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CHASING BALLS THROUGH MARTINGALE FIELDS

BY MICHAEL SCHEUTZOW AND DAVID STEINSALTZ

Technische Universität Berlin and University of California, Berkeley

We consider the way sets are dispersed by the action of stochastic flows
derived from martingale fields. Under fairly general continuity and ellipticity
conditions, the following dichotomy result is shown: any nontrivial connected
set X either contracts to a point under the action of the flow, or its diameter
grows linearly in time, with speed at least a positive deterministic constant �.
The linear growth may further be identified (again, almost surely), with
a much stronger behavior, which we call “ball-chasing”: if ψ is any path with
Lipschitz constant smaller than �, the ball of radius ε around ψ(t) contains
points of the image of X for an asymptotically positive fraction of times t .
If the ball grows as the logarithm of time, there are individual points in X
whose images eventually remain in the ball.

1. Introduction.

1.1. Problems and results. We have been investigating for some time the often
surprising behavior of exceptional individual points in a stochastic flow that acts
on Euclidean space of dimension d larger than 1. The flows we consider are driven
at every point by martingale increments with bounded variance, so that the image
of any individual point is a diffusion, acquiring a displacement on the order of

√
T

from its origin in time T . In our earlier paper [4] we (together with M. Cranston)
showed that in the special case of isotropic Brownian flows, a positive Lyapunov
exponent will guarantee the existence of points which travel at an exceptional
linear rate from their origin. In [5] we proved a conjecture of Carmona [3] that,
under very general conditions, no point advances superlinearly in time.

In the present work we extend the results on isotropic Brownian flows to a more
general context. We are still talking about stochastic flows of homeomorphisms
φt : Rd → R

d of the Kunita type, defined by a field of semimartingales M(t, x)

(where t is the time coordinate, running over [0,∞), and x is the space coordinate,
in R

d ), and the equation

φt(x) = x +
∫ t

0
M
(
ds,φs(x)

)
.

We assume here that the semimartingales M are in fact martingales and that they
satisfy some basic continuity and uniform ellipticity conditions, which will be
stated in Section 1.2.
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Under some conditions on M and the starting set X ⊂ R
d , the image φt(X)

will have a positive probability of shrinking to a point asymptotically under
the action of the flow. This has been shown, for example, by Baxendale and
Harris in Section 9 of [2] in dimension 2, when M generates an isotropic
Brownian flow whose local longitudinal and transverse parameters βL and βN

satisfy 3 ≥ βL/βN > 5/3, and X is a sufficiently small ball. (We show, though,
in Proposition 3.1, that this probability is never equal to 1 if the flow satisfies
our basic ellipticity conditions.) Under such circumstances, all the paths will
ultimately converge to the path of a single point. Since the path of any single
point is almost surely diffusive—that is, has separation from its origin on the order
of the square root of time—this excludes the possibility that there is a “ballistic”
point, defined to be a point x such that

lim inf
t→∞ t−1‖φt (x)‖ > 0.(1)

The main result of this paper, given in several forms, tells us that this is the only
way there can fail to be a ballistic point. We show in Proposition 3.1 that the image
of a nontrivial set X (a set will be called nontrivial if it is connected and contains
more than one point) expands linearly in time precisely when it does not shrink
down to a point. That is,

P
{
X grows linearly or lim

t→∞ diam φt(X) = 0
}
= 1,

while the probability that both events occur is 0.
The earlier result on isotropic Brownian flows with a positive Lyapunov

exponent is a special case of this one, since under such a flow any nontrivial set
almost surely does not shrink to a point. But this result also tells us what may
happen in flows with negative Lyapunov exponents, where the probability of a set
shrinking to a point is positive, but not 1.

We are also concerned in this article to elucidate the structure of the set of
ballistic points. In our earlier work, we showed that there are ballistic points
travelling in every direction with a certain minimum speed. In principle, this could
have been achieved by a few thin streams of ballistic points. Here we show that
there are indeed very many ballistic points, travelling in many different directions.
In fact, we show a much more refined property than ballistic growth. We call this
property “ball-chasing,” by which we mean that if a ball with fixed radius moves
in space with speed bounded by a certain constant, even when the path of the
ball is itself random, the image of our initial set X will intersect the ball for
a nonzero proportion of the time. For a positive real ε and a point x ∈ R

d , we
use the notation Bε(x) to represent the closed ball of radius ε with center x.

Unless otherwise indicated, all stochastic processes are assumed adapted to
a filtration of σ -algebras which will be uniformly denoted (Ft )0≤t≤∞. All
references to martingale properties are meant to be referred to this filtration.
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DEFINITION 1. We are given a positive function ε : [0,∞) → (0,∞) and
a Lipschitz continuous path ψ : [0,∞) → R

d which is adapted with respect to
the filtration Ft . A set X acted on by the flow φt chases balls with path ψ and
radius ε if the set

Iε,ψ (X) := {t :φt(X) ∩ Bε(t)(ψ(t)) �= ∅
}

has positive density, asymptotically, as t → ∞; that is,

lim inf
T →∞ T −1m(Iε,ψ ∩ [0, T ]) > 0,

where m is Lebesgue measure. X chases balls weakly with path ψ and radius ε if
Iε,ψ (X) is unbounded. Finally, X chases balls strongly with path ψ and radius ε

if Iε,ψ(X) includes all t ≥ t0 for some random t0.

DEFINITION 2. We say that the set X contracts to a point under the action of
the flow φt if limt→∞ diam φt(X) = 0.

We show in Theorem 3.2 that under fairly general conditions on a martingale
flow there is a positive deterministic �, depending only on the local characteristic
bounds, such that whenever X is a nontrivial subset of R

d and ψ any path with
Lipschitz constant less than �, with probability 1 either X chases balls with path ψ

and radius ε(t) ≡ ε any constant, or the image of X shrinks down to a point.
The points which come into these moving balls again and again, may in

principle be always new points, so that no individual point actually moves
ballistically. In Section 4 we strengthen these results, to show that there are indeed
individual random points which enter a moving ball infinitely often, or eventually.

DEFINITION 3. We are given a positive function ε : [0,∞) → (0,∞) and
a Lipschitz continuous path ψ : [0,∞) → R

d which is adapted with respect to
the filtration Ft . A set X acted on by a flow φt chases balls pointwise with path ψ

and radius ε if there is a point x ∈ X such that the set

Iε,ψ (x) := {t :φt (x) ∈ Bε(t)(ψ(t))
}

has positive density, asymptotically, as t → ∞. Weak and strong pointwise ball-
chasing are defined analogously.

Theorem 4.1 states that for any nontrivial subset X of R
d , ε(t) ≡ ε any positive

constant, and ψ any path with Lipschitz constant less than or equal to �, X either
contracts to a point under the action of φt or chases balls weakly pointwise with
path ψ and radius ε. Theorem 4.2 states that we can obtain strong pointwise ball-
chasing under the above conditions by allowing ε(t) to grow as an appropriate
constant times log t . Note that this includes paths ψ which do not move, which
means that there are random points in a martingale flow which are almost stable,
never moving more than a constant times log t from their starting point in time t .
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Strictly speaking, weak or normal ball-chasing implies linear growth of φt(X)

only in the sense that lim sup t−1 diam φt (X) > 0. Linear growth in the strict
lim inf sense is implied by strong ball-chasing when the function ε(t) is strictly
sublinear. In particular, the existence of ballistic points whenever φt(X) does not
contract to a point is a consequence of Theorem 4.2.

