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A STRONG INVARIANCE PRINCIPLE
FOR ASSOCIATED SEQUENCES1

BY HAO YU

University of Western Ontario

By combining the Berkes]Philipp blocking technique and the
Csorgo]Revesz quantile transform methods, we find that partial sums of¨ ˝ ´ ´
an associated sequence can be approximated almost surely by partial
sums of another sequence with Gaussian marginals. A crucial fact is that
this latter sequence is still associated with covariances roughly bounded
by the covariances of the original sequence, and that one can approximate
it by an iid Gaussian process using the Berkes]Philipp method. We

Ž .require that the original sequence has finite 2 q r th moments, r ) 0,
Ž .and a power decay rate of a coefficient u n which describes the covariance

structure of the sequence. Based on this result, we obtain a strong
Ž .invariance principle for associated sequences if u n exponentially de-

creases to 0.

1. Introduction. Random variables, X , . . . , X , are associated if, for1 n
any two coordinatewise nondecreasing functions f , g: Rn ª R,

Cov f X , . . . , X , g X , . . . , X G 0Ž . Ž .Ž .1 n 1 n

� 4whenever the covariance is defined. A sequence X , n G 1 is associated ifn
every finite subcollection is associated. This definition was introduced by

Ž .Esary, Proschan and Walkup 1967 and has found several applications, for
w Ž .xexample, in reliability theory Barlow and Proschan 1981 , in mathematical

w Ž .x wphysics Newman 1980, 1983 and in percolation theory Cox and Grimmett
Ž .x1984 .

� 4Let X , n G 1 be a sequence of random variables on some probabilityn
Ž . 2 nspace V, FF, P with EX s 0 and EX - `. For each n G 1, let S s Ý Xn n n is1 i

and s 2 s ES2. Under appropriate covariance conditions, a number of limitn n
theorems have been proved for associated sequences. The first important

Ž . Ž .result was the central limit theorem CLT proved by Newman 1980 . He
� 4stated that if X , n G 1 is strictly stationary, associated andn

`
2 21.1 0 - s s EX q 2 EX X - `,Ž . Ý1 1 i

is2

then
Sn ª N 0, 1 as n ª `.Ž .DDsn
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Ž .Later Newman and Wright 1981 obtained the functional central limit
Ž . Ž .theorem FCLT under the same covariance condition 1.1 . They showed that

Sw nt x w xª W t in D 0, 1 ,Ž .DDsn

� Ž . w x4 w xwhere W t , t g 0, 1 is the standard Wiener process and D 0, 1 is the
w x wusual D space on 0, 1 with the Skorokhod J -topology cf. Billingsley1

Ž .x Ž . w1968 . Further results are the law of the iterated logarithm LIL Yu
Ž .x Ž . w1986 , the functional law of the iterated logarithm FLIL Dabrowski and

Ž .x w Ž .Dehling 1988 , the Berry]Esseen inequality Wood 1983 ; Dabrowski and
Ž . Ž .x w Ž .xDehling 1988 ; Birkel 1988a , local limit theorems Wood 1985 , the

wGlivenko]Cantelli lemma and weak convergence for empirical processes Yu
Ž .x w Ž .1993 , extensions to nonstationary cases Cox and Grimmett 1984 ; Yu
Ž . Ž .x w1985 ; Birkel 1987 and extensions to weakly associated sequences Burton,

Ž .xDabrowski and Dehling 1986 .
Note that in the above-mentioned limit theorems, the strong invariance

principle, or strong FCLT, is missing. It is well known that the CLT and
FCLT, as well as the FLIL and other asymptotic fluctuation results, can be

wderived from a strong invariance principle for partial sums of a sequence for
Ž .xthe details see Theorems A]E in Section 1 of Philipp and Stout 1975 . In

addition, one can also obtain the Chung type of LIL from it, that is,
1r28 log log n

< <1.2 lim inf sup S s 1 a.s.Ž . i2 2p snª` 1FiFnn

Hence a natural question is whether the strong invariance principle holds
for a sequence of associated random variables under appropriate covariance
conditions. Normally, the Berkes]Philipp blocking technique is used for

wdependent sequences such as mixing sequences cf. Berkes and Philipp
Ž .x1979 . Then strong invariance principles can be obtained by approximation
theorems based on estimates of the Prohorov distance and the Strassen]

wDudley theorem, and conditional expectation inequalities see the detailed
Ž .xdiscussions in Philipp 1986 . Unfortunately, this approach is not suitable for

associated sequences because of their special dependence structure implied
by association. The main reason, in our opinion, is due to the lack of powerful
conditional expectation inequalities for associated sequences. This prevents
us from using the Skorohod embedding technique directly for associated
sequences as well.

The purpose of this paper is to provide a different approach to obtaining a
strong invariance principle for associated sequences. While the blocking
technique is still used, we choose the quantile transform method so that we
do not need to find a conditional expectation inequality for the constructed
block sequence. The quantile transform method was first developed by Csorgo¨ ˝

Ž . Žand Revesz 1975a, b and later refined by Komlos, Major and Tusnady 1975,´ ´ ´
.1976 . This method provides a powerful tool for establishing many optimal

strong invariance pricniples for independent sequences. However, as Philipp
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Ž .1986 points out, this method seems to work with independent random
Ž .variables vectors only. Fortunately, we find that this method is well suited

for associated random variables because of their unique positive dependence
structure. Indeed, with the quantile transform, an approximation of the

Žoriginal sequence by a sequence with Gaussian marginals is achieved cf.
.Theorem 2.4 . A crucial fact is that this latter sequence is still associated with

covariances roughly bounded by the covariances of the original sequence, and
that one can approximate it by an iid Gaussian process using the
Berkes]Philipp method. Hence, a strong invariance principle is obtained for

Ž .associated sequences cf. Theorem 2.5 under the exponential decay rate of
the original covariances.

