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CORRECTION

GROWTH PROFILE AND INVARIANT MEASURES FOR THE
WEAKLY SUPERCRITICAL CONTACT PROCESS ON
A HOMOGENEOUS TREE

BY STEVEN P. LALLEY
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The proof of Theorem 3 in [1] is incorrect, as it relies on a faulty use of the
strong Markov property. The theorem asserts that § = 8()) is strictly increasing
in A for A < A, where X is the infection rate parameter for the contact process,
Ag is the upper critical value (at the transition from weak to strong survival), and
B =lim,_ u,l,/ " where u, = probability that a vertex x,, at distance n from the
root is ever infected, given that only the root is infected at time ¢ = 0. In this note

we shall prove the following slightly weaker result.
THEOREM 3'. If B(A) < 1//d and 1, < A then B(ry) < B(L).

This leaves open the possibility that (1) = 1/+/d on an interval [A3, A2] of
positive length. The proof of Theorem 3’ below relies on the following estimate
proved by Schonmann (Theorem 2) in [4]: If B(A) < 1/ \/d then for some constant
0 < C < oo and every integer n > 1,

n
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Schonmann’s argument makes essential use of the fact, proved in [1], that 8 <
1/+/d implies n < 1, where n = lim,_, o, P{root € A;}!/".
The proof of Theorem 3’ also uses the following elementary results.
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LEMMA 1. Let X, X1, X2, ... be independent, identically distributed, positive
integer-valued random variables, and let N be a geometrically distributed random
variable independent of the random variables X, X2, .... Suppose that the
probability generating function ¢(z) := EzX is finite for 1 < z < R and infinite
at z=R. Then
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0.2) limsupP{ZXi>n} > 1/R.
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PROOF. Let Sy = ZlNzl X;. If N has geometric distribution with parameter
0 < p <1, that is, if P{N=k}=qu forall k=0,1,2,..., where g =1 — p,
then the probability generating function of Sy is Ez5V = p/(1 — q¢(2)). Since
¢(z) — 00 as z — R—, there exists 1 < p < R such that ¢(p) = 1/g. Thus,
the smallest positive singularity of the probability generating function Ez5V is
no larger than p. The result (0.2) now follows from Pringsheim’s theorem. [

LEMMA 2. Let X be a positive-integer valued random variable with proba-
bility generating function ¢(z) = EzX. If, for some R > 1,

. 1/n _
(0.3) nll)ngo P{X>n}""=1/R
and
(0.4) Y R'"P{X =n}=00
n>1

then ¢(z) is finite for 1 <z < R and is infinite at 7 = R.

PROOF. This follows by Pringsheim’s theorem from the identity

& Ez¥ —1
ZZ"P{XZH}=227-
n=1 Z_l U

To prove Theorem 3’ we shall compare the growth of the contact processes
A, and A} with infection rates A and A, respectively, by constructing an auxiliary
process B; whose growth rate is strictly greater than that of A} and is such that
B; € A;. The construction of these processes uses the augmented percolation
structure & described in Section 6 of [1]. Recall that & consists of mutually
independent Poisson processes of recovery marks and infection arrows attached
to vertices and neighboring pairs of vertices, respectively; the recovery mark
processes have intensity 1 and the infection arrow processes have intensity A. In
addition, & attaches to each infection arrow o a Bernoulli- p random variable &,
where A, = Aq/(1+ p) and ¢ = 1 — p. The contact process A; is constructed from
the system of infection arrows and recovery marks of & in the usual way (see [3]).

The contact process A} = A /(1+4p) 18 constructed in a similar fashion, but using
the modified percolation structure &’ obtained from J by changing all infection
arrows « such that £, = 1 to recovery marks at their base points. The percolation
structure &’ again consists of independent Poisson processes of recovery marks
and infection arrows; the recovery mark processes have intensity 1 + p and the
infection arrow processes have intensity Ag. The contact process A} is built using
the arrows and recovery marks of &’ in the usual way. Clearly, if A; and A,, have
common initial state Ag = A() = {e} then A, C A] forall t > 0.