1.2. The standard conditions. The martingale field M will be assumed to
satisfy a set of basic conditions, which we will refer to as the “standard conditions.”
With no drift, the only local characteristic of the flow is a d ×d matrix a(s, x, y,ω),
defined by

〈M(·, x,ω),M(·, y,ω)〉t =
∫ t

0
a(s, x, y,ω)ds,

which we assume to be continuous in (x, y) for almost every (s,ω), and
predictable in (s,ω) for each (x, y). We assume that there are some constants
a and A such that the “continuity conditions,”

‖A(s, x, y,ω)‖ ≤ a2‖x − y‖2,(2)

‖a(s, x, x,ω)‖ ≤ A2 for all x,(3)

are satisfied, where

A(s, x, y,ω) = a(s, x, x,ω) − a(s, y, x,ω) − a(s, x, y,ω) + a(s, y, y,ω).

In addition, we impose the “local two-point ellipticity condition”

v�a(s, x, x,ω)v + 2v�a(s, x, y,ω)w + w�a(s, y, y,ω)w

≥ E(‖x − y‖)
(‖v‖2 + ‖w‖2)(4)

for all x, y, v,w ∈ R
d , s ∈ R

+ and ω ∈ �. Here E : [0,∞) → [0,∞) is
a continuous function with E(ρ) > 0 for 0 < ρ < ρ∗, where ρ∗ is a positive
constant. Remember that a is a matrix which gives the derivative relative quadratic
variation at two points x and y; that is, the (i, j) component of a(t, x, y,ω) is

d

dt
〈M(·, x,ω)i,M(·, y,ω)j 〉t .

This makes A(s, x, y,ω) the derivative of the quadratic variation for the difference
M(s, x,ω) − M(s, y,ω). The left-hand side of inequality (4) is thus the rate
of growth in quadratic variation for the linear combination vM(·, x,ω) +
wM(·, y,ω). What this inequality says, in effect, is that the relative motion of
two points separated by a distance ρ has a diffusion component of magnitude at
least E(ρ). This excludes, among others, a flow which is simply a rigid motion
of the space by a single Brownian motion. We observe here that this condition
implies as well the “global one-point ellipticity condition,” that there is a positive
constant ε [which here may be taken as E(ρ∗/2)] such that

v�a(s, x, x,ω)v ≥ ε‖v‖2 for all x, v ∈ R
d, s ∈ R

+ and ω ∈ �.(5)
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The local two-point ellipticity condition is satisfied, in particular, by all isotropic
Brownian flows which are nondegenerate, in the sense that the covariance tensor is
not constant. The locality of the condition also allows it to hold for periodic fields,
that is, for flows on a torus.

The triple (a,A,E) will be referred to as “local-characteristic bounds.”
A constant which is a function of these bounds will be called a “flow-bound
constant.”

REMARK 1.1. Let φ be a flow satisfying the standard conditions. If T is any
almost surely finite stopping time, then the flow

φT,T +t := φT +t ◦ φ−1
T , t ≥ 0

also satisfies the standard conditions. The essential change is in the filtration of the
new flow, which is FT +t of the old flow, at time t .

An extensive account of this kind of stochastic flow, including a proof that
these “standard conditions” guarantee their existence, may be found in the book
by Kunita [7].

2. The retraction argument.

2.1. General description. The primary instrument of our analysis is a tech-
nique that we call the “retraction argument.” The full action of the stochastic flow
on a domain is too complex to comprehend with current technology. Instead, we
focus our attention on a tiny subset, consisting of two points plus a connection.
That is, we follow the motions of just two points at a time, and allow the conti-
nuity of the flow to track the intermediate points. If we follow the trail of a single
point, and wait for it to cross a fixed hyperplane, we will be waiting a very long
time: the expected arrival time is infinite. If we start with two points and wait for
just one of them to cross the hyperplane, the expected arrival time is still infinite,
but for a more interesting reason. The leading point, as such, does tend toward the
hyperplane with a certain positive speed; what happens, though, is that this boost
dissipates with time, as the two points drift apart. It is here that the continuity of
the flow is important. When we begin with a connected set X, the images of any
two points are eternally connected by a continuous curve of other points, also in
the image of the flow. This allows us to counteract the separation of the two points
by pulling up the laggard at regular intervals to a fixed distance behind the leader.
In fact, we will apply a slightly more sensitive version of this argument, “target-
ing” our points not only at a hyperplane, but also at the current position of a path
which is being chased.

There are two kinds of results which undergird this method. First, we need to
know that in a fixed time span, the “leading” point does indeed have a forward
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drift. Since the point that leads at the start of the time period moves with zero
drift, we need only show that the hind point has a positive probability of ending up
a positive distance in front. Targeting a point is slightly more complicated, since
a spatial martingale in fact has a drift away from any fixed point, but this drift
goes to zero as the initial separation goes to ∞, so may be ignored if this initial
separation is chosen sufficiently large.

The main difficulty here is that the independence of the two points disappears as
their separation shrinks, a behavior which cannot be ruled out. We will use a variant
of the “support theorem” for diffusions, which says that any fixed Lipschitz path
has a positive probability of being within ε of the entire path of a uniformly
elliptic diffusion with bounded growth. We apply this to the two-point motion
of the flow, which is not uniformly elliptic, but which confines its nonellipticity
to a neighborhood of the diagonal. The path may then simply skirt around this
frozen region: if the diffusion stays close to the path, it never experiences the loss
of ellipticity.

Once we have established this drift toward the path ψt , for points outside
a sufficiently large ball, it follows that the image of X will keep returning to that
ball. To make this rigorous and to develop bounds on the rate of return, we use
the law of large numbers for martingales. The results are given in Lemma 2.6 and
Lemma 2.7.

2.2. General bounds on flows. We will need tail bounds on the motions of
individual points in a stochastic flow. We have been unable to find bounds of
sufficient generality in the published literature, although they are not difficult to
derive from standard facts about stochastic integrals (such as those in [7]). We use
therefore the bounds which appeared in our earlier paper [5] as Proposition 5.2:

LEMMA 2.1. If M is a martingale field satisfying the continuity conditions,
the flow it generates satisfies

P
{

sup
0≤t≤T

‖φt (x) − x‖ > z

}
≤ 4d√

π
exp
{
− z2

2d2A2T

}
.(6)

We also require tail bounds on the expansion of any set under the action of
a standard flow.

LEMMA 2.2. There is a flow-bound constant K such that for any stopping
time τ ≥ 0, and any random set X which is measurable with respect to Fτ ,

P
{

sup
τ≤t≤τ+1

diam φt (X) ≥ z + z diam φτ (X)
∣∣∣Fτ

}
≤ Ke−z2/ log3 z(7)

for all z > 2, on the event {τ < ∞}.
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This result is a component of Theorem 2.1, in our earlier paper [5]. The proof
is a tedious chaining argument which does not bear repeating here. As a result
for finite times, it does not depend on the linear asymptotic growth which is the
main result of that theorem. Furthermore, the exponential tail bounds are relevant
only in the last step of Theorem 4.2. For the more essential application, that in
Proposition 3.1, polynomial bounds would suffice.

