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In the threshold growth model on an integer lattice, the occupied set
grows according to a simple local rule: a site becomes occupied iff it sees
at least a threshold number of already occupied sites in its prescribed
neighborhood. In this paper, we analyze the behavior of two-dimensional
threshold growth dynamics started from a sparse Bernoulli density of oc-
cupied sites. We explain how nucleation of rare centers, invariant shapes
and interaction between growing droplets influence the first passage time
in the supercritical case. We also briefly address scaling laws for the critical
case.

1. Introduction. In the discrete threshold growth model, an empty site
joins the occupied set if it sees enough occupied sites around it. These deter-
ministic dynamics have two parameters:

1. Parameter N , a finite subset of Z2, is the neighborhood of the origin; x+N
is then the neighborhood of a site x. We will always assume that 0 ∈ N .

2. Parameter θ, a positive integer, is the threshold value.

For N , most of our examples will use either the range ρ diamond neigh-
borhood, N = �xx ��x��1 ≤ ρ�, or the range ρ box neighborhood, N = �xx
��x��∞ ≤ ρ�.

Given a set A ⊂ Z2, define

T �A� = A ∪ �xx ��x+N � ∩A� ≥ θ�:

Start from an initial set A0 ⊂ Z2 and iterate An+1 = T �An� to generate
discrete threshold growth dynamics. This extremely simple model arose in con-
nection with our previous empirical and theoretical studies of mathematical
prototypes for excitable media and crystal growth. In various contexts it cap-
tures the essential qualitative and quantitative features of wave propagation.
For applications to other basic cellular automata and interacting particle sys-
tems, we refer the reader to [2] and [9]–[11] and the many references contained
therein.

The subset N is called symmetric if −N = N . We will often make this
assumption to simplify the statements and proofs of our theorems. (See [11]
for some discussion of this issue.)
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The following definitions distinguish three fundamentally different ways in
which threshold growth dynamics can behave. Let A∞ = T ∞�A0� =

⋃∞
n=0An;

of course A∞ depends implicitly on A0. We say that the dynamics are super-
critical if there exists a finite A0 such that An eventually occupies every site
in Z2. That is, A∞ = Z2. If A∞ 6= Z2 for every finite A0, but A∞ = Z2 for every
A0 with finite complement, then we call the dynamics critical. Finally, in the
case of subcritical dynamics, there exists a nonempty finite set H (a hole) so
that the dynamics cannot fill H even when started with all of Hc occupied.

Critical threshold growth dynamics have been widely studied in the math-
ematics and physics literature as a model of nucleation and metastability,
usually under the name bootstrap percolation. Papers [1]–[4] and [13]–[17]
provide a representative sample of the literature and include a large number
of additional references.

Probability enters the picture when one considers the dynamics started
from the random set 5�p� which contains each site in Z2 independently with
probability p > 0. Most of our analysis will focus on threshold growth started
from 5�p�. The first question that arises here is whether the dynamics started
from such a random seeding will eventually occupy every site of Z2 for any
p > 0 (with probability 1). This is obviously true in the supercritical case,
since for any p > 0, 5�p� contains arbitrarily large sets (by the monkey-at-
the-typewriter theorem). On the other hand, since 5�p� also has arbitrarily
large holes, the answer is clearly no in the subcritical case. Indeed, the next
proposition shows that by far the best chance for a site to be in A∞ is for it to
belong toA0. We use the standard notation for balls:Br�x;R� = �yx ��x−y��r ≤
R�.

Proposition 1.1. Assume the threshold growth dynamics to be subcritical
and start from A0 = 5�p�. Then, for each site x, P�x ∈ A∞� = p+ O �pθ�.

Proof. Let R be large enough so that 0 /∈ T ∞�B∞�0;R�c� and N ⊂
B∞�0;R�.

Assume now that x /∈ A0 and �A0 ∩ B∞�x;3θR�� < θ. We claim that
x cannot be in T ∞�A0� under these conditions. Indeed, they imply exis-
tence of an integer i ∈ �1; θ� such that, initially, there is no site at all in
B∞�x;3iR� \B∞�x;3�i− 1�R�. This means that no site in B∞�x; �3i− 1�R� \
B∞�x; �3i − 2�R� can ever become occupied. Consequently, the dynamics re-
stricted to B∞�x; �3i− 2�R� would need to eventually occupy x on their own,
since they cannot get help from the outside, but there are less than θ sites
in B∞�x; �3i − 2�R�, so that not even one site in this box can ever be added.
Since x is not initially occupied, it will therefore never be. We conclude that,
for θ < �N �,

p+ �1− p�pθ ≤ P�x ∈ A∞� ≤ p+ �6θR+ 1�2θpθ: 2

To illustrate our classification, let us consider range 1 box dynamics. The
reader can easily verify that these are supercritical for θ = 1;2;3, critical
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for θ = 4 and subcritical for θ ≥ 5. Techniques from [2] and [17] imply that
in the θ = 4 case, these critical dynamics are able to fill Z2 starting from
any 5�p�. Is this convergence to total occupancy always the case for critical
threshold growth started from a random seeding with positive density? Not
in full generality, as we will now illustrate. (A similar example appears in
Section 4 of [17].)

Example 1.2. Assume that N consists of the origin and three points im-
mediately below: �0;−1�, �±1;−1� and that θ = 3. This is clearly a critical
case. For M > 0, let GM denote the event that 0 ∈ A∞ for the dynamics
started from 5�p� ∩ �Z × �−M;0��. Then starting from A0 = 5�p�, it follows
that �0 ∈ A∞� =

⋃∞
M=0GM.

Now introduce a two-state (0;1-valued) cellular automaton ηt on Z in which
a 1 remains 1 if both its nearest neighbors are 1 and otherwise remains 1 with
probability p, while a 0 becomes a 1 with probability p in any case. Start this
automaton from density p of 1’s. If it happens that ηt�x� = ηt�x±1� = 1, then
we call �x; t�, �x − 1; t� and �x + 1; t� predecessors of �x; t + 1�. Say that an
�x;0� such that η0�x� = 1 survives until time t if there is a space–time chain
of predecessors linking �x;0� to �y; t� for some y. Using standard methods
from oriented percolation (see [8]), one can obtain an α�p�, with α�p� → ∞ as
p→ 0, such that P��x;0� survives until time t� ≤ e−αt.

It is easy to check that GM \GM−1 ⊂
⋃
x∈�−M;M���x;0� survives until time

M�, so P�x ∈ A∞� → 0 as p→ 0.
In conclusion, we note that the models with the same neighborhood and

θ = 1 or θ = 2 are still critical, but fill Z2 from every 5�p� with p > 0. This
follows from the fact that single occupied sites for θ = 1 and horizontally
adjacent occupied pairs for θ = 2 are able to propagate upwards indefinitely.

In contrast to the previous example, our next result shows that critical
symmetric dynamics fill Z2 for every p > 0. In the process, we determine
precisely which thresholds give rise to critical dynamics. Our criterion involves
the quantity ι�N � = max��N ∩ `�x ` a line through 0�.

Proposition 1.3. Threshold growth dynamics with −N = N are as fol-
lows:

(i) supercritical, iff θ ≤ 1
2��N � − ι�N ��;

(ii) subcritical iff θ > 1
2��N � − 1�.

Furthermore, in the critical case and for every p > 0, the dynamics started
from A0 = 5�p� fill the lattice (i.e., A∞ = Z2) a.s.

For example, for range ρ box neighborhoods, the dynamics are supercritical
if θ ≤ 2ρ2+ρ (or, in the terminology of [10], below boot), critical if θ ∈ �2ρ2+ρ+
1;2ρ2+2ρ� and subcritical if θ > 2ρ2+2ρ. This complete trichotomy improves
results in Section 5 of [11].
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Once we know that every site becomes occupied eventually, a natural ques-
tion is to ask when. Most of the present paper is devoted to answering this
question in the supercritical case. Our main theorem concerns T, the first time
that the origin is occupied. The mechanism whereby nucleating droplets cover
space is suggested in Figure 1. The rule there is range 1 box, threshold 3. The
initial seeding has density p = 0:01 and the contours represent the extent
of growth after regularly spaced time intervals. In supercritical cases such as
this, we will see that T obeys a power law. More precisely, there exists a γ > 0
such that Tpγ/2 converges weakly to a nondegenerate random variable. Not
surprisingly, this is a much more complete result than has been established
for even the simplest critical cases, where it has been shown that T is expo-
nentially large in a power of 1/p (e.g., [2], [15]). We will briefly address the
scaling laws for critical dynamics in Section 7.

