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ON SOME BOUNDARY CROSSING PROBLEMS
FOR GAUSSIAN RANDOM WALKS1

By V. I. Lotov

Sobolev Institute of Mathematics

We consider random walks with Gaussian distribution of summands.
New representations for Wiener–Hopf factorization components are ob-
tained. The factorization method is used to study the distribution of the
excess over one-sided and two-sided boundaries. Asymptotic expansions
for these distributions and for the expectation of the first exit time are
obtained under the assumption that the boundaries tend to infinity.

1. Introduction and main results. Let �Xn�∞n=1 be a sequence of inde-
pendent identically distributed (i.i.d.) random variables, Sn =X1 + · · · +Xn,
n ≥ 1. For arbitrary positive numbers a and b, introduce the random variables
Nb = inf�n ≥ 1x Sn ≥ b� and Na; b = inf�n ≥ 1x Sn /∈ �−a; b�� which are equal
to the first exit times from �−∞; b� and �−a; b�, respectively, for the sequence
�Sn�. We put always inf \ = ∞.

We consider Gaussian random walks, that is,

�1� P�X1 < y� =
1

σ
√

2π

∫ y
−∞

exp
(
−�t− α�

2

2σ2

)
dt;

and obtain for them some new representations of the Wiener–Hopf factoriza-
tion components as well as the asymptotic expansions for the probabilities

�2� P�SNb
≥ b+ x; Nb <∞�; P�SNa; b

≥ b+ x�

and for ENb, ENa; b as a → ∞, b → ∞, x ≥ 0. The method used here can
be applied to different types of random walks [see Borovkov (1962), Rogozin
(1969), Presman (1971), Lotov (1979, 1987)]. Our choice of the Gaussian model
is motivated by the intention to make the statements more definite and clear.

The basis of the approach is complex analysis of the Laplace–Stieltjes trans-
forms of the joint distributions of �Nb; SNb

� and �Na; b; SNa; b
�. To make it pos-

sible, these transforms are first expressed by the Laplace–Stieltjes transforms
of the distributions of ladder values �η±; χ±�. Here

η± = inf
{
n ≥ 1x Sn v 0

}
; χ± = Sη± :

This step is quite natural, since, for example, SNb
can be treated as a sum

of independent random variables distributed identically as χ+, and Nb, in its
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turn, is equal to a sum of random variables distributed identically as η+. At
first glance, the representations obtained at this stage seem to be of limited
use, since the unknown functions

�3� E
(
zNb exp�λSNb

�y Nb <∞
)
; E

(
zNa; b exp�λSNa; b

�
)

are expressed via other unknown functions

ϕ±�z; λ� = E�zη± exp�λχ±�y η± <∞�:

Nevertheless, there is the following remarkable fact. The functions

�4� rz±�λ� = 1− ϕ±�z; λ�; rz�λ� = 1− zE exp�λX1�

satisfy, for Reλ = 0, �z� ≤ 1, the relation

�5� rz+�λ�rz−�λ� = rz�λ�

(Wiener–Hopf factorization) and therefore rz±�λ� are called factorization com-
ponents. The analytic properties of the function rz�λ� in λ (the presence of
zeros and poles, possibilities of analytical continuation) can be studied in an
easy way in many cases. Representation (5) allows us in this case to establish
similar properties of each factorization component and then analyze functions
(3). The subsequent isolation of the dominating singularities of these functions
(in λ) enables us to obtain the main terms of the asymptotics of distributions
(2) and to estimate the remainder terms.

The arguments above show that it is also desirable to have the factorization
components in an explicit form. The following representations are well known:
for �z� < 1 and Reλ = 0,

�6� rz±�λ� = exp
{
−
∞∑
n=1

zn

n
E
(
exp�λSn�y Sn v 0

)}
:

Unfortunately, in many cases it has not been possible to make good use of
them. It is known also that the factorization components rz±�λ� can be ex-
plicitly represented by zeros and poles of the function rz�λ� in those cases
when either E�eλX1 y X1 < 0� or E�eλX1 y X1 > 0� are rational functions (for
integer-valued X1, the rationality property must be required with respect to
t = eλ). Complete information can be found in Borovkov (1976a). It is evident
that the normal distribution does not possess this property. At the same time,
numerous problems of sequential testing make it important to consider Gauss-
ian random walks with boundaries. Therefore, everywhere in the sequel we
assume that condition (1) holds.

Let us introduce some notation to be used throughout the paper. Put d =
z exp�−α2/�2σ2��. The function

rz

(
λ

σ
− α

σ2

)
≡ 1− d exp

{
λ2

2

}
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has a sequence of zeros for 0 < d ≤ 1; we denote them by �λ±n�z�; n ≥ 1�.
Here λ−n�z� = −λn�z�; n ≥ 1, and only two of them, say λ±1�z�, are real.
Simple calculation shows that

λ1�z� =
(

2 ln
1
d

)1/2

; λ2k�z� = λ2k+1�z� = xk�z� + iyk�z�; k ≥ 1y

yk�z� =
(
− ln

1
d
+
(

ln2 1
d
+ 4k2π2

)1/2)1/2

; xk�z� =
2πk
yk�z�

:

(7)

It can be easily seen that xk�z� =
√

2πk + O�1/
√
k�, yk�z� =

√
2πk +

O�1/
√
k�, as k→∞.

