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ON CONSERVATION OF PROBABILITY AND THE

FELLER PROPERTY1

BY ZHONGMIN QIAN

Imperial College of Science, Technology and Medicine

It is known that any smooth, nondegenerate, second-order elliptic
Ž .operator on a manifold dimension / 2 has the form D q B, where B is a

vector field and D is the Laplace]Beltrami operator under some Rieman-

nian metric on the manifold. In this paper we give several conditions on

the ‘‘Ricci curvature’’ Ric y =s associated with the operator D q B toB

ensure that the diffusion semigroup generated by D q B conserves proba-

bility and possesses the Feller property.

Ž .1. Introduction and main results. Let M, g be a noncompact, con-

nected, complete Riemannian manifold and let D be the Laplace]Beltrami

operator on M. Let B be a C1-vector field and let L s D q B. In the case

where B is a gradient vector field, that is, B s =h for some C 2 function h on
h Ž x .M, we will use D to denote the operator L s D q =h. Let X , P be at

1 � 4diffusion process with infinitesimal generator L and state space M j  ,2

Ž .the one-point compactification of M, and let P be the transition semi-t t G 0

Ž x . Ž w x.group of the diffusion process X , P cf. Ikeda and Watanabe 12 . That is,t

Ž . x Ž .P f x s P f X for any positive or bounded measurable function f.t t

Ž . Ž . Ž .1.1 DEFINITION. i It is said that the semigroup P conserves prob-t t G 0

Žability in this case it is also said that the operator L is stochastically
.complete or conservative if P 1 s 1, for any t ) 0. That is,t

P x , M s P x X g M s 1,Ž . Ž .t t

for any x g M and t G 0.

Ž . Ž . Žii It is said that the semigroup P possesses the Feller property ort t G 0

. Ž . Ž .has the C -diffusion property if P C M ; C M , for any t ) 0, where0 t 0 0

Ž .C M denotes the set of all continuous functions which vanish at  .0

There are many papers written by various authors on the conservativeness

and the Feller property. When L s D, the Laplace]Beltrami operator, funda-

mental results on the conservation property of the heat semigroup on a
w x w xcomplete Riemannian manifold have been obtained by Gaffney 7 , Yau 18 ,

w x w x w x w xKarp and Li 13 , Grigor’yan 9 and others. Azencott 1 , Hsu 10 and
w xTakeda 17 presented probabilistic approaches to the stochastic complete-
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ness and the Feller property. For general stochastic flows on a complete
w x w xmanifold, Elworthy 6 and Li 15 gave several criteria for the conservation

property and the C -diffusion property. When the elliptic operator L s Dh, a0

w xconservation criterion has been established by Bakry 2 recently using the

deformed Ricci curvature Ric y Hess h, and a different criterion for conserva-
Ž . w xtion resp., the Feller property has been obtained by Davies 5 using a

Žweighted volume growth condition resp., conditions involving a kind of
.modified injectivity radius . More precisely we have the following theorem.

Ž . Ž . Ž w x.1.2 THEOREM. i Bakry’s criterion 2 . If B s =h is a gradient vector
Ž .field and Ric y Hess h G yk, for some constant k, then the semigroup Pt t G 0

conserves probability.

Ž . Ž w x.ii Davies’ criterion 5 . Let B s =h be a gradient vector field and let

Vol B p , r s ehŽ x . dxŽ .Ž . Hh
Ž .B p , r

Ž .be the weighted volume of the geodesic ball B p, r centered at p g M with

radius r ) 0. Suppose that there is a point p g M and positive constants a
Ž Ž .. Ž 2 . Ž .and b such that Vol B p, r F a exp br , for all r ) 0. Then Ph t t G 0

conserves probability.