LEMMA 2.3. Let φt be a stochastic flow satisfying the standard conditions.
For each positive integer k there is a flow-bound constant ηk such that for any
stopping time τ ≥ 0, and any random bounded set X which is measurable with
respect to Fτ ,

P
{

sup
τ≤t≤τ+1

diam φt (X) ≥ z diam φτ (X)
∣∣∣Fτ

}
≤ ηkz

−k(8)

for all positive z, on the event {τ < ∞}.

PROOF. For x, y ∈ X let

D(x,y) := sup
0≤t≤1

‖φτ+t (x) − φτ+t (y)‖.

Let ψ(z) = zk for z positive real. By Proposition 5.2 of [5], there are positive
flow-bound constants b1, b2 and b3 such that the following two-point bound holds:

P
{
D(x,y) > z |Fτ

}≤ b1 exp
[
−b2
((

log z− log‖φτ (x)−φτ (y)‖−b3
)+)2]

(9)

for all positive z. Integrating this with respect to the function kzk−1 gives us
a flow-bound constant C′

k such that

E
[
D(x,y)k

]≤ C
′k
k ‖φτ (x) − φτ (y)‖k.

Thus ‖D(x,y)‖ψ ≤ C′
k‖φτ (x) − φτ (y)‖, where ‖ · ‖ψ is the Orlicz norm cor-

responding to φτ,τ+t , conditioned on Fτ .
Let N(ε) be the number of balls of radius ε needed to cover φτ (X). Then

N(ε) ≤
(

2
√

d diamφτ (X)

ε

)d

for ε ≤ diam φt (X).

Then by Theorem 2.2.4 of [10] there is a constant Ck , depending only on k and C′
k ,

such that

E
[

sup
x,y∈X

D(x,y)k
∣∣∣Fτ

]
≤
(
C′

k

∫ diamφτ (X)

0
ψ−1(N(ε)) dε

)k

≤ Ck

(
2
√

d diamφτ (X)
)d

diamφτ (X)k−d .



MARTINGALE FIELDS 2053

[As stated, the theorem refers only to processes D(x,y) which are differences of
a process X between two different points: D(x,y) = |Xx − Xy |. But as Ledoux
and Talagrand point out in a related context, in Remark 11.5 of [8], the result and its
proof require nothing about this particular form of D except that it be symmetric
and satisfy the triangle inequality.] The lemma thus holds with ηk = (4d)d/2Ck .

�

2.3. Support lemma. We begin with a version of the support theorem for
diffusions, adapted for application to stochastic differential equations defined by
a martingale field, à la Kunita. This says that the support of a nondegenerate
diffusion is the entire space of continuous functions. Our proof is based on one
given by Bass ([1], Theorem 1.8.5). One important difference from the standard
version here is that we abandon the assumption of uniform ellipticity. Since our
process is the joint motion of two points acted on by the flow, the diffusion term
goes to zero in a neighborhood of the diagonal. On the other hand, it is unsurprising
that the probability of a path avoiding a neighborhood of the origin is unaffected
by the situation inside the neighborhood.

LEMMA 2.4. There exists a positive p = p(α1, α2, β, ε, t0) (a function from
R

5+ → R+, where R+ is understood to be the strictly positive real numbers) with
the following property: let (Zt )t≥0 be any R

d -valued continuous semimartingale,
with Doob-decomposition Zt = Nt + Vt , Nt being the local martingale part and
Vt having locally bounded variation, and Z0 = 0. Let ε positive be given, and
define τ = inf{t :‖Zt‖ > ε}. Let α1, α2, β be positive, such that V has Lipschitz
constant no more than β on [0, τ ] and such that the quadratic variation at =
d〈N〉/dt satisfies

α2‖z‖2 ≥ z�atz ≥ α1‖z‖2(10)

for 0 ≤ t ≤ τ and z ∈ R
d . Then P{τ > t0} ≥ p for every positive t0. We may take

p to be continuous in all the parameters, decreasing in α2, β and t0, and increasing
in ε and α1 ≤ α2.

PROOF. Let y = (ε/4, 0, 0, . . . ,0), f (z) = ‖z − y‖2, Bt a standard one-
dimensional Brownian motion, and Dt = ‖Zt − y‖2 − (ε/4)2. By Itô’s formula,

dDt = 2
d∑

i=1

(Zi
t − yi) dZi

t +
d∑

i=1

d〈Zi〉t ,

while D0 = 0. Let τ̃ = inf{t ≥ 0 : |Dt | > (ε/8)2}. Then

Yt := Dt∧τ̃ + α1(Bt − Bτ̃ )1{t≥τ̃ }
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is a semimartingale with Y0 = 0, which is uniformly elliptic, hence fulfills the
conditions of Lemma I.8.3 of Bass [1] [with (ε/8)2 in place of ε]. Thus, there is
a p = p(α1, α2, β, ε, t0) > 0 such that

P
{

sup
0≤t≤t0

|Yt | < (ε/8)2
}

≥ p.

From the definition of Y it follows that this is a lower bound for P{τ > t0} as well.
The parameters enter into the definition of p only as bounds. Since

sup
α′

2>α2

sup
β ′>β

sup
ε′<ε

sup
t ′0>t0

sup
0<α′

1<α1

p(α′
1, α′

2, β ′, ε′, t ′0)

is also positive, and is also a lower bound for P{τ > t0}, we may define a version
which has the claimed monotonicity properties, is left-continuous in α1 and ε and
right-continuous in each of the other parameters. We may then apply a smoothing
kernel to create a continuous function p̃ which also has the monotonicity property,
and such that

p ≥ p̃ > 0. �

As a corollary, we show that if we follow the motion of two points in the flow,
the minimum distance to a target point has a downward drift. This is the core of
the retraction argument. We imagine that the flow has run up to a stopping time τ ,
at which time the path being tracked is at z := ψ(τ). We follow it then up to a later
time τ + s. We want to conclude that, on average, the nearest point of φτ+s(X) has
then come a little bit closer to z, but the path has moved off to ψ(τ + s), a distance
of no more than λs, where λ is a bound for the Lipschitz constant of ψ . If λs is
smaller than the average rate of approach, then we expect the image of X to track
the path ψ .

We will be considering martingale fields which satisfy the two-point local
ellipticity condition (4), and then we will define

ε(E , ρ) := 1
3 min{ρ,ρ∗ − ρ}(11)

and

ζ(E , ρ) := inf
{
E(ρ′) :ρ − 2ε(E , ρ) ≤ ρ′ ≤ ρ + 2ε(E , ρ)

}
.(12)

Note that ε(E , ρ) and ζ(E , ρ) are both positive when 0 < ρ < ρ∗.

LEMMA 2.5. For all positive ζ , ε, a and A there are functions G′
ζ,ε,a,A,

G′′
ζ,ε,a,A : [0,∞) × [0,∞) → [0,∞) [the subscripted parameters will generally

be suppressed; ε and ζ have the default values ε = ε(E , ρ) and ζ = ζ(E , ρ), when
not otherwise specified ], which have the following properties:

(i) For each s, G′(s, r) is continuous and nonincreasing in r , and converges
to 0 as r → ∞.
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(ii) For all positive s, the function G′′(s, ·) is continuous and G′′(s, ρ) > 0
when ρ ∈ (0, ρ∗).