The auxiliary process B; is constructed using a sequence of independent severed
contact processes C!, C2, .... A contact process C; is severed across an edge & of
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the tree if it is constructed in the usual manner using the percolation structure $’
from which all infection arrows across the edge ¢ have been removed. Let
X0, X1, X2, ... be the successive vertices along a geodesic ray y emanating from
xo = e, and let x_; be a vertex at distance one from e distinct from x;. Define
Ct1 to be the contact process with initial state C(l) = {e} that is severed across the
edge joining x_; and e. By construction, Ct1 C Aj. Since A does not survive
strongly, there is a maximal integer v(1) such that vertex x, (1) is ever infected by
the severed contact process, that is,

Xy(l) € U Cll.

t>0

Observe that, since x,(1) is the farthest vertex along the geodesic ray y ever
infected by the severed contact process C!, there must be a recovery mark p;
at x,(1) terminating the last period of infection at x,,(1).

Define C2,C3, ... inductively as follows: First, adjoin to the vertex x,(1)+1,
beginning at the time 7; of the recovery pi, a contact process C2 that is severed
across the edge joining x,(1) to xy(1)+1. Define v(2) > v(1) to be the index of
the last vertex x,(2) along the geodesic ray y that is ever infected by C 2, and let
p2 be the recovery mark terminating the last epoch of infection at x, (2). Adjoin to
Xy(2)+1, starting at the time 1, of the recovery mark p,, a contact process C 3 that is
severed across the edge joining x,,(2) to x,(2)+1. Continue this process indefinitely.
Observe that the severed contact processes C', C2, C3, ... are, modulo translation
in time and “space,” independent and identically distributed, since each C”" is
built in the part of the percolation structure not used by the preceding contact
processes C!,C?,...,C" ! Thus, the random variables v(1), v(2) — v(1), ... are
also independent and identically distributed.

Each of the severed contact processes C" reaches a rightmost point x,,) along
the geodesic ray y, and the last epoch of infection is terminated by a recovery
mark p,. Recovery marks in the percolation structure &’ are of two types: those
that were recovery marks in the percolation structure &, and those that were
infection arrows in . Let N be the first of the contact processes C" whose
terminal recovery mark p, is not an infection arrow in & pointing from x,,) to
Xu(n)+1. Note that N has the geometric distribution with parameter p. Define B; to
be the process obtained by concatenating the processes C', C2, ..., CV . Since the
concatenations are all across infection arrows in &, the process B(¢) is dominated
by A(z), thatis, B(t) € A(¢) for all # > 0. Consequently, the vertex x, ) is among
the vertices infected by A;, and so, in particular,

0.5) u, = P{x, € A; forsomet >0} > P{v(N) > n}.

Since B(A) = lim,— u,ll/ " it now follows, by Lemmas 1 and 2, that to prove
Theorem 3’ it suffices to prove the following.
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PROPOSITION 3. The random variable v := v(1) is such that

(0.6) Tim Py =)/ = B(h)

and

(0.7) Y Plu=n}/B(ry)" = oo.
n=1

PROOF. Relation (0.6) was proved in [2]. The proof of relation (0.7) will
be based on Schonmann’s inequality (0.1) and the fact that B(}\) < Jd implies
n(x) < 1. Set v, = P{v > n}; this is the probability that the contact process C'
started at the root and severed across the edge joining x_; and xo = e ever infects
the vertex x,. Consider the event F,, that A; ever infects x,,. On this event, there
must be an infection trail from e to x;,,, and this trail must visit x_1, if at all, for a
last time, and so, after passing through an infection arrow from x_; to e for a last
time, must then avoid the edge joining x_1 to e altogether. Let T(1), T (2), ... be
the times of the infection arrows from x_ to e in the percolation structure &, and
let 7'(0) = 0. Since these are stopping times for the contact process, and since they
mark the occurrence times of a rate-A Poisson process, the strong Markov property
implies that

00 00
u, < Z v P{x_1 €A1} < vnk/ P{x_1 € A}dt.
k=0 1=0

Conditional on the event x_; € A;, the probability that xo € A,y is at least
e(A) = (1 —e e !, this being the probability that there is at least one infection
arrow from x_1 to xo and no recovery marks at xg in a time interval of duration 1.
Consequently,

o0 o
A P{x_1€A;}dt < ks(k)_I/ P{xog e A,}dt
t=0 t=1

o
< re()”! n' dt
t=1

=C < o0.
Thus, by (0.1),
Up =y /C" > B(1)"/C'Cn,
and inequality (0.7) now follows. [J
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