(t,u)Ẇ,

where f(t,u) ≤ c0+c1u
γ for some γ < 3/2. Therefore, (2.1) possesses a unique

nonnegative solution valid for all t ≥ 0. Furthermore, let

N̄(t1, t2,x) =
∫ t2

t1

∫ J

0
G(t2 − s,x,y)(ū(s,y) ∧L)γW(dyds).(2.2)

The following lemma is proved exactly as in Mueller [(1991), Lemma 2.1].

Lemma 2.1. Suppose that δ, t̄ > 0. If ∆2/(L2γt1/2−δ) is sufficiently large and

0 < t < t̄, then, for any T ≥ 0,

P

{

sup
0≤s≤t

sup
0≤x≤J

|N̄(T,T+ s,x)| > ∆

}

≤ exp

[ −c∆2

L2γt1/2−δ

]

,

for some constant c > 0 depending on t̄.

We will use some of the ideas of Mueller (1991), who showed that blowup

does not occur if γ < 3/2. Since this argument is used several times in the

sequel, we will summarize it here. For the purposes of this argument, we

assume that sup0≤x≤J u0(x) = 1. Then we inductively define stopping times

τm as follows. Let τ1 = 0. Given τm, let Mm = sup0≤x≤J u(τm,x), and let

τm+1 be the first time t > τm such that sup0≤x≤J u(t,x) equals either 2Mm or

Mm/2. We can compare log(Mm) to a random walk which has negative drift

for large values of Mm. Indeed, assume that Mm = 2n, and let L = 2n+1. If

τm ≤ t ≤ τm+1, then u(t,x) = u(t,x) ∧L, and the assumptions of Lemma 2.1

hold. It was shown in Mueller (1991) that U(t) ≡
∫ J

0 u(t,x)dx is a continuous

nonnegative local martingale, and hence U(t) is bounded with probability 1,

say, U(t) ≤ K for some random variable K. Thus, if a large peak develops,

it must be very thin, and then the action of the heat equation will quickly

decrease the peak. In particular, one has the estimate

∫ J

0
G(t,x,y)f(y)dy ≤ ‖f‖1√

t
.
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Therefore, if supx u(t,x) = c2n, then the time required for the heat equation to

reduce this supremum by a factor of 2 is on the order of 2−2n. One must show

that the peak decreases before enough noise develops to drive it further up.

Here are a few of the details. We use the strong Markov property of solutions

[see Mueller (1991), Lemma 3.3] to start the process afresh at time τm. Let

L = c2n, t = c2−2n and ∆ = c2n, where the constant c may be different

in each case. One verifies that, with the proper choice of constants c, and if

Mm = 2n is large enough, then sup0≤s≤t sup0≤x≤J |N(τm,τm+s,x)| ≤ ∆ implies

Mm+1 = Mm/2. However, Lemma 2.1 implies that if n is large, then the above

event has probability close to 1. Thus, if Mm is large, Mm+1 is much likelier

to be below Mm than above, and the process Mm is either recurrent or tends

to 0.

We adapt this argument to prove existence for initial conditions u0 ∈ M,

the class of finite nonnegative measures on [0,J]. If u0 is not a function,

we approximate it with functions un(0,x) which are bounded. Then we show

that any large peaks of un(t,x) quickly decrease. Letting n → ∞ gives us a

solution.

Now let U(t) =
∫ J

0 ū(t,x)dx.

Lemma 2.2. For t > 0, (U(t),Ft) is a nonnegative local supermartingale.

Proof. The proof of Lemma 3.1 in Mueller (1991) carries over to

Lemma 2.2. 2

Now we prove the existence part of Theorem 1.1. Choose a sequence of non-

negative continuous functions hn(x) ∈ C[0,J], such that hn(x)dx tends to

u0(dx) as n → ∞, in the sense of weak convergence of measures. If u0(dx)/dx

is a bounded density, then Theorem 1 of Mueller (1991) implies existence, and

uniqueness is also proved in the same paper. Therefore, we henceforth assume

that u0(dx)/dx is not a bounded density. We may choose the hn(x) such that

sup0≤x≤J hn(x) = 2n. Since each function hn is bounded and γ < 3/2, a slight

modification of Theorem 1 of Mueller (1991), and his discussion of uniqueness,

shows that (2.1), with initial condition ū0(x) = hn(x), has a unique solution

ūn(t,x) which is almost surely continuous in (t,x). Furthermore, with proba-

bility 1, this solution is valid for all times t ≥ 0.

Our first goal is to modify the proof of Lemma 2.1 of Mueller (1991) to show

that ūn(t,x) quickly decreases. For each n > 0, we define stopping times τm =
τ
(n)
m associated with ūn(t,x), as in the outline of the proof of long time existence

for γ < 3/2. To be specific, let τ0 = 0. Suppose that we have already defined

τm and that sup0≤x≤J ūn(τm,x) = 2k. Let τm+1 be the first time t > τm that

sup0≤x≤J ūn(t,x) equals 2k−1 or 2k+1. Let Mm = M
(n)
m = sup0≤x≤J ūn(τm,x).

We allow the possibility that τm = ∞, and Lemma 2.3 gives a bound on the

probability of this event.