The exact results are stated in Section 2. Some open problems are also
discussed in Section 2. The proofs of our theorems and some lemmas will be
given in Section 3.

�2. Results. The covariance coefficient of an associated sequence X ,n
4 Ž .n G 1 , according to Cox and Grimmett 1984 , is defined as

u n s sup Cov X , X .Ž . Ž .Ý j k
kG1 < <j : jyk Gn

To use the blocking technique, we define blocks H and I of consecutivek k
positive integers, leaving no gaps between the blocks. The order is
H , I , H , I , . . . . The lengths of the blocks are defined by1 1 2 2

w a x w b x� 4 � 4card H s k , card I s kk k

� 4for some suitable chosen real numbers a ) b ) 0 with card K standing for
the number of integers in K. Put

k k 1
a b 1qaw x w x� 42.1 N s card H j I s i q i ; k ,Ž . Ž .Ý Ýk i i 1 q ais1 is1

u s X , l2 s Eu2 ,Ýk i k k
igHk

v s X , t 2 s Ev2 , k G 1,Ýk i k k
igIk

2.2Ž .

where u and v are called the long blocks and the short blocks, respectively.k k
Before we use the quantile transform method, we need to introduce a

sequence of Gaussian random variables which are used to smooth the long
� 4 � 4block sequence u , k G 1 . Let w , k G 1 be a sequence of independentk k

Ž 2 . �N 0,t r2 -distributed random variables which is also independent of u ,k k
4k G 1 . Put

1r22 22.3 j s u q w r l q t r2 , k G 1.Ž . Ž . Ž .k k k k k

Let F denote the distribution function of j . Note that F is continuousk k k
since the smooth random variable w is used. Now we can use the quantilek
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transform method to construct a new associated sequence with Gaussian
marginals. Define

2.4 h s Fy1 F j , k G 1,Ž . Ž .Ž .k k k

where Fy1 is the inverse of the standard Gaussian distribution function F.
� 4 � Ž . Ž .4 Ž .Since P h F x s P F j F F x s F x , we conclude that each h is ak k k k

�standard Gaussian random variable. The following theorem verifies that h ,k
4k G 1 is an associated sequence and its covariances are controlled by that of

the original sequence.

� 4THEOREM 2.1. Let X , n G 1 be an associated sequence satisfying EX sn n
0,

< <2qrqd2.5 sup E X - ` for some r , d ) 0Ž . n
nG1

and

22.6 inf E S y S rn ) 0.Ž . Ž .nqk k
nG1, kG0

Assume

2.7 u n s O nyg , g s r 2 q r q d r2d ) 1.Ž . Ž . Ž . Ž .

� 4 Ž .Then the sequence h , k G 1 constructed from 2.4 is associated with ak
Ž .common distribution N 0, 1 . If moreover 5br3 ) a ) b ) 0, we get for any

0 - u - 1r2 and all i / j that

Ž .ur 1quyar22.8 0 F Eh h F C ij Eu u ,Ž . Ž .ž /i j i j

where C is a constant not depending on i, j.

� 4REMARK 2.2. The association of h , k G 1 is purely based on the factsk
� 4 Ž . Ž . Ž .that j , k G 1 constructed from 2.3 is associated by applying P and Pk 2 4

Ž . y1Ž Ž ..of Esary, Proschan and Walkup 1967 and the fact that F F ? is ank
increasing function.

Ž . Ž .REMARK 2.3. Conditions 2.5 and 2.7 , based on Theorem 1 of Birkel
Ž .1988b , are mainly used to get moment bounds:

< <2qr Ž2qr .r22.9 sup E S y S s O n .Ž . Ž .nqk k
kG0

` Ž .The requirement g ) 1 is for Ý u n - `. By using the nonnegative covari-ns1
Ž .ance property of association, 2.6 can be replaced by a simple condition,

2 Ž .inf EX ) 0, which is used by Cox and Grimmett 1984 for their CLT.nG1 n
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� 4THEOREM 2.4. Let X , n G 1 be an associated sequence satisfying EX sn n
Ž . Ž .0 and 2.5 ] 2.7 . Then there exist real numbers a ) b ) 1 and some « ) 0

such that, for k satisfying N - N F N ,k kq1

k
1r22 2 1r2y«S y l q t r2 h F CN a.s.,Ž .ÝN i i i

is1

where C is a constant not depending on N.

Based on Theorem 2.4, we can establish the following strong invariance
principle for associated sequences.