There are several combinatorial issues that come into play in our analysis.
We will introduce two nucleation parameters that measure how easy it is for
the dynamics to start growing. However, there are delicate issues connected
with the initial stages of growth. At least for sufficiently nice neighbor sets,
threshold growth would appear to spread out in an essentially regular manner.
However, our next definition will help clarify a thorny combinatorial issue that
remains unsettled.

Say thatA0 generates persistent growth ifAt+1 6= At for every t. The dynam-
ics are omnivorous if for every A0 which generates persistent growth, An ↑ Z2.

Fig. 1. Supercritical threshold growth from sparse random seeds.
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A simple (albeit artificial) example that is not omnivorous can be fashioned
by choosing N and A0 to contain only sites from the even sublattice of Z2.
However, the following natural conjecture remains unproved.

Conjecture 1.4. If N is an obese neighborhood (see [11] for a definition),
then the dynamics are omnivorous.

In recent and quite remarkable work, Bohman [7] proved this conjecture for
box neighborhoods of arbitrary range. This substantial advance bodes well for
future development of a comprehensive regularity theory for threshold growth
dynamics.

We now proceed to define the key nucleation parameters. Let γ = γ�N ; θ�
be the minimal number of sites needed for persistent growth, that is, the
smallest i for which there exists an A0 with �A0� = i and An+1 6= An for every
n. Moreover, let ν = ν�N ; θ� be the number of sets A0 of size γ that generate
persistent growth and have their leftmost lowest sites at the origin. The phrase
“leftmost lowest site” (meaning the leftmost among the lowest sites) is included
to assure that translations of A0 are not counted as different, so that ν counts
the number of distinct smallest “shapes” that grow.

It turns out that omnivorous dynamics are not required for our theorems.
Instead, all we need is the following much more checkable condition. Call a
threshold growth model voracious if, started from any of the ν initial sets A0
described above, An ↑ Z2.

For relatively small θ, γ = θ. For example, in the range ρ box case, γ = θ
as long as θ ≤ ρ2. The smallest box neighborhood example where γ > θ is
range 2 with θ = 10. In that case, A0 = N does not generate persistent
growth, hence γ > θ. On the other hand, there does exist an A0 with 11
sites that generates persistent growth, proving that γ = 11. We leave it as
a (surprisingly challenging) puzzle for the reader to try to find such an A0.
Gluttons for punishment are invited to compute the corresponding ν. The size
of γ for large neighborhoods will be addressed in a forthcoming paper.

Needless to say, a little technology is quite helpful in determining these
parameter values for small cases. One can write a computer program, which
computes ν for small neighborhoods and thresholds, and checks voracity in
the process. (This is of course no longer necessary for box neighborhoods, due
to Bohman’s theorem.) In all cases listed in Table 1, γ = θ, and voracity is
established.

As is common in “lattice animal” combinatorial problems, the parameters
and computation times grow very quickly. In the range ρ box case, only for
θ = 2 do we know an explicit general formula: ν = 4ρ�2ρ+ 1�.

The main result of this paper is the following theorem:

Theorem 1.5. Assume that a threshold growth model is symmetric, su-
percritical and voracious, with nucleation parameters γ and ν. Starting from
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Table 1
The number ν in some small cases

r u 5 2 u 5 3 u 5 4 u 5 5 u 5 6 u 5 7

Box 2 20 136 398

Diamond 1 12 42 /∃ /∃ /∃ /∃
2 40 578 4,683 24,938 94,050 259,308
3 84 2,602 46,704 574,718
4 144 7,702 241,151
5 220 18,038

5�p�, let T be the first time the origin is occupied. Then, as p→ 0,
√
νpγT

converges in distribution to a nontrivial random variable τ.

A detailed description of the random variable τ is a long story. For now,
suffice it to say that it is a functional of a Poisson point location on R2 (which
is guaranteed to have unit intensity by the normalization factor ν). To see why,
consider the easiest example: θ = 1. This is the instance of additive dynamics,
which simply means that T �A ∪ B� = T �A� ∪ T �B�. Also, it is not hard to
see that started from A0 = �0�, An/n converges to the set co�N � (the convex
hull of N ). Supercriticality is equivalent to co�N � being a neighborhood of the
origin, in which case it defines a norm �� · �� as its Minkowski functional (given
by ��z�� = inf�λ > 0x z ∈ λ · co�N ��). Since the sites of Z2 are independently
occupied with density p, the locations of occupied sites, multiplied by

√
p,

converge to the unit–intensity Poisson point location ℘. Additivity then almost
immediately implies the following result.

Corollary 1.6. Assume that N is symmetric and co�N � is a neighborhood
of the origin. Assume also that θ = 1. Then

√
pT→d τ = inf���z��x z ∈ ℘�:

It is not immediately clear why Corollary 1.6 is not true in general, with
some appropriate choice of the norm �� · ��. In fact, cases where the dynamics
are close enough to additive that this is true are rare, but we do mention one
next.

Corollary 1.7. Assume range ρ box neighborhood with θ = 2. Then

ρ
√

4ρ�2ρ+ 1�pT

converges as p → 0 to a random variable with distribution function F�r� =
1− exp�−4r2�1− ρ−2/2��.



1758 J. GRAVNER AND D. GRIFFEATH

It should be noted that the results of this paper are limited to two di-
mensions. In higher dimensions, the technical difficulties associated with su-
percritical growth increase dramatically, due to the much more complex in-
teraction between droplets. In critical cases the scaling behavior is actually
expected to change significantly [16].

Let us conclude this introduction with a remark about random growth. For
additive random processes such as Eden’s model (where, at each time, every
site with an occupied neighbor becomes occupied with some fixed probability
q), Corollary 1.6 is true except that our norm needs to be replaced by another
given as the Minkowski functional of the asymptotic shape. Unfortunately,
that shape seems impossible to compute explicitly (but see [12] for a result on
how the shape in a random model can approximate, say, a square). On the one
hand, our dynamics are simpler since their determinism precludes stochastic
fluctuations. On the other hand, lacking additivity, they are somewhat more
complicated than the most commonly studied random growth models. Indeed,
our work is largely motivated by the tractability of threshold cellular automata
dynamics as a prototype for nonlinear growth.

The rest of the paper is organized as follows. The next section gives a brief
exposition of shape theory for bounded initial sets and proves Proposition 1.3.
Section 3 then establishes a shape theorem for certain infinite initial sets.
These results are used in Section 4 to define the limiting first passage time
τ. Section 5 exploits standard Poisson convergence machinery to establish
convergence of nucleation centers. Then, to complete the proof of Theorem 1.5,
we need to analyze threshold growth in a slightly polluted environment; this
is the agenda of Section 6. Some representative examples of critical dynamics
are presented in Section 7, indicating various possible scalings for the first
passage time. Finally, Section 8 gives a recipe for choosing parameters N and
θ in order to obtain a prescribed limiting shape.

2. Classification and the shape theorem. The paper [11] proves the
shape theorem for a continuous space version of our dynamics, acting on sub-
sets of R2. It is not immediately clear how the techniques from that analysis
translate to this case, but the following observation makes the transition quite
easy.

Let B be any subset of R2 and define

¯T �B� = B ∪ �x ∈ R2x ��x+N � ∩B� ≥ θ�:
(Note that N is still the same finite subset of Z2 and �·� still means cardinality.)
The point is that T and ¯T are conjugate; that is, for any B ⊂ R2,

¯T �B� ∩ Z2 = T �B ∩ Z2�:(2.1)

Moreover, ¯T translates half-planes: if u is a two-dimensional unit vector
and H−u = �xx �x;u� ≤ 0�, then ¯T �H−u � = H−u + w�u�u for some w�u� ≥
0 (known as the speed of the half-space H−u ). As in [11], introduce the set
K1/w =

⋃
u�0;1/w�u��u and define L = L�N ; θ� by

�2:2� L =K∗1/w = �yx �x;y� ≤ 1 for every x ∈K1/w�:
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Note that L is a closed convex subset of R2 that includes the origin. More-
over, as we will see shortly (see the proof of Proposition 2.4), the origin is in
the interior of L if and only if the dynamics are supercritical. In this case, the
Minkowski functional

��z�� = inf�λx z /∈ λL�
is a norm on R2.