Definition 2.1. Let T = T(n,K0) be the first of the times τm such that

Mm = 2K0 .
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Finally, let N(k,m) be the number of indices i ≤ m such that Mi = 2k,

and let σ = σ(K0) be the first index m ≥ 0 such that Mm = 2K0 . Therefore,

T = τσ. Assume that n > K0.

Lemma 2.3. Suppose that M0 = 2n, and let A(m) = A(m,n,K0, c1, c2) be

the event that the following hold:

(a) N(k,m) = 0 or 1 for k ≥ K0;

(b) τm+1 − τm ≤ c12−2(n−m);

(c) sup0≤s≤c22−2(n−m) sup0≤x≤J |N̄(τm,τm + s,x)| ≤ 2n−m−3.

Then, given « > 0, there exists an integer K0 and constants c1, c2 > 0 such

that, for all m > 0,

σ
∑

m=1

P{Ac(m)|A(1) ∩ · · · ∩A(m− 1)} < «.

Before proving Lemma 2.3, we give an immediate consequence. Note that

Lemma 2.3 implies that

P

{[ σ
⋂

m=1

A(m)

]c}

≤
σ

∑

m=1

P{Ac(m)|A(1) ∩ · · · ∩A(m− 1)}

< «.

Now, roughly speaking, conditions (a)–(c) of Lemma 2.3 imply that supx u(t,x)

is quickly decreasing. Condition (a) implies that the successive maxima Mi

take a given value at most once. Therefore these maxima form either an in-

creasing or decreasing sequence. Condition (c) implies that the sequence is

decreasing. Condition (b) implies that the times between maxima are short.

All of this is true only up to time τσ. Then from the definition of H1 one deduces

the following lemma, which quantifies the rate of decrease of supx u(t,x).

Lemma 2.4. Let « > 0. There exists a number K0 > 0 depending on all of

the constants in Lemma 2.3, but not depending on n, such that

P

{

sup
0≤x≤J

ūn(t,x) >
1
2
H1(t) for some t ∈ [0,T(n,K0)]

}

< «.

Proof of Lemma 2.3. Assume that A(1)∩ · · · ∩A(m−1) occurs, and note

that the conditions of Lemma 2.3 imply that

Mm = 2n−m.

In other words, if these events occur and if M0 = 2n, then Mk is reduced by a

factor of 2 each time, for 1 ≤ k ≤ m− 1.

We use Lemma 2.1 and the argument in Mueller (1991) which was sum-

marized after Lemma 2.1. In Lemma 2.1, we substitute L = c12(n−m), t =
c22−2(n−m) and ∆ = 2n−m−3. Let Λm be the event that condition (c) of Lemma

2.3 holds. Suppose that c1 and c2 are large. Consider the solution ū(τm + t,x)
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started at time τm. The argument in Mueller (1991), referred to earlier, shows

that if c2 is large enough, then
∫ J

0
G(t,x,y)ū(τm,y)dy < 2n−m−2.

Using (1.4) and the definition of Λm, we see that if Λm and A(1) through

A(m − 1) occur, then the noise term N̄ is so small that Mm+1 = Mm/2 and

τm+1 − τm ≤ c12−2(n−m). Thus, if A(1), . . . ,A(m − 1) occur, then Λm ⊂ A(m).

By Lemma 2.1, we have that, for Mm = 2n−m sufficiently large,

P
{

Λc
m

∣

∣Fτm

}

≤ exp
[

−c122(n−m)(3/2−γ−δ)
]

.(2.3)

Our assumptions imply M0 ≥ 2K0 . Using (2.3), we find that

σ
∑

m=1

P{Ac(m)|A(1) ∩ · · · ∩A(m− 1)}

≤
σ

∑

m=1

P{Λc
m|A(1) ∩ · · · ∩A(m− 1)}

≤
∞

∑

k=K0

exp
[

−c22k(3/2−γ−δ)
]

≤ c exp
[

−c22K0(3/2−γ−δ)
]

< «

if K0 is large enough. This proves Lemma 2.3. 2

Now we return to the proof of Theorem 1.1. Let hn(x) be as above; that is, as

n → ∞, let hn(x)dx → u0(dx) in the sense of weak convergence of measures,

and let sup0≤x≤J hn(x) = 2n. Thus, there is a constant K such that, for all

n ≥ 1,
∫ J

0 hn(x)dx ≤ K.

Now we proceed with the proof of existence and uniqueness. We use the fa-

miliar Picard iteration technique, as described in Walsh [(1986), Theorem 3.2.].

First we give the proof of existence. Let ūn(t,x) be a solution of (2.1) with

initial condition ūn(0,x) = hn(x). We define a distance D(t, ·, ·) as follows. For

ease of notation, let u(t,x) = ūn1
(t,x) and v(t,x) = ūn2

(t,x). Let

D(t,f,g) =
∫ t

0
(t− s)−1/2s−γ+1

∫ J

0

∣

∣f(s,x)− g(s,x)
∣

∣

2
dxds.(2.4)

Let D(t) = D(t,u,v).

We will show existence of a solution ū(t,x) to (2.1) and show that ū(t,x)

is also a solution to (1.1) up to some positive stopping time. Then, since ū is

bounded in x at this stopping time, we can use the strong Markov property of

solutions to start afresh. The strong Markov property was proved for bounded

solutions of (1.1) in Mueller [(1991), Lemma 3.3], but the proof there is easily

carried over to our case, seeing that u(t,x) becomes bounded for t > 0, with

probability 1. Recall that the main result of Mueller (1991) was long time
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existence of u(t,x) for bounded and continuous initial conditions. Using the

strong Markov property to start afresh at time τσ, we see that this result

implies the existence of the solution u(t,x) for all times t > 0.

