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NEW DONSKER CLASSES1

BY AAD VAN DER VAART

Vrije Universiteit

Several classes of functions are shown to be Donsker by an argument
based on partitioning the sample space. One example is the class of all
nondecreasing functions f : R ª R such that 0 F f F F for a given function

2 'F with HF dPr 1 y P - `.

1. A general result. Let P be a probability measure on the measurable
Ž .space XX , AA and FF a class of measurable functions f : XX ª R such that

Pf 2 - ` for every f g FF. The class FF is called P-Donsker if the empirical
� 4process G f : f g FF converges in distribution to a tight Brownian bridgen

`Ž .process G in the space l FF of uniformly bounded functions on FF. Here
y1 n' Ž .G s n P y P with P s n Ý d denoting the empirical measure ofn n n is1 X i

an i.i.d. sample from P. Convergence in distribution is understood in the
Ž . Ž .sense that E*h G ª Eh G for every continuous bounded function h:n

`Ž . Ž .l FF ª R; compare Dudley 1985 .
Let XX s D` XX be a partition of XX into measurable sets and let FF be thejs1 j j

class of functions f 1 when f ranges over FF. If the class FF is Donsker, thenXX j

each class FF is Donsker. This is not obvious from the definition of a Donskerj
Ž .class, but can be proved by extending Corollary 14.8 of Gine and Zinn 1986a´

with the measurability conditions taken care of along the lines of Talagrand
Ž . <Ž .Ž .1987 , because a restriction is a contraction in the sense that f 1 x yXX j

Ž .Ž . < < Ž . Ž . <g1 x F f x y g x for every x. We shall not use this claim in this note,XX j

but we are interested in a converse of this statement. While the sum of
infinitely many Donsker classes need not be Donsker, it is clear that if each
FF is Donsker and the classes FF become suitably small as j ª `, then FF isj j
Donsker. The following precise version of this principle enables us to deal

5 5 � < < 4with a number of interesting examples. Let G s sup Gf : f g FF be theFF

norm of the process G. Let F be an envelope function of the class FF, a
< <function such that f F F for every f.

THEOREM 1.1. For each j let the class of functions FF be Donsker andj
suppose that

U 5 5E G F CcFFP n jj

for a constant C not depending on j or n. If Ý` c - ` and P*F - `, then thejs1 j
class FF is P-Donsker.

Received November 1994; revised November 1995.
1Partially supported by NATO CRG 920614.
AMS 1991 subject classification. 60F17.
Key words and phrases. Bracketing number, covering number, entropy, Donsker class,

empirical central limit theorem.

2128



NEW DONSKER CLASSES 2129

PROOF. We can assume without loss of generality that the class FF con-
tains the constant function 1.

The assumption that FF is Donsker entails that the sequence of empiricalj
`Ž .processes indexed by FF converges in distribution in l FF to a tight Brownianj j

5 5 5 5bridge H for each j. This implies that E* G ª E H ; compare Gine and´FF FFj n jj j

Ž . 5 5Zinn 1986a . Thus E H F Cc . Let Z be a standard normal variableFFj j jj

independent of H constructed on the same probability space. Sincej
< < Ž . Ž .sup Pf - ` the process f ª W f s H f q Z Pf is well defined on FFf g FF j j j ji

`Ž .and takes its values in l FF . We can construct these processes for different jj
as independent random elements on a single probability space. Then the

Ž . ` Ž .series W f s Ý W f 1 converges in second mean for every f and satis-XXjs1 j j

Ž . Ž .fies EW f W g s Pfg for every f and g. Thus the series defines a version of
� Ž . 4a Brownian motion process. Since each of the processes W f 1 : f g FF hasXXj j

Ž .bounded and uniformly continuous sample paths with respect to the L P -2
� k Ž . 4seminorm, so have the partial sums W s Ý W f 1 : f g FF . Further-XXF k js1 j j

more,

U5 5 < <E sup W f 1 F E H q E Z P F1Ž . Ž .Ý ÝXX FF XXj j jj j j
fgFF j)k j)k

'F C c q 2rp P*F1 .Ý j D XXj) k j
j)k

Ž . ` Ž .This converges to zero as k ª `. Thus the series W f s Ý W f 1 con-XXjs1 j j
`Ž . wverges in mean in the space l FF . By the Ito]Nisio theorem e.g., Ledoux andˆ

Ž . xTalagrand 1991 , Theorem 2.4 it also converges almost surely. We conclude
that almost all sample paths of the process W are bounded and uniformly

5 5 Ž .continuous. Since E W - `, the class FF is totally bounded in L P byFF 2
w Ž . xSudakov’s inequality e.g., Ledoux and Talagrand 1991 , Theorem 3.18 .