Since our next theorem deals with convergence of subsets of R2, we recall
that closed sets Fn ⊂ R2 converge to a closed set F ⊂ R2 in the Hausdorff
metric if for every ε > 0, there exists an n0�ε� so that Fn ⊂ F+B2�0; ε� and
F ⊂ Fn + B2�0; ε� for n ≥ n0. See the Appendix in [11] for some relevant
theoretical properties of this kind of convergence.

Theorem 2.1. If A0 is finite and An ↑ Z2, then An/n ⊂ R2 converge (in the
Hausdorff metric) to L.

Proof. The proof for iterations of ¯T consists of approximating K∗1/w with
smooth convex sets and is virtually identical to the proof of Theorem 1 in [11].
The final step is use of conjugacy formula (2.1). 2

Let us now mention some consequences of these observations.

Proposition 2.2. L is always a polygon.

Proof. For each fixed vector u, one of the following alternatives occurs:

(i) All translates of the line �xx �x;u� = 0� contain at most one point of N .
(ii) A translate of the above line contains two or more points of N .

There are only finitely many u’s that fall in case (ii). However, all directions
u that fall in the case (i) point to a location on the boundary of K1/w which
is inside a straight-line segment included in the boundary. To check this, ob-
serve that ��x;u� = −w�u�� contains exactly one integer point z. Therefore,
��x;u′� = −w�u�� contains only one integer point (namely, z) for u′ close to
u. This implies that w�u′� = w�u��u;u′�, so that 1/w�u′� gives an equation of
a straight line (in polar coordinates). Therefore, K1/w is a polygon and so is
K∗1/w. 2

Example 2.3. We illustrate the shape theorem with a few simple exam-
ples. Range 1 box neighborhood has three shapes. The θ = 1 shape is of course
B∞�0;1�, the θ = 2 shape is B1�0;1� and the θ = 3 shape is an octagon with
vertices � 1

2 ;0� and � 1
3 ;

1
3� in the first quadrant on or below y = x. (We need

only specify these, by symmetry.) The θ = 3 case (see [11] for a picture) is the
only one of these with a nonconvex K1/w, which has vertices �1;0�, �2;1� and
�1;1�.

Figure 2 illustrates the 10 shapes for a range 2 box neighborhood. This
picture was generated by running the dynamics from the small initial seed
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Fig. 2. Range 2 box polygonal shapes.

shown in the middle of the figure rather than using (2.2). The most interesting
observation is that the shapes for θ = 7 and θ = 8 appear to both equal
B1�0;1�. This is confirmed by a computation of K1/w, which in the θ = 7 case
has vertices �1;0�, � 3

4 ;
1
4�, �1; 1

2�, � 3
4 ;

1
2� and �1;1�, while K1/w = B∞�0;1� in

the θ = 8 case. The only other cases with convex K1/w are θ = 1 and θ = 2
[this last has an octagonal shape L with vertex �2;1�].

Proposition 2.4. If −N = N and θ ≤ 1
2��N � − ι�N ��, then the dynamics

are supercritical.

Proof. The first observation to make is that the dynamics are supercriti-
cal iff w�u� > 0 for every u. For, if this is true, there exists a bounded subset
B ⊂ R2 so that ¯T n�B� ↑ R2 (see Lemma 1 on page 853 of [11]). The con-
verse is obvious since an edge speed of 0 constrains growth to a corresponding
half-space.

Now for any u, there are at most ι�N � sites in N ∩�xx �x;u� = 0�. Hence, by
symmetry of N , there are at least 1

2��N �− ι�N �� sites in N ∩�xx �x;u� < 0�.
For y in a small neighborhood of the origin, then

��y+N � ∩ �xx �x;u� < 0�� = �N ∩ �xx �x;u� < 0�� ≥ 1
2��N � − ι�N �� ≥ θ: 2
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Proposition 2.5. If −N = N and θ > 1
2��N � − 1�, then the dynamics are

subcritical.

Proof. In this case it immediately follows that w�u� = 0 for every u. Even
more, we claim there exists an ε > 0 so that ¯T �Hu∪Hv� =Hu∪Hv for every
u and v such that ��u − v�� < ε. The easiest way to see this is to consider
open half-spaces, denoted by Ho

u, instead of closed ones (as any point slightly
outside Hu ∪Hv cannot see the points on the boundary anyway). Now it is
clear that there exists an ε > 0 so that if u and v are closer than ε, and z is an
arbitrary real point with �z;u� = 0, then ��Ho

u ∪ �z+Ho
v�� ∩N � ≤ 1

2��N � − 1�.
This means that real points outside Hu ∪Hv, but very near its boundary, do
not see θ sites, but then other points do not either. This proves the claim.

Now we can construct a large open polygon O , with sides longer than the
diameter of N and interior angles close enough to π (so that their cosines are
at least 1−ε2/2), so that no real point in O sees θ points outside. Thus ¯T can
never add a point in O , even if the complement is entirely occupied, but then
neither can T . 2

Proposition 2.6. If −N = N and θ ∈ � 12��N � − ι�N �� + 1; 1
2��N � − 1��,

the dynamics are critical. Moreover, if A0 = 5�p�, then A∞ = Z2 a.s. for every
p > 0.

Proof. In this regime w�u� = 0 for the u such that �N ∩�xx �x;u� = 0�� =
ι�N �, so supercriticality is out of the question. So is subcriticality: in this
regime w�u� > 0 as soon as N ∩ �xx �x;u� = 0� = �0�—this means w�u� > 0
for all except finitely many directions. To prove the last assertion, pick any
unit vector u. Although w�u� may be 0, we claim that a judicious addition of a
bounded set actually makes H−u progress a little. To be more precise, we claim
that there exists a bounded F ⊂ R2 such that ¯T ∞�F ∪H−u � ⊃ w′�u�u +H−u
for some w′�u� > 0.

To do this, assume for convenience (and without loss of generality) that u
is on the left side of the unit ball (�u; e1� < 0). Now define w′�u� to be the
speed of H−u when the threshold equals 1

2��N � − ι�N ��. Pick an integer point
x0 ∈ w′�u�u+H−u and put in F all sites in �x0+N �∩�w′�u�u+H−u � below x0.
Then also add real points below x0 and in w′�u� +H−u (this yields an infinite
set, which can be cut at some point far from x0). It is easy to see that such anF
does the required job. Note, for later use, that if, say, N is a box neighborhood,
then �F ∩ Z2� ≤ θ− 1

2��N � − ι�N ��.
Let a (a finite integer) be the number of directions with w�u� = 0 and let

now F be a finite set that works for all of them. Now it is possible to make a
finite polygon B ⊂ R2 with angles between edges close enough to π so that the
following is true. Fix a t > 0 and add a translates of F anywhere along the
edges of tB perpendicular to u’s with 0 speed, making sure they are away from
the corners. Then apply the growth dynamics. By the preceding paragraph,
the dynamics will eventually cover �t+ δ�B for some δ > 0 independent of t.
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At this point, the standard bootstrap methods from [2] can be adapted to
finish the proof. 2

3. Infinite initial sets. Now that we understand the essential behavior
of threshold growth started from finite sets and sets with finite complement,
we need to know how the dynamics affect infinite sets that are convex or
have convex complement. For fixed unit vectors u1 and u2, a wedge and a
complement of a wedge are defined, respectively, as

W =Wu1; u2
=H−u1

∩H−u2
;

Q = Qu1; u2
=H−u1

∪H−u2
:

Theorem 3.1. The following convergence results hold as n → ∞, in the
Hausdorff metric:

1
n
¯T n�W� →

⋂
�w�u�u+H−u x W ⊂H−u� = �K1/w ∩W∗�∗;(3.1)

1
n
¯T n�Q� →

⋃
�w�u�u+H−u x H−u ⊂ Q�:(3.2)

Result (3.1) is not so surprising. Essentially, it is analogous to the “finite”
shape result Theorem 2.1, with some w’s set to∞. Result (3.2) is a little tricky.
One would expect the curvature of Q near the origin to “smooth out” and
stabilize quickly, so that it should not matter on a linear scale. This is indeed
the case, but the smoothed out “corner” can have any inclination (within the
bounds determined by Q) in general. In one case, however, (3.2) simplifies
significantly.