(iii) Let M be a martingale field satisfying the standard conditions with a and A

as bounds on the local characteristics given in (2) and (3), and E as the ellipticity
bound of (4), with ρ satisfying ε(E , ρ) ≥ ε and ζ(E , ρ) ≥ ζ . The flow generated
by M is denoted φ. Let s > 0 be given, τ any finite stopping time for the flow,
x, y, z any Fτ -measurable R

d -valued random points with ‖x − y‖ = ρ. Define

r1 := min{‖x − z‖,‖y − z‖},
xτ+s := φτ,τ+s(x), yτ+s := φτ,τ+s(y)

and

r2 := min{‖xτ+s − z‖,‖yτ+s − z‖}.
Then

E[r2 |Fτ ] ≤ r1 + G′(s, r1) − G′′(s, ρ).(13)

(iv) If v is an R
d -valued Fτ -measurable random variable with ‖v‖ = 1, then

E
[
max{〈xτ+s, v〉, 〈yτ+s, v〉} |Fτ

]≥ max{〈x, v〉, 〈y, v〉} + G′′(s, ρ).(14)

PROOF. Without loss of generality we may assume that ‖x − z‖ ≤ ‖y − z‖,
and by changing the coordinates we may assume as well that z = 0 and x =
(x1, 0, . . . ,0), with x1 > 0. All probabilities and expectations will be taken to be
conditional on Fτ , but the notation will be supressed for ease of reading. Define

N := x1
τ+s − x1

and

N ′ :=
(

d∑
i=2

(xi
τ+s)

2

)1/2

.

Clearly E[N ] = 0, and by Lemma 2.1 there is a constant c1, depending only on s,
a and A, such that

E[N2 + N
′2] ≤ c1.

Now let γ (t) := t/3 for 0 ≤ t ≤ 1, γ (t) := 3
√

t − 2/3 for t > 1, and let A be the
event that N2 + N

′2 ≤ γ 2(x1). Then by Cauchy–Schwarz,

E
[
1AC

(√
(x1 + N)2 + N

′2 − x1
)]

≤ E
[
1AC (|N | + N ′)

]
≤
√

c1

γ 2(x1)
·√2c1 ≤

√
2c1

γ (x1)
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and

E
[
1A

(√
(x1 + N)2 + N

′2 − x1
)]

= E

[
1A(x1 + N)

(√
1 +
(

N ′
x1 + N

)2

− 1

)]
+ E[1AN ]

≤ √
2
(
x1 + √

c1
)(√√√√1 +

(
γ (x1)

x1 − γ (x1)

)2

− 1

)
+

√
2c1

γ (x1)
,

since E 1AN = EN − E 1AC N = −E 1AC N . These bounds allow us to define
a function g(x), which is continuous and nonincreasing, and which converges to 0
as x → ∞, depending only on s, a, and A, such that

E‖xτ+s‖ − x1 = E
[√

(x1 + N)2 + N
′2 − x1

]
≤ g(x1).(15)

Suppose that ρ = ‖x − y‖ < ρ∗ and ρ < x1/2. Let ψ : [0, s] → R
d be a path

which moves with constant speed along a circle of radius ρ around x, from
ψ(0) = y to ψ(s) = (x1 − ρ, 0, 0, . . . ,0). Then the R

2d -valued semimartingale

Zt := (φτ,τ+t (x),φτ,τ+t (y)
)− (x,ψ(t)

)
satisfies the conditions of Lemma 2.4, with ε = ε(E , ρ); ζ1 = ζ(E , ρ); ζ2 = 2A2,
β = πρ/s and t0 = s. Thus there is a positive number p(ρ), a continuous function
of these parameters, such that

P
{‖Zt‖ ≤ ε for all t ∈ [0, s]}≥ p(ρ).

Consequently, if we let B1 be the closed ball of radius ε around x and B2 the closed
ball of radius ε around ψ(s), then

P{xτ+s ∈ B1 and yτ+s ∈ B2} ≥ p(ρ).

This means that

E
[
(‖xτ+s − z‖ − ‖yτ+s − z‖)+

]≥ p(ρ)
ρ

3
,(16)

when ρ < ρ∗ ∧ x1

2 . By linear interpolation we may parlay this into a continuous
function h(r, ρ) which is nondecreasing in r , zero for ρ ≥ ρ∗ ∧ r

2 , h(r, ρ) =
h(2ρ∗, ρ) for r ≥ 2ρ∗, and

0 < h(r,ρ) ≤ p(ρ)
ρ

3

for ρ < ρ∗ ∧ r
2 .

Putting together (15) and (16), we get

E[r2 |Fτ ] = E
[‖xτ+s − z‖ ∣∣Fτ

]− E
[
(‖xτ+s − z‖ − ‖yτ+s − z‖)+

∣∣Fτ

]
≤ r1 + g(r1) − h(r1, ρ).
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Define

H(ρ) := inf
r≥0

{
h(r, ρ) + 1

r + 1

}
.

Observe that for each ρ ∈ (0, ρ∗/2),

inf
ρ≤ρ′≤ρ∗−ρ

h(x,ρ′)

is positive for x sufficiently large. This means that

inf
ρ≤ρ′≤ρ∗−ρ

H(ρ′)

is positive. We can define a continuous function G′′(s, ·) such that 0 < G′′(s, ρ) <

H(ρ) for 0 < ρ < ρ∗. If we then take G′(s, r) := g(r) + 1/(r + 1),

E[r2 |Fτ ] ≤ r1 + g(r1) + 1

r1 + 1
−
(
h(r1, ρ) + 1

r1 + 1

)

≤ r1 + G′(s, r1) − G′′(s, ρ),

so conclusions 1–3 of the lemma hold. Conclusion 4 follows if we take z to be
equal to x + Kv, for K a large real number, and let K go to infinity. �

2.4. Supermartingales.

LEMMA 2.6. Let (Xn,Fn)n≥0 be an adapted real-valued process such that
the conditional distributions of the increments satisfy almost surely

E[Xn+1 − Xn |Fn] ≥ c11{Xn ≥ α}(17)

and

P
{|Xn+1 − Xn| ≥ λ |Fn

}≤ b1e
−b2λ ∀λ > 0(18)

for positive constants α, c1, b1, b2. If we define

γ (c1, b1, b2) := min
{

c1b
2
2

2b1 + b2
2

,
b2

5

}
,(19)

then e−γ Xn∧τ+γ 2n∧τ is a supermartingale (with respect to the filtration Fn), where
τ := min{n ≥ 0 :Xn ≤ α} and γ ≤ γ (c1, b1, b2), as long as

E[e−γ X0] < ∞.(20)

Consequently, for all β ≥ α′ ≥ α and any finite stopping time T such that
E[e−γ XT ] is finite,

P
{

lim
n→∞Xn = ∞ and Xn ≥ α′ ∀n ≥ T

∣∣FT

}
≥ 1 − e−γ (β−α′)(21)
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on {XT ≥ β}. In particular, the probability in (21) is positive whenever β > α′.
Finally,

P
{

lim inf
n→∞

1

n
Xn ≥ c1

∣∣∣ lim sup
n→∞

Xn > α

}
= 1.(22)

PROOF. We know that for all 0 < γ < b2,

E
[
e−γ (Xn+1−Xn)

∣∣Fn

]≤ E
[
eγ |Xn+1−Xn| ∣∣Fn

]≤ b1γ

b2 − γ
+ 1 ≤ b1

4
+ 1,

E
[|Xn+1 − Xn|eγ |Xn+1−Xn| ∣∣Fn

]≤ b1b2

(b2 − γ )2 ,(23)

E
[
(Xn+1 − Xn)2eγ |Xn+1−Xn| ∣∣Fn

]≤ 2b1b2

(b2 − γ )3

almost surely, for all n. These uniform bounds allow us to differentiate inside the
integral, so that

d

dγ

∣∣∣∣
γ=0

E
[
e−γ (Xn+1−Xn)

∣∣Fn

]= −E[Xn+1 − Xn |Fn]

≤ −c11{Xn ≥ α};
d2

dγ 2 E
[
e−γ (Xn+1−Xn)

∣∣Fn

]= E
[
(Xn+1 − Xn)2e−γ (Xn+1−Xn)

∣∣Fn

]

≤ 2b1b2

(b2 − γ )3
.