The following theorems are proved in Section 2.

Theorem 1. For arbitrary λ and z ∈ �0; exp�α2/�2σ2��� we have

rz+

(
λ

σ
− α

σ2

)
= rz−

(
− λ
σ
− α

σ2

)

=
√

1− d exp
{
−λ

∞∑
n=1

dn√
2πn

+ λ
2

8

}

×
∞∏
n=1

(
1− λ

λn�z�

)
exp

(
λ

λn�z�

)
:

(8)

Theorem 2. If α = 0, then for every λ,

r1+

(
λ

σ

)
= r1−

(
− λ
σ

)

= − λ√
2

exp
{
K√
2π
λ+ λ

2

8

} ∞∏
n=1

1
2

[(
1− λ√

2πn

)2

+ 1
]

exp
(

λ√
2πn

)
;

(9)

where the constant K = 1:460 : : : is defined by

n∑
m=1

1√
m
= 2
√
n−K+O

(
1√
n

)
:

In what follows we also use the notation

µn�z� =
λn�z�
σ
− α

σ2
; �n� ≥ 1

for zeros of the function rz�λ�. In the case z = 1 the argument z in µn�z�; xk�z�
and rz±�λ� is omitted: µn = µn�1�; xk = xk�1�, r±�λ� = r1±�λ�. For α = 0, we
have µ1 = 0, µ2k = µ2k+1 =

√
2πk/σ�1 + i�, k ≥ 1. If α 6= 0, then µ1 =

�α�/σ2 − α/σ2, Reµ2k = Reµ2k+1 = xk/σ
2 − α/σ2 ≥

√
2πk/σ − α/σ2 and
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Reµ2k+1 > Reµ2k−1, k ≥ 1. In particular,

Reµ2 = Reµ3 =
x1

σ
− α

σ2

= 2πσ−1
(
− α2

2σ2
+
(
α4

4σ4
+ 4π2

)1/2)−1/2

− α

σ2
> µ1:

In Section 3, the asymptotic representations of the distributions (2) and ENb,
ENa; b as a → ∞, b → ∞ are established. For some other approximating
formulas, see Siegmund (1985).

Theorem 3. For every integer k ≥ 1, x ≥ 0 and b→∞,

�i�
P�SNb

≥ b+ x; Nb<∞�

=
2k−1∑
i=1

Fi�x� exp�−µib�+O�exp�−�b+x�Reµ2k��;

where

Fi�x� =
∫ ∞
x
fi�y�dy;

and the functions fi are defined by the relations

�10� r+�λ�
r′+�µi��λ− µi�

=
∫ ∞

0
eλyfi�y�dy:

(ii) If α > 0, then

αENb = b+
r′′+�0�
2r′+�0�

−
2k+1∑
i=2

r′+�0� exp�−µib�
µir

′
+�µi�

+O�exp�−bReµ2k+2��:

Theorem 4. Let α = 0. Then for every x ≥ 0 and a→∞, b→∞ we have
the equalities

P�SNa; b
≥ b+ x�

= F1�x�
a+Kσ/

√
2π

b+ a+ 2Kσ/
√

2π

+O
(

exp
(
−
√

2π
σ
�b+ x�

))
+O

(
exp

(
−
√

2π
σ
�a+ x�

))
;

(11)

where the function F1 is defined as in Theorem 3, with µ1 = 0;

ENa; b =
ab

σ2
+ K

σ
√

2π
�a+ b� + K

2

2π
+ 1

4

+O
(
�a2 + b2�

(
exp

(
−
√

2π
σ

a

)
+ exp

(
−
√

2π
σ

b

)))
:

(12)
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Theorem 5. Let α 6= 0. Then for x ≥ 0, a→∞, b→∞ we have

P�SNa; b
≥ b+ x� = F1�x� exp�−µ1b��1− q1 exp�−�2�α�/σ2�a��

1− q1q2 exp�−2�α�/σ2�a+ b��

+F1�x�O
(

exp
(
−µ1�a+ b� −

(
Reµ2 +

2α
σ2

)
a

))

+O�exp�−�b+ x�Reµ2��;

q1 =
σ2r−�µ1�

2�α�r′−�−µ1 − 2α/σ2� ; q2 = −
σ2r+�−µ1 − 2α/σ2�

2�α�r′+�µ1�
:

If α < 0, then

ENa; b = �EX1�−1
(

1− q1q2 exp
{
−2�α�
σ2
�a+ b�

})−1

×
[
a− r′′−�0�

2r′−�0�
− exp�−µ1b�

((
a+ b− r′′−�0�

2r′−�0�

)
q2 −

r′+�0�
µ1r

′
+�µ1�

+ q2

µ1

)

+ exp�−µ1�a+ b��q1

(
q2b−

r′+�0�
µ1r

′
+�µ1�

+ q2

µ1

)]

+O��a+ b� exp�−bReµ2�� +O�exp�−a�Reµ2 − µ1���:

2. Proof of Theorems 1 and 2. We can put σ2 = 1 throughout the proofs
of theorems without loss of generality. The function rz�λ−α� ≡ 1−d exp�λ2/2�
is entirely of the second order. Applying the Hadamard theorem [see, e.g.,
Hille (1962), Theorem 14.2.6.] on the representation of an entire function as
an infinite product, we get

1− d exp
{
λ2

2

}
= exp�a0 + a1λ

2�
∞∏
n=1

(
1− λ2

λ2
n�z�

)
exp

{
λ2

λ2
n�z�

}
:

Symmetry of the set �λn�z�� implies convergence of the series
∑
λ−2
n �z�. There-

fore, we come to the representation

�13� 1− d exp
{
λ2

2

}
= exp�a0 + a2λ

2�
∞∏
n=1

(
1− λ2

λ2
n�z�

)
;

with some coefficients a0; a2 which we need to determine. It remains to dis-
tribute the factors in (13) between factorization components; this is the main
idea of the proof.