Proposition 3.2. If K1/w is convex, then

1
n
¯T n�Q� → L+Q = v+Q;(3.3)

where v is the vector

v = 1
1− �u1; u2�2

��w�u1� −w�u2��u1; u2��u1 + �w�u2� −w�u1��u1; u2��u2�:

In fact, the proof will show that (3.3) is valid for every Q if and only if K1/w
is convex.

Proof of Proposition 3.2. One should start by checking that the v above
is the correct translation vector. This follows from the fact that �v;u1� = w�u1�
and �v;u2� = w�u2�.

Choose two unit vectors u1 and u2 and an α ∈ �0;1�, and denote ū =
αu1 + �1− α�u2. Now, K1/w is convex if and only if

w�ū/��ū�����ū�� ≤ αw�u1� + �1− α�w�u2�:(3.4)
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On the other hand, (3.3) is valid (by Theorem 3.1) iff v does not fall into the
interior of w�ū/��ū���ū/��ū�� +H−ū/��ū��, which is true iff

�v; ū� ≥ w�ū/��ū�����ū��:(3.5)

Clearly, (3.4) and (3.5) are identical. 2

The easiest way to check convexity of K1/w is the following. Pick a point
x ∈ R2 and a line ` through x so that the closed connected component of
the complement of the line which does not include the origin contains θ sites.
Suppose that a small rotation of the line ` around x in either direction makes
this complement contain fewer than θ sites. This never happens iff K1/w is
convex. It suffices to check finitely many lines ` that contain two or more
points of N . In the range ρ box neighborhood case, it is easy to see that K1/w
is convex if θ = 1 or 2. Much more surprisingly, K1/w is also convex [in fact,
equal to B∞�0;1�] if θ = 2ρ2.

In passing we note that K1/w always becomes convex in the threshold-range
limit. More precisely, if θk→∞ and Nk/

√
θk→ ¯N ⊂ R2, with wk the speeds

of the �Nk; θk� dynamics, then
√
θkK1/wk converges to a convex set. See [11]

for a proof.

Proof of Theorem 3.1. We start by proving (3.1). The first step is to ver-
ify the right-hand equality. Call the two sets L′ and L′1, respectively. Then
z ∈ L′ iff �u;W� ≤ 0 implies �u; z� ≤ w�u�. On the other hand, z ∈ L′1 iff
�u;W� ≤ λ and λ ∈ �w�u�;∞� imply �u; z� ≤ w�u�. These two are equivalent
since �u;W� ≤ λ is equivalent to �u;W� ≤ 0 (W is a cone).

Introduce an auxiliary transformation ¯Ta that acts on the subsets of R2 in
the following fashion:

¯Ta�B� =
⋂
�w�u�u+ λu+H−u x B ⊂H−u ; λ > 0�:

To prove convergence in (3.1), we begin by claiming that L′ is invariant for
¯Ta. More precisely, for every r > 0,

¯Ta�rL′� = �r+ 1�L′:(3.6)

To show this, note that z ∈ �r+ 1�L′ iff

∀u; �u;W� ≤ 0 ⇒ �u; z� ≤ �r+ 1�w�u�(3.7)

and z ∈ ¯Tb�rL′� iff

∀u; ∀λ; �u; rL′� ≤ λ ⇒ �u; z� ≤ w�u� + λ:(3.8)

Assume first that (3.8) holds. To show (3.7), we also assume �u;W� ≤ 0.
If y ∈ L′, then, since �u;W� ≤ 0, �u;y� ≤ w�u�. This proves that �u;L′� ≤
w�u�, which, if we choose λ = rw�u�, implies �u; rL′� ≤ λ. Now, (3.8) implies
�u; z� ≤ w�u� + λ = �r+ 1�w�u�.

Now assume that (3.7) holds. To show (3.8), pick a z ∈ �r+ 1�L′ and λ and
u so that �u; rL′� ≤ λ. Since W ⊂ rL′, �u;W� ≤ λ, but then, since W is a
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cone, �u;W� ≤ 0. This, by (3.7), implies that �u; z� ≤ �r + 1�w�u�. Thus (3.8)
holds if λ ≥ rw�u�. On the other hand, if λ ≤ rw�u�, then just use the fact
that r/�r+ 1�z ∈ L′, so that �u; z� ≤ ��r+ 1�/r�λ ≤ λ + w�u�, so again (3.8)
holds.

The final step in proving (3.1) is to quantify the fact that if r is large,
¯T �rL′� ≈ ¯Ta�rL′�. Fix an ε > 0. First, we find L′ε and Q such that Lε is

convex, has a C 1 boundary, �1 − ε�L′ ⊂ L′ε ⊂ L′ and L′ε ∩ B2�0;R�c = L′ ∩
B2�0;R�c for some large R. (It is intuitively clear that such a set should exist,
but see [11] for more details.) In particular, by enlarging R if necessary, we
can assume that L′ε is flat outside B2�0;R�.

Now we claim that there exists an r0 = r0�ε� so that for r ≥ r0,

¯Ta��r− ε�L′ε� ⊂ ¯T �rL′ε�:(3.9)

Let M = max�w�u��+ 2 diam�N �. Pick r0 = r0�ε� large enough so that for
r ≥ r0 and every point x on the boundary of �r−ε�L′ε, �x+H−n�x��∩B2�0;M� ⊂
rL′ε, where n�x� is the outward normal to �r − ε�L at x. (See Figure 5 and
Lemma 1 in [11].) Then pick a z ∈ ¯Ta��r− ε�L′ε�. Let y be the closest point to
z in �r − ε�L′ε and set u = n�y�. Then �r − ε�Lε ⊂ y +H−u = �u;y�u +H−u .
Therefore, z ∈ y + w�u�u +H−u by definition of ¯Ta. Now it follows that z ∈
¯T �rL′ε�, since z sees at least θ sites in y +H−u and is at distance w�u� from
y. This shows (3.9).

Iterating (3.9) and using (3.6) and the properties of Lε, we find that

�n+ �r0 − ε��1− ε��L′ = ¯T n
a ��r0 − ε��1− ε�L′� ⊂ ¯T n

a ��r0 − ε�L′ε�
⊂ ¯T n�r0L

′
ε� ⊂ ¯T n�r0L� ⊂ ¯T n�x0 +W�

= x0 + ¯T n�W�
for some vector x0 (which depends on r0, and hence on ε). Such a vector exists
because w is bounded both above and away from 0. Therefore,

−x0 + �n+ �r0 − ε��1− ε��L′ ⊂ ¯T n�W� ⊂ nL′;
which, after dividing by n and sending n→∞, implies (3.1).

The proof of (3.2) is very similar in spirit, but the technical details are
sufficiently different that we provide a sketch. The starting point is another
auxiliary transformation:

¯Tb�B� =
⋃
�w�u�u+ λu+H−u x λu+H−u ⊂ B; λ ≥ 0�:

These dynamics leave L′′, the right-hand side of (3.2), invariant for all r > 0:

¯Tb�rL′′� = �r+ 1�L′′:(3.10)

To prove (3.10) we need to show that, for z ∈ R2, the statement

∃u; H−u ⊂ Q and �u; z� ≤ �r+ 1�w�u�(3.11)

is equivalent to

∃u; ∃λ ≥ 0; λu+H−u ⊂ rL′′ and �u; z� ≤ w�u� + λ:(3.12)
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To see that (3.11) implies (3.12), we choose the same u and λ = rw�u� to get
(3.12). Conversely, if (3.12) is true, we again choose the same u and note that
there exists an x0 so that

�H−u �c ⊃ �rL′′ − λu�c ⊃ x0 +Qc:

This implies that �H−u �c ⊃ Qc and H−u ⊂ Q. Now finish the argument by
contradiction: if z /∈ �r+1�L′′, then r/�r+ 1�z /∈ rL′′, so by (3.12), r/�r+ 1�z /∈
λu +H−u . This last is the same as �u; r/�r+ 1�z� > λ, which in turn implies
that �u; z� ≤ w�u� + r/�r+ 1��u; z�, so (3.11) holds.