The specified γ satisfies

1 − c1γ + b1b2

(b2 − γ )3
γ 2 ≤ 1 − γ 2 ≤ e−γ 2

,

so that by Taylor’s theorem, separating the cases τ ≤ n and τ > n,

E
[
exp
{−γ (X(n+1)∧τ − Xn∧τ )

} ∣∣Fn

]≤ exp
{−γ 2[(n + 1) ∧ τ − n ∧ τ ]}.

Together with (20), this proves that e−γ Xn∧τ+γ 2n∧τ is a supermartingale.
Define τK to be the first time after T when Xn leaves the interval [α′,K).

The first part of the lemma implies, via Remark 1.1, that exp{−γ XT +n + γ 2n}
is a supermartingale. As a positive supermartingale, it converges almost surely to
a finite number, which cannot happen if τK is infinite. (In that case, XT +n would
remain bounded, which would imply that exp{−γ XT +n + γ 2n} goes to infinity.)
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By the optional stopping theorem for positive supermartingales (Theorem II-2-13
of [9]), on {XT ≥ β},

e−γβ ≥ E
[
e−γ XτK

∣∣FT

]
≥ E
[
e−γ XτK 1{XτK

< α′} ∣∣FT

]+ E
[
e−γ XτK 1{XτK

> K} ∣∣FT

]
≥ e−γ α′

P
{
XτK

< α′ ∣∣FT

}
.

Thus P{XτK
< α′ |FT } ≤ e−γ (β−α′) on {XT ≥ β}. Letting K → ∞ and applying

the monotone convergence theorem, this implies that

P
{

lim sup
n→∞

Xn = ∞ and Xn ≥ α′ ∀n ≥ T
∣∣∣FT

}
= P
{
Xn ≥ α′ ∀n ≥ T

∣∣FT

}
≥ 1 − e−γ (β−α′).

We need to show that, irrespective of XT ,

P
{

lim inf
n→∞ Xn < ∞

∣∣∣ lim sup
n→∞

Xn = ∞
}

= 0.

The set where lim supXn = ∞ > lim inf Xn is contained in

∞⋃
x=!α"

∞⋂
K=1

{∃n,m with n > m such that Xm > K + x and Xn < x
}
.

By the above argument, the events in the curly brackets above have probabilities
smaller than e−γ K , which means that the intersection has probability 0, for every x,
completing the proof of (21).

Choose any positive ε < c1 and β > α, and define τ0 = 0,

σi := min{k ≥ τi−1 :Xk > β}
and

τi := min
{
k ≥ σi :Xk ≤ α + (c1 − ε)(k − σi)

}
.

Applying the above argument to the process Xσi+k − (c1 − ε)k (now with respect
to the filtration Fσi+k),

P{τi < ∞|σi < ∞} ≤ exp
{
(α − β)γ (ε, b1e

c1b2, b2)
}
.

Thus the probability is 0 that all the stopping times are finite. If σi is finite
and τi infinite, then lim infn−1Xn ≥ c1 − ε. If τi is finite and σi+1 infinite, then
lim supXn ≤ β . Since this is true for all β > α and all positive ε, (22) follows. �
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LEMMA 2.7. Let (Xn,Fn) be an adapted real-valued process, and σ a stop-
ping time, such that almost surely (18) holds. Suppose there are Fn-measurable
random variables ξn, and positive constants α, c1 and c2, such that

E
[
Xn+1 − Xn |Fn

]≤ −c11{Xn ≥ α} + c21{Xn < α} + ξn(24)

on the event {σ > n}. For fixed positive ε ≤ c1, let

τ (ε) := σ ∧ min
{
n ≥ 0 :Xn < α or ξn > c1 − ε

}
.

Then for γ ≤ γ (ε, b1, b2), exp{γ Xn∧τ (ε) + γ 2(n ∧ τ (ε))} is a supermartingale, as
long as E[eγ X0] < ∞.

Furthermore, if Xn is almost surely nonnegative for all n, then on the event
{σ = ∞ and lim supn→∞ ξn ≤ c1 − ε},

lim inf
t→∞

1

t
#{k ≤ t :Xk < α} > 0 almost surely,(25)

and there is a positive constant C, depending on b1, b2 and α, such that

lim sup
t→∞

1

t
#{k ≤ t :Xk ≥ R} ≤ Ce−γ R/2(26)

for all positive R, almost surely on the event {σ = ∞ and lim supn→∞ ξn ≤ c1−ε}.
Let γ = γ (c1, b1, b2). For c > 1/γ and N > 0, let

σ (c)(N) := σ ∧ min
{
n :Xn ≥ c log(n + N)

}
.

Then

P
{
σ (c)(N) < ∞ ∣∣F0

}
≤ eγ X0N−γ c + eγ α

(
b1

4
+ 1
)
(γ c − 1)−1N1−γ c(27)

+ P
{
σ = σ (c)(N) < ∞ or ∃n < σ (c)(N) < ∞ with ξn > 0

∣∣F0
}
.

PROOF. Proof of the supermartingale property is identical to Lemma 2.6.
Suppose now that X is nonnegative. Define τ0 = 0, and then recursively, for i ≥ 1,

τi := σ ∧ min
{
n ≥ τi−1 + 1 :Xn < α or ξn > c1 − ε

}
,

si := #{τi−1 < k ≤ τi :Xk ≥ R}.
Observe that by the optional stopping theorem,

E
[
exp
{
γ 2(τi − τi−1 − 1)

} ∣∣Fτi−1+1
]≤ exp

{
γ Xτi−1+1

}
and

E
[
exp
{
γ Xτi

} ∣∣Fτi−1+1
]≤ E
[
exp
{
γ X(τi−1+k)∧τi

} ∣∣Fτi−1+1
]≤ exp

{
γ Xτi−1+1

}
.
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By assumption (18) and the bound (23),

E
[
exp
{
γ Xτi−1+1

} ∣∣Fτi−1

]≤ exp
{
γ Xτi−1

}(b1

4
+ 1
)

for i > 1. (All of these hold, strictly speaking, only on the event {σ > τi−1}.)
By induction, it follows that E exp{γ Xτi

} is finite for all i.
This immediately tells us that

(τi − τi−1)1
{
Xτi−1 < α

}
has uniformly bounded moments of all orders, when conditioned on Fτi−1 . The
strong law of large numbers for martingales (Theorem 2.19 of [6]) then says that

lim sup
n→∞

n−1
n∑

i=1

(τi − τi−1)1
{
Xτi−1 < α

}
< ∞

almost surely. Observe that on the event {σ = ∞ and lim supn→∞ ξn ≤ c1 −ε}, the
indicator 1{Xτi−1 < α} is 0 for only finitely many i. This means that

lim inf
t→∞

1

t
#{k ≤ t :Xk < α} ≥ lim inf

n→∞
n

τn+1
> 0,

proving (25).
For each i > 1, by an application of the Cauchy–Schwarz inequality,