Return to factorization (5) and suppose that �z� < 1. It follows from the
definition that the factor rz+�λ� is the Laplace–Stieltjes transform (LST) of a
function defined on �0; ∞�; it is analytic for Reλ < 0, continuous up to the
boundary Reλ = 0, bounded and nonzero for Reλ ≤ 0. The function rz−�λ�
has similar properties on the half-plane Reλ ≥ 0, and rz+�−∞� = rz−�∞� = 1.
The representation of the function rz�λ� as the product of two factors having
such properties is unique [see Borovkov (1976b)].
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In our case the functions rz±�λ� can be continued analytically on the whole
plane for �z� < 1. To prove it, consider first the function

�14� Rz+�λ� =





rz+�λ�; Reλ ≤ 0;

rz�λ�
rz−�λ�

; Reλ ≥ 0:

This definition is correct for Reλ = 0 due to (5). Both the functions rz�λ�
and rz−�λ� are analytic for Reλ > 0, and rz−�λ� 6= 0. Therefore, the function
Rz+�λ� is entire. After that, we can regard rz+�λ� as a result of analytical
continuation on the whole plane. The order of rz+�λ� is 2. This also follows
from (14) since �rz+�λ�� is bounded for Reλ ≤ 0 and �rz−�λ�� is bounded and
isolated from zero for Reλ > 0. Therefore, the order of rz+�λ� is determined by
behavior of rz�λ� on the half-plane Reλ > 0. Symmetric arguments give the
property of rz−�λ� to be the second-order entire function. Thus, the relation
(5) is true for every λ.

Next consider the identity

�15� rz+�λ− α�rz−�λ− α� = 1− d exp�λ2/2�:

There are no zeros of rz�λ� between the lines Reλ = 0 and Reλ = −α; there-
fore, rz+�λ− α� 6= 0 for Reλ ≤ 0, and rz−�λ− α� 6= 0 for Reλ ≥ 0. Thus, using
the uniqueness property, we can consider (15) as the Wiener–Hopf factoriza-
tion of the function 1−d exp�λ2/2�, which corresponds to a random walk with
the standard normal distribution of summands. The identity

rz+�−λ− α�rz−�−λ− α� = 1− d exp�λ2/2�

allows us to identify rz+�λ−α� and rz−�−λ−α�. Moreover, factorization compo-
nents for 1−d exp�λ2/2� exist for d ≤ 1. Hence, the same is true for rz±�λ−α�.

Let 0 < d < 1. The numbers �λ−n�z�; n ≥ 1� cannot be zeros of rz+�λ− α�
since Reλ−n�z� ≤ 0. Consequently, they are zeros of rz−�λ− α�. Similarly, the
numbers �λn�z�; n ≥ 1�, and only these, are zeros of rz+�λ−α�. We can apply
the Hadamard theorem again, which gives the representation

rz+�λ− α� = rz−�−λ− α� = exp�b0 + b1λ+ b2λ
2�
∞∏
n=1

(
1− λ

λn�z�

)
exp

{
λ

λn�z�

}
:

Let us specify the coefficients bi, i = 0;1;2. We have rz�−α� = 1 − d =
exp�2b0�. That is, b0 = 1

2 ln�1− d�. To find b1 and b2, we use (6):

−
∞∑
n=1

dn

n
E�exp�λYn�y Yn > 0�

= b0 + b1λ+ b2λ
2 +

∞∑
n=1

(
ln
(

1− λ

λn�z�

)
+ λ

λn�z�

)
:

(16)
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Here Yn are Gaussian random variables with parameters �0; n�. Differentiat-
ing (16) twice and putting λ = 0, we obtain

b1 = −
∞∑
n=1

dn

n

1√
2πn

∫ ∞
0
y exp

(−y2

2n

)
dy = −

∞∑
n=1

dn√
2πn

;

b2 = −
1
2

∞∑
n=1

dn

n

1√
2πn

∫ ∞
0
y2 exp

(−y2

2n

)
dy+ 1

2

∞∑
n=1

1
λ2
n�z�

= d

4�d− 1� +
1
2

∞∑
n=1

1
λ2
n�z�

:

(17)

The second equality in (17) can also be obtained by differentiating (13) in
λ2 since a2 = 2b2. Let us calculate the last sum in (17). Denote for brevity
γ = ln�1/d�. Then for k ≥ 1 we have