Equipped with invariance (3.10), virtually the same argument as for (3.1)
goes through. (Now, however, the tricky part is the upper bound.) 2

4. A description of t. Assume that z1; : : : ; zn ∈ R2 are distinct points.
The aim of this section is to define a “continuous movie”: from every point zi
a separate expanding copy of L is started. Limiting dynamics from (3.1) and
(3.2) are then used to govern the interaction when the growing sets collide.
Our asymptotic passage time τ = τ�z1; : : : ; zn� is represented as the first time,
starting from a Poisson field, that the movie reaches the origin.

To be more precise, we will define dynamics Mt =Mt�z1; : : : ; zn�. Let M1
t be⋃

i�zi+tL� and let T1 be the first time �zi+tL�∩�zj+tL� 6= \ for some i 6= j.
Define Mt = M1

t for 0 ≤ t ≤ T1. At the time t ≥ T1, think of the boundary
of Mt as the finite sequence of corners k0�t�; k1�t�; : : : ; km�t��t� connected by
straight lines (it is useful to be reminded of the fact that there are only finitely
many possible slopes). Note that it may happen that ki�t� = kj�t� for some 0 ≤
i < j ≤m�t� since the boundary may consist of some disconnected pieces and
since it is possible that even connected components of Mt might be “pinched”
at some point.

Every corner ki−1�t�; ki�t�; ki+1�t� is either convex or concave. This merely
means that Mt is a locally convex or concave set at ki�t�. Now make every
convex corner evolve according to (3.1) and every concave corner according to
(3.2). At time t = T1 this may (and probably will, unless K1/w is convex) cause
branching of corners, as illustrated in Figure 3. Note that these dynamics are
well defined at least for some small time after T1, as both limiting sets in (3.1)
and (3.2) have straight-line boundaries outside a neighborhood of the origin.
Indeed, consider the subsequent time T2, when either two corners coalesce
or new ones are created or the nature of an existing one changes by corners
bumping into straight-line parts of the boundary or other corners. These in-
teractions define the set Mt for times t ∈ �T1;T2�. Now redefine the set of
corners and continue with the same dynamics as above until time T3, defined
analogously to T2. Continue this procedure indefinitely.

Our movie is well defined forever since infinitely many edges cannot arise in
finite time: there are only finitely many possibilities for convex corners, and
new edges are created only when such convex corners collide with straight
lines. Thus, define τ = τ�z1; : : : ; zn� = inf�tx 0 ∈ Mt�. We will now state two
propositions that establish needed continuity properties of τ.
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Fig. 3. Interaction of two range 1 box threshold 3 droplets.

Proposition 4.1. Fix z1; : : : ; zn. For every ε > 0 there exists a δ > 0 so
that if z′1; : : : ; z

′
m is a finite collection of points with z′i ∈

⋃n
i=1B�zi; δ�, then

τ�z′1; : : : ; z′m� ≤ τ�z1; : : : ; zn� + ε.

This implies that τ is continuous with respect to small perturbation of ex-
isting centers, or even adding new centers close to existing ones.

Proof of Proposition 4.1. This follows simply by noting that the sets Mt

are continuous in t (in the Hausdorff metric) and that after a short initial
time, Mt�z1; : : : ; zn� covers all the z′i. The final step is to use monotonicity of
the sets defined in (3.1) and (3.2). 2

The sets in (3.1) and (3.2) depend only on the speed function w. Assume
now that the speed is perturbed to w′ and let τ′ be the new first passage time.
The next proposition states that if the perturbation is small enough, then the
first passage time does not change much.

Proposition 4.2. Fix z1; : : : ; zn. For every ε > 0 there exists a δ > 0 so that
��w−w′��∞ < δ implies �τ − τ′� < ε.

Proof. If w′ = w�1 + δ�, then τ′ = τ/�1 + δ�, by rescaling of time. Now
again use the monotonicity in (3.1) and (3.2) to conclude that if w′ < w�1+δ�,
then τ′ > τ/�1+ δ�. 2
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In the easiest case, if K1/w is convex, then there is no branching of corners
in the dynamics Mt. In fact, Proposition 3.2 implies the following result.

Proposition 4.3. If K1/w is convex, then Mt =
⋃n
i=1�zi + tL� and so τ =

inf���zi��x i = 1; : : : ; n�.

The final task of this section is to replace the finitely many centers in our
construction by infinitely many. If Z is any infinite subset of R2 without limit
points, let z1 ∈ Z be such that ��z1�� = min���z��x z ∈ Z� and let z1; : : : ; zn be all
points in Z ∩B2�0; ��z1���1 + 2 max�w���. Then τ�z1; : : : ; z1� is the same as τ
obtained by adding any finite number of points from Z to z1; : : : ; zn. Therefore,
it makes sense to define τ�Z� = τ�z1; : : : ; zn�. We say that τ�Z� is decided by
z1; : : : ; zn.

5. Convergence of nucleation centers. Call site x ∈ Z2 a nucleus if it is
the leftmost lowest site of γ sites in 5�p� which generate persistent growth.
Let Q�p� be the set of all such nuclei. Since P�x is a nucleus� ∼ νpγ as
p→ 0 and different sites are nuclei almost independently,

√
νpγQ�p� should

converge to the unit-intensity Poisson point location. The right machinery to
prove this is the Chen–Stein method ([5], [6]), which we make use of in the
next proposition.

Proposition 5.1. Fix a threshold growth model, any R > 0, and let B =
B∞�0;R�. Then there exists a constant C > 0 (independent of p) so that the
total variation distance between Q�p� ∩ �p−γ/2B� and 5�νpγ� ∩ �p−γ/2B� is
bounded above by Cp.

Proof. Let Gx be the event that there is a nucleus at x, px = P�Gx� and
pxy = P�Gx ∩ Gy�. Let M be large enough that N ⊂ B∞�0;M� and also, if
�A0� < γ, then A∞ ⊂ A0+B∞�0;M�. It follows that if x is the leftmost lowest
site of a set of γ points which generate persistent growth, then that set has to
be included inB∞�x;2γM�. The crucial point is that ifBx = B∞�x; �4γ+1�M�,
then y /∈ Bx implies that Gx and Gy are independent. Also, let I = p−γ/2B.

Then

px = νpγ + O �pγ+1�:(5.1)

Moreover,

b1 =
∑
x∈I

∑
y∈Bx

pxpy ≤ �8γM+ 1�2�2Rp−γ/2 + 1�2p2
x = O �pγ�(5.2)

and

b2 =
∑
x∈I

∑

y∈Bx\�x�
pxy ≤ �I��Bx�P�γ + 1 sites in 5�p� ∩Bx� = O �p�:(5.3)

Theorem 2 from [5] implies that the variation distance betweenQ�p�∩�p−γ/2×
B� and 5�νpγ�∩�p−γ/2B� is bounded above by 4b1+4b2. Hence (5.2) and (5.3)
complete the proof. 2
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Our next proposition provides one of the main steps in the proof of Theo-
rem 1.5. Recall that ℘ denotes a unit-intensity Poisson process and τ denotes
the first passage functional of the previous section.

Proposition 5.2. Given a threshold voter model, let τp = τ�√νpγQ�p��
and τ = τ�℘�. Then τp→d τ as p→ 0.

Proof. Let q = νpγ and q′ = − ln�1−q�. Then 5�q� and ℘ can be coupled
by declaring that x ∈ 5�q� iff B∞�

√
q′x;
√
q′/2� ∩ ℘ 6= \. Let τ′p = τ�

√
q5�q��

and τ′′p = τ�
√
q′5�q��. Since every point in ℘ has a point in

√
q′5�q� at �� · ��∞

distance at most
√
q′/2, and vice versa, results from Section 4 immediately

imply that �τ′′p − τ� converges to 0 a.s. as p→ 0.
To see that �τ′′p−τ′p� goes to 0 in probability as p→ 0, note that �√q′−√q� ≤

q3/2 for small q, so that ��√q′/qz−z��∞ ≤
√
q as soon as ��z��∞ < q−1/2. However,

the probability that the finite set which decides the value of τ′ is not found in
B∞�0; q−1/2� is exponentially small in 1/q. It follows that with high probability
the values of τ′ and τ′′ are decided by an event in which the respective sets of
centers are close to each other. Therefore, for every ε > 0, P��τ′′p−τ′p� > ε� → 0
as p→ 0.