E
[
si |Fτi−1+1

]

≤ E

[τi−τi−1∑
k=1

1
{
Xτi−1+k ≥ R

} ∣∣∣Fτi−1+1

]

=
∞∑

k=1

E
[
1
{
Xτi−1+k ≥ R

}
1{τi ≥ τi−1 + k} ∣∣Fτi−1+1

]

≤
∞∑

k=1

P
{
X(τi−1+k)∧τi

≥ R
∣∣Fτi−1+1

}1/2
P
{
τi − τi−1 ≥ k

∣∣Fτi−1+1
}1/2

≤
∞∑

k=1

exp
{
γ Xτi−1+1 − γ R

2
− γ 2(k − 1)

2

}

≤ (1 − e−γ 2/2)−1 exp
{
γ Xτi−1+1 − γ R

2

}

on the event {σ > τi−1}. Taking expectations with respect to Fτi−1 , we get almost
surely

E
[
si · 1
{
Xτi−1 < α

} · 1{σ > τi−1} |Fτi−1

]≤ Ce−γ R/2,

where C = eγ α(b1/4 + 1)(1 − e−γ 2/2)−1.
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Now define

Mn :=
n∑

i=2

(
si · 1
{
Xτi−1 < α

} · 1{σ > τi−1} − Ce−γ R/2).
This is a supermartingale with respect to the filtration (Fτn). The increments are
bounded by a constant plus (τi − τi−1)1{Xτi−1 < α}, which has bounded second
moments (almost surely, when conditioned on Fτi−1). This allows us to apply the
strong law of large numbers for martingales to obtain lim supn→∞ n−1Mn ≤ 0
almost surely.

As before, on the event {σ = ∞ and lim supn→∞ ξn ≤ c1 − ε}, the product
1{σ > τi−1} · 1{Xτi−1 < α} is 0 for only finitely many i. As a consequence, since
τn ≥ n, we have almost surely

lim sup
t→∞

1

t
#{k ≤ t :Xk ≥ R} ≤ lim sup

n→∞
1

n − 1
#{k ≤ τn :Xk ≥ R}

= lim sup
n→∞

1

n − 1

n∑
i=2

si

= lim sup
n→∞

1

n

n∑
i=2

si · 1
{
Xτi−1 < α

}

≤ Ce−γ R/2,

completing the proof of (26).
To prove the final part, we define a slightly modified sequence of stopping times

τ0 = −1,

τi := σ ∧ min
{
n ≥ τi−1 + 1 :Xn < α or ξn > 0 or Xn ≥ c log(n + N)

}
.

We are trying to bound the probability that for some i ≥ 1, Xτi
≥ α. Since

exp{γ X(τi−1+n)∧τi
} is a positive supermartingale, by the optional stopping theo-

rem,

E
[
exp
{
γ Xτi

} ∣∣Fτi−1

]≤ E
[
exp
{
γ Xτi−1+1

} ∣∣Fτi−1

]
≤
(

b1

4
+ 1
)

exp
{
γ Xτi−1

}
,

which is bounded by (b1/4 + 1)eγ α on the event {Xτi−1 < α}. Since τi ≥ i − 1 on
{σ > τi−1},

P
{
Xτi

≥ c log(N + τi)
∣∣Fτi−1

}
≤
(

b1

4
+ 1
)
eγ α(N + i − 1)−cγ + 1{σ ≤ τi−1} + 1

{
Xτi−1 ≥ α

}
.

(28)
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Thus,

P
{∃ i ≥ 2 such that Xτi

≥ c log(N + τi) > α > Xτi−1 and σ > τi−1
∣∣Fτ1

}
≤
(

b1

4
+ 1
)
eγ α

∞∑
i=1

(N + i)−γ c

≤
(

b1

4
+ 1
)
eγ α
(
Nγ c−1(γ c − 1)

)−1

and

P
{
Xτ1 ≥ c log(N + τ1)

∣∣F0
}≤ eγ X0N−γ c.

Since the event {σ < ∞ or Xk ≥ c log(k+N) for some k} is contained in the union
of the events, {

Xτ1 ≥ c log(N + τ1)
}
,{∃ i ≥ 2 such that Xτi

≥ c log(N + τi) > α > Xτi−1 and σ > τi−1
}

and {
σ = σ (c)(N) < ∞},{∃ i such that ξτi

> 0, Xk < c log(N + k) ∀ k ≤ τi and Xτi+1 ≥ c log(N + τi+1)
}
.

This completes the proof. �

3. Images of nontrivial sets. For ease of presentation we separate here the
theorems on ball-chasing behavior of whole sets, from the stronger results on
pointwise ball-chasing, which appear in Section 4. We warm up with a result that
guarantees the appropriateness of our definition of “contracting to a point.”

PROPOSITION 3.1. Under the standard conditions, the diameter of φt(X) has
a limit almost surely, for any bounded, connected X ⊂ R

d . This limit is almost
surely either 0 or ∞. Furthermore, there is a positive flow-bound constant c1 such
that

P
{

lim inf
t→∞ t−1 diam φt(X) ≥ c1

∣∣∣ lim sup
t→∞

diam φt(X) > 0
}

= 1.(29)

In addition, for any positive α there are flow-bound constants q(α) and γ (α) such
that

P
{∃ t ≥ 0 such that diam φt(X) ≤ α |F0

}≤ q(α)e−γ (α) diamX.(30)
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Furthermore, there are flow-bound constants γ1 and γ2, such that for all
positive α′,

P
{
diamφn(X) ≥ α′ ∀n ∈ N

}
≥ 1 − inf{α≤diamX∧2ρ∗∧α′} exp

{
−
[(

γ1G
′′
(

1,
α

2

))
∧ γ2

]
(diam X − α′)

}
.

(31)

In particular, the probability that a nontrivial connected set X contracts to a point
under the action of the flow is always smaller than 1. If the set does not contract,
it grows linearly in time.

PROOF. We know from Lemma 2.5 that the diameter has a positive drift,
whose magnitude is bounded away from zero when the diameter itself is bounded
away from zero. This means that every time the diameter passes a given threshold,
whatever this may be, it has a certain fixed probability of running off to infinity
without ever coming back. Conversely, if the diameter fails to run off to infinity, it
can only be because the drift converged to zero, which must mean that the diameter
itself converged to zero.

If X is unbounded, then φt (X) is unbounded as well, for all t , so the proposition
becomes trivial. Since a set has the same diameter as its closure, and since φt is
continuous, we may assume without loss of generality that X is compact.

We begin by proving the statements like those of the proposition when
the times n are integers, in place of the continuous t . Fix any positive α <

diamX ∧ 2ρ∗. Let x0 and x̃0 be two points in X such that ‖x0 − x̃0‖ = diamX.
Let v = (x0 − x̃0)/‖x0 − x̃0‖. Since X is connected, we may find points y0 and ỹ0

in X such that

‖x0 − y0‖ = ‖x̃0 − ỹ0‖ = α

2
.