Ž . Ž .1.3 REMARK. i Bakry’s criterion is an extension of the famous result
w xobtained by Yau 18 . I would like to point out that there is no control on the

Ricci curvature of the manifold M itself.
Ž . w x Žii Davies’ criterion is a further extension of Gaffney’s criterion 7 cf.

w x w x.Karp and Li 13 and Grigor’yan 9 . In differential geometry it is well known

that a lower bound on the Ricci curvature yields an upper estimate on the

volume of a geodesic ball due to Bishop’s volume comparison theorem. It

follows that Gaffney’s condition on the volume growth is satisfied if the Ricci

curvature is bounded below; that is, Yau’s conservation criterion can also be

derived from Gaffney’s result in the case of the Laplace]Beltrami operator
Ž w x.cf. Karp and Li 13 . However, it is not obvious that Bakry’s criterion can be

proved using Davies’ criterion for a weighted Laplacian.

This paper relates several results about the probability conservation and

the Feller property for general elliptic operators L, using a modified Ricci

curvature. Our main contributions are the comparison results established in

Section 2. As applications of these comparison theorems, we establish several

criteria for conservation and the Feller property for general elliptic operators

on a smooth manifold by adopting the probabilistic approach considered by
w xHsu 10 . In particular we give an extension of Bakry’s conservation criterion.

Before stating our main results, we recall some basic facts about the

Bakry]Emery curvature associated with a diffusion operator. Motivated by

the classical Lichnerowicz]Bochner]Weitzenbock formula, Bakry and Emery¨
w x3 introduced a bilinear map G , the ‘‘curvature’’ operator of the diffusion2
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Žoperator L, taking the place of the Ricci curvature which corresponds to the
.case L s D . More precisely, the ‘‘curvature’’ operator G is defined by2

1G f , g s L fg y fLg y gLf ,� 4Ž . Ž .2
1.1Ž .

1G f , g s LG f , g y G Lf , g y G f , Lg .� 4Ž . Ž . Ž . Ž .2 2

It is easily seen that

² :G f , g s =f , =g ,Ž .

< < 2 sG f , f s Hess f q Ric y = =f , =f ,Ž . Ž .Ž .2 B

1.2Ž .

where =s is a symmetric, sectional bilinear form on the vector bundleB

TM = TM defined by

1s ² : ² :1.3 = j , h s = B , h q = B , j ; j , h g TM .Ž . Ž . � 4B j h2

In particular if B s =h, then =s s Hess h. We are now in a position to stateB

our criteria on probability conservation and the Feller property.

Ž .1.4 THEOREM. If B s =h is a gradient vector field and Ric y Hess h G

yk for some nonnegative constant k, then for any p g M there are two

constants A and A ) 0 such that1 2

Vol B p , r F A exp A r 2 ; r ) 0.Ž .Ž . Ž .h 1 2

Theorem 1.4 shows that the condition on the volume growth in the Davies

criterion is satisfied if the deformed Ricci curvature Ric y Hess h is bounded

below, from which it follows that Bakry’s criterion can also be derived from

the above estimate and the Davies criterion.

Ž .1.5 THEOREM. Assume that there is a point p g M such that

Ric y =s x G yk2 d x , p ,Ž . Ž .Ž .Ž .B 1
1.4Ž .

< <B x F k d x , p ,Ž . Ž .Ž .2

Ž .for any x g M, where d x, p denotes the geodesic distance between x and p,
Ž .and k : R ª R i s 1, 2 are two positive, continuous, nondecreasing func-i q q

Ž .tions which satisfy the conditions that lim k t s q` andt ªq` i

` 1
1.5 dt s q`,Ž . H

2 2c 'k t q k tŽ . Ž .1 2

Ž .for some c ) 0. Then P conserves probability.t t G 0

w xTheorem 1.5 is an extension of Varopoulos and Hsu’s result; see 10, 11 .

w xThe following Theorem 1.6 is an extension of Bakry’s theorem 2 .

Ž . s1.6 THEOREM. Assume that Ric y = G yk, for some nonnegative con-B

Ž .stant k. Then P conserves probability.t t G 0
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For the Feller property, we have the following theorem.

Ž . s1.7 THEOREM. Assume that Ric y = G yk, for some nonnegative con-B

stant k, and there is a point o g M such that

< <1.6 B x F C d o , x q 1 ,Ž . Ž . Ž .Ž .
Ž .for any x g M and some nonnegative constant C. Then P possesses thet t G 0

Feller property.