Now we proceed with the Picard iteration, using Theorem 2.5 of Walsh

(1986) to compute the expected square of a white noise integral:

E

[

∫ t

0

∫ J

0
f(s,x)W(dxds)

]2

= E

∫ t

0

∫ J

0
f(s,x)2 dxds.

Here, f(s,x) = f(s,x,ω) is a nonanticipating function. Let

δ = δ(t,n1,n2)

= 2

∫ J

0

∫ t

0
(t− s)−1/2s−γ+1

×
(

∫ J

0
G(s,x,y)[hn1

(y)− hn2
(y)]dy

)2

dsdx.

(2.5)

To estimate δ, let 0 < a < t:

δ = 2

∫ J

0

∫ a

0
(t− s)−1/2s−γ+1

×
(

∫ J

0
G(s,x,y)[hn1

(y)− hn2
(y)]dy

)2

dsdx

+ 2

∫ J

0

∫ t

a
(t− s)−1/2s−γ+1

×
(

∫ J

0
G(s,x,y)[hn1

(y)− hn2
(y)]dy

)2

dsdx

= δI + δII.

(2.6)

Here are some facts we will use in the following calculation. Recall that
∫ J

0 hn(x)dx ≤ K for all n ≥ 0. Second, note that
∫ J

0 G(s,x,y)2 dx = cs−1/2, for

some constant c > 0. Finally, recall that Minkowski’s inequality, with p = 2,

states that, for a nonnegative measure ν and for b1, . . . , bn ∈ L2(dν),

[

∫

( n
∑

k=1

bk(y)

)2

dν(y)

]1/2

≤
n

∑

k=1

[

∫

bk(y)
2 dν(y)

]1/2

.

Approximating integrals by sums in a standard way, we get Minkowski’s in-

equality for integrals, which states that, for nonnegative measures dµ and

dν, and for b(r,y) ∈ L2(dνdµ), we have

[

∫

(

∫

b(r,y)dµ(y)

)2

dν(r)

]1/2

≤
∫

[

∫

b(r,y)2 dν(r)

]1/2

dµ(y).

We will use Minkowski’s inequality with r = (s,x),dµ(y) = hk(y)dy for

k = n1,n2, and dν(r) = dν(s,x) = (t − s)−1/2s−γ+1 dsdx. Using these facts,
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we find

√
δI ≤

[

2

∫ J

0

∫ a

0
(t− s)−1/2s−γ+1

(

∫ J

0
G(s,x,y)hn1

(y)dy

)2

dsdx

]1/2

+
[

2

∫ J

0

∫ a

0
(t− s)−1/2s−γ+1

(

∫ J

0
G(s,x,y)hn2

(y)dy

)2

dsdx

]1/2

≤
∫ J

0
hn1

(y)

[

2

∫ J

0

∫ a

0
(t− s)−1/2s−γ+1G(s,x,y)2 dsdx

]1/2

dy

+
∫ J

0
hn2

(y)

[

2

∫ J

0

∫ a

0
(t− s)−1/2s−γ+1G(s,x,y)2 dsdx

]1/2

dy

≤ cK

[

∫ a

0
(t− s)−1/2s−γ+1s−1/2 ds

]1/2

≤ c

[

(t− a)−1/2a3/2−γ

]1/2

→ 0 as a → 0.

(2.7)

We need the following elementary lemma.

Lemma 2.5. Let µn be a sequence of finite, nonnegative measures on a com-

pact metric space S. Suppose that the sequence µn converges weakly to a finite

nonnegative measure µ on S. Let B be a uniformly bounded, equicontinuous

family of functions on S. Then,

lim
n→∞

sup
b∈B

∣

∣

∣

∣

∫

S
bdµn −

∫

S
bdµ

∣

∣

∣

∣

= 0.

Proof. Suppose that the conclusion is false. Then there exist η > 0 and a

sequence bn ∈ B such that
∣

∣

∣

∣

∫

S
bn dµnk

−
∫

S
bn dµ

∣

∣

∣

∣

> η.

However, the Arzela–Ascoli theorem states that there is a subsequence nk

and a continuous function b∞ on S such that bnk
→ b∞ uniformly. Note that

since µn(S) → µ(S), we may assume that the µn(S) and µ(S) are uniformly

bounded. Then

η <

∣

∣

∣

∣

∫

S
bnk

dµnk
−

∫

S
bnk

dµ

∣

∣

∣

∣

≤
∫

S
|bnk

− b∞|dµnk
+

∫

S
|bnk

− b∞|dµ

+
∣

∣

∣

∣

∫

S
b∞dµnk

−
∫

S
b∞ dµ

∣

∣

∣

∣

,

but all the terms on the right-hand side tend to 0 as k → ∞, which contradicts

the fact that η > 0. This ends the proof of Lemma 2.5. 2



386 C. MUELLER

Suppose t > a > 0 and « > 0 are fixed. Note that {G(s,x, ·)|a ≤ s ≤ t,

0 ≤ x ≤ J} is a uniformly bounded, equicontinuous family of functions on

[0,J]. By Lemma 2.5 and since hn → u0 weakly as n → ∞, we may choose

N so large that n1,n2 > N implies that
∣

∣

∣

∣

∫ J

0
G(s,x,y)[hn1

(y)− hn2
(y)]dy

∣

∣

∣

∣

< «1/2,

for all a ≤ s ≤ t, 0 ≤ x ≤ J. Therefore n1,n2 > N implies that

δII = 2

∫ J

0

∫ t

a
(t− s)−1/2s−γ+1

(

∫ J

0
G(s,x,y)[hn1

(y)− hn2
(y)]dy

)2

dsdx

≤ 2J«

∫ t

0
(t− s)−1/2s−γ+1 ds

≤ c«.