� 4THEOREM 2.5. Let X , n G 1 be an associated sequence satisfying EX sn n
Ž . Ž .0, 2.5 and 2.6 . Assume

2.10 u n s O eyl n for some l ) 0.Ž . Ž . Ž .
�Then without changing its distribution we can redefine the sequence X ,n

4n G 1 on a richer probability space together with a standard Wiener process
� Ž . w .4W t , t g 0, ` such that, for some « ) 0,

S y W s 2 s O N 1r2y« a.s.Ž .Ž .N N

Ž .REMARK 2.6. The condition 2.10 in Theorem 2.5 can be slightly weak-
ened to the condition

2.11 u n s O eyl n m

for some l ) 0 and m ) 0.Ž . Ž . Ž .
Ž .Theorem 2.5 implies that Chung’s LIL 1.2 holds for associated sequences.

COROLLARY 2.7. Under the assumptions of Theorem 2.5, we have
1r28 log log n

< <lim inf sup S s 1 a.s.i2 2p snª` 1FiFnn

Ž .By comparing the decay rates of u n in Theorems 2.4 and 2.5, one
Ž .immediately notices their huge differences, even when the condition 2.11 is

used. The reason is that in proving Theorem 2.5 we use Theorem 5 of Berkes
Ž .and Philipp 1979 , the only way so far to compute conditional expectations

based on characteristic functions. Association indeed has some decent tools,
w Ž .xfor example, the inequality of characteristic functions Newman 1980 and

w Ž .xthe maximal inequality Newman and Wright 1981 , but they are not
w < xsufficient to estimate the conditional expectation E h h , . . . , h directlynqk 1 k

� 4under a power decay rate. If, however, h , k G 1 is a jointly Gaussiank
sequence, then we can at once get the conclusion that the strong invariance
principle holds for associated sequences with a power decay rate of covari-

w Ž .xances cf. Theorem 5.1 of Philipp and Stout 1975 .
Ž .Pitt 1982 proves that positively correlated random variables with jointly

Gaussian distributions are associated. Hence one may guess that the associ-
� 4ated sequence h , k G 1 constructed by the quantile transform method mustk
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Žhave Gaussian joint distributions. Unfortunately, this is not true. Pitt per-
.sonal communication has given a counterexample to show that there exist

associated random variables with Gaussian marginals which do not have
jointly Gaussian distributions. Here is his example.

� Ž . w .4 � Ž . w .4Let W t , t g 0, ` and W t , t g 0, ` be two independent Wiener1 2
Ž . Ž . � Ž . Ž .4processes with W 0 s W 0 s 0. Let t s inf t ) 0: W t s W t and de-1 2 1 2

fine two new processes

X t s W t for all t G 0,Ž . Ž .1

W t , for t - t ,Ž .2Y t sŽ . ½W t , for t G t .Ž .1

� Ž . w .4By the strong Markov property one can see that Y t , t g 0, ` is still a
Wiener process. Thus, by the coupling arguments that are used to prove

Ž . Ž .association, it is easy to see that X 1 and Y 1 are associated, while both
Ž . Ž . Ž . Ž .X 1 and Y 1 are Gaussian distributed. However, X 1 and Y 1 do not have

� Ž . Ž .4 � 4jointly Gaussian distributions since P X 1 s Y 1 s P t - 1 ) 0.
Therefore we should look for some different ways to overcome this setback

for association. First of all, it is natural to ask whether a jointly Gaussian
sequence can be constructed directly by refining the quantile transform
method and whether its covariances can be estimated by that of the original

� 4sequence. Second, it may be possible, based on h , k G 1 , to construct a newk
Ž . � X 4jointly Gaussian sequence h , k G 1 with the same covariances so thatk
Ž X .2E h y h converges to zero with a certain speed as k ª `. If so, the strongk k

invariance principle holds for associated sequences with a power decay rate of
covariances. Nevertheless, this is an open problem for association.

3. Proofs. We shall first give an estimate for the difference of the
characteristic function of S rs and that of the standard Gaussian distribu-n n

Ž .tion N 0, 1 . This is essential for us to use the quantile transform method
Ž .successfully. Although Birkel 1988a obtains the sharpest rates for this

Ž .difference under bounded third moments and exponential decay rate of u n ,
his results cannot be applied in our case since we may not have these
conditions satisfied. So we present the following proposition. Since its proof is
quite routine, we leave the proof to the Appendix, as well as the proof of
Lemma 3.2.

From now on, without loss of generality, we assume that 0 - r F 1 and C
stands for a generic positive constant, independent of t and n. It may,
however, take different values in each appearance.

PROPOSITION 3.1. Under the assumptions of Theorem 2.1, we have

< 2 <� 4E exp itS rs y exp yt r2� 4n n

rr2 2qr2 2 2< < < <F C t rp q p rn t q t q t exp yt r12� 4Ž . Ž .Ž .n n

< < Ž .1r2 � 4for all t F C nrp , where p , n G 1 is an integer sequence satisfyingn n
0 - p - n and p ª ` as n ª `.n n
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Ž .Recall that F is the distribution function j defined in 2.3 . Sincek k

` `
2 2t tk

< <� 4E exp itj dt F exp y dt - `,H Hk 2 2½ 52 2l q tŽ .y` y` k k

the density function of j exists and is given byk

`1
� 4 � 43.1 f x s exp yitx E exp itj dt .Ž . Ž . Hk k2p y`

LEMMA 3.2. Under the assumptions of Theorem 2.1, we have

< < yr b rŽ2qr .3.2 sup F x y F x F CkŽ . Ž . Ž .k
y`-x-`

and

< <3.3 sup f x y f x F C if 5br3 ) a ) b ) 0,Ž . Ž . Ž .k
y`-x-`

Ž . Ž .where f x is the density function of F x .