Hence W is a tight version of a Brownian motion process indexed by FF. The
Ž . Ž . Ž .process G f s W f y W 1 Pf defines a tight Brownian bridge process in-

dexed by FF. We have proved that FF is pre-Gaussian.
Ž . Ž .For each k set G f s G f 1 . The continuity modulus of then, F k n D XXj F k j

� Ž . 4process G f ; f g FF is bounded by the continuity modulus of then, F k
wempirical process indexed by the sum class Ý FF . The class of all functionsjF k j

Ž . Ž . xx ª f x q ??? qf x as f ranges over FF for i s 1, . . . , k. By Proposition1 k i i
Ž .2.6 of Alexander 1987 the sum of finitely many Donsker classes is Donsker.

ŽSince Alexander does not give the proof in his paper, his proposition is
.restated and proved in the Appendix. We can conclude that the sequence

Ž .` `Ž .G is asymptotically tight in l FF . Considering the marginal distri-n,F k ns1
butions, we can conclude that the sequence converges in distribution to

G f s W f y d W 1 Pf 1Ž . Ž . Ž .F k F k k F k D XXj F k j

2 Ž .as n ª ` for each fixed k, for d a solution to the equation d P D XX yk jF k j
2 d s y1.

As k ª ` the sequence G converges almost surely, whence in distribu-F k
`Ž . Žtion to G in l FF . Weak convergence to a tight limit is metrizable by for
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.instance the dual bounded Lipschitz metric; compare Theorem B of Dudley
Ž .1990 . Since the array G converges along every row to limits thatn, F k
converge to G, there exist integers k ª ` such that the sequence Gn n, F k n

converges in distribution to G. We also have that the sequence G y Gn n, F k n

converges in outer probability to zero, since

5 5E* G y G F C c ª 0.ÝFFn n , F k jn
j)kn

An application of Slutsky’s lemma completes the proof. I

An upper bound on the mean of the maximum of the empirical process may
be based on uniform entropy numbers or bracketing entropy numbers. Let F

5 5be a measurable envelope function of the class FF. Let f denote theP , 2
Ž .L P -norm of a function f.2

w xGiven a pair of functions l F u, the bracket l, u consists of all functions f
Ž Ž ..with l F f F u. The bracketing number N « , FF, L P is the minimal num-w x 2

w x Ž .2 2ber of brackets l, u of size P u y l smaller than « needed to cover FF.
There exists a universal constant C such that for any class of functions FF

1U 5 5 5 5 5 51 E G F C 1 q log N « F , FF , L P d« F .Ž . Ž .Ž .'FF H P , 2 P , 2P n w x 2
0

Ž .This is proved by Pollard 1989 in an unpublished manuscript. It follows
from recasting the maximal inequalities for tail probabilities of Ossiander
Ž . Ž .1985 and Arcones and Gine 1993 into inequalities for first moments. For´
completeness we have included a proof in Section 6.

Ž Ž .. Ž .The covering number N « , FF, L P is the minimal number of L P balls2 2
of size « needed to cover FF. Under measurability conditions

1U 5 5 5 5 5 52 E G F C sup 1 q log N « F , FF , L Q d« F ,'Ž . Ž .Ž .FF H Q , 2 P , 2P n 2
0 Q

where the supremum is taken over all finitely discrete probability measures
Ž .Q. See Kim and Pollard 1990 . This bound is valid only under some measura-

bility conditions on the class FF. It suffices that the observations X , X , . . .1 2
Ž ` `.are defined as the coordinate projections on the product space X , AA and

that the map
n

X , . . . , X ª e f XŽ . Ž .Ý1 n i i FF
is1

Ž . � 4nis measurable for every e , . . . , e g 0, 1 and every n. The examples in1 n
this note concern separable classes of functions, for which no measurability
difficulties arise.