Ž .1.8 REMARK. We note that there is no control on the Ricci curvature of

the manifold M itself, which implies that we may not have any control on the

function D r, where r is a distance function with respect to a fixed point. If

the Ricci curvature is bounded below or there exists some kind of growth

conditions on it, then it is easy to give several criteria for conservation and
s < <the Feller property with an additional condition on the growth of = or B .B

The paper is organized as follows. In Section 2, we shall establish several

comparison results which form the key part of this paper. As a consequence,

we derive Theorem 1.4. In Section 3, we shall give proofs of Theorems 1.5 and
w x1.6 following the method in Hsu 10 . The final Section 4 is devoted to the

proof of Theorem 1.7.

2. Comparison theorem. Throughout this paper we work with an

n-dimensional, connected, complete Riemannian manifold M. Let p g M. We
Ž .denote by C p the cut locus of the manifold M with respect to the point p

Ž . Ž .and let r x s d x, p be the distance function with respect to the fixed point

p. It is well known that r is Lipschitz continuous and smooth within the cut
Ž . Ž . Ž . Ž . Ž .locus C p . If x g M y C p , let r s d p, x and let g t s exp tj be thej p

Ž .minimal and normal geodesic connecting p and x such that g 0 s p,j

Ž . Ž Ž ..g r s x, so that r g t s t, for any t F r. By the use of Gauss’s lemma, wej j

Ž Ž .. Ž .know that =r g t s g t , for any t F r, and˙j j

² :g t , B g t s Br g t , ; t F r ,Ž . Ž . Ž .˙ Ž . Ž .j j j

d
sBr g t s = g t , g t .Ž . Ž . Ž .˙ ˙Ž . Ž .j B j j

dt

2.1Ž .

Hence

r
s2.2 Br x s = g t , g t dt q Br p ,Ž . Ž . Ž . Ž . Ž . Ž . Ž .˙ ˙Ž .H B j j

0

Ž .for any x g M y C p and p g M. Using a standard method in Riemannian
Ž w x.geometry for details, cf. 16 , we have

r r
2 2X

2.3 D r x F n y 1 w t dt y w t Ric g t , g t dt ,Ž . Ž . Ž . Ž . Ž . Ž . Ž . Ž .˙ ˙Ž .H H j j
0 0

for any continuous, piecewise-smooth function w satisfying the conditions

that

2.4 w 0 s 0 and w r s 1.Ž . Ž . Ž .
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Ž . Ž .It is easily seen that 2.2 and 2.3 imply that

r
2X

Lr x F n y 1 w t dtŽ . Ž . Ž . Ž .H
0

2.5Ž .
r

2 sy w t Ric y = g t , g t dt q Br p ,Ž . Ž . Ž . Ž . Ž .˙ ˙Ž .H B j j
0

Ž . Ž . Ž .for any p g M, x g M y C p , where w satisfies 2.4 and r s d x, p . One
Ž .can also write 2.5 as

r
2X

Lr x F n y 1 w t dtŽ . Ž . Ž . Ž .H
0

r
2 sy w t Ric y = g t , g t dtŽ . Ž . Ž .˙ ˙Ž .H B j j

0

2.6Ž .

r
2 sq 1 y w t = g t , g t dt q Br p .Ž . Ž . Ž . Ž . Ž .˙ ˙Ž .Ž .H B j j

0

Using the fact that

r
2 s1 y w t = g t , g t dtŽ . Ž . Ž .˙ ˙Ž . Ž .H B j j

0
2.7Ž .

r
X² :s yBr p q 2 B , =r g t w t w t dt ,Ž . Ž . Ž . Ž .Ž .H j

0

we derive the inequality

r
2X

Lr x F n y 1 w t dtŽ . Ž . Ž . Ž .H
0

r
2 sy w t Ric y = g t , g t dtŽ . Ž . Ž .˙ ˙Ž .H B j j

0

2.8Ž .

r
X² :q 2 B , =r g t w t w t dt ,Ž . Ž . Ž .Ž .H j

0

Ž .for any continuous, piecewise-smooth function w satisfying 2.4 .