(2.8)

Then

ED(t) ≤ δ+ 2E

∫ J

0

∫ t

0
(t− s)−1/2s−γ+1

×
(

∫ s

0

∫ J

0
G(s− r,x,y)[(u(r,y) ∧H1(r))

γ

− (v(r,y) ∧H1(r))
γ]W(dydr)

)2

dsdx

≤ δ+ 2

∫ J

0
E

∫ t

0

∫ s

0

∫ J

0
(t− s)−1/2s−γ+1G(s− r,x,y)2

× [(u(r,y) ∧H1(r))
γ − (v(r,y) ∧H1(r))

γ]2 dydrdsdx

≤ δ+ 2

∫ J

0
E

∫ t

0

∫ s

0

∫ J

0
(t− s)−1/2s−γ+1G(s− r,x,y)2γ2H1(r)

2γ−2

× [u(r,y)− v(r,y)]2 dydrdsdx

≤ δ+ 2γ2

∫ J

0

∫ t

0

∫ s

0

∫ J

0
(t− s)−1/2s−γ+1G(s− r,x,y)2r−γ+1

× sup
0≤z≤J

E[u(r, z)− v(r, z)]2 dydrdsdx

≤ δ+C

∫ t

0
(t− s)−1/2s−γ+1

∫ s

0
(s− r)−1/2r−γ+1

× sup
0≤z≤J

E[u(r, z)− v(r, z)]2 drds

≤ δ+C

∫ t

0
(t− s)−1/2s−γ+1ED(s)ds.

(2.9)

To get the third inequality in (2.9), we have used the mean value theorem

to deduce that, for nonnegative numbers a, b, and H, there exists a number
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c between a ∧H and b ∧H such that

|(a ∧H)γ − (b ∧H)γ| = γcγ−1|a ∧H− b ∧H|

and, therefore,

|(a ∧H)γ − (b ∧H)γ| ≤ γHγ−1|a− b|.

Note that
∫ t

0
(t− s)−1/2s−γ+1 ds ≤

(

2 + 1

2 − γ

)

t(3/2−γ)2γ−3/2.

Using Gronwall’s lemma, we conclude that

sup
0≤s≤t

ED(s) ≤ 2δ exp

[

C(2 + 1/(2 − γ))t(3/2−γ)

2γ−3/2

]

.

Now we choose a subsequence nk such that

∞
∑

k=1

δ(t,nk,nk+1) < ∞.

It follows that

∞
∑

k=1

D(t, ūnk
, ūnk+1

) < ∞,

so that ūnk
converges in the L2-norm which we have chosen. Call the limit

ū(t,x). It is standard, as in Shiga (1994), that ū(t,x) satisfies (2.1).

However, we are looking for solutions of (1.1), not (2.1). Let ξ(ti, t,u) be the

first time s ∈ [ti, t] such that sup0≤x≤J u(s,x) > H1(s). If there is no such

time, let ξ(ti, t,u) = t. Since unk
→ u weakly, using Lemma 2.4, the reader

can easily check that

P(ξ(ti, t,u) > r) = lim
k→∞

P(ξ(ti, t,uk) > r) ≥ 1 − «(t, r),

where «(t, r) → 0 as t ↓ 0 and where «(t, r) does not depend on i or k.

However, ξ(ti, t,u) ↓ ξ(0, t,u) as ti ↓ 0, so

P(ξ(0, t,u) > r) ≥ 1 − «(r).

Thus, with probability 1, sup0≤x≤J ū(t,x) ≤ H1(t) for t > 0 and for t less than

some almost surely positive random time. This proves existence, in the sense

of Theorem 1.1.

Next we give the proof of uniqueness, which follows the lines of our exis-

tence proof. Let u(t,x) and v(t,x) be two solutions to (1.1). According to our

definition of solutions to (1.1), this means that the following hold:

1. u(t,x) and v(t,x) satisfy (1.2);

2. for t > 0, u(t,x) and v(t,x) are bounded functions of x;

3. for some constant C > 0, and for some stopping time T > 0 a.s., 0 < t < T

implies that supx∈R
max[u(t,x),v(t,x)] ≤ CH1(t).
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Again, we use the integral equation (1.2) to estimate the difference of solu-

tions u(t,x) and v(t,x). Then the first integral in (1.2) makes sense, because

u0 is a finite measure. Define D(t,f,g) as in (2.4), and let D(t) = D(t,u,v).