For many classes of functions FF the integrals in the preceding upper
bounds are finite. If they are uniformly finite for the classes FF , then thej
theorem applies with c equal to the norm of the envelope of FF . In that casej j

` 5 5the condition Ý F - ` implies that FF is Donsker. Note that conver-P , 2js1 j
gence of this series does not require that the envelopes F become small;j
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Ž .convergence to zero of the measure P XX of the jth set in the partition mayj
compensate for an increasing envelope.

2. Smooth functions. Classes of functions that are smooth up to order
Ž .a are defined as follows. For any vector k s k , . . . , k of d integers define1 d

the differential operator

­ k ?

kD s ,k k1 d­ x ??? ­ x1 d

? @where k s Ýk . For 0 - a - ` let a be the greatest integer strictly smaller? i
than a . Then for a function f : XX ; R d ª R let

k kD f x y D f yŽ . Ž .
k5 5f s max sup D f x q max sup ,Ž .a ay? a @5 5? @ ? @k F a k s a x y yx x , y? ?

where the suprema are taken over all x, y in the interior of XX with x / y.
a Ž . 5 5Let C XX be the set of all continuous functions f : XX ª R with f F M.aM

Note that for a F 1 this class consists of bounded functions f that satisfy a
Lipschitz condition.

Let R d s D` XX be a partition of R d into uniformly bounded, convex setsjs1 j
with nonempty interior. Consider the class of FF of functions such that the

a Ž .class FF of restrictions is contained in C XX for each j for given constantsj M jj

M .j
Ž .Kolmogorov and Tikhomirov 1961 computed the entropy of the classes of

a Ž .C XX for the uniform norm. As a consequence of their results there exists aM
constant K depending only on a , d and the diameter of XX such that for every
measure P and every « ) 0,

dra11r2 alog N « MP XX , C XX , L P F K .Ž . Ž . Ž .Ž .w x M 2 ž /«

Ž .For a ) dr2 the exponent of 1r« is strictly less than 2. Thus for a ) dr2
each of the classes FF is Donsker by the bracketing central limit theorem ofj

Ž . Ž . Ž .Ossiander 1985 . Moreover, in view of 1 or 2 there exists a constant C not
depending on j or n such that

1r25 5E* G F CM P XX .Ž .FFn j ji

This yields the following corollary to Theorem 1.1.

` Ž .1r2COROLLARY 2.1. If a ) dr2 and Ý M P XX - `, then the class FF isjs1 j j
P-Donsker.

For dimension d s 1 and uniform bounds M ' 1 this result is obtained byj
Ž .Gine and Zinn 1986a, b by a much more complicated proof. Gine and Zinn´ ´

Ž .also show in their case that convergence of the series is necessary for the
class FF to be pre-Gaussian. This extends to the present situation. It may be

a Ž .noted that the required smoothness a ) dr2 is necessary already for C XX1
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wŽ . xto be Donsker for a single set XX s XX ; compare Dudley 1984 , Theorem 8.1.1 .j
As regards the convergence of the series we have the following result, which

wŽ .is closely connected to the Borisov]Durst theorem; compare Dudley 1984 ,
xTheorem 6.3.1 . Call a class of measurable functions FF pre-Gaussian if it is
Ž .contained in LL P and there exists a tight version of the Brownian bridge2

indexed by FF.

� 4LEMMA 2.2. If the class FF s Ý M 1 : A ; N is P-pre-Gaussian, thenXXjg A j j
` Ž .1r2Ý M P XX - `.js1 j j

PROOF. Since each f g FF is square integrable by assumption, it follows
` 2 Ž . Ž .2 < <that Ý M P XX s P ÝM 1 - `. This implies that sup P f - ` andXXjs1 j j j f g FFj

we can conclude that FF can index not only a tight Brownian bridge, but also a
tight Brownian motion Z. It is well known that this can be represented as a
series

`

Z s Pfc Z a.s.Ž .Ý j j
js1

for an i.i.d. sequence Z , Z , . . . of standard normal variables and any or-1 2
Ž .thonormal set c , c , . . . , in L P whose closed linear span contains FF;1 2 2

wŽ . xcompare Dudley 1985 , Theorem 5.1 and its proof . The series converges
uniformly in f g FF. Thus