Starting from x0 and y0, we now define a retraction sequence tending in
the direction v. This is a sequence of X-valued random variables xn and yn

determined by the flow at time n, where at most one of the points may be replaced
at each integer time. Whichever one of xn−1 and yn−1 is farthest forward (under
the action of φn) in the v direction is carried over to time n, while the other is
retracted so that ‖φn(xn) − φn(yn)‖ = α/2. To consider one case, suppose that
diam φn(X) ≥ α and 〈

φn(xn−1), v
〉≥ 〈φn(yn−1), v

〉
.

We define xn to be equal to xn−1, and let yn be a point in X such that
‖φn(xn) − φn(yn)‖ is exactly α/2. Because the diameter of φn(X) is at least α,
such a point must exist. When φn(yn−1) is farther forward in the v direction, we
take xn = yn−1, and again let yn be defined by retraction. If diam φn(X) < α, we
stipulate that xn = xn−1 and yn = yn−1. The construction can now be advanced to
the next unit of time.
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An identical procedure generates a retraction sequence (x̃n, ỹn), starting from
(x̃0, ỹ0) and tending in the direction of −v. It may come to pass that the two
retraction sequences find themselves in the wrong order; that is, for some n,

〈φn(xn), v〉 < 〈φn(x̃n), v〉.
In this case we simply exchange the two sequences: what was xn becomes x̃n and
vice versa; what was yn becomes ỹn and vice versa. We will refer to this as the
swapping rule.

Define X+
n := 〈φn(xn), v〉 and X−

n := 〈φn(x̃n), v〉. Suppose the swapping rule
is not applied at time n + 1, and that 〈φn(xn), v〉 ≥ 〈φn(yn), v〉. The difference
X+

n+1 − X+
n is simply the maximum advance beyond φn(xn) in direction v of

the two points φn(xn) and φn(yn), during the time interval (n,n + 1]. When the
diameter of φn(X) is at least α, the separation of these two points at time n is α/2.
From Lemma 2.5 (with s = 1) it follows that

E
[
X+

n+1 − X+
n

∣∣Fn

]≥ G′′(1, α/2)1{diamφn(X) ≥ α}.(32)

If yn is the leader in direction v at time n (which it can be, by as much as α/2),
this will only increase the expectation in (32). Likewise the swapping rule can only
increase the difference, switching it from negative to positive.

Let Xn := X+
n − X−

n . Observe that Xn is a lower bound for the diameter
of φn(X). Applying the same reasoning as above to X−

n , we see that

E
[
Xn+1 − Xn |Fn

]≥ 2G′′(1, α/2)1{diamφn(X) ≥ α}
≥ 2G′′(1, α/2)1{Xn ≥ α}.(33)

Thus Xn satisfies condition (17) of Lemma 2.6, with c1(α) = 2G′′(1, α/2). On the
other hand, for any positive λ, when Xn+1 −Xn ≥ λ it must be that one of the four
one-point displacements,

‖φn+1(x
n) − φn(xn)‖, ‖φn+1(y

n) − φn(yn)‖,

‖φn+1(x̃
n) − φn(x̃n)‖, ‖φn+1(ỹ

n) − φn(ỹn)‖,

is at least (λ − α)/2. By Lemma 2.1,

P
{
Xn+1 − Xn ≥ λ |Fn

}≤ 16d√
π

e−(λ−α)2/(8d2A2).

The same bound holds for P{Xn+1 − Xn < −λ}. This means that Xn satisfies
condition (18), with b1 = 32de(4ρ∗+1)/(8d2A2)/

√
π and b2 = (8d2A2)−1.

We may apply (21) with c1 = c1(α) for any α < diamX ∧ 2ρ∗ ∧ α′. Taking
γ = γ (c1, b1, b2), and using the fact that diam φn(X) ≥ Xn, we get for any
positive α′,

P
{
diamφn(X) ≥ α′ ∀n ∈ N

}≥ P
{
Xn ≥ α′ ∀n ∈ N

}
≥ 1 − e−γ (diamX−α′).
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The bound (31), with γ1 = 2b2
2/(2b1 + b2

2) and γ2 = b2/5, follows then directly
from the definition of γ , given in (19).

Lemma 2.6 now says that either 0 ≤ lim supn→∞ Xn ≤ α or lim infn→∞ n−1Xn

≥ c1(α), with probability 1. It follows that

P
{
lim inf
n→∞ n−1Xn ≥ c1(α) or lim

n→∞Xn = 0
}
= 1.(34)

for every α smaller than 2ρ∗ ∧ diamX.
This rate c1(α) is not a flow-bound constant, since the restriction on α depends

on the initial diameter. But in fact, we can replace c1(α) by the flow-bound constant
c1 := c1(2ρ∗): we simply wait for the diameter to grow larger than 2ρ∗, and restart
the process from those initial data. That is, let T = inf{t : diam φt(X) ≥ 2ρ∗}, and
choose any positive integer m. Then

P
{

lim inf
n→∞ n−1Xn ≥ c1 − 1

m
or 0 ≤ lim sup

n→∞
Xn ≤ α

}

= P
{

lim inf
n→∞ n−1Xn ≥ c1 − 1

m
or 0 ≤ lim sup

n→∞
Xn ≤ α

∣∣∣T = ∞
}

P{T = ∞}

+ P
{

lim inf
n→∞ n−1Xn ≥ c1 − 1

m
or 0 ≤ lim sup

n→∞
Xn ≤ α

∣∣∣T < ∞
}

P{T < ∞}.

The first conditional probability is 1 since (34) implies that the diameter converges
to 0 whenever it is bounded, with probability 1. The second probability is seen to
be 1 by applying the above result to the flow φT +·, with starting set φT (X). Taking
the intersection over all positive integers m, we see that

P
{
lim inf
n→∞ n−1Xn ≥ c1 or lim

n→∞Xn = 0
}
= 1.(35)

We need to turn these statements about Xn into statements about the diameter
of φn(X), showing that the asymptotic fate of diam φn(X), whether growing
linearly with a certain minimum speed or converging to 0, is the same as that
of Xn. On one side this is straightforward, since diam φn(X) ≥ Xn. If Xn grows
as fast as c1n, then diam φn(X) grows at least as fast. But we need to show that
diam φn(X) cannot stay large while Xn converges to 0.

Fix a positive number λ, and let pn := P{Xn+1 −Xn > λ |Fn

}
. The exponential

bound (18) implies that

E
[
Xn+1 − Xn |Fn

]≤ λ(1 − pn) + pn

b2

(
1 + log

b1

pn

)
.

The right side converges to λ as pn → 0, which means that there is a positive
flow-bound constant p(λ) such that

pn ≥ p(λ)1
{
E
[
Xn+1 − Xn |Fn

]≥ λ
}
.
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We apply this to the bound (33), to reveal that for positive α sufficiently small,
taking λ = c1(α),

P
{
Xn+1 − Xn > λ |Fn

}≥ p(λ)1{diamφn(X) ≥ α}.
We can now apply Neveu’s martingale generalization of the Borel–Cantelli
lemma ([9], Corollary VII.2.6). On the event {lim supn→∞ diam φn(X) ≥ α}, the
increment Xi+1 −Xi is almost surely bigger than λ infinitely often, so that Xn does
not converge. We may conclude that, up to events of measure 0, diam φn(X) → 0
whenever Xn → 0. The discrete-time version of (29), that is, where t is taken to
run over natural numbers, is then a trivial consequence of (35).

We still need to interpolate for noninteger times. We begin with (30). Let α be
given, and let τ = inf{t : diam φt (X) < α}. Then Lemma 2.3 gives us a flow-bound
constant K ′ such that, on the event {τ < ∞}, letting n = !τ",

P
{
diam φn(X) ≥ K ′α

∣∣Fτ

}≤ 1
2 .