Ž . Ž .2.1 THEOREM Comparison theorems for distance function . Let p g M,
Ž . Ž .r x s d p, x be the distance function with respect to the point p g M and B

be a C1-vector vector field on M.

Ž . si Assume that Ric y = G yk, for some nonnegative constant k. ThenB

there is a nonnegative constant C depending only on the manifold M, the

vector field B and the point p g M such that

n y 1
2.9 Lr F C q q kr on M y C p .Ž . Ž .

r

Ž . Ž .ii Assume 1.4 holds,

Ric y =s x G yk2 d p , x ,Ž . Ž .Ž .Ž .B 1

< <B x F k d p , x ,Ž . Ž .Ž .2
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Ž .where k : R ª R i s 1, 2 are two continuous, increasing functions satisfy-i q q

Ž .ing the condition that lim k t s `. Thent ª` i

G
X

rŽ .
2.10 Lr F n on M y C p ,Ž . Ž .

G rŽ .

where G: R ª R is the solution of the equationq q

1
Y 2 2G t y k t q k t G t s 0,Ž . Ž . Ž . Ž .Ž .1 2

n2.11Ž .

G 0 s 0, G
X

0 s 1.Ž . Ž .

Ž . siii Assume that Ric y = G yk, for some nonnegative constant k, andB

Ž .there is a point o g M and a nonnegative constant C such that 1.6 holds:

< <B x F C d o , x q 1 ; x g M .Ž . Ž .Ž .
Then

n y 1 1
2.12 Lr F q k q 2C r q C 1 q d o , p on M y C p ,Ž . Ž . Ž . Ž .Ž .

r 3

Ž . Ž .where r x s d x, p .

Ž .PROOF. i Let

< < < s <C s max Ric x q = x .� 4Ž . Ž .1 B
Ž .xgB p , 2

Ž . Ž . Ž .First consider the case where x g M y C p and r x F 2. By using 2.5
Ž .with r s r x we have

r r
2 2X

2.13 Lr x F n y 1 w t dt q w t C dt q 2C q Br p .Ž . Ž . Ž . Ž . Ž . Ž .H H 1 1
0 0

Let w be the solution of the equation

C1Y
w t y w t s 0, w 0 s 0, w r s 1,Ž . Ž . Ž . Ž .

n y 1

to get that

r r
2 2X

n y 1 w t dt q w t C dtŽ . Ž . Ž .H H 1
0 0

g
X

r n y 1Ž .
s n y 1 F q C ,Ž . 2

g r rŽ .

2.14Ž .

for some positive constant C depending only on n and C , where g is the2 1

solution of the equation

C1Y X
g t y g t s 0, g 0 s 0, g 0 s 1.Ž . Ž . Ž . Ž .

n y 1

Ž . Ž .We next consider the case where x g M y C p but r x ) 2. In this case we
Ž .can choose a continuous, piecewise-smooth function w satisfying 0 F w t F 1,
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< XŽ . < Ž . Ž .w t F 1, for any t, and w t s 1, when t G 2. By using 2.6 we get

r2 2X
Lr x F n y 1 w t dt q k dtŽ . Ž . Ž .H H

0 0

2 2 sq 1 y w t = g t , g t dt q Br pŽ . Ž . Ž . Ž .˙ ˙Ž .Ž .H B j j
0

2.15Ž .

F 2 n y 1 q kr q 4C q Br p .Ž . Ž .1

Ž . Ž . Ž .It is clear that 2.9 follows from 2.14 and 2.15 immediately.

Ž . Ž .ii By 2.8 we have

r r
2 2 2X

Lr x F n y 1 w t dt q w t k t dtŽ . Ž . Ž . Ž . Ž .H H 1
0 0

r
X< <q 2 B g t w t w t dtŽ . Ž . Ž .Ž .H j

0

r r
2 2X 2 2F nw t dt q w t k t q k t dt .Ž . Ž . Ž . Ž .Ž .H H 1 2

0 0

Letting w in the above inequality be the solution of the equation

1
Y 2 2w t y k t q k t w t s 0, w 0 s 0, w r s 1,Ž . Ž . Ž . Ž . Ž . Ž .Ž .1 2

n

we get

G
X

r xŽ .Ž .
Lr x F nŽ .