`

sup Pfc Z - ` a.s.Ž .Ý j j
f js1

Ž .y1r2Apply this with the functions c s P XX 1 to find thatXXj j j

`
1r2 1r2qM P XX Z s sup M P XX Z - ` a.s.Ž . Ž .Ý Ýj j j j j j

a;Njs1 jgA

Similar reasoning gives the same statement concerning the negative parts of
` Ž .1r2 < <the Z . Thus the series Ý M P XX Z converges almost surely. By thej js1 j j j

three series theorem
`

1r2 1r2< < < <M P XX E Z 1 M P XX Z F 1 - `.Ž . Ž .Ý ½ 5j j j j j j
js1

Ž .1r2Since M P XX ª 0, the expectations are bounded away from zero and wej j
obtain the desired result. I

3. Monotone functions. Consider the class FF of all nondecreasing func-
tions f : R ª R such that 0 F f F F, for a given nondecreasing function F. For
F ' M for a constant M, this class satisfies

1
log N « M , FF , L P F K ,Ž .Ž .w x 2 ž /«

wfor a universal constant K and every probability measure P. See Birman
Ž . x Ž Ž . Ž .and Solomjak 1967 . The upper bound 1r« log 1r« is elementary and
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.suffices for our purposes. Thus a uniformly bounded class of monotone
functions is Donsker by the bracketing central limit theorem of Ossiander
Ž .1985 . We shall extend this well known result to the case of unbounded FF.

Ž .One application can be found in Gill 1994 .
The restriction FF of the class FF to a compact interval XX is contained inj j

� Ž .the class of monotone nondecreasing functions bounded by F s sup F x :j
4 `x g XX . Thus, given any partition R s D XX into intervals XX , the class FFj js1 j j j

Ž . Ž .is Donsker. Moreover, by 1 or 2 ,

5 5 5 5E* G F C F ,FF P , 2n jj

for a universal constant C. The theorem yields the following result.

'COROLLARY 3.1. If HF dGr 1 y G - ` for the cumulative distribution
function G, then FF is G-Donsker. In particular, it suffices that HF 2qd dG - `
for some d ) 0.

w xPROOF. The problem can be reduced to the case of uniform 0, 1 observa-
y1 � Ž . 4tions by the quantile transformation. If G s inf x: G x G u is the quan-

tile function of G, then the class FF(Gy1 is Donsker with respect to the
uniform measure if and only if FF is G-Donsker. The class GG s FF(Gy1

w x y1consists of monotone functions g: 0, 1 ª R with 0 F g F F(G . Further-
more,

F(Gy1 F1
du F dG.H H' '1 q u 1 y G0

Thus assume without loss of generality that G is the uniform measure.
Ž xNow use the theorem with the partition into the intervals XX s x , xj j jq1

with x s 1 y 2yj for each integer j G 0. The condition of the theoremj
involves the series

` ` yjF 1 y 2 F uŽ . Ž .1yj5 5F s 2 F 2 du.Ý ÝP , 2 Hj yj '1 y u0'1 y 1 y 2Ž .js0 js1

The corollary follows by the quantile transformation. I

Ž .By partial integration we have for F right continuous

F
`' <dG s y2F 1 y G q 2 1 y G dF'H y` H y'1 y G

1 1r2y1F 2 F y` q 2 G F u , ` du.Ž . Ž . .H
0

This shows that the condition of the corollary is satisfied if the envelope F
5 5 ` Ž Ž . .1r2has a finite L -norm F s H G y: F y G x dx. At the time of revi-2, 12, 1 0

sion of this paper we have learned that in this form the corollary has also
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been obtained independently and by a different method by Dudley and
Ž .Koltchinskii 1994 .

Our proof uses only that the functions are monotone on each of the
partitioning sets, not their global monotonicity, albeit that the partitioning is
chosen to optimize the resulting moment condition on the envelope. Theorem

Ž .1.1 is also applicable for instance to the class of all functions that are
piecewise monotone with changes of direction at a countable number of given
points at most. The class FF will be Donsker provided the envelope satisfies a
moment condition, which will however depend on the points of change of

Ždirection. It is not claimed that the moment condition would be optimal, as it
.is in the case of Corollary 3.1.