Observe that the difference u(t,x) − v(t,x) is simpler than in the case of

existence, since the terms
∫ J

0 G(t,x,y)u0(dy) cancel out. Therefore,

u(t,x)− v(t,x) =
∫ t

0

∫ J

0
G(t− s,x,y)uγ(s,y)W(dyds)

−
∫ t

0

∫ J

0
G(t− s,x,y)vγ(s,y)W(dyds),

and (2.9) is simpler, because there is no δ term. However, everything else is

exactly the same, so we obtain

ED(t) ≤ C

∫ t

0
(t− s)−1/2s−γ+1ED(s)ds,

and Gronwall’s lemma implies that

ED(t) = 0.

It follows that, with probability 1, u(t,x) = v(t,x) for all t ∈ [0,T], 0 ≤ x ≤ J.

Here, T is the minimum of the τσ associated with u and v. We note that T > 0

almost surely. Then, using the strong Markov property of solutions, we can

start afresh at t = T. Since, at t = T, u and v are bounded, uniqueness beyond

t = T follows from Mueller (1991). This proves uniqueness for all t ≥ 0, in the

sense of Theorem 1.1.

3. The case g ≥3/2. If γ ≥ 3/2, then some of the techniques we used in

Section 2 break down. In particular, Lemma 2.1, while it is still true, is no

longer useful. Recall that, for γ < 3/2, L = c2n, t = 2−2n and ∆ = c2n, Lemma

2.1 showed that a certain probability tended to 0 as n → ∞. For γ ≥ 3/2, the

bound on this probability would tend to ∞ rather than 0.

Instead of assuming that u0 is a nonnegative finite measure, we make the

more stringent assumption that u0 is a nonnegative function in Lp for p > 2γ.

Let

K = K(p) ≡
∫ J

0
u
p
0 (x)dx.(3.1)

As in the previous section, we consider a modified equation for u(t,x). Recall

from the statement of Theorem 1.2 that H2(t) = C2t
−1/p. Let ūn(t,x) satisfy

ūt = ūxx + [ū ∧H2(t)]
γẆ, t > 0, 0 ≤ x ≤ J,

ū(0,x) = fn(x),

ū(t, 0) = ū(t,J) = 0,

(3.2)

where

fn(x) = u0(x) ∧ 2n.
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Again, let

N̄(t1, t2,x) =
∫ t2

t1

∫ J

0
G(t2 − s,x,y)(ū(s,y) ∧L)γW(dyds).

Now we introduce an auxiliary function which will allow us to estimate

some integrals. For a nonnegative function f(x) on R, we define a function

λf(y) by

λf(y) = m{x ∈ R|f(x) > y},

where m(dx) is Lebesgue measure. To compare definitions, recall that the

classical distribution function of f is equal to J−λf(y). In order to define λu0
,

we extend u0 to be 0 on R \ [0,J]. Arguing as in Markov’s inequality, we find

λu0
(y) ≤

∫ J
0 u0(x)

p dx

yp

= K

yp
.

(3.3)

Our strategy is to do computations with a sum or maximum of Gaussian

functions, whose λ-function is greater than or equal to the λ-function of u(t, ·).
It will turn out that the sum of Gaussians with which we deal is almost equal

to the maximum of the same Gaussians. It is easy to convolve Gaussians

with each other, so the computations in the integral equation (1.2) are easy to

perform. For the purposes of this section, let

G(t,x) = 1√
2πt

exp

(

−x2

2t

)

.

If G(t,x,y) has three arguments rather than two, we give G its old meaning

as the fundamental solution of the heat equation on [0,J], with Dirichlet

boundary conditions. The maximum principle for the heat equation implies

that for, t > 0 and x,y ∈ [0,J],

G(t,x,y) ≤ G(t,x− y).(3.4)

First, we construct a sum ḡ(x) of Gaussians such that λu0
(y) ≤ 2λ7ḡ(y) for

all y > 0. Let

ck = K2−k(p−1),

tk = K22−2kp,
(3.5)

and, for x ∈ R, let

ḡ(x) =
∞

∑

k=1

ckG(tk,x),

g(x) = sup
1≤k<∞

ckG(tk,x).

The following lemma relates u0(x) to ḡ(x).
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Lemma 3.1. For all y > 0, we have

λu0
(y) ≤ 2λ7ḡ(y).

Proof. First, we prove Lemma 3.1 for y = 2k and k ≥ 1. We easily compute

that, for |x| ≤
√
t,

G(t,x) ≥
exp(− 1

2
)

√
2πt

= 0.3√
t

.

(3.6)

Thus, if |x| ≤ √
tk,

ckG(tk,x) >
0.3ck√

tk

≥ 0.3 × 2k,

and so,

λḡ(0.3 × 2k) = m{x ∈ R
∣

∣ ḡ(x) > 0.3 × 2k}

≥ m{x ∈ R
∣

∣ ckG(tk,x) > 0.3 × 2k}

≥ 2
√
tk

= K2−kp+1.

Thus, by (3.3),

λu0
(2k) ≤ K2−kp

≤ 2λḡ(0.3 × 2k).

Finally, note that the definition of λ implies that λg(cy) = λg/c(y). Therefore,

if 2k ≤ y ≤ 2k+1, then

λu0
(y) ≤ λu0

(2k)

≤ 2λḡ(0.3 × 2k)

≤ 2λḡ(0.15 × y)

≤ 2λ7ḡ(y).