1

λ2
2k

+ 1

λ2
2k+1

= 2�x2
k − y2

k�
�x2
k + y2

k�2

= 2
(

4π2k2

y2
k

− y2
k

)(
4π2k2

y2
k

+ y2
k

)−2

= 2y2
k�4π2k2 − �−γ +

√
γ2 + 4π2k2�2�

�4π2k2 + �−γ +
√
γ2 + 4π2k2�2�2

= 2y2
k�−2γ2 + 2γ

√
γ2 + 4π2k2�

�8π2k2 + 2γ2 − 2γ
√
γ2 + 4π2k2�2

:

(We omit here the argument z.) Taking into account that
√
γ2 + 4π2k2 = y2

k+γ,
we obtain

1

λ2
2k

+ 1

λ2
2k+1

= 2y2
k�−2γ2 + 2γy2

k + 2γ2�
�2�y2

k + γ�2 − 2γy2
k − 2γ2�2

= γ

�y2
k + γ�2

= γ

γ2 + 4π2k2
= γ

4π2

1
m2 + k2

; m2 = γ2

4π2
:

This yields
∞∑
n=1

1
λ2
n

= 1
2γ
+
∞∑
n=2

1
λ2
n

= 1
2γ
+ γ

4π2

∞∑
k=1

1
m2 + k2

= 1
2γ
+ γ

4π2

(
π
eπm + e−πm
eπm − e−πm −

1
m

)
1

2m
= 1

4
+ d

2�1− d� :

Therefore,

b2 = −
d

4�1− d� +
1
2

(
1
4
+ d

2�1− d�

)
= 1

8
:

This completes the proof of Theorem 1.
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Under conditions of Theorem 1, put α = 0. We shall prove (9) by passage
to the limit in (8) as z→ 1, isolating the first factor under the sign of infinite
product. It is clear that

λ1�z� =
√

2 ln
1
z
=
√

2�1− z��1+O�1− z��:

Therefore,

√
1− d

(
1− λ

λ1�z�

)
→− λ√

2
:

Let us study asymptotic behavior of the function S�z� = ∑∞
n=1�zn/

√
n� as

z→ 1, z < 1. DenoteA�n� =∑n
m=1 1/

√
m. It follows from the Euler–Maclaurin

formula that A�n� = 2
√
n −K +O�1/√n�. Applying the Abel transform, we

obtain
n∑

m=1

zm√
m
= A�n�zn −

∫ n
1
A�x�zx ln zdx;

where A�x� = ∑
1≤m≤x 1/

√
m, A�x� = 0 for 0 ≤ x ≤ 1. Letting n → ∞, we

have

S�z� = − ln z
∫ ∞

0
A�x�zx dx:

Put Ã�x� = 2
√
x−K. Then

∫ ∞
0
Ã�x�zx dx =

∫ ∞
0
�2√x−K�ex ln z dx

=
( √

π

�1− z�3/2 −
K

1− z

)
�1+O�1− z��;

�A�x� − Ã�x�� =
∣∣∣∣2
√
�x� −K+O

(
1√
�x�

)
− 2
√
x+K

∣∣∣∣

= O
(

1√
x

)

uniformly in x. Therefore,

S�z� = − ln z
∫ ∞

0
Ã�x�zx dx− ln z

∫ ∞
0
�A�x� − Ã�x��zx dx

=
√
π√

1− z
−K+O�

√
1− z�:

This implies

∞∑
n=1

dn√
2πn

− 1
λ1�z�

= 1√
2�1− z�

− K√
2π
− 1√

2�1− z�
+ o�1� → − K√

2π
:



2162 V. I. LOTOV

Finally, observe that for z = 1, α = 0 and k ≥ 1,
(

1− 1
λ2k

)(
1− 1

λ2k+1

)
exp

{
λ

(
1
λ2k
+ 1
λ2k+1

)}

=
(

1− λ√
2πk�1+ i�

)(
1− λ√

2πk�1− i�

)
exp

{
λ√
2πk

}

= 1
2

[(
1− λ√

2πk

)2

+ 1
]

exp
{

λ√
2πk

}
:

This completes the proof of Theorem 2.

Remarks. (i) The representations (8) and (9) are convenient for the cal-
culation of the moments of χ± since Eχk± = −r

�k�
1±�0�. From (9), for α = 0 we

find

Eχ+ = −Eχ− =
σ√
2
;

Eχ2
+ =

Kσ2

√
π
; Eχ3

+ =
3σ3

4
√

2
+ 3K2σ3

2
√

2π
:

(18)

If α > 0, then we deduce from (8) for z = 1 �λn = λn�1��

Eχ+ =
σ2

α

√
1− d exp

{
1− α

σ

∞∑
n=1

dn√
2πn

+ α2

8σ2

} ∞∏
n=2

(
1− α

σλn

)
exp

{
α

σλn

}
;

Eχ2
+

2Eχ+
= σ

2

α
+ α

4
− σ

∞∑
n=1

dn√
2πn

− 1
α

∞∑
n=2

1
λ2
n�1− ασ−1λ−1

n �
:

(ii) The method demonstrated here which gives the representations of the
factorization components by the zeros of the function rz�λ� can also be used for
any other distribution ofX1 with EeλX1 an entire function. The main difficulty
will consist in finding these zeros and in determining the polynomial coeffi-
cients in the exponent before the infinite product. Moreover, one can find in
this way factorization components in those cases when rz�λ� is a meromorphic
function which consequently can be represented as a ratio of two entire func-
tions. Representing the numerator and denominator in this ratio as infinite
products, one can determine which factors correspond to each of the factoriza-
tion components and, therefore, obtain the representations of the factorization
components as ratios of two infinite products.