Before we give the proof of Theorem 2.1, we need the following lemma,
Ž .which is a special case of Theorem 2.3 in Yu 1993 .

w Ž .xLEMMA 3.3 Yu 1993 . Let g and g be absolutely continuous in any1 2
finite interval of R. Then, for any random variables Y and Y , we have1 2

Cov g Y , g Y s gX x gX y P Y , Y dx dyŽ . Ž . Ž . Ž . Ž .Ž . H1 1 2 2 1 2 x y 1 2
2R

if the right-hand side of the equation is absolutely integrable, where

� 4 � 4 � 4P Y , Y s P Y F x , Y F y y P Y F x P Y F y .Ž .x y 1 2 1 2 1 2

� 4PROOF OF THEOREM 2.1. The association of h , k G 1 is already verifiedk
Ž . Ž .in Remark 2.2. So we just need to show 2.8 holds. By 2.4 , Lemma 3.3 and

Holder’s inequality,¨
f x f yŽ . Ž .i j

Eh h s P j , j dx dyŽ .Hi j x y i jy1 y12 f F F x f F F yR Ž . Ž .Ž .Ž . Ž .Ž .i j

Ž .1r 1qu1qu
f x f yŽ . Ž .i jF P j , j dx dyŽ .H x y i jy1 y1½ 52½ 5f F F x f F F yR Ž . Ž .Ž .Ž . Ž .Ž .i j

Ž .ur 1qu
= Ej j .� 4i j

Ž . 2 2 a Ž .Since 2.6 implies l q t r2 G Ck , we have by 2.3 ,k k

yar2Ej j F C ij Eu u .Ž .i j i j
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Ž .It is easy to see now that 2.8 follows if we can show that
1qu

f x f yŽ . Ž .i j
3.4 P j , j dx dy F C.Ž . Ž .H x y i jy1 y1½ 52 f F F x f F F yR Ž . Ž .Ž .Ž . Ž .Ž .i j

Ž .To prove 3.4 , we define the differentiable function

2y1 y1g x s exp u F F x r2 y 1 sgn F F xŽ . Ž . Ž .Ž . Ž .Ž . Ž .½ 5k k kž /
so that

Fy1 F x f xŽ . Ž .Ž .Ž .k kX y1< <g x s u exp u F F xŽ . Ž .Ž .k k y1½ 52 f F F xŽ .Ž .Ž .k

G 0 for all x .
Ž . Ž .On the other hand, f x is bounded by 3.3 , which in turn impliesk

2y1f x F F xŽ . Ž .Ž .Ž .k kF C exp for all x .y1 ½ 52f F F xŽ .Ž .Ž .k

< y1Ž Ž .. <Thus, by treating the cases F F x F 1 or ) 1 separately, we obtaink

1qu u
f x f x f xŽ . Ž . Ž .k k ksy1 y1 y1½ 5 ½ 5f F F x f F F x f F F xŽ . Ž . Ž .Ž . Ž . Ž .Ž . Ž . Ž .k k k

2y1F F x f xŽ . Ž .Ž .Ž .k kF C exp u y1½ 52 f F F xŽ .Ž .Ž .k

F C 1 q gX x for all x .Ž .Ž .k

Ž . Ž .Hence by 2.3 , 2.4 , Lemma 3.3 and Cauchy’s inequality, the left-hand side
Ž .of 3.4 is bounded by

C 1 q gX x 1 q gX y P j , j dx dyŽ . Ž .Ž . Ž .Ž .H i j x y i j
2R

s C Ej j q E exp uh 2r2 y 1 sgn h jŽ .� 4Ž .½ i j i i j

qEj exp uh 2r2 y 1 sgn hŽ .� 4ž /i j j

qE exp uh 2r2 y 1 sgn h exp uh 2r2 y 1 sgn hŽ . Ž .� 4 � 4Ž . 5ž /i i j j

F C.
� 24The last inequality follows by the facts that E exp uh - ` for 0 - u - 1r2k

Ž . 2since h is N 0, 1 -distributed and Ej s 1 for all k G 1. This completes thek k
proof of Theorem 2.1. I

To begin the proof of Theorem 2.4, we shall check the small block sequence
� 4 � 4v , k G 1 ; the smooth sequence w , k G 1 can be neglected in the partialk k
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sum of S and the distance between h and j can be estimated. For theseN k k
purposes we break the proof of Theorem 2.4 into several lemmas.

LEMMA 3.4. Under the assumptions of Theorem 2.1, we have

� 4min m , nkqn kqnqlqm

0FE X X F C u l q iŽ .Ý Ý Ýi jž / ž /iskq1 jskqnqlq1 is1
3.5Ž .