What remains to be shown, therefore, is that for every ε > 0,P��τ′p−τp� > ε�
converges to 0 as p→ 0. Start by fixing a largeR > 0. Now the probability that
both τ′p and τp are decided on B∞�0;R� and differ by more than ε is bounded
above by Cp, using Proposition 5.1. On the other hand, either passage time is
decided on B∞�0;R� as soon as it has a center inR/�1+maxw�, which implies
that the probability that one of them is not decided in this ball converges to 0
as R→∞. 2

6. Growth of half–spaces in polluted environments. In this section
we finish the proof of Theorem 1.5. If we take the set of nuclei Q�p�, together
with the sites that make them nuclei, and erase all other sites, then results
from Sections 2 and 4, combined with Proposition 5.2, would make the proof
immediate. Thus, the missing step is to show that a small density of helpful
additional occupied sites cannot achieve much. This last step will be made
more precise below, but first we need a simple large deviation result. The
argument is completely standard, but quick enough that we give it here.

Lemma 6.1. Assume that X1;X2; : : : are i.i.d. nonnegative integer-valued
random variables, whose common distribution depends on a parameter p > 0.
Assume, moreover, that P�X1 ≥ k� ≤ e−Kk for all k ≥ 0 and K = K�p� → ∞
as p→ 0. Then for every ε > 0 the large deviation rate

0p�ε� = − lim
n→∞

1
n

logP�X1 + · · · +Xn ≥ εn�

converges to ∞ as p→ 0.
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Proof. Write φp�λ� = lnE�eλX1�. Then 0p�ε� = sup�ελ − φp�λ�x λ > 0�.
It is enough to prove that for every M > 0 there exists a small enough p so
that φp�λ� < 1 for some λ ≥M. This follows from a simple computation:

E�eλX1� ≤
∞∑
k=0

e�λ−K�k = 1
1− eλ−K < e

as soon as λ < K− 1. 2

Let us now define what we mean by a slightly helpful environment. Fix
a positive integer r > 0, and choose a small p > 0. Call sites in 5�p� open.
Think of 5�p� as a random environment, chosen before the growth dynamics
start. For A ⊂ Z2, define

Tp�A� = �x ∈ Z2x �x − re1; x + re1� ∩ A 6= \ or x − e2 ∈ A or
there is a y ∈ A so that B∞�y; r�∩5�p�∩Ac 6= \

and ��x− y��∞ ≤ r�.
To see what this dynamics does, note that T n

0 �H−e2
� = ne2 +H−e2

. Our goal is
to establish that a small p > 0 perturbation is negligible on a linear scale. It
turns out that this situation is general enough to handle any threshold growth
dynamics and any half–space.

Lemma 6.2. Fix an arbitrary ε > 0. There exists a constant 0 = 0�p� which
goes to ∞ as p→ 0 such that

P�T n
p �H−e2

� includes a site ke2 with k ≥ �1+ ε�n� ≤ e−0n:

Proof. We start with an observation that simplifies our arguments.
Namely, for any n, T n

p �H−e2
� is vertically regular: if x ∈ T n

p �H−e2
�, so is x− e2.

A case by case check easily demonstrates this fact.
The next step is to prove the following claim by induction on n. It is a

somewhat technical statement about how many boosting sites are needed to
advance substantially beyond the p = 0 rate.

Claim. Assume that T n
p �H−e2

� includes a site �h;n + 4Nr�, where N ≥ 1
is an integer. Then there exist N open sites �x1; y1�; : : : ; �xn; yN� such that

0 < y0 < y1 < · · · < yN ≤ n+ 4Nr+ 2r(6.1)

and
N∑
i=2

�xi − xi−1� + �h− xN� ≤ r�n+ 4N�:(6.2)

For n = 0 the claim is vacuous, so we assume its validity for n − 1 and
prove (6.1) and (6.2). First, we can assume h = 0 and also that �0; n + 4Nr�
gets occupied at time n. (Otherwise it becomes occupied at some previous time



1770 J. GRAVNER AND D. GRIFFEATH

and the induction hypothesis applies.) As there are three ways for this site to
become occupied, the proof naturally divides into three cases.

Case 1. There is an �a; b� ∈ T n−1
p �H−e2

� and an �xN; yN� ∈ 5�p� such that
���a; b� − �xN; yN���∞ ≤ r and ���0; n+ 4Nr� − �a; b���∞ ≤ r.

Clearly yN ≤ n+ 4Nr+ 2r. Now b ≥ n+ 4Nr− r > n− 1+ 4�N− 1�r, so
by the vertical regularity and the induction hypothesis there are open sites
�x1; y1�; : : : ; �xN−1; yN−1�, such that

0 < y0 < · · · < yN−1 ≤ n− 1+ 4�N− 1�r+ 2r = n− 1+ �4N− 2�r;

N−2∑
i=2

�xi − xi−1� + �xN−1 − a� ≤ r�n− 1� + 4�N− 1�r:

It follows that yN−1 < n + 4Nr − 2r ≤ yN, proving (6.1). To show (6.2), use
the triangle inequality:

N−1∑
i=2

�xi − xi−1� + �xN − xN−1� + �xN�

≤
N−1∑
i=2

�xi − xi−1� + �xN−1 − a� + �xN − a� + �xN�

≤ r�n− 1� + 4�N− 1�r+ r+ 2r < rn+ 4Nr:

Case 2. �0; n+ 4Nr− 1� ∈ T n−1
p �H−e2

�.
The claim is trivially valid for the same �xi; yi� guaranteed by the induction

hypothesis for �0; n− 1+ 4Nr�.
Case 3. For some r′ ∈ �−r; r�, �r′; n+ 4Nr� ∈ T n−1

p �H−e2
�.

Here the claim is valid for the same �xi; yi� guaranteed by the induction
hypothesis for �r′; n+ 4Nr�, as is easy to check.

With the claim in place, the rest of the proof is a more or less standard
(“Peierls type”) counting argument. To get an upper bound on the probability
that such sites (with h = 0) exist, we need to first choose N lines which
contain �xi; yi� among n + �4N + 2�r: a crude upper bound for the number
of such choices is 2n+�4N+2�r. Imagine these N lines stacked on top of each
other. Then the �xi; yi� have to lie on a path of at most r�n + 4N� sites that
starts on the line at the top of the stack [at a point with absolute value of
its x–coordinate bounded by r�n+ 4N�] and goes either left, right or down at
every turn, ending at the bottom of the stack. The number of such paths is
bounded above by 2r�n+ 4N�32r�n+4N� < 42r�n+4N�. Therefore, the probability
that the sites �xi; yi� which satisfy (6.1) and (6.2) exist is at most

2n+r�4n+12N+2�P�a fixed set of r�n+ 4N� sites includes N open sites�:

Plug in N = εn/4 and use Lemma 6.1 for Bernoulli random variables with
small p. 2
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Next we use Lemma 6.2 to prove a result about another comparison pro-
cess, characterized by a transformation ¯Tp, which is much closer to the actual
threshold growth dynamics. Again, fix an r > 0 and define, for p ∈ �0;1� and
B ⊂ R2,

¯Tp�B� = B ∪ �x ∈ R2x ��x+N � ∩B� ≥ θ�
∪ �x ∈ R2x dist∞�x;B� ≤ r and dist∞�x;5�p�� ≤ r�:

In words, under these dynamics, sites in 5�p� help out only once the growth
dynamics reach them. The idea is that if we pretend there are no nuclei in
5�p�, then for large enough r this provides an upper bound on threshold
growth in a polluted environment.

Lemma 6.3. Fix any unit vector u and ε > 0. The probability that there
exist an (integer or noninteger) point in �n�w�u� + ε�u +H−u �c ∩ ¯T n

p �H−u � is

bounded above by e−0n. Here, 0 = 0�p� is some constant which goes to ∞ as
p→ 0.