G r xŽ .Ž .

Ž w x. Ž . Ž .cf. 8 . Finally we prove iii . Using 2.8 we get

r r r
2 2X X< <Lr x F n y 1 w t dt q w t k dt q 2 B g t w t w t dt .Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .H H H j

0 0 0

Ž .Letting w t s trr and using the fact that

< <B g t F C d o , p q t q 1 ,Ž . Ž .Ž .Ž .j

we obtain

rn y 1 1 t
Lr x F q kr q 2C d o , p q t q 1 dt ,Ž . Ž .H 2r 3 r0

Ž .which implies 2.12 . Thus we have completed the proof of Theorem 2.1. I

We are now in a position to prove Theorem 1.4.

Ž . Ž . Ž .'2.2 PROOF OF THEOREM 1.4. Denote by g t; j s det A t, j , where
p

Ž .A t, j is the solution of the equation

A
Y

t , j q K t , j A t , j s 0, A 0, j s 0, A
X

0, j s I ,Ž . Ž . Ž . Ž . Ž .



CONSERVATIVENESS AND FELLER PROPERTY 287

Ž . H H H � 4and let K t, j : j ª j , j s h g T M: h H j be the curvature operatorp

defined by

K t , j h s ty1R g t , t h g t ,Ž . Ž . Ž .˙ ˙Ž .t j t j

Ž w x.where t is the parallel translation along g cf. 4 . It is known thatt j

d
D r g t s ln g t ; j , t F r ,Ž . Ž .Ž . 'j p

dt

d
hD r g t s ln g t ; j exp h g t .Ž . Ž . Ž .Ž . Ž .' Ž .j p j

dt

Ž .By 2.9 and the fact that

Ric j , jŽ .
ny1 2 3g t ; j s t 1 y t q O t as t ª 0,Ž . Ž .' p ž /6

we get

t
1yn 2ln t g t ; j exp h g t F h p q C q ks ds F C q C t ,Ž . Ž . Ž . Ž .Ž .' HŽ .p j 1 2

0

for some constants C and C . Hence we have1 2

r
ny1 2 2Vol B p , r F t C exp C t dj dt F A exp A r ,Ž .Ž . Ž . Ž .H Hh 1 2 1 2

ny10 S

for some nonnegative constants A and A . I1 2

3. Proofs of Theorems 1.5 and 1.6. The goal of this section is to prove

Theorems 1.5 and 1.6. For a given C1-vector field B and L s D q B, let
1xŽ . Ž .X , P be a L-diffusion process and let P be its transition semigroup.t t t G 02

Ž . x� 4Recall that P conserves probability if and only if P z s ` s 1, fort t G 0

Ž . � 4some x g M hence for all x g M , where z s inf t G 0: X s  , that is,t

3.1 P x d X , x - `; t ) 0 s 1,� 4Ž . Ž .t

Ž .for some x g M hence for all x g M .

Ž . Ž .Let p g M. Then the distance function r x s d x, p is smooth on M y
Ž .C p and Lipschitz continuous on M. By using Kendall’s decomposition for

Ž w x.the Riemann Brownian motion cf. 14 and Girsanov’s formula, we have

t 1 p3.2 r X s b q Lr X 1 X ds y L , P -a.e.,Ž . Ž . Ž . Ž .Ht t s MyCŽ p. s t2
0

Ž .where b is a standard Brownian motion and L is a continuous increasingt t

process with initial value zero.

