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CORRECTION

GROWTH PROFILE AND INVARIANT MEASURES FOR THE
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The proof of Theorem 3 in [1] is incorrect, as it relies on a faulty use of the
strong Markov property. The theorem asserts that β = β(λ) is strictly increasing
in λ for λ < λ2, where λ is the infection rate parameter for the contact process,
λ2 is the upper critical value (at the transition from weak to strong survival), and
β = limn→∞ u

1/n
n where un = probability that a vertex xn at distance n from the

root is ever infected, given that only the root is infected at time t = 0. In this note
we shall prove the following slightly weaker result.

THEOREM 3′ . If β(λ) < 1/
√
d and λ∗ < λ then β(λ∗) < β(λ).

This leaves open the possibility that β(λ) = 1/
√
d on an interval [λ3, λ2] of

positive length. The proof of Theorem 3′ below relies on the following estimate
proved by Schonmann (Theorem 2) in [4]: If β(λ) < 1/

√
d then for some constant

0 <C <∞ and every integer n≥ 1,

β(λ)n

Cn
≤ un.(0.1)

Schonmann’s argument makes essential use of the fact, proved in [1], that β <

1/
√
d implies η < 1, where η = limt→∞P {root ∈At}1/t .

The proof of Theorem 3′ also uses the following elementary results.

LEMMA 1. Let X,X1,X2, . . . be independent, identically distributed, positive
integer-valued random variables, and let N be a geometrically distributed random
variable independent of the random variables X1,X2, . . . . Suppose that the
probability generating function ϕ(z) := EzX is finite for 1 ≤ z < R and infinite
at z= R. Then

lim sup
n→∞

P

{
N∑
i=1

Xi > n

}1/n

> 1/R.(0.2)
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PROOF. Let SN = ∑N
i=1 Xi . If N has geometric distribution with parameter

0 < p < 1, that is, if P {N = k} = pqk for all k = 0,1,2, . . . , where q = 1 − p,
then the probability generating function of SN is EzSN = p/(1 − qϕ(z)). Since
ϕ(z) → ∞ as z → R−, there exists 1 < ρ < R such that ϕ(ρ) = 1/q . Thus,
the smallest positive singularity of the probability generating function EzSN is
no larger than ρ. The result (0.2) now follows from Pringsheim’s theorem. �

LEMMA 2. Let X be a positive-integer valued random variable with proba-
bility generating function ϕ(z)= EzX. If, for some R > 1,

lim
n→∞P {X≥ n}1/n = 1/R(0.3)

and ∑
n≥1

RnP {X ≥ n} = ∞(0.4)

then ϕ(z) is finite for 1 ≤ z < R and is infinite at z=R.

PROOF. This follows by Pringsheim’s theorem from the identity
∞∑
n=1

znP {X ≥ n} = z
EzX − 1

z− 1
.

�

To prove Theorem 3′ we shall compare the growth of the contact processes
At and A∗

t with infection rates λ and λ∗, respectively, by constructing an auxiliary
process Bt whose growth rate is strictly greater than that of A∗

t and is such that
Bt ⊆ At . The construction of these processes uses the augmented percolation
structure P described in Section 6 of [1]. Recall that P consists of mutually
independent Poisson processes of recovery marks and infection arrows attached
to vertices and neighboring pairs of vertices, respectively; the recovery mark
processes have intensity 1 and the infection arrow processes have intensity λ. In
addition, P attaches to each infection arrow α a Bernoulli-p random variable ξα ,
where λ∗ = λq/(1+p) and q = 1−p. The contact processAt is constructed from
the system of infection arrows and recovery marks of P in the usual way (see [3]).

The contact process A∗
t =A′

t/(1+p) is constructed in a similar fashion, but using
the modified percolation structure P ′ obtained from P by changing all infection
arrows α such that ξα = 1 to recovery marks at their base points. The percolation
structure P ′ again consists of independent Poisson processes of recovery marks
and infection arrows; the recovery mark processes have intensity 1 + p and the
infection arrow processes have intensity λq . The contact process A′

t is built using
the arrows and recovery marks of P ′ in the usual way. Clearly, if At and At ′ have
common initial state A0 =A′

0 = {e} then At ⊆A′
t for all t ≥ 0.