4. Closed convex subsets of R2. Consider the class CC of all closed
convex subsets of R2. It is well known that the intersection of this class with
any bounded, convex set is P-Donsker for every probability measure P with a
bounded Lebesgue density p. The full class CC is Donsker if P has a density
with small tails. We shall derive this from Theorem 1.1 applied to the class FF
of all indicator functions of sets in CC.

For any square XX there exists a constant K that depends on the LebesgueXX

measure of XX only, such that

11r25 5log N « , CC l XX , L P F K p .Ž .Ž . XXw x 2 XX ž /«

5 5Here p is the supremum of p over XX . This can be derived from theXX

entropy of this class with respect to the Hausdorff metric; compare Dudley
Ž . 2 `1984 . Choose a partition R s D XX into squares of a fixed size. Then thejs1 j

Ž .preceding upper bound combined with 1 yields the existence of a constant C
not depending on j or n such that

5 5 5 51r2E* G F C p .XXFF jn j

Thus the theorem yields the following corollary.

COROLLARY 4.1. Suppose R2 s D` XX is a partition into squares of fixedjs1 j

5 51r2size. Then CC is Donsker if Ý p - `. In particular, this is the case ifXX j

Ž < < 2qd . Ž .1 q xy p x, y is bounded for some d ) 0.

5. Functions of bounded variation. Consider the class FF of all func-
d Ž . Ž xtions f : R ª R of the type f x s m y`, x for a signed Borel measure m
< <Ž x Ž .such that m y`, x F F x for a fixed, measurable, nondecreasing function

Ž xF. The class FF of restrictions of functions in FF to the interval a, b area, b
cumulative distribution functions of signed measures of total variation

Ž .bounded by F b . By the Glivenko]Cantelli theorem these functions can be
approximated uniformly by cumulative distribution functions of discrete

< < Ž .measures of the type x ª Ý p 1 , where Ý p F 2 F b . Thus the class isi i x F t i i
Ž xin the uniformly closed symmetric convex hull of the cells y`, t . The
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Ž xcollection of cells y`, t is VC and hence has polynomial covering numbers.
Ž .An extension of Theorem 5.1 of Dudley 1987 yields that

r1
1r2log N « F b Q a, b , FF , L Q F KŽ . Ž Ž .Ž .a , b 2 ž /«

for every measure Q, for some r - 2 depending on d only and for a constant
K that depends on r only. The uniform entropy central limit theorem of

Ž . Ž .Pollard 1982 implies that FF is Donsker. Furthermore, by 2 there existsa, b
a constant C depending on d only, such that

1r25 5E* G F CF b P a, b .Ž . ŽFFn a , b

The theorem yields the following corollary.

d ` Ž xCOROLLARY 5.1. Suppose R s D a , b is an arbitrary partition intojs1 j j
` Ž . 1r2Ž xintervals. Then FF is Donsker if Ý F b P a , b - `.js1 j j j

APPENDIX

Ž .In this appendix we supply a proof of inequality 1 and a proof that the
sum of two Donsker classes is Donsker. These results are not new, but
published proofs are apparently not available.

Ž . Ž .Inequality 1 was first formulated and proved by Pollard 1989 in an
unpublished paper. Our proof uses the notation for the chaining argument

Ž .introduced by Arcones and Gine 1993 , though we chain using means rather´
than exponential inequalities. We need the following lemma.

LEMMA A.1. Let X , . . . , X be arbitrary random variables that satisfy the1 m
tail bound

1 x 2

< <P X ) x F 2 exp yŽ .i ž /2 b q ax

for all x and i and fixed a, b ) 0. Then

'< < 'E max X F K a log 1 q m q b log 1 q mŽ . Ž .ž /i
1FiFm

for a universal constant K.

Ž 2 Ž ..PROOF. The condition implies the upper bound 2 exp yx r 4b on
Ž < < . Ž Ž ..P X ) x for every x F bra and the upper bound 2 exp yxr 4a for alli

other positive x. Consequently, the same upper bounds hold for all x ) 0 for
Ž < < � < < 4 . Ž < < � < < 4 .the probabilities P X 1 X F bra ) x and P X 1 X ) bra ) x , re-i i i i

spectively. By partial integration we next conclude that for a sufficiently large
universal constant K,