� 4min min m , n , l q 1� 4
F C g

l q 1Ž .

for any integers m, n G 1, k, l G 0,

¡ yŽgy1.bCi , if k s 1,
yŽgy1.a yg~3.6 Eu u F Ci k , if 2 F k F i ,Ž . i iqk ¢ a yŽ1qa .gCi k , if k ) i ,

and

3.7 Ev v F Ci bkyg .Ž . i iqk

Ž . Ž .PROOF. The proof of 3.5 is trivial, so we omit it. The case k s 1 in 3.6 is
w b xspecial since the gap between u and u is only i . Nevertheless it followsi iq1

Ž . Ž .directly from 3.5 . Using 3.5 again, we have for k G 2,
yga aaEu u F Ci i q 1 q ??? q i q k y 1Ž . Ž .Ž .i iqk

yg1qaa 1qaF Ci i q k y 1 y i .Ž .Ž .
Ž .Thus 3.6 follows easily by looking at the cases 2 F k F i and k ) i, respec-

Ž .tively. Equation 3.7 follows similarly. I

LEMMA 3.5. Under the assumptions of Theorem 2.1, we have for l2 and t 2
k k

Ž .defined in 2.2 ,

3.8 Ck a F l2 F Ck a , Ck b F t 2 F Ck bŽ . k k

and
k

2 2 23.9 0 F s y l q t F Ck .Ž . Ž .ÝN i ik
is1

Ž . Ž . Ž . Ž . Ž .PROOF. It is easy to prove 3.8 by 2.6 and 2.7 . Now by 2.1 and 2.2 ,

k k
2 2 20 F s y l q t s 2 Eu v q 2 E u q v E u q v .Ž . Ž .Ž .Ý Ý ÝN i i i i i i j jk

is1 is1 1Fi-jFk

Ž . Ž . Ž .Thus, similarly to the proof of 3.6 , 3.9 follows easily by 3.5 . I
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LEMMA 3.6. Under the assumptions of Theorem 2.1, we have
k

Ž1qb .r2 3v F Ck log k a.s.Ý i
is1

Ž . Ž .PROOF. By 3.7 and 3.8 , for all m, n G 0,
2mqn mqn

2E v s Ev q 2 Ev vÝ Ý Ýi i i jž /
ismq1 ismq1 m-i-jFmqn

mqn mqn `
b b ygF C i q i kÝ Ý Ýž /

ismq1 ismq1 ks1

1qb 1qbF C m q n y m .Ž .Ž .
wHence by the Gaal]Koksma strong law of large numbers page 134, Philipp

Ž .xand Stout 1975 we get the conclusion of our lemma. I

LEMMA 3.7. We have
k

Ž1qb .r2 1r2w F k log k a.s.Ý i
is1

� 4PROOF. Since w , k G 1 is an independent Gaussian sequence, it followsk
easily from the Borel]Cantelli lemma. I

LEMMA 3.8. Under the assumptions of Theorem 2.1, we have
N

1r2y«1max X F CN a.s.,Ý i k
N -NFNk kq1 isN q1k

Ž Ž .Ž ..where 0 - « - rr 2 2 q r 1 q a .1

Ž . Ž .2 aPROOF. Noting by 3.8 that E u q v F Ck , we have by thekq1 kq1
Ž . Ž . Ž .maximal inequality of Newman and Wright 1981 , 2.1 and 2.9 ,

N
1r2y«1P max X G NÝ i k½ 5N -NFNk kq1 isN q1k

y12E u q vŽ .kq1 kq1 1r2y« 1r2 a r21< <F 1 y P u q v G N y 2C k� 4kq1 kq1 kaž /4Ck

N 1r2y«1
k

< <F CP u q v Gkq1 kq1½ 52

yŽ1 r2y«1.Ž2qr . < <2qrF CN E u q vk kq1 kq1

F CkyŽ1r2y«1.Ž2qr .Ž1qa .qŽ2qr .a r2

F Cky1yŽrr2y«1Ž2qr .Ž1qa .. .
Our lemma now follows from the Borel]Cantelli lemma. I
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LEMMA 3.9. Under the assumptions of Theorem 2.1, we have

< < yŽ rb rŽ2qr .yK 2 r2.h y j F Ck ,k k

< < Ž .1r2 Ž Ž ..1r2provided that j F K log k and 0 - K - 2rbr 2 q r .k

By Lemma 3.2, the proof is basically the same as that of Lemma 2.5.1 of
Ž .Csorgo and Revesz 1981 . So the proof is omitted.¨ ˝ ´ ´

LEMMA 3.10. Under the assumptions of Theorem 2.1, we have
k

1r22 2 Ž1qay« .r2 32l q t r2 h y j F Ck log k a.s.,Ž .Ž .Ý i i i i
is1

provided that 5br3 ) a ) b ) 0 and

1 a q 2 1 q uŽ .
3.10 g ) max 1 q , ,Ž . ½ 51 q a y b u 2 1 q a uŽ . Ž .

where

2r 2b a q g y 1 b uŽ .Ž .
« s min , .2 ½ 52 q r 4 q 3r 1 q uŽ . Ž .

Ž 2 2 .1r2Ž .PROOF. Let e s l q t r2 h y j . Then, by Lemma 3.9, Holder’s¨k k k i k
Ž . Ž . Ž . Ž .inequality, 2.3 , 2.9 , 3.2 and 3.8 ,

1r2 1r22 2 2< < < <Ee s Ee I j F K log k q Ee I j ) K log kŽ . Ž .Ž . Ž .k k k k k

F Ck ay2Žrb rŽ2qr .yK 2 r2.