The auxiliary processBt is constructed using a sequence of independent severed
contact processes C1,C2, . . . . A contact process Ct is severed across an edge ε of
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the tree if it is constructed in the usual manner using the percolation structure P ′
from which all infection arrows across the edge ε have been removed. Let
x0, x1, x2, . . . be the successive vertices along a geodesic ray γ emanating from
x0 = e, and let x−1 be a vertex at distance one from e distinct from x1. Define
C1
t to be the contact process with initial state C1

0 = {e} that is severed across the
edge joining x−1 and e. By construction, C1

t ⊆ A′
t . Since A′

t does not survive
strongly, there is a maximal integer ν(1) such that vertex xν(1) is ever infected by
the severed contact process, that is,

xν(1) ∈ ⋃
t≥0

C1
t .

Observe that, since xν(1) is the farthest vertex along the geodesic ray γ ever
infected by the severed contact process C1, there must be a recovery mark ρ1
at xν(1) terminating the last period of infection at xν(1).

Define C2,C3, . . . inductively as follows: First, adjoin to the vertex xν(1)+1,
beginning at the time τ1 of the recovery ρ1, a contact process C2 that is severed
across the edge joining xν(1) to xν(1)+1. Define ν(2) > ν(1) to be the index of
the last vertex xν(2) along the geodesic ray γ that is ever infected by C2, and let
ρ2 be the recovery mark terminating the last epoch of infection at xν(2). Adjoin to
xν(2)+1, starting at the time τ2 of the recovery mark ρ2, a contact process C3 that is
severed across the edge joining xν(2) to xν(2)+1. Continue this process indefinitely.
Observe that the severed contact processes C1,C2,C3, . . . are, modulo translation
in time and “space,” independent and identically distributed, since each Cn is
built in the part of the percolation structure not used by the preceding contact
processes C1,C2, . . . ,Cn−1. Thus, the random variables ν(1), ν(2)− ν(1), . . . are
also independent and identically distributed.

Each of the severed contact processes Cn reaches a rightmost point xν(n) along
the geodesic ray γ , and the last epoch of infection is terminated by a recovery
mark ρn. Recovery marks in the percolation structure P ′ are of two types: those
that were recovery marks in the percolation structure P , and those that were
infection arrows in P . Let N be the first of the contact processes Cn whose
terminal recovery mark ρn is not an infection arrow in P pointing from xν(n) to
xν(n)+1. Note that N has the geometric distribution with parameter p. Define Bt to
be the process obtained by concatenating the processes C1,C2, . . . ,CN . Since the
concatenations are all across infection arrows in P , the process B(t) is dominated
by A(t), that is, B(t)⊆A(t) for all t ≥ 0. Consequently, the vertex xν(N) is among
the vertices infected by At , and so, in particular,

un := P {xn ∈At for some t ≥ 0} ≥ P {ν(N)≥ n}.(0.5)

Since β(λ) = limn→∞ u
1/n
n , it now follows, by Lemmas 1 and 2, that to prove

Theorem 3′ it suffices to prove the following.
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PROPOSITION 3. The random variable ν := ν(1) is such that

lim
n→∞P {ν ≥ n}1/n = β(λ∗)(0.6)

and
∞∑
n=1

P {ν ≥ n}/β(λ∗)n = ∞.(0.7)

PROOF. Relation (0.6) was proved in [2]. The proof of relation (0.7) will
be based on Schonmann’s inequality (0.1) and the fact that β(λ) <

√
d implies

η(λ) < 1. Set vn = P {ν ≥ n}; this is the probability that the contact process C1

started at the root and severed across the edge joining x−1 and x0 = e ever infects
the vertex xn. Consider the event Fn that At ever infects xn. On this event, there
must be an infection trail from e to xn, and this trail must visit x−1, if at all, for a
last time, and so, after passing through an infection arrow from x−1 to e for a last
time, must then avoid the edge joining x−1 to e altogether. Let T (1), T (2), . . . be
the times of the infection arrows from x−1 to e in the percolation structure P , and
let T (0)= 0. Since these are stopping times for the contact process, and since they
mark the occurrence times of a rate-λ Poisson process, the strong Markov property
implies that

un ≤
∞∑
k=0

vnP {x−1 ∈AT (k)} ≤ vnλ

∫ ∞
t=0

P {x−1 ∈At}dt.

Conditional on the event x−1 ∈ At , the probability that x0 ∈ At+1 is at least
ε(λ) := (1 − e−λ)e−1, this being the probability that there is at least one infection
arrow from x−1 to x0 and no recovery marks at x0 in a time interval of duration 1.
Consequently,

λ

∫ ∞
t=0

P {x−1 ∈At}dt ≤ λε(λ)−1
∫ ∞
t=1

P {x0 ∈At }dt

≤ λε(λ)−1
∫ ∞
t=1

ηt dt

:= C′ <∞.

Thus, by (0.1),

vn ≥ un/C
′ ≥ β(λ)n/C′Cn,

and inequality (0.7) now follows. �
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