3. Proof of Theorems 3, 4 and 5. Consider first an arbitrary random
walk �Sn� generated by i.i.d. random variables. Let rz±�λ� be the factorization
components defined in (4) and g be a function of the form

�19� g�λ� =
∫ ∞
−∞

eλy dG�y�;



BOUNDARY CROSSING PROBLEMS FOR GAUSSIAN RANDOM WALKS 2163

where the total variation of G is finite. For �z� < 1, Reλ = 0, and for arbitrary
real t we define the operators

A +
t g�z; λ� = rz+�λ��r−1

z+�λ�g�λ���t;∞�;
A −
t g�z; λ� = rz−�λ��r−1

z−�λ�g�λ���−∞; t�;
denoting everywhere

[∫ ∞
−∞

eλy dG�y�
]D
=
∫
D
eλy dG�y�; D ⊂ R:

These operators depend also on z; the function g may depend on z as well.
For an arbitrary stopping time τ ≥ 0, introduce on the event �τ < ∞� the

random variables

τ+�t� = inf�n ≥ τx Sn ≥ t�;
τ−�t� = inf�n ≥ τx Sn ≤ t�:

The following assertion was proved in Lotov (1989).

Theorem 6. For any real t, �z� < 1 and Reλ = 0, we have

�20� E
(
zτ±�t� exp�λSτ±�t��y τ±�t� <∞

)
= A ±

t E�zτ exp�λSτ�y τ <∞�:
Denote

Q�z; λ� = E
(
zNb exp�λSNb

�y Nb <∞
)
;

Q1�z; λ� = E
(
zNa; b exp�λSNa; b

�y SNa; b
≤ −a

)
;

Q2�z; λ� = E
(
zNa; b exp�λSNa; b

�y SNa; b
≥ b

)
:

It follows immediately from Theorem 6 that

Q�z; λ� = A +
b e�z; λ�

[here e�z; λ� = e�λ� ≡ 1] and also

Q1�z; λ� = A −
−ae�z; λ� −A −

−aQ2e�z; λ�;
Q2�z; λ� = A +

b e�z; λ� −A +
b Q1e�z; λ�;

(21)

or, in equivalent form,

Q2�z; λ� = A +
b e�z; λ� −A +

b A −
−ae�z; λ� +A +

b A −
−aQ2�z; λ�;

Q1�z; λ� = A −
−ae�z; λ� −A −

−aA
+
b e�z; λ� +A −

−aA
+
b Q1�z; λ�:

(22)

The identities (21) were found by Kemperman [(1963), formula (3.20)] in a
different way without defining the operators A ±

t . From (22) we can also obtain
a representation for Qi as a series containing compositions of the operators
A +
b and A −

−a. To do this, one should use the identity for Qi for recurrent
substitutions instead of Qi in the right-hand side. The relation (20) makes
clear the probabilistic sense of all summands in such expansions.
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Now we shall study the asymptotic behavior of expressions of the types
A +
b g and A −

−ag as a→∞ and b→∞. Suppose that condition (1) holds and
z ∈ �0;1�. Then the function r−1

z+�λ� has the prime poles µk�z� = λk�z� − α,
k = 1;2; : : : : Consider, for some k ≥ 0, the function

wz�λ� = r−1
z+�λ� −

2k+1∑
i=1

Ai�z�
λ− µi�z�

; Ai�z� = �r′z+�µi�z���−1:

This function is evidently analytic at any point λ of the half-plane Reλ <
Reµ2k+2�z� = xk+1�z� − α. Let β ∈ �Reµ2k+1�z�;Reµ2k+2�z��. Denote by V�β�
the set of all functions g of the type

g�λ� =
∫ ∞
−∞

eλy dG�y�;
∫ ∞
−∞

eβy �dG�y�� <∞:

It is clear that rz�λ� ≡ 1− z exp
{
λα+ λ2/2

}
∈ V�β� as well as rz−�λ� ∈ V�β�.

We also conclude from (4) that

inf
Reλ=β

�rz−�λ�� > 0;

and, in addition, the function Hz in the representation

rz−�λ� =
∫
�−∞;0�

eλy dHz�y�

has no singular component. Thus we can apply Theorem 6 from Borovkov
[(1976a), Appendix 2], which states that r−1

z−�λ� ∈ V�β�. Therefore, rz+�λ� =
rz�λ�r−1

z−�λ� ∈ V�β�. The function rz+�λ� also satisfies the conditions of
Borovkov’s Theorem 6. In fact, 1−rz+�λ� is a LST of an absolutely continuous
function and, therefore, by the Riemann–Lebesgue lemma 1−rz+�β+ iy� → 1
as �y� → ∞ and, in addition, inf Reλ=β �rz+�λ�� > 0. Since �λ− µi�z��−1 ∈ V�β�
for all i, we have wz�λ� ∈ V�β�.