Ž .rr 2qrŽ .2r 2qr 1r22qra < < < <q Ck E h y j P j ) K log kŽ .� 4Ž . ž /k k k

Ž .rr 2qr2 2ay2Žrb rŽ2qr .yK r2. a yK r2 yrb rŽ2qr .F Ck q Ck k q k ,Ž .
Ž .where I E is the indicator function of the set E. Next by choosing K s

Ž Ž ..1r22 rbr 4 q 3r , we have

Ee2 F Ck ay« 2 for all k G 1.k

w y1Ž Ž ..xOn the other hand, since h s F F j and j are associated for all i / j,i i i j
Ž .Eh j G 0. This, together with 3.8 and Theorem 2.1, gives usi j

2mqn mqn
2E e s Ee q 2 Ee eÝ Ý Ýi i i jž /

ismq1 ismq1 mq1Fi-jFmqn

mqn
2F EeÝ i

ismq1

mqn mqnyi
Ž Ž .. Ž .ar 2 1qu ur 1quq C i i q k Eu u .Ž . Ž .Ž .Ý Ý i iqk

ismq1 ks1
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Ž .To estimate the second part in last inequality above, we use 3.6 to find its
upper bound by

mqn mqn i
ŽaqŽ1yg .ub .rŽ1qu . ŽaqŽ1yg .ua .rŽ1qu . yug rŽ1qu .C i q i kÝ Ý Ý½

ismq1 ismq1 ks2

mqn `
ŽŽ1q2u .a .rŽ2Ž1qu .. Žay2Ž1qa .gu .rŽ2Ž1qu ..q i kÝ Ý 5

ismq1 ksiq1
mqn mqn

ŽaqŽ1yg .ub .rŽ1qu . ay« 2F C i F C iÝ Ý
ismq1 ismq1

Ž .if 3.10 is satisfied. This proves our lemma by the Gaal]Koksma strong law
of large numbers. I

PROOF OF THEOREM 2.4. The proof follows easily by Lemmas 3.6]3.8 and
Ž .Lemma 3.10. The only thing that one has to verify is that 3.10 holds for

some a ) b ) 0 and 0 - u - 1r2. Since g ) 1, it is possible to choose a , b
large enough and u close to 1r2. This completes the proof of Theorem 2.4. I

The following proposition, used in proving Theorem 2.5, is the improve-
Ž .ment of the Berkes and Philipp 1979 approximation theorem.

w Ž .x � 4PROPOSITION 3.11 Berbee 1987 . Let X , k G 1 be a sequence of ran-k
� 4dom variables and let FF , k G 1 be a sequence of nondecreasing s-fields,k

� 4such that X is FF -measurable. Suppose that for some sequence b , k G 1 ofk k k
nonnegative numbers,

< < <� 4E sup P X g A FF y P X g A F b� 4k ky1 k k
AgBB

for all k G 1, where BB is the s-field of Borel sets on R. Then without changing
� 4its distribution we can redefine the sequence of X , k G 1 on a richerk

� 4probability space on which there exists a sequence Y , k G 1 of independentk
random variables with the same distribution as X , such that for all k G 1,k

< <P X y Y ) 0 F b .� 4k k k

PROOF OF THEOREM 2.5. Similarly to the proof of Lemma 3.4, we have for
k G 1,

b¡exp yl k y 1 , if i s 1,Ž .� 4~ a a3.11 Eu u F CŽ . ky i k exp yl k y i q 1 q ??? q k y 1 ,Ž . Ž .� 4Ž .¢
if 2 F i F k y 1.
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Observing that h , . . . , h are associated, we have by Lemma 2.2 of Dabrowski1 k
Ž .and Dehling 1987 ,

k ky1

� 4E exp i t h y E exp i t h E exp it hÝ Ýj j j j k k½ 5 ½ 5
js1 js1

3.12Ž .
ky1

< <F 2 t t Eh h .Ý i k i k
is1

Now we follow the lines of the proof of Theorem 5 in Berkes and Philipp
Ž . � 4 Ž 2 .1979 . Let z , k G 1 be a sequence of independent N 0, r -distributedk k

2 2 Ž 2 2 .random variables, where r s t r 2l q t . Putk k k k

Z s h q z for k G 1.k k k

� 4Since E exp itz is integrable as a function of t, the joint densityk
Ž .p z , . . . , z of Z , . . . , Z , is given byk 1 k 1 k

k k
ykp z , . . . , z s 2p exp yi z t E exp i t hŽ . Ž . Ý ÝHk 1 k j j j j½ 5 ½ 5kR js1 js1

k
2 2=exp y r t r2 dt ??? dtÝ j j 1 k½ 5

js1

3.13Ž .

Žk .Ž .and the density p z of Z is given byk k

y1Žk . 2 2� 4 � 43.14 p z s 2p exp yit z E exp it h exp yr t r2 dt .Ž . Ž . Ž . � 4Hk k k k k k k k
R

Thus for some U ) 0 we havek

< < <� 4E sup P Z g A Z , . . . , Z y P Z g A� 4k 1 ky1 k
AgBB

U Uk kF ??? p z , . . . , zŽ .H H k 1 k
yU yUk k

Žk .yp z , . . . , z p z dz ??? dzŽ . Ž .ky1 1 ky1 k 1 k

3.15Ž .