< < < < < < < <X 1 X F bra X 1 X ) bra� 4 � 4i i i i
Ec F 1; Ec F 1,2 1 ž /ž /' KaK b
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p Ž .where c s exp x y 1. Thus by the triangle inequality and inequality 2.10p
Ž .in Arcones and Gine 1993 ,´

y1 y1'< <E max X F c m K b q c m Ka.Ž . Ž .i 2 1
i

This is the assertion of the lemma. I

By Bernstein’s inequality the empirical process G f satisfies the tailn
2 'Ž .5 5bound of the preceding lemma with b s Pf and a s 1r3 f r n . Thus`

we obtain that for any finite class FF of measurable square integrable func-
< <tions with FF elements,

5 5f `
5 5 < < 5 5 < <'E G F K max log 1 q FF q max f log 1 q F .Ž . Ž .FF P , 2n ž /'f fn

THEOREM A.2. Any class FF of measurable functions with square inte-
Ž .grable envelope function F satisfies 1 .

PROOF. We use the notation Q for ‘‘smaller than, up to a universal
constant’’ and use * to denote outer expectation and minimal measurable

Ž .cover functions, as defined by Dudley 1985 .
yq 0 5 5 yq 0q1Fix an integer q such that 2 - F F 2 . For every integerP , 20

q G q , construct a nested sequence of partitions FF s D Nq FF such that0 is1 qi

< < 2 y2 qP* sup f y g - 2 for every i .
f , ggFFqi

This may be achieved by first selecting for each q a minimal number of
brackets of size 2yq that cover FF, disjointifying the resulting subsets and
finally intersecting for each q all partitions of levels q , q q 1, . . . , q to0 0
obtain a nested sequence of partitions. Thus the number N y 1 of subsets inq
the qth partition can be chosen to satisfy

q
yr 5 53 log N F log 1 q N 2 , FF , ? .Ž . Ž .Ž .Ý P , 2q w x

rsq0

Choose for each q a fixed element f from each partitioning set FF and setqi q i

p f s f , if f g FF ,q qi qi

< <D f s sup f y q *, if f g FF .q qiž /
f , ggFFqi

Note that p f and D f run through a set of N functions if f runs through FF.q q q
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Define for each fixed n and q G q numbers and indicator functions0

yqa s 2 r log N ,'q qq1

' 'A f s 1 D f F n a , . . . , D f F n a ,½ 5qy1 q q qy1 qy10 0

' ' 'B f s 1 D f F n a , . . . , D f F n a , D f ) n a ,½ 5q q q qy1 qy1 q q0 0

'B f s 1 D f ) n a .½ 5q q q0 0 0

Note that A f and B f are constant in f on each of the partitioning sets FFq q qi
at level q, because the partitions are nested. Now decompose, pointwise in x
Ž .which is suppressed in the notation :

`

f y p f s f y p f B f q f y p f B fŽ .Ž . Ýq q q q q0 0 0
q q10

`

q p f y p f A f .Ž .Ý q qy1 qy1
q q10

4Ž .

The idea here is to write the left-hand side as the sum of f y p f andq1q1 Ž . Ž .Ý p f y pu f for the largest q s q f , x such that each of theq q1 q qy1 1 10 '‘‘links’’ p f y p f in the ‘‘chain’’ is bounded in absolute value by n aq qy1 q
Ž < < .note that p f y p f F D f . For a rigorous derivation note that eitherq qy1 qy1
all B f are zero or there is a unique q with B f s 1. In the first case theq 1 q1

first two terms in the decomposition are zero and the third term is an infinite
Ž .series all A f equal 1 whose qth partial sum telescopes out to p f y p fq q q0

and converges to f y p f by the definition of the A f. In the second case,q q0

A f s 1 if and only if q F q and the decomposition is as mentioned, apartqy1 1
from the separate treatment of the case that q s q , when already the first1 0
link fails the test.