For arbitrary ε > 0, the functions r−1
z+�λ�, Ai�z��λ− µi�z��−1 and wz�λ� be-

long to V�−ε�. All of them are equal to the LST of the functions defined on the
nonnegative half-line. Therefore, the same is true for wz�λ�, Reλ ≤ β. More-
over, for Reλ ≤ −ε the functions r−1

z+�λ� − 1, Ai�z��λ − µi�z��−1, i = 1;2; : : : ;
equal the LST of absolutely continuous functions. Thus, for the function wz�λ�
we have the representation

wz�λ� = 1+
∫ ∞

0
eλyhz�y�dy; Reλ ≤ β;

where

�23�
∣∣∣∣
∫ ∞
x
hz�y�dy

∣∣∣∣ ≤ C�β�e
−βxy

C�β� denotes a constant independent of z. The estimate (23) follows from the
inclusion wz�λ� ∈ V�β� and Theorem 1 in Borovkov [(1976a), Appendix 2].
Hence, we have proved the following lemma.
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Lemma 1. Suppose that the condition (1) holds. Then, for every integer k ≥
0, z ∈ �0;1�, β ∈ �Reµ2k+1�z�;Reµ2k+2�z�� and λ, Reλ ≤ β, we have the
representation

�24� r−1
z+�λ� = 1+

2k+1∑
i=1

Ai�z�
λ− µi�z�

+
∫ ∞

0
eλyhz�y�dy;

where the function hz satisfies (23).

Suppose that the function g satisfies (19) and g = �g��−∞;0�. Then, evidently,
g ∈ V�β� and in the representation

rz+�λ��wz�λ�g�λ���b;∞� =
∫ ∞
b
eλyϕz�y�dy

we have the estimate∣∣∣∣
∫ ∞
x
ϕz�y�dy

∣∣∣∣ ≤ C�β�e
−βx; x ≥ b:

Therefore,

A +
b g�z; λ� = rz+�λ�

[ 2k+1∑
i=1

Ai�z�
λ− µi�z�

∫ 0+

−∞
exp�λy�dG�y�

]�b;∞�

+
∫ ∞
b

exp�λy�ϕz�y�dy

= −rz+�λ�
2k+1∑
i=1

Ai�z�
∫ ∞
b

exp�λy�
∫ 0+

−∞
exp�−µi�z��y− t��dG�t�dy

+
∫ ∞
b

exp�λy�ϕz�y�dy

= rz+�λ�
2k+1∑
i=1

Ai�z�g�µi�z�� exp��λ− µi�z��b�
λ− µi�z�

+
∫ ∞
b

exp�λy�ϕz�y�dy:

(25)

Letting z→ 1 in (25) for every k ≥ 0 we obtain

E�exp�λSNb
�y Nb <∞� = lim

z→1
A +
b e�z; λ�

=
2k+1∑
i=1

r+�λ� exp��λ− µi�b�Ai�1�
λ− µi

+
∫ ∞
b

exp�λy�h�y�dy;

where ∣∣∣∣
∫ ∞
x+b

h�y�dy
∣∣∣∣ = O

(
exp�−�b+ x�Reµ2k�

)
; x ≥ 0; b→∞:

This yields the statement of Theorem 3.
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The expansion (25) and its analog for A −
−ag�z; λ� together with formulas

(22) can be used for deriving the asymptotic representations for the distribu-
tion of SNa; b

with the remainder term of order O�e−βb� + O�e−γa�, for arbi-
trary large β and γ [see Lotov (1987)]. To avoid cumbersome calculations,
we shall restrict ourselves to the expansions with the remainder term of
O�exp�−Reµ2b�� + O�exp�−�Reµ2 + 2α�a��. To do this, we rewrite (25) in
a slightly modified form:

A +
b g�z; λ� =

vz�λ� exp��λ− µ1�z��b�g�µ1�z��
vz�µ1�z��

+ �λ− µ1�z��
∫ ∞
b

exp�λy�ϕz�y�dy:
(26)

A similar representation for the operator A −
−a is given by

A −
−ag1�z; λ� =

uz�λ� exp�−�λ− µ−1�z��a�g1�µ−1�z��
uz�µ−1�z��

+ �λ− µ−1�z��
∫ −a
−∞

exp�λy�ψz�y�dy:
(27)

Here g = �g��−∞;0�, g1 = �g1��0;∞�, µ−k�z� = λ−k�z�−α = −µk�z�−2α, vz�λ� =
�rz+�λ��/�λ− µ1�z��, uz�λ� = �rz−�λ��/�λ− µ−1�z�� and the functions ϕz and
ψz satisfy the estimates

∣∣∣∣
∫ ∞
x+b

ϕz�y�dy
∣∣∣∣ = O

(
exp�−Reµ2�z��x+ b��

)
;

∣∣∣∣
∫ −x−a
−∞

ψz�y�dy
∣∣∣∣ = O

(
exp�Reµ−2�z��x+ a��

)
:

(28)

For the further considerations, it was necessary to isolate the factors λ −
µ1�z� and λ − µ−1�z� on the right-hand sides of (26) and (27). This does not
change the order of the estimates for ϕz and ψz.