k
Žk . Žk .< <q P Z G U s I q I .� 4Ý i k 1 2

is1

Ž . Ž . Ž .By 3.11 ] 3.14 and 2.8 of Theorem 2.1,
k ky1

kŽk . � 4I F U rp E exp i t h y E exp i t h E exp it hŽ . Ý ÝH1 k j j j j k k½ 5 ½ 5kR js1 js1

k
2 2=exp y r t r2 dt ??? dtÝ j j 1 k½ 5

js13.16Ž .
b2Ž1qk .F CU exp yl k y 1 ur 1 q uŽ . Ž .� 4k

k
k 2 2q 2U exp y r t r2 dt ??? dt .ÝHk j j 1 k½ 5k 2 2Ý t GUjs1 j k js1
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Then the last term in the above inequality, after we select U sk
Ž1qayb .r2 Ž .k log k and use 3.8 , is bounded by

k
2 k 2CU exp y t 2 dt ??? dtÝHk j 1 k½ 5k 2 2 2Ý t )U rjs1 j k k js1

F C2 kU 2 k exp y3U 2r 2r8� 4k k k

F Cky2 for k large enough.
Ž .The other remaining term in 3.16 , after we choose b ) 1, can also be

bounded by Cky2 for k large enough. In general, we obtain

I Žk . F Cky2 for k large enough.1

Because of the normality of each Z , we can easily provek

I Žk . F Cky2 for k large enough.2

Ž .Thus, based on the above proof and 3.15 , we arrive at
< < < y2� 4E sup P Z g A Z , . . . , Z y P Z g A F Ck� 4k 1 ky1 k

AgBB

� 4for k large enough. Hence by Proposition 3.11 we can redefine Z , k G 1 onk
� 4a new probability space together with a sequence Y , k G 1 of independentk

Ž 2 .N 0, 1 q r -distributed random variables such thatk

< < y2P Z y Y ) 0 F Ck .� 4k k

Obviously, based on the Borel]Cantelli lemma, we get
k

1r22 2 1r2y«< <3.17 l q t r2 Z y Y F CnN a.s. for some « ) 0.Ž . Ž .Ý i i i i k
is1

� 4Since Y , k G 1 is an independent Gaussian sequence, we assume withoutk
� Ž . 4loss of generality that there exists a standard Wiener process W t , t G 0

satisfying
k ky1

y1r22 2 2 2 2 23.18 Y s l q t r2 W l q t y W l q tŽ . Ž . Ž . Ž .Ý Ýk k k i i i iž / ž /ž /
is1 is1

for all k G 1. On the other hand, by the Borel]Cantelli lemma, we have
k

1r22 2 Ž1qb .r2 1r23.19 l q t r2 z F Ck log k a.s.Ž . Ž .Ý i i i
is1

Ž . Ž .Hence by Theorem 2.4 and 3.17 ] 3.19 , our theorem follows if we can show
that

k
2 2 2 1r2y«sup W s y W l q t F CN a.s.Ž . Ž .ÝN i i kž /N -NFN is1k kq1

for some « ) 0, which in fact can be proved by applying Theorem 2.1 of
Ž .Csorgo and Revesz 1981 and the inequality¨ ˝ ´ ´

k
2 2 2 a0 F s y l q t F k for N - N F NŽ .ÝN i i k kq1

is1

by Lemma 3.5. This completes our proof. I



STRONG INVARIANCE FOR ASSOCIATED SEQUENCES 2093

APPENDIX

w xPROOF OF PROPOSITION 3.1. Let k s nrp . We denoten n

X Žn. s X q ??? qX , i s 1, . . . , k ,i Ž iy1. p q1 i p nn n

X Žn. s X q ??? qX .k q1 k p q1 nn n n

A.1Ž .

By Lemma 3.4 and some calculations, it is easy to find that
2k k pn n n

2Žn. Žn.A.2 0 F E X y E X F k u i F CkŽ . Ž .Ž .Ý Ý Ýi i n nž /is1 is1 is1

and
kn

22 Žn.A.3 0 F s y E X F C k q p .Ž . Ž .Ž .Ýn i n n
is1

Ž .By A.1 we have

< 2 <� 4E exp itS rs y exp yt r2� 4n n

kn
Žn. Žn.� 4F E exp itS rs y E exp it X rs E exp itX rs� 4Ýn n j n k q1 nn½ 5

js1

k kn n
Žn. Žn.q E exp it X rs y E exp itX rs� 4Ý Łj n j n½ 5 js1js1A.4Ž .

kn
Žn. 2q E exp itX rs y exp yt r2� 4� 4Ł j n

js1

2 < Žn. <q exp yt r2 E exp itX rs y 1� 4 � 4k q1 nn

s I Žk . q I Žk . q I Žk . q I Žk . .1 2 3 4

Ž . Ž . Ž .By Newman’s 1980 inequality for characteristic functions, 2.6 ] 2.7 and
Ž .A.2 ,

kn
Žk . 2 Žn. Žn. 2 2A.5 I F t E X X 2s F Ct rn,Ž . Ž .Ý1 j k q1 nnž /js1

2k kn n
2Žk . 2 Žn. Žn. 2 2A.6 I F t E X y E X 2s F Ct rpŽ . Ž . Ž .Ý Ý2 i i n nž /ž /is1 is1

and
1r2Žk . 2 Žn. 2< < < < < <A.7 I F t exp yt r2 E X rs F C t exp yt r2 p rn .� 4 � 4Ž . Ž .4 k q1 n nn

w Ž . xNow we have cf. Loeve 1977 , page 212 for j s 1, . . . , k ,´ n

1 2Žn. 2 Žn. Žn.A.8 E exp itX rs s 1 y t 1 y u E X rs exp ituX rs du.Ž . Ž .� 4 � 4Ž .Hj n j n j n
0
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< < �Ž Ž Žn..2 .1r24When t F s rmax E X ,n 1F jF k jn