Ž .3.1 PROOF OF THEOREM 1.6. By Theorem 2.1 one knows that the as-
s Ž .sumption Ric y = G yk implies 2.9 ,B

n y 1
Lr F C q q kr on M y C p .Ž .

r
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Let r be the solution of the stochastic differential equationt

1 n y 1
dr s db q C q q kr dt , r s 0.t t t 0ž /2 rt

It is easily seen that

p� 43.3 P r - `, ; t ) 0 s 1.Ž . t

By using a comparison theorem from stochastic differential equation theory
Ž w x. Ž . Ž .cf. 12 , 2.9 and 3.2 we get that

P p r X F r , ; t ) 0 s 1.� 4Ž .t t

which yields that

P p r X - `, ; t ) 0 s 1,� 4Ž .t

Ž .by 3.3 . Hence we have proved Theorem 1.6. I

Ž .3.2 PROOF OF THEOREM 1.5. Let r be the solution of the stochastict

differential equation

n G
X

rŽ .t
dr s db q dt , r s 0,t t 0

2 G rŽ .t

Ž . Ž .where G is the solution of 2.11 . Then the condition 1.5 implies that

p� 4P r - `, ; t ) 0 s 1t

Ž w x. Ž . Ž .cf. Hsu 10 . By using 3.2 , 2.10 and a comparison theorem for stochastic

differential equations, we have

P p r X F r , ; t ) 0 s 1.� 4Ž .t t

By the same reasoning as in the proof of Theorem 1.6, we conclude the proof.

I

4. Proof of Theorem 1.7. In this section, we prove Theorem 1.7. We
w xshall follow the method used by Hsu 10 . The main difficulty in our case is

the fact that we do not have any universal comparison theorem for general
Ž .differential operators, that is, we lack the fact b from the proof of Lemma

w x w x3.2 in 10 , which plays an essential role in the study of Hsu 10 . Instead, we
Ž .use the comparison Theorem 2.1 iii in Section 2. Recall that the semigroup

Ž .P possesses the Feller property if and only ift t G 0

x � 44.1 lim P T F t s 0,Ž . K
Ž .d x , o ª`

for any t ) 0 and compact subset K ; M, where T denotes the hitting timeK

of the subset K ; M, that is,

� 4T s inf t ) 0: X g K ,K t

Ž w x w x.and o is a fixed point in the manifold M cf. Azencott 1 and Hsu 10 . In
Ž . Ž .fact we only have to prove 4.1 for any K s B o, R }the geodesic ball with
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Ž .center o and radius R}since M is complete. By 2.12 , we have

n y 1 1
Lr F q k q 2C r q C 1 q d o , p on M y C p ,Ž . Ž . Ž .Ž .

r 3

Ž . Ž .for any p g M with r x s d x, p . By Theorem 1.6, we know that the
1 xŽ .L-diffusion process X , P is a conservation process. Define a sequence oft2

stopping times as follows:

t s inf t ) 0: d X , X s 1 ,� 4Ž .0 t

S s 0,0

t s t ,1

S s inf t G t : d o , X s d o , x y 1 ,� 4Ž . Ž .1 1 t

t s t (u ,2 1 S1

S s inf t G t q S : d o , X s d o , x y 2 ,� 4Ž . Ž .2 2 1 t

.

.

.

t s t (u s inf t ) S : d X , X s 1 y S ,� 4Ž .n S ny1 S t ny1ny 1 ny1

S s inf t G t q S : d o , X s d o , x y n .� 4Ž . Ž .n n ny1 t

Then we have

4.2 T F t ; t q ??? qt F t ,� 4 � 4Ž . BŽo , R. 1 w dŽo , x .yR x

w xwhere a denotes the integral part of a. Thus the key point in the proof of
Ž . Ž .Theorem 1.7 is to give a good estimate for t . By 3.2 , 2.12 and the strongi

Markov property, we have

d X , X s W y L y LŽ . Ž .t S t t Siy 1 iy1

1 n y 1t
q q k d X , XŽ .H 1 s S iy 1½2 d X , XŽ .S s Siy1 iy 1

4.3Ž .