Using (26) and (27), we write the asymptotic representations for A +
b e�z; λ�,

A +
b A −

−ae�z; λ�, A +
b A −

−aQ2�z; λ� and substitute them in the first of the identi-
ties (22). Denoting

h1�z� =
uz�µ1�z��
uz�µ−1�z��

; h2�z� =
vz�µ−1�z��
vz�µ1�z��

; t�z� = exp�µ−1�z� − µ1�z��;
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we obtain the identity

Q2�z; λ� =
vz�λ� exp��λ− µ1�z��b�

vz�µ1�z��
× �1− h1�z�ta�z� + h1�z�Q2�z;µ−1�z��ta�z��

+ �λ− µ1�z��
∫ ∞
b

exp�λy�ϕ�1�z �y�dy

− vz�λ� exp��λ− µ1�z��b�
vz�µ1�z��

�µ1�z� − µ−1�z��

×
∫ −a
−∞

exp�µ1�z�y�ψ
�1�
z �y�dy:

(29)

Here the functions ϕ�1�z and ψ�1�z satisfy the estimators (28). Put λ = µ−1�z� in
(29). This gives us the equation from which we find

Q2�z;µ−1�z�� =
h2�z�tb�z��1− h1�z�ta�z��

1− h1�z�h2�z�ta+b�z�

+ µ−1�z� − µ1�z�
1− h1�z�h2�z�ta+b�z�

∫ ∞
b

exp�µ−1�z�y�ϕ
�1�
z �y�dy

− h2�z��µ−1�z� − µ1�z��tb�z�
1− h1�z�h2�z�ta+b�z�

∫ −a
−∞

exp�µ1�z�y�ψ
�1�
z �y�dy:

(30)

For integrals in the right-hand side of (30), we have estimates
∣∣∣∣
∫ ∞
b

exp�µ−1�z�y�ϕ
�1�
z �y�dy

∣∣∣∣ =
∣∣∣∣− exp�µ−1�z�y�

∫ ∞
y
ϕ
�1�
z �t�dt

∣∣∣∣
∞

b

+ µ1�z�
∫ ∞
b

exp�µ−1�z�y�
∫ ∞
y
ϕ
�1�
z �t�dt

∣∣∣∣

= O
(
exp��µ−1�z� − Reµ2�z��b�

)
;

and also ∣∣∣∣
∫ −a
−∞

exp�µ1�z�y�ψ
�1�
z �y�dy

∣∣∣∣ = O
(
exp��Reµ−2�z� − µ1�z��a�

)
:

Thus, the sum of the last two summands in (30) equals

1�z� = O
(
exp��µ−1�z� − Reµ2�z��b�

)

+O
(
exp��Reµ−2�z� − µ1�z��a+ �µ−1�z� − µ1�z��b�

)
:

The factors
µ−1�z� − µ1�z�

1− h1�z�h2�z�ta+b�z�
in (30) are bounded uniformly in z for sufficiently large values of a and b. This
is obvious for α 6= 0, since �t�z�� < δ < 1 in this case. The proof of the uniform
in z boundedness of these factors for α = 0 can be found in Lotov (1979).
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Substituting (30) to (29), we finally obtain

Q2�z; λ� =
vz�λ� exp��λ− µ1�z��b�

vz�µ1�z��

×
[

1− h1�z�ta�z�
1− h1�z�h2�z�ta+b�z�

+ 1�z�O��t�a�z��

+O
(
exp��Reµ−2�z� − µ1�z��a�

)]

+ �λ− µ1�z��
∫ ∞
b

exp�λy�ϕ�1�z �y�dy

= vz�λ� exp��λ− µ1�z��b�
vz�µ1�z��

×
[

1− h1�z�ta�z�
1− h1�z�h2�z�ta+b�z�

+O
(
exp��Reµ−2�z� − µ1�z��a�

)]

+
∫ ∞
b

exp�λy�dρz�y�;

(31)

�32�
∣∣∣∣
∫ ∞
x+b

dρz�y�
∣∣∣∣ = O

(
exp�−Reµ2�z��b+ x��

)
:

This representation can be used for deriving the complete asymptotic expan-
sions of the distribution P�Na; b = n; SNa; b

∈ A� as n → ∞, a = a�n� → ∞,
b = b�n� → ∞ [see Lotov (1979)]. However, this problem is rather complicated
and we shall study, as in the case a = ∞, only the distribution of SNa; b

. Denote

5�z; a; b� = 1− h1�z�ta�z�
1− h1�z�h2�z�ta+b�z�

and find limz→15�z; a; b�. Suppose first that α = 0. Then, for z→ 1,

h1�z� = 1+ r′′z−�µ−1�z��
2r′z−�µ−1�z��

�µ1�z� − µ−1�z�� +O��µ1�z� − µ−1�z��2�;

h2�z� = 1+ r′′z+�µ1�z��
2r′z+�µ1�z��

�µ−1�z� − µ1�z�� +O��µ1�z� − µ−1�z��2�;

t�z� = 1+ �µ1�z� − µ−1�z�� +O��µ−1�z� − µ1�z��2�
and therefore

lim
z→1

5�z; a; b� =
(
a− Eχ2

−
2Eχ−

)(
a+ b+ Eχ2

+
2Eχ+

− Eχ2
−

2Eχ−

)−1

=
(
a+ K√

2π

)(
a+ b+ 2K√

2π

)−1

:

Thus letting z→ 1, we obtain from (31) the relation which is equivalent to
(11). To prove (12), one can use the Wald identity ENa; bEX

2
1 = ES2

Na; b
. Denote
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for brevity κ =K/
√