This proves Lemma 3.1. 2

Next, we show an inequality between g(x) and ḡ(x). Of course, it follows

from the definition that, for all x ∈ R, g(x) ≤ ḡ(x). Here is an inequality in

the other direction.

Lemma 3.2. There is a constant c > 0 such that, for all x ∈ R, we have

ḡ(x) ≤ cg(x).
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Proof. Note that

ckG(tk,x) ≤ ckG(tk, 0) = 2k

√
2π

ckG(tk,x) ≤ 2k

√
2π

exp(−22p(k−k0−1)) if |x| ≥ tk0+1.

By (3.6), if |x| ≤
√
tk0

, then

ck0
G(tk0

,x) ≥ 0.3 × 2k0 .

Suppose that tk0+1 ≤ |x| ≤ tk0
. Using the previous two inequalities and the

definitions of g and ḡ, we have

ḡ(x) =
∞

∑

k=1

ckG(tk,x)

=
k0

∑

k=1

ckG(tk,x)+
∞

∑

k=k0+1

ckG(tk,x)

≤
k0

∑

k=1

2k

√
2π

+
∞

∑

k=k0+1

2k

√
2π

exp(−22p(k−k0−1))

≤ c2k0

≤ c · ck0
G(tk0

,x)

≤ cg(x).

This proves Lemma 3.2. 2

Now we continue with the proof of Theorem 1.2.

Lemma 3.3. If ck and tk are as in (3.5), then there is a constant C0 such

that

λu0
(y) ≤ 2λC0g(y),

for all y > 0. Furthermore, if ĝ(x) = C0g(x/2), then

λu0
(y) ≤ λĝ(y),

for all y > 0.

Proof. Note that if r(x) ≤ s(x), for all x, then λr(y) ≤ λs(y). The first

assertion of Lemma 3.3 then follows from Lemmas 3.1 and 3.2. The second

assertion follows from the first assertion and a simple scaling argument. This

proves Lemma 3.3. 2

We keep track of the time necessary for the heat flow to reduce the maxi-

mum of g to some lower level. Note that the maximum of G(t,x) over x ∈ R

occurs at x = 0.



392 C. MUELLER

Lemma 3.4. We have

sup
x∈R

[G(4s, ·) ∗ ĝ](x) ≤ C0[s(p− 1)]−1/(2p) p

p− 1
.

Proof. Note that G(4s,y) = (1/2)G(s,y/2) and, therefore,

sup
x∈R

[G(4s, ·) ∗ ĝ](x) = C0 sup
x∈R

∫ ∞

−∞
G(s,x/2 − y/2)g(y/2)d(y/2)

≤ C0 sup
x∈R

sup
k≥1

ckG(tk + s,x)

≤ C0 sup
k≥1

ck√
tk + s

= C0 sup
k≥1

2k

√
1 + s22kp

≤ C0 sup
y≥0

2y

√
1 + s22yp

.

Now let

S(y) = 2y

√
1 + s22yp

.

Note that limy→∞ S(y) = 0 and that S(0) = 1/
√

1 + s. We will differentiate to

find the critical points of S(y) in (0,∞):

S′(y) = 2y ln 2√
1 + s22py

− 2y−1s22py2p ln 2

(1 + s22py)3/2

= 0

if

y = ymax ≡ − 1

2p
log2[s(p− 1)].

Evaluating S(y) at y = ymax, we find that

S(ymax) = [s(p− 1)]−1/(2p) p

p− 1
.

This proves Lemma 3.4. 2

Lemma 3.5. Suppose that f(x) and h(x) are nonnegative even functions on

R, and are nonincreasing for x ∈ [0,∞). Let f(x) and h(x) be functions on R

such that λf(y) = λf(y), and λh(y) = λh(y), for all y > 0. Then, for all t > 0,

we have
∫ ∞

−∞

∫ ∞

−∞
f(x)G(t,x− y)h(y)dydx ≥

∫ ∞

−∞

∫ ∞

−∞
f(x)G(t,x− y)h(y)dydx.
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Proof. Note that we may approximate f(x) by step functions of the form

∞
∑

n=1

αn1(−an ≤ x ≤ an),(3.7)

where αn and bn are nonnegative constants. Since f(x) is a rearrangement of

f(x), we may approximate f(x) by simple functions of the form
∑∞

n=1 αnAn,

where m(An) = 2an, and an and αn are the same constants as above. We

leave these details to the reader. Here, m(dx) is Lebesgue measure. The same

statement would be true for h(x) and h(x).

Because the double integral involved in Lemma 3.5 is bilinear, it suffices

to show the following. Let A,B ⊂ R, with m(A) = 2a and m(B) = 2b. Let

Ā = [−a,a] and let B̄ = [−b, b]. We must show that

∫

A

∫

B
G(t,x− y)dydx ≤

∫

Ā

∫

B̄
G(t,x− y)dydx.(3.8)

In fact, since G(t,x− y) is continuous in (x,y), it is enough to show (3.8) for

sets A and B of the form

A =
m
⋃

k=1

[

ak−1

N
,
ak

N

]

,

B =
n

⋃

k=1

[

bk−1

N
,
bk

N

]

,

where the sets {ak}
m
k=0

and {bk}
n
k=0

contain m + 1 and n + 1 integers, re-

spectively. By subdividing each interval [ak−1/N,ak/N] if necessary, we may

assume that m is even, and likewise that n is even.