Note that this is exactly what we need: the complement of the event in
question is that there are no occupied sites outside n�w�u� + ε�u+H−u .

Proof of Lemma 6.3. To reproduce the situation of Lemma 6.2, rotate the
space so that u becomes e2. Then rescale time so that w�u� = 1. Finally, think
of H−u and its iterates under ¯Tp as being divided into 1×1 blocks. Then every
block which does not see an open site advances vertically by at most 1 and
horizontally by some amount for which there exists a strict upper bound. If
a block does see an open site, however, then it cannot proceed past a certain
square of blocks (whose radius again is uniformly bounded by a bound that
depends on r). This means that the dynamics defined by Tp (for a suitably
large r, perhaps much larger than that in the definition of ¯Tp) is an upper
bound for this dynamics, so we can apply Lemma 6.2 to complete the proof. 2

Lemma 6.4. Fix a finite number of unit vectors u1; : : : ; un and a small p >
0. Consider the following event. There exists a site x ∈ B∞�0; p−2γ� so that
¯T n
p �x+H−u � includes a point in �n�w�u� + ε�u+Hu�c ∩B∞�0; p−2γ� for some

n ≥ p−1/2. The probability of this event is bounded above by e−C/
√
p for some

constant C > 0.

The proof of Lemma 6.4 follows immediately from Lemma 6.3.

Proof of Theorem 1.5. Fix an ε > 0. By Proposition 5.2, we need to show
that

P��τp −
√
νpγ ·T� > ε� → 0 as p→ 0:

This, however, follows easily from Theorem 3.1, Proposition 4.2 and Lem-
ma 6.4. 2
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7. Notes on the critical case. In this section we will briefly consider
some examples of critical dynamics. As usual, we start from a small density
of occupied sites 5�p�. The proof of Proposition 2.6 and techniques from the
vintage paper [2] then easily imply that there exists a constant c2 > 0 so that

P�lnT ≤ c2/p
α� → 1 as p→ 0:

Here α = θ − 1
2��N � − ι�N ��. A first guess might be that this upper bound

always gives the accurate exponential scale. This is indeed the right rate in
many cases, but we will see that the answer may also be considerably different
(and more interesting). Below we present three examples which we suspect
exhaust all possible types of scaling for first passage times in critical cases.
These examples certainly do not close the book: we plan to investigate critical
dynamics more closely in a forthcoming paper.

Example 7.1. Assume that N consists of the seven points

N =
•

• • 0 • •
•

and take θ = 2. Note thatw�e2� = w�−e2� = 0, but these are the only directions
with speed 0. This causes T to obey a power law; in fact, T clearly is between
the orders of 1/p and 1/p2. On the basis of the next proposition, we conjecture
that T · p3/2 should converge weakly to a nontrivial random variable.

Proposition 7.2. For every ε > 0 there exists constants c1; c2 > 0 so that

lim inf
p→0

P

(
T ∈

[
c1

p3/2
;
c2

p3/2

])
≥ 1− ε:

Proof. In all the proofs of this section C will be a generic large constant
and δ will be a generic small constant; they may both change from one ap-
pearance to the next. Also, our statements are crude enough so that we will
fail to distinguish between p and a constant multiple of p.

To prove the upper bound, pick a Cp−3/2 × δp−1/2 box which has the origin
in the middle of its top. The probability that this box includes two horizontally
adjacent sites is very close to 1 if Cδ is large. Then, after time Cp−3/2 all sites
on a horizontal line in the box will be occupied. By choosing a bottommost
such pair, we can also assume that the occupied sites above this line are
specified by a product measure with density p. On our time scale, then, we
can assume that the bottom of our box is completely occupied initially. Let ξi be
the smallest j ≥ 0 such that �i; j� ∈ 5�p�. Then ξ1; ξ2; : : : are i.i.d. geometric
random variables with expectation 1/p. Moreover, if the bottom line is full
and ξi ≤ Cp−3/2 for all i ≤ δ/√p, then progress toward the top is made by
a series of lateral interpolations between occupied sites at positions ξi. Thus,
the time to reach the origin is at most 2�ξ1 + · · · + ξδ/√p�. The upper bound
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then follows from the computation

P�T ≥ Cp−3/2� ≤ P�ξ1 + · · · + ξδ/√p ≥ Cp−3/2� + ε

≤ p
3/2

C

δ√
p
E�ξ1� + ε =

δ

C
+ ε:

To prove the lower bound, start with the same size box as before, except
that now the origin is in its center. If δC is small, then there is no pair of sites
in 5�p� within a neighborhood of any point inside the box. We can also assume
that there are no sites at all to the left or to the right of the box since those
sites cannot influence the origin before time Cp−3/2 anyway. In this case, the
origin can be reached either from the top or from the bottom, but it suffices to
show that the probability the origin is reached from the bottom is small. To
sum up, we have all lines below the box fully occupied, no other occupied sites
outside the box and density p product measure conditioned on no pairs inside
the box. However, �no pairs� is a negative event and �the origin reached by
time δp−3/2� is a positive event, so the two are negatively correlated by the
FKG inequality. Lemma 6.2 now finishes the proof of the lower bound. 2

Example 7.3. Take the same N as in the Example 7.1 and θ = 3. Now
w�e1� = 0 as well, but �N ∩�xx �x;u� = 0�� = ι�N� only if u = ±e2. This seems
to be a typical situation in which T has exponential scaling in a power of 1/p
with logarithmic corrections.

In this context we should mention a result of Mountford [14], which deals
with the asymmetric critical case N = ��0;0�; �0;−1�; �±1;0��, θ = 2, for
which it proves that the correct scaling for lnT is 1/p�ln�1/p��2. However
the logarithmic corrections in [14] originate from the size of critical droplets,
whereas in the present example they are a consequence of the way these
droplets grow.

Proposition 7.4. There exist constants c1; c2 > 0 so that

P

(
lnT ∈

[
c1

1
p

ln
1
p
; c2

1
p

ln
1
p

])
→ 1 as p→ 0:

Proof. Some of the ingredients in this proof are straightforward adapta-
tions of the original ideas from [2]. We will largely skip over those, emphasizing
the differences which arise in our case. Following [2], we call a set A ⊂ Z2

internally spanned (IS) if the dynamics restricted to A (with free boundary
conditions) eventually fill in every site of A.

Again, we start with the upper bound. Fix a sequence of positive even inte-
gers a1; a2; : : : and let sk = a1+· · ·+ak. Let Rk be the sk−1×k rectangle with
leftmost lowest point �1;1�. Denote by Gk the event that the horizontal line
segment ��j; k + 1�x 1 ≤ j ≤ sk� includes two horizontally adjacent occupied
sites and that each of the ak vertical line segments ��sk−1 + i; j�x 1 ≤ i ≤ k�,
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j = 1; : : : ; ak, contains at least one site. Then Rk+1 is internally spanned,
given that G1 ∩G2 ∩ · · · ∩Gk happens. If we can choose ak so that

P

( ∞⋂
k=1

Gk

)
≥ exp

(
−C 1

p
ln

1
p

)
;(7.1)

then a percolation argument (see [2]) establishes the upper bound. However,
the Gk are independent, so that the probability in (7.1) is at least

∞∏
k=1

�1− �1− p2�sk/2��1− �1− p�k�ak :(7.2)

Setting ak = 2�ekp/2� and taking − log of the expression (7.2), one finds, after
a straightforward computation (replacing all multiples of p by p), that what
needs to be shown is

∞∑
k=1

exp�−pekp� +
∞∑
k=1

exp�−kp� ≤ C 1
p

ln
1
p
:(7.3)

Verifying (7.3) is an elementary exercise in estimating sums by integrals.
To prove the lower bound, call a rectangle R in Z2 potentially internally

spanned (PIS) if it is either a single site in 5�p� or (i) for every (integer)
vertical line ` through R there exist two sites x;y ∈ 5�p� ∩ R such that
��x−y��∞ ≤ 4 and they are both at `∞–distance at most 4 from ` and (ii) every
horizontal line ` through it has a site in 5�p� ∩R at `∞–distance at most 2
from `.

To see the reason for this slightly convoluted definition, note that R can
never be IS unless it is PIS [because a line that fails either (i) or (ii) could
never be crossed]. If fact, much more is true.