< Žn. <A.9 E exp itX rs y 1 F 1r2 for j s 1, . . . , kŽ . � 4j n n

and

2 4 2qr 2qr2 Žn. 4 Žn. 2qr< < < < < <E X t r 4s F E X t r 4sŽ . Ž .Ž .j n j nA.10Ž .
for j s 1, . . . , k .n

Ž . < <2 < < < < Ž . Ž . wSince log 1 y x s yx q u x , u F 1 for all x F 1r2, by A.8 ] A.10 cf.
Ž . xLoeve 1977 , page 212 , for j s 1, . . . , k ,´ n

itX Žn.
j

log E exp ½ 5sn

22 4Žn. Žn. 2 Žn. < <X itX E X tŽ .1 j j j2s yt 1 y u E exp du q uŽ .H j 4½ 5ž /s s 4s0 n n n

2 2qr 2qr 2qr 2qrŽn. 2 Žn. Žn.< < < < < < < <E X t E X t E X tŽ .j j j1yrs y q 2 u q uj j2 2qr 2qr2s 1 q r 2 q r s 4sŽ . Ž .n n n

2 2qr 2qrŽn. 2 Žn.< < < <E X t E X tŽ .j j
< <s y q u K , u F 1,j r j2 2qr2s sn n

1yr ŽŽ .Ž .. < x < < < < x <where K s 1r4 q 2 r 1 q r 2 q r . Thus the inequality e y 1 F x er
for all x yields

22 k Žn. 2nt Ý E X tŽ .is1 jŽk .I F exp y exp 1 y3 2½ 5 ½ ž /2 2sn

2qr 2qrk Žn.n < < < <Ý E X tis1 jquK y 1r 2qr 5sn

2 2qr 2qrk Žn. 2 k Žn.n n < < < <Ý E X t Ý E X tŽ .is1 j is1 jF 1 y q u K r2 2qr½ 5ž / 2s sn n

A.11Ž .

22 k Žn. 2nt Ý E X tŽ .is1 j
= exp y q 1 y 2½ ž /2 2sn

k n < Žn. <2qr < <2qrÝ E X tis1 jquK .r 2qr 5sn
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2 k n Ž Žn..2 2Without loss of generality we can assume that s y Ý E X F s r2 byn js1 j n
Ž . < < 2qr Ž k n < Žn. <2qr .1r rA.3 . Then when t F s r 6K Ý E X ,n r is1 j

22 k Žn. 2nt Ý E X tŽ .is1 jy q 1 y 2ž /2 2sn
A.12Ž .

k n < Žn. <2qr < <2qr 2Ý E X t tis1 jq u K F y .r 2qr 12sn

Ž . Ž . Ž .It is clear by 2.5 ] 2.7 and 2.10 that

¡1r2n sn~C F min ,1r2ž / 2p Žn.n ¢max E XŽ .1F jF k jž /½ 5n

A.13Ž .
1rr¦2qrsn ¥.2qrk Žn.nž /< <6K Ý E X §r is1 j

Ž . Ž . Ž . Ž .Hence Proposition 3.1 follows now by A.2 ] A.7 and A.11 ] A.13 . I

w Ž .xPROOF OF LEMMA 3.2. By the smoothing lemma of Berry cf. Feller 1971
� 4 � 4and the independence between u , k G 1 and w , k G 1 , for any T ) 0,k k

< <sup F x y F xŽ . Ž .k
y`-x-`

2� 41 E exp itj y exp yt r2 24� 4Ž .T kF dt qH
p t p TyT

2 2 2� 4E exp itu rl y exp yt r2 t t 1� 4Ž .T k k kF C exp y dt q .H 2½ 5t T4lyT k

w a xThen replacing S rs by u rl in Proposition 3.1, we have for n s k andn n k k
< < Ž .1r2T F C nrp ,n

rr22 2< <sup F x y F x F l r t p q p rn q 1rT .Ž . Ž . Ž .Ž .k k k n n
y`-x-`

Ž . w ay2 b rŽ2qr .x Ž .rr2Hence 3.2 holds by putting p s k and T s C nrp .n n
Ž .By 3.1 for any T ) 0,

2C itj tT k
< <sup f x y f x F E exp y exp y dtŽ . Ž . Hk 1r2 ½ 5½ 52 22p 2yTy`-x-` l q t r2Ž .k k

C t 2 t 2
kq exp y dt .H 2 2½ 5p 2 2l q t< < Ž .t GT k k
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Ž .1r2Similarly by Proposition 3.1 for 0 - T F C nrp ,n

3 rr2Cl pk n
< <sup f x y f x F q CŽ . Ž .k 3 ž /nt py`-x-` k n

C 2l2 q t 2 t 2T 2Ž .k k kq exp y .2 2 2½ 5t T 2 2l q tŽ .k k k

w ayŽ3bya .r2 x Ž .1r2 Ž .Then putting p s k and T s C nrp , we obtain by 3.8 thatn n
Ž .3.3 holds for a - 5br3. I
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