We claim that elementary geometry gives us the following. For 1 ≤ k ≤ m/2,

let

Rk =
([

ak−1

n
,
ak

n

]

∪
[

am−k

n
,
am−k+1

n

])

×B.

Let Nk(z) be the number of 1/N×1/N squares in Rk whose distance from the

diagonal {x = y} is less than or equal to z. We claim that it is clear that, for

each k, z, the maximum value of Nk(z) is attained when Ā = A and B̄ = B.

Letting N → ∞, we see that the maximum value of

M(z) ≡ m
{

(x,y) ∈ Ā× B̄
∣

∣ |x− y| < z
}

is attained when Ā = A and B̄ = B. Because G(t,x − y) is a nonincreasing

function of |x− y|, we see that

∫

Ā

∫

B̄
G(t,x− y)dydx =

∫ ∞

0
G(t, z)dM(z)



394 C. MUELLER

is minimized when Ā = A and B̄ = B. We have reduced Lemma 3.5 to this

case, so the lemma is proved. 2

By taking f and f to be indicator functions, we may deduce the following

corollary of Lemma 3.5.

Corollary 3.6. Let h and h be nonnegative functions on R such that h is

an even function, nonincreasing on [0,∞) and such that λh(y) ≤ λh(y) for all

y > 0. Then,

λG(t,·)∗h(y) ≤ λG(t,·)∗h(y),

for all t > 0, y > 0.

Now we use Lemmas 2.1 and 3.5 and Corollary 3.6 to show that, in the time

necessary for the heat kernel to take down u0(x), the noise term N(t, s,x)

cannot push up the solution very much. This idea is similar to the proof of

long time existence for γ ≤ 3/2, as found in Mueller (1991).

Consider the initial function f∞ = u0 ∈ Lp. Recall that fn(x) = u0(x)∧ 2n.

Note that

λfn
(y) ≤ λu0

(y) ≤ λĝ(y),

for y > 0 and 1 ≤ n ≤ ∞. Let

sk = C2−2kp.

Now we come to the main point of all our calculations with the λ functions.

Lemma 3.7. There is a constant C1 > 0 such that, for k ≥ 1 and 1 ≤ n ≤ ∞,

sup
0≤x≤J

∫ J

0
G(sk,x,y)fn(y)dy ≤ C12k.

Proof. Using Lemma 3.4 and Corollary 3.6, we have

sup
0≤x≤J

∫ J

0
G(sk,x,y)fn(y)dy ≤ sup

x∈R

[G(sk, ·) ∗ fn](x)

= sup{y ≥ 0|λG(sk,·)∗fn
(y) > 0}

≤ sup{y ≥ 0|λC0G(sk,·)∗ĝ(y) > 0}

= sup
x∈R

[G(sk, ·) ∗ ĝ](x)

≤ C0

[

sk

4
(p− 1)

]−1/(2p)
p

p− 1

≤ C12k.

This proves Lemma 3.7. 2
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Now we let (1) L = L(k) = 2k+1 and (2) ∆ = ∆(k) = c02−k«.

Let Ak denote the following event:

Ak =
{

sup
0≤s≤sk−sk+1

sup
0≤x≤J

|N̄(sk+1, sk+1 + s,x)| > ∆

}

.

Lemma 2.1 asserts that, for c0 large enough,

P{Ak} ≤ exp

[ −c∆2

L2γ(sk − sk+1)1/2−«

]

≤ exp
[

−c2k(p−2γ−2(1+p)«)
]

.

Note that, by the Markov property of solutions, if

p > 2γ

and « < (p− 2γ)/3, then, for large enough k, we have

n
∑

k=K0

P{Ak

∣

∣Ak+1 ∩ · · · ∩An} < exp[−c2K0(p−2γ−2(1+p)«)].(3.9)

We remark that the right-hand side of (3.9) does not depend on n. 2

Lemma 3.8. Fix « > 0. If C, C2 and K0 are sufficiently large, then, for all

n > K0, we have

P =
{

sup
0≤x≤J

ūn(t,x) ≥ H2(t) for some t ≤ sK0

}

< «.

Proof. The lemma follows from (3.9), once we note that

ūn(t,x) ≤
∫ J

0
G(t,x,y)fn(y)dy

+
n

∑

k=K0

sup
0≤s≤sk−sk+1

sup
0≤x≤J

|N̄(sk+1, sk+1 + s,x)|,

for 0 ≤ t ≤ sK0
. 2

Next, note that if p > 1, then

∫ t

0
s−1/p ds = ct1−1/p.

We will use the above integral as an error term if t is very small.

Now we show existence, at least with positive probability, up to some ran-

dom time T0 > 0. The probability of existence is arbitrarily close to 1 for T0
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small enough. Inspired by the proof of existence for γ < 3/2, we define

D(t,f,g) =
∫ t

0
(t− s)−1/2s1−1/γ

∫ J

0

∣

∣f(s,x)− g(s,x)
∣

∣

2
dxds.

Let D(t) = D(t, ūn1
, ūn2

). From here on, much of the analysis is similar to

that in Section 2, but we give most of the details for completeness. The main

difference is that in Section 2 we used −γ+ 1 instead of 1 − 1/γ. Let

δ = δ(t,n1,n2)

= 2

∫ J

0

∫ t∧τσ

0
(t− s)−1/2s1−1/γ

(

∫ J

0
G(s,x,y)[fn1

(y)− fn2
(y)]dy

)2

dsdx.