Claim. Let L < M be positive integers. Assume that the origin is not
eventually occupied if the dynamics are restricted to �−L;L�2, but is eventu-
ally occupied if the dynamics are restricted to �−M;M�2. For every integer
a ∈ �4;L/4�, there exists a PIS rectangle R included in �−M;M�2 whose
longest side is between a and 4a.

To prove the claim, successively define collections C1;C2; : : : of PIS rectan-
gles which are subsets of �−M;M�2. Start with

C1 = �all PIS rectangles with length of both sides ≤ a�:
Now, given Ci, there are three possibilities.

Case 1. Two rectangles R1 and R2 from Ci intersect. Then let R3 be the
smallest rectangle containing R1 and R2. It is clear that R3 must be PIS as
well. Let Ci+1 = �Ci \ �R1;R2�� ∪ �R3�.

Case 2. No two rectangles from Ci intersect, but there exists a site x ∈
�−M;M�2 and a minimal collection R1; : : : ;Rk ∈ Ci with k ≥ 2 so that

��x+N � ∩ �R1 ∪ · · · ∪Rk�� ≥ 3:(7.4)
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By a minimal collection we mean that if any one of R1; : : : ;Rk is discarded,
(7.4) no longer holds. (This of course makes k ≤ 3.) Note that k 6= 1 is necessary
to avoid the trivial case of one rectangle interacting with itself. Then let Rk+1
be the smallest rectangle containing R1∪· · ·∪Rk and x+N . To see that Rk+1
is PIS, note that every line which intersects Rk+1 intersects one of R1; : : : ;Rk

or x + N . (Otherwise, x + N and, say, Rk would be on different sides of a
line, but then ��x+N � ∩ �R1 ∪ · · · ∪Rk−1�� ≥ 3, contradicting minimality.) Let
Ci+1 = �Ci \ �R1; : : : ;Rk�� ∪ �Rk+1�.

Case 3. Neither of the cases above happens. Assume that the longest side
of any rectangle in Ci is strictly below L. This means that all the occupied
sites in �−M;M�2 are covered by disjoint rectangles in Ci so that even if
all these rectangles are completely filled, no site outside them gets added by
the dynamics. Even more, any site that gets added inside any one of these
rectangles does so without any help from the outside. Moreover, none of these
rectangles which has at least one site outside �−L;L�2 can contain the origin.
The only sites which can contribute to the origin being occupied are therefore
those in rectangles inside �−L;L�2. This contradiction shows that there must
be a rectangle in Ci with its longest side at least L.

Let r∗i be the longest side of a rectangle in Ci. Then r∗i+1 ≤ 3r∗i + 4, which
completes the proof of the claim.

Notice that

P�k; l� = P�a fixed k× l rectangle is PIS�
≤ min��1− e−kp2�l; �1− e−lp�k�:

From this one easily obtains that

max
l
P�p−2; l� ≤ exp

(
−δ 1
p

ln
1
p

)
(7.5)

and

max
k
P

(
k;

1
2

1
p

ln
1
p

)
≤ exp

(
−δ 1
p

ln
1
p

)
:(7.6)

Let M = exp�δ�1/p� ln�1/p��. To prove the lower bound, it is enough to
show that the event that the dynamics restricted to �−M;M�2 (with free
boundary) ever occupies the origin goes to 0 as p→ 0. For the said dynamics
to occupy the origin, one of the following three events has to happen:

G1 =
{
there is an occupied site in �−200;200�2

}
;

G2 =
{
the dynamics restricted to �−1/p3;1/p3�2

eventually occupies the origin
}
\G1;

G3 =
{
the dynamics in �−M;M�2
eventually occupies the origin

}
\ �G1 ∪G2�:
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Obviously, P�G1� = O �p�. Moreover, by the claim,

P�G2� ≤ P
(
there exists a PIS rectangle in �−1/p3;1/p3�2

with longest side in �50;200�
)

≤ Cp−6P�at least 10 of 40,000 fixed sites are occupied� = O �p4�:
Finally, the claim, (7.5) and (7.6) imply that P�G3� ≤ exp�−δ�1/p� ln�1/p��,
which proves the lower bound and hence completes the proof of Proposi-
tion 7.4. 2

Example 7.5. Now let N be a range ρ box neighborhood and let θ ∈ �2ρ2+
ρ+1;2ρ2+2ρ�. Then �N ∩�xx �x;u� = 0�� = ι�N� for two linearly independent
vectors, namely, e1 and e2. This is, in a sense, the simplest situation.

Proposition 7.6. Let α = θ− 2ρ2 − ρ. Then there exist constants c1; c2 > 0
so that

P�lnT ∈ �c1/p
α; c2/p

α�� → 1 as p→ 0:

Proof. This proof is very similar to the proof of Proposition 7.4. We point
out the main difference and omit further details.

In this case, a rectangle R ⊂ Z2 is PIS if every vertical or horizontal line
` through R has α sites which are all both included in some translate of N
and within `∞–distance at most 2ρ+ 1 of `. Then the claim is valid in exactly
the same form, with essentially the same proof. 2

8. The inverse shape problem. Professor V. Drobot has posed the fol-
lowing “inverse shape problem” (private communication). Fix a set 3 ⊂ R2.
Is there a discrete threshold growth dynamics given by N and θ such that
L�N ; θ� = 3? To make the question meaningful, assume that 3 is a symmet-
ric closed convex polygon which contains a neighborhood of the origin and has
all vertices at rational points. This last requirement follows from the fact that
all vertices of K1/w are rational, so the same must be true for K∗1/w.

However, these assumptions are still not sufficient. For instance, 3 =
B∞�0;1/2� cannot be the limiting set for any discrete threshold growth
dynamics. That would imply that w�0� = 1

2 , which is impossible since w�0�
must be an integer. We must therefore allow ourselves the freedom to replace
3 by a large magnification. With this proviso, we obtain the following answer
to Drobot’s question.

Theorem 8.1. Assume that 3 ⊂ R2 is a symmetric closed convex polygonal
neighborhood of 0 with its vertices at rational points. Fix an integer θ ≥ 1.
Then there exists a symmetric finite N ⊂ Z2 and an integer a > 0 such that
L�N ; θ� = a3.

Proof. First note that the proof is trivial if θ = 1: take an a so that a3
has integer vertices and take the neighborhood to be a3. For various reasons,
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however, this solution is not very satisfactory; θ = 1 is a rather trivial setting
in many models related to threshold growth. To handle the case of general
θ, first strip the above neighborhood to bare essentials: let N ′ consist of the
extreme points of a3. Denote the speed function with neighborhood N ′ and
θ = 1 by w′.

Now build N by adding θ− 1 points at every vertex of N ′ in the following
way. Enumerate sites of N ′ counterclockwise: v0; : : : ; vn = v0. For every i =
0; : : : ; n − 1, take the ray starting at vi that goes through vi+1 and add the
first θ−1 integer points past vi+1 on this ray. In order to prevent interference,
enlarge a if necessary to make sure that the open line segment from vi+1 to
the last of these θ− 1 points does not intersect the line determined by vj and
vj+1 for any j 6= i. In this way, N ends up consisting of nθ sites.

Let w be the speed function of the �N ; θ� growth model. Since exactly θ
points are added at each vertex and there is no interference, for every u which
points at an extreme point ofK1/w′ we havew�u� = w′�u�. (Recall that such u’s
are normals to lines defined by vi and vi+1.) Moreover, by a similar reasoning,
w′�u� ≤ w�u� for every u. This immediately implies that co�K1/w� = co�K1/w′�
and therefore K∗1/w =K∗1/w′ = a3. 2

Software availability. Figures in this paper were generated by WinCA,
a Windows-based program for cellular automata experimentation written by
R. Fisch and D. Griffeath. Readers interested in observing these dynamics in
action are invited to download WinCA from http://math.wisc.edu/~griffeat

/sink.html.

Note added in proof. The authors have recently learned that Theorem 2.1
and Proposition 2.2 of the present paper have been proved in a 1978 paper by
Stephen J. Willson, On convergence of configurations, Discrete Mathematics
23 279–300. We thank Prof. Willson for bringing this work to our attention.
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