' Ž .Apply the empirical process G s n P y P to each of the three terms inn n
Ž .the decomposition 3 separately, take suprema over f g FF and use the

triangle inequality to separate the three terms.
'< < � 4Since f y p f B f F 2 F1 2 F ) n a , the L -norm of the first supre-q q q 10 0 0

mum satisfies

' 'E* G f y p f B f Q n PF1 2 F ) n aŽ . ½ 5n q q q0 0 0FF

y1 2 yq0Q a PF Q 2 log N .'q q q10 0

Second, since the partitions are nested, D f B f F D f B f, which areq q qy1 q'bounded by n a for q ) q . This impliesqy1 0

aqy12 y2 q' 'P D f B f F n a P D f 1 D f ) n a F 2 2 .Ž . ½ 5q q qy1 q q q aq
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Apply the triangle inequality and next the preceding lemma to find that

`

E* G f y p f B fŽ .Ý n q q
q q10 FF

` `

'F E* G D f B f q 2 n PD f B fÝ Ýn q q q q FFFF
q q1 q q10 0

` a 2qy1 yq y2 qQ a log N q 2 log N q 2 .'Ý qy1 q q( a aq qq q10

Since a is decreasing, the quotient a ra can be replaced by its square.q qy1 q
Then the series on the right-hand side can be bounded by a multiple of

` yqÝ 2 log N .'q q1 q0

Third, there are at most N y 1 functions p f y p f and at mostq q qy1
N y 1 functions A f. Since the partitions are nested, the functionqy1 qy1 '< <p f y p f A f is bounded by D fA f F n a . Apply Lemma A.1q qy1 qy1 qy1 qy1 qy1

Ž .to the variables G p f y p f A f to find thatn q qy1 qy1

` `
yqy1E* G p f y p f A f Q a log N q 2 log N .Ž . 'Ý Ýn q qy1 qy1 qy1 q q

q q1 q q10 0FF

` yqThis is again bounded by a multiple of Ý 2 log N .'q q1 q0

Finally, by similar arguments

' ' '5 5E* G p f Q E* G p f 1 F F n a q n P*F1 2 F ) n a½ 5 ½ 5FFn q n q q q0 0 0 0FF

yq yq0 0Q a log N q 2 log N q 2 log N .' 'q q q q q10 0 0 0

Collecting the bounds of the last four paragraphs we see that the left-hand
` yqŽ . Ž .side of 1 can be bounded by a multiple of Ý 2 log N . In view of 3'q q1 q0

Ž .this is bounded by a multiple of the entropy integral on the right of 1 . I

Ž .Alexander 1987 first stated that the sum class of two Donsker classes FF
Ž . Ž .and GG, the class of all functions x ª f x q g x when f and g range over FF

and GG, respectively, is Donsker. Since taking a sum is a Lipschitz operation
on two arguments, this can be proved under measurability assumptions by

Ž .extending Corollary 14.8 of Gine 3 and Zinn 1986a to functions of two
classes. However, the measurability assumptions are not needed. This was

Ž .pointed out for uniformly bounded classes by Talagrand 1987 . Here we shall
give a short, direct proof, based on the fact that the convex hull of a Donsker

k Ž . < <class FF, the set of all functions x ª Ý a f x with k g N, Ý a F 1 andis1 i i i
Ž .f g FF, is Donsker by Dudley 1985 .i
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THEOREM A.3. The sum FF q GG of two Donsker classes FF and GG is Donsker.

`Ž . `Ž .PROOF. Since for arbitrary classes FF ; FF the map f: l FF ª l FF0 0
Ž .Ž . Ž .defined by f z f s z f is continuous, it is clear that a subset of a0 0

Donsker class is Donsker. Since the sum class is contained in a multiple of
the convex hull of the union FF j GG and a convex hull is Donsker by Dudley
Ž .1985 , it suffices to show that FF j GG is Donsker. We may without loss of
generality assume that FF and GG are disjoint. Since FF is Donsker there exists
for every h ) 0 a finite partition FF s D FF such thati i

lim sup E* sup sup G f y f - h .Ž .n 1 2
nª` i f , f gFF1 2 i

Similarly there is such a partition GG s D GG of GG. Joining these partitionsj j
Žwe obtain a partition of FF j GG in finitely many sets HH with every HH beingi i

.either an FF or a GG with the propertyi j

lim sup E* sup sup G h y h - 2h .Ž .n 1 2
nª` i h , h gHH1 2 i

This shows that the empirical process indexed by FF j GG is asymptotically
`Ž . wtight in l FF j GG and hence FF j GG is Donsker cf. Andersen and Dobrić

Ž .x1987 . I

Acknowledgments. I thank Richard Gill for posing the problem con-
cerning monotone functions and the referees for a careful reading of the
paper, as well as pointing out the connection to the Borisov]Durst theorem.
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