To estimate δ, let 0 < a < t.

δ = 2

∫ J

0

∫ a

0
(t− s)−1/2s1−1/γ

×
(

∫ J

0
G(s,x,y)[fn1

(y)− fn2
(y)]dy

)2

dsdx

+ 2

∫ J

0

∫ t

a
(t− s)−1/2s1−1/γ

×
(

∫ J

0
G(s,x,y)[fn1

(y)− fn2
(y)]dy

)2

dsdx

= δI + δII.

Let M =
∫ J

0 f(x)dx, and note that
∫ J

0 fn(x)dx ≤ M for all n ≥ 1. The next

two equations are similar to (2.7) and (2.8). Using Minkowski’s inequality,

we have

√

δI ≤
[

2

∫ J

0

∫ a

0
(t− s)−1/2s1−1/γ

(

∫ J

0
G(s,x,y)fn1

(y)dy

)2

dsdx

]1/2

+
[

2

∫ J

0

∫ a

0
(t− s)−1/2s1−1/γ

(

∫ J

0
G(s,x,y)fn2

(y)dy

)2

dsdx

]1/2

≤
∫ J

0
fn1

(y)

[

2

∫ J

0

∫ a

0
(t− s)−1/2s1−1/γG(s,x,y)2 dsdx

]1/2

dy

+
∫ J

0
fn2

(y)

[

2

∫ J

0

∫ a

0
(t− s)−1/2s1−1/γG(s,x,y)2 dsdx

]1/2

dy

≤ cMJ

[

∫ a

0
(t− s)−1/2s1−1/γs−1/2

]1/2

≤ c(t− a)−1/2a3/2−1/γ

→ 0 as a → 0.
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Suppose a > 0 and « > 0 are fixed. Because fn → f weakly as n → ∞, we

may choose N so large that n1,n2 > N implies that

δII = 2

∫ J

0

∫ t

a
(t− s)−1/2s1−1/γ

(

∫ J

0
G(s,x,y)[fn1

(y)− fn2
(y)]dy

)2

ds

≤ 2J«

∫ t

0
(t− s)−1/2s1−1/γ ds

≤ c«.

Then

ED(t) ≤ δ+ 2E

∫ J

0

∫ t

0
(t− s)−1/2s1−1/γ

×
(

∫ s

0

∫ J

0
G(s− r,x,y)

[

(u(r,y) ∧H2(r))
γ

− (v(r,y) ∧H2(r))
γ
]

W(dydr)

)2

dsdx

= δ+ 2

∫ J

0
E

∫ t

0

∫ s

0

∫ J

0
(t− s)−1/2s1−1/γG(s− r,x,y)2

× [(u(r,y) ∧H2(r))
γ − (v(r,y) ∧H2(r))

γ]2 dydrdsdx

≤ δ+ 2

∫ J

0
E

∫ t

0

∫ s

0

∫ J

0
(t− s)−1/2s1−1/γG(s− r,x,y)2γH2(r)

2γ−2

× [u(r,y)− v(r,y)]2 dydrds,dx

= δ+ 2γ

∫ J

0

∫ t

0

∫ s

0

∫ J

0
(t− s)−1/2s1−1/γG(s− r,x,y)2r1−1/γ

× sup
0≤z≤J

E[u(r, z)− v(r, z)]2 dydrdsdx

≤ δ+C

∫ t

0
(t− s)−1/2s−γ+1

∫ s

0
(s− r)−1/2r1−1/γ

× sup
0≤z≤J

E[u(r, z)− v(r, z)]2 drds

≤ δ+C

∫ t

0
(t− s)−1/2s1−γD(s)ds.

(3.10)

Here, we have used the mean value theorem as in (2.9). Note that

∫ t

0
(t− s)−1/2s1−1/γds ≤

(

2 + 1

2 − 1/γ

)

t(3/2−1/γ)21/γ−3/2.

Using Gronwall’s lemma, we conclude that

sup
0≤s≤t

ED(s) ≤ δ exp

[

C(2 + 1/(2 − 1/γ))t(3/2−1/γ)

21/γ−3/2

]

.
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Next, as in Section 2, we choose a subsequence ūnk
(t,x) which is convergent

in L2, by choosing nk such that

∞
∑

k=1

δ(t,nk,nk+1) < ∞.

It follows that
∞

∑

k=1

D(t, ūnk
, ūnk+1

) < ∞,

and ūnk
is convergent as claimed. Call the limit u(t,x).

However, ū(t,x) does not satisfy (1.1), but rather (3.2). We claim that, as in

Section 2, if C2 is large enough, then, by Lemma 3.8, sup0≤x≤J u(t,x) < H2(t)

for all t less than some stopping time, with probability arbitrarily close to 1.

This proves existence.

The proof of uniqueness again follows the lines of Section 2, with the same

modifications as the above existence proof. We leave uniqueness to the reader.

Of course, as with the existence proof, we have uniqueness with arbitrarily

high probability. In other words, given two solutions in the sense of Theo-

rem 1.2, and « > 0, there exists a stopping time τ > 0 a.s. such that, with

probability at least «, the two solutions agree until time τ.
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