2π; then

ES2
Na; b
= a+ κ
a+ b+ 2κ

∫ ∞
0
�b+ y�2f1�y�dy+

b+ κ
a+ b+ 2κ

∫ ∞
0
�a+ y�2f1�y�dy

+O
(
�a2 + b2��exp�−

√
2πb� + exp�−

√
2πa��

)
:

Taking into account that

∫ ∞
0
yf1�y�dy = κ;

∫ ∞
0
y2f1�y�dy =

Eχ3
+

3Eχ+
= 1

3

(
1
4
+ K

2

2π

)

[see (18)], we obtain (12) after simple calculations.
Let α 6= 0. Then, as z→ 1, we have

µ1�z� → µ1 = �α� − α; µ−1�z� → µ−1 = −�α� − α;
t�z� → e−2�α�; hi�z� → qi; i = 1;2;

vz�µ1�z�� → r′+�µ1�:

All these relations make (31) and (32) equivalent to the first statement of
Theorem 5. The second one (asymptotic expansion for ENa; b in the case α < 0)
follows from the Wald identity ENa; bEX1 = ESNa; b

by obvious computations.

4. Remarks. 1. Equalities (20), (26) and (27) provide an instrument to
study various models of random walks related to successive attainment of
straight-line boundaries. Such an example is given by the so-called oscillating
(or controlled) random walks, that is, random walks which change distribution
of jumps when the trajectories reach certain levels. Another application con-
sists in studying the number of crossings of a strip by trajectories of a random
walk. To make it clear, consider the sequence of stopping times (which may be
improper):

τ1 = inf�n ≥ 1x Sn ≤ −a�;
τ2 = inf�n ≥ τ1x Sn ≥ b�;
τ3 = inf�n ≥ τ2x Sn ≤ −a�

and so on. We put inf \ = ∞ as before. Denote by ξ the number of upcross-
ings of the strip ��x;y�; −a < y < b� by the sequence S1; S2; : : : : We have,
evidently, P�ξ <∞� = 1 for EX1 6= 0 and

P�ξ ≥ k� = P�τ2k <∞�
= E�zτ2k exp�λSτ2k

�y τ2k <∞�z=1; λ=0

= lim
z→1

(
A +
b A −

−a
)k
e�z;0�:

The last expression can be calculated in an explicit form for certain random
walks. In other cases, one can use asymptotic representations for A +

b g and
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Table 1

(−a, b) P1 P̂1 E1 Ê1

�−1;1� 0.50001062* 0.50000000 2.78286001* 2.75456221
�−1;2� 0.38112069* 0.37995664 4.35408708* 4.33714309
�−1;3� 0.30724286* 0.30639522 5.94286132* 5.91972396
�−2;5� 0.31617122* 0.31629267 14.66237597* 14.66746657
�−3;2� 0.58120470 0.58110087 9.49885470 9.50230483
�−3;6� 0.35252750 0.35243717 23.82515440 23.83262832
�−5;9� 0.36804470 0.36811878 53.73355240 53.74553268

A −
−ag as a → ∞; b → ∞ [see (26) and (27)] for obtaining corresponding

asymptotic expansions of P�ξ ≥ k�.
2. It is clear from Section 3 that condition (1) is mainly used to specify coef-

ficients of asymptotic expansions and remainder terms. The method can be ap-
plied in the general case as well. For example, the proof of Theorem 4 remains
valid if we require that EX1 = 0, �E exp�λX1�� < ∞ for �Reλ� < ε; ε > 0,
and X1 is lattice-valued or its distribution has an absolutely continuous com-
ponent. In the latter case, the constant Kσ/

√
2π in the numerator of the

right-hand side of (11) should be replaced by −Eχ2
−/2Eχ− and the constant

2Kσ/
√

2π in the denominator should be replaced by Eχ2
+/2Eχ+−Eχ2

−/2Eχ−.
The constants in the exponents of the remainder terms will be determined by
the width of a strip δ1 < Reλ < δ2 containing no complex zeros of the function
1−E exp�λX1�.

3. As Monte Carlo experiments show, the approximation formulas pre-
sented in Theorems 3–5 provide high accuracy even for small values of a
and b.

Table 1 contains P1 = P�SNa; b
≥ b� and E1 = ENa; b computed using Monte

Carlo simulations for EX1 = 0. For calculation of each quantity, 107 trajec-
tories were simulated (108 trajectories in the cases marked by an asterisk).
Approximations P̂1 and Ê1 for P1 and E1, respectively, are given by (11) and
(12) taken without remainder terms. Here K = 1:460313687, σ2 = 1.

Probabilities P2 = P�SNa; b
≥ b� in Table 2 correspond to the case EX1 =

−0:5; P̂2 is given by the main term of the first expansion of Theorem 5. Here

Table 2

(−a, b) P2 P̂2

�−1;1� 0.16909570 0.17091482
�−1;2� 0.06153590 0.06116015
�−1;3� 0.02240640 0.02227592
�−2;5� 0.00350190 0.00349039
�−3;2� 0.07393190 0.07387836
�−3;6� 0.00135840 0.00135031
�−5;9� 0.00007330 0.00006889
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also σ2 = 1, and q1 = q2 = 0:56037023 [see Lotov (1987) for calculation of
these quantities].
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