qC 1 q d o , X ds,Ž .Ž .S iy 1 5
1x � 4 Ž .P -a.e. on t G S , with k s k q 2C and W s b y b , t G S . Letiy1 1 t t S iy13 iy 1

r be the solution of the stochastic differential equationt

1 n y 1t
r s W q q k r q C d o , x y i q 2 ds, t G S ,Ž .Ž .Ht t 1 s iy1½ 52 rS siy1

r s 0.S iy 1

Ž . Ž . Ž . xUsing 4.3 , the fact that d X , o s d o, x y i q 1, P -a.e. and a compari-S iy 1

son theorem for diffusion processes, we deduce that

4.4 P x d X , X F r : t G S s 1.Ž . � 4Ž .t S t iy1iy 1
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To estimate t , we define a sequence of stopping times as follows:i

1T s inf t ) S : r ) ,� 40 iy1 t 2

1T s inf t ) S : r - ,� 41 iy1 t 4

T s T q T (u ,2 m 2 my1 0 T2 my1

T s T q T (u ,2 mq1 2 m 1 T2 m

� 4T s inf t G S : r s 1 .iy1 t

w xThen it is easily seen that T g T , T , for some m, and2 m 2 mq1

T
r y r s W y W q C d o , x y i q 2 dsŽ .Ž .HT T T T2 m 2 m

T2m

n y 1T
xq q k r ds, P -a.e.H 1 s

rT s2m

1 w xIt is easy to check that F r F 1 on T , T ; hence we haves 2 m4

ˆ x< < � 4r y r F 2 sup b q tk x , i , P -a.e. on T y S F t ,Ž .T T s 3 iy12 m
w x0, t

ˆŽ . Ž Ž . . Ž .where k x, i s C d o, x y i q 2 q k , k s k q 4 n y 1 and b s3 2 2 1 s

b y b , which impliesS qs Siy 1 iy1

1 xˆ< < � 44.5 F 2 sup b q tk x , i , P -a.e. on T y S F t .Ž . Ž .s 3 iy12

w x0, t

� 4 � 4 Ž .Noting that t F t ; T y S F t , which follows from 4.4 , and usingi iy1

Ž .4.5 , we deduce that

y1 y1x xP t F k x , i F P T y S F k x , iŽ . Ž .� 4 � 4i 4 iy1 4

1
x ˆ< <F P sup b Gs½ 58y1w Ž . x0, k x , i4

4.6Ž .

1
F a exp y k x , i ,Ž .4ž /a

Ž . Ž Ž . .where k x, i s 4C d o, x y i q 2 q 4k and a is a positive constant4 2

Ž . w xdepending only on n. Using 4.6 and the same arguments as in Hsu 10 , one
Ž .can show that the semigroup P possesses the Feller property. Fort t G 0

completeness, we give the details. Let

n
y1

n x , t s inf n g N : 4C d o , x y i q 2 q 4k ) t ,Ž . Ž .Ž .Ž .Ý 2½ 5
is1

m x , t s d o , x y n x , t q 1.Ž . Ž . Ž .
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It is easily seen by definition that

Ž .n x , t y1
y1

4C d o , x y i q 2 q 4k F t ,� 4Ž .Ž .Ý 2

is1

which implies that

Ž .d o , x q2 y1
4.7 4Cs q 4k ds F t .Ž . Ž .H 2

Ž .m x , t q2

Ž .Using 4.7 and the fact that

w Ž . 4d o , x yR
y1

4C d o , x y i q 2 q 4k ª ` as d o , x ª `,� 4Ž . Ž .Ž .Ý 2

is1

Ž . Ž .we deduce that m x, t ª ` as d o, x ª `. On the other hand, it is easily
Ž . Ž .seen that 4.2 and 4.6 imply that

P x T F t F P x t q ??? qt F t� 4 � 4BŽo , R. 1 w dŽo , x .yR x

1Ž .d o , x q1
F a exp y 4Cs q 4k ds.Ž .H 2ž /aŽ .m x , t

Hence we have

lim P x T F t s 0� 4BŽo , R .
Ž .d o , x ª`

Ž . Ž .by the fact that m x, t ª ` as d o, x ª `. Thus we have proved Theorem

1.7. I
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