This means that

P
{∃n ∈ N such that diam φn(X) ≤ K ′α

}≥ 1
2 P{τ < ∞}.

By (31) there is a positive flow-bound constant γ (α) such that

P
{∃ t such that diam φt (X) < α

}= P{τ < ∞}
≤ 2 exp

{−γ (α)(diamX − K ′α)
}
,

which proves (30), taking q(α) = 2eK ′αγ (α).
We have shown that for discrete times there are, almost surely, only two

possible behaviors for φn(X): either limn→∞ diam φn(X) = 0 or lim infn→∞ n−1

× diam φn(X) ≥ c1. We will be finished once we have shown that

P
{
lim inf
t→∞ t−1 diam φt(X) ≥ c1

∣∣∣ lim inf
n→∞ n−1 diam φn(X) ≥ c1

}
= 1

and

P
{

lim
t→∞ diam φt (X) = 0

∣∣∣ lim
n→∞ diam φn(X) = 0

}
= 1.

The first of these is particularly easy. The event that lim infn→∞ n−1 ×
diam φn(X) ≥ c1 and lim inft→∞ t−1 diam φt (X) < c1 is contained in

∞⋃
K=1

lim sup
n→∞

{
inf

n≤t<n+1
diam φt(X) ≤ diam φn(X) − n

K

}
.

Consider two points x and y (these are random variables measurable with respect
to Fn) in X such that ‖φn(x) − φn(y)‖ = diam φn(X). We have{

inf
n≤t<n+1

diam φt(X) ≤ diam φn(X) − n

K

}

⊂
{

sup
n≤t<n+1

‖φt (x) − φn(x)‖ ≥ n

2K

}
∪
{

sup
n≤t<n+1

‖φt (y) − φn(y)‖ ≥ n

2K

}
.
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By Lemma 2.1, each of the events on the right-hand side has probability smaller
than

√
4d

√
π exp(−n2/8d2A2K2). The sum of these bounds is finite, which

implies, via the Borel–Cantelli lemma, that the probability of infinitely many of
these events occurring is probability 0. It follows that limn→∞ diam φn(X) = 0 or
lim inft→∞ t−1 diam φt(X) ≥ c1, almost surely.

Let α be any positive number, and define a sequence of stopping times 0 = τ0 ≤
σ1 < τ1 < σ2 ≤ · · · by

σi+1 := inf
{
t ≥ τi such that diam φt(X) ≥ α

}
and

τi := σi + min
{
n ≥ 1 such that diamφσi+n(X) ≤ α

2

}
.

Applying our discrete-time results to the flow φσi+t , we see that there is
a positive p such that

P
{
τi = ∞ and lim

n→∞ diamφσi+n(X) = ∞ ∣∣Fσi

}
≥ p

almost surely on the event {σi < ∞}, for all i. This means that these stopping
times are almost surely not all finite. If the first stopping time to be infinite
is one of the τi’s, then lim infn→∞ diamφσi+n(X) ≥ α/2, which implies, by
the remarks of the preceding paragraph, that lim inft→∞ t−1 diamφσi+t (X) ≥ c1.
On the other hand, if the first stopping time to be infinite is one of the σi’s, then
lim supt→∞ diam φt(X) ≤ α. Consequently,

P
{
∞ > lim sup

t→∞
diam φt (X) > 0

}
= 0.(36)

Define another stopping time

ρK := inf
{
t such that diam φt (X) ≥ K

}
.

Applying (30) to φρK+t tells us that

P
{

lim sup
t→∞

diam φt (X) = ∞ and lim inf
n→∞ diam φn(X) = 0

}

≤ P
{
ρK < ∞ and ∃ t ≥ ρK such that diam φt(X) ≤ 1

∣∣FρK

}
≤ E
[
1{ρK<∞} P

{
ρK < ∞ and ∃ t ≥ ρK such that diam φt(X) ≤ 1 |FρK

} ∣∣
ρK < ∞

]
≤ q(1)e−γ (1)K.
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Since this is true for all K , it must be that this probability is 0. Combining this
with (36) yields

P
{

lim sup
t→∞

diam φt(X) > 0 and lim inf
n→∞ diam φn(X) = 0

}
= 0,

completing the proof. �

THEOREM 3.2. Let M be a martingale field satisfying the standard condi-
tions, and φt : Rd → R

d the flow of homeomorphisms that it determines; let X be
a compact nontrivial subset of R

d and let ψ be an adapted path with Lipschitz
constant almost surely smaller than �, which is itself smaller than

sup
s>0

max
0≤ρ≤ρ∗

G′′(s, ρ)

s
.(37)

Then X almost surely either chases balls with path ψ and every radius ε(t) ≡ ε

a positive constant, or shrinks to a point. That is, taking m to represent Lebesgue
measure on R,

P
{

lim inf
t→∞

1

t
m
{
s ≤ t :φs(X) ∩ Bε(ψ(s)) �= ∅} > 0

∣∣∣ lim
t→∞ diamφt(X) = ∞

}
= 1.

Furthermore, if X does not contract to a point, the fraction of time that it spends
in a ball around ψ(t) converges to 1 as the radius goes to infinity. That is,

P
{

lim
r→∞ lim inf

t→∞
1

t
m
{
s ≤ t such that φs(X) ∩ Br(ψ(s)) �= ∅

}= 1
∣∣∣

lim
t→∞ diam φt(X) = ∞

}
= 1.

PROOF. We assume without loss of generality that the starting point of the
path ψ(0) is a bounded random variable. If it is not, we may replace ψ by a new
path whose starting point is 0, and which approaches the old ψ at a linear rate and
finally merges with it after a finite random time. Since the two paths eventually
coincide, the asymptotic results for the two are equivalent.

Let s and ρ be chosen with 0 < ρ < ρ∗, so that G′′(s, ρ) > s�, and let r∗ be
chosen so that

G′(s, r∗) ≤ 1
2

(
G′′(s, ρ) − s�

)
.

Let ψn = ψ(sn).
As in the proof of Proposition 3.1 we define a retraction sequence of

points (xn, yn), but in this case the points are not running in a fixed direction
but rather running after the path ψ . Choose x0 and y0, any two distinct points
in X. We define random points xn and yn in X, measurable with respect to Fsn,
as follows. Suppose xn−1 and yn−1 have been determined. One of xn−1 or yn−1
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will have its image under φsn closer to ψn. We will let xn be that point, and take
for yn any point in X such that ‖φsn(xn) − φsn(yn)‖ = ρ, which must exist if
diam φsn(X) ≥ 2ρ; if the diameter is smaller, and yn cannot be chosen to make
this distance ρ, it is chosen instead to make the distance as large as possible.

Now define rn := ‖φsn(xn) − ψn‖. Apply Lemma 2.5 to the points φsn(xn)

and φsn(yn), with z = ψn, to see that

E
[
rn+1 |Fsn

]≤ rn + s� + G′(s, rn) − G′′(s,‖φsn(xn) − φsn(yn)‖)
≤ rn + s� + G′(s, r∗) − G′′(s, ρ)

+ (G′(s, 0) − G′(s, r∗)
)
1{rn < r∗}

+G′′(s, ρ)1{diam φsn(X) < 2ρ}.
Here we may apply Lemma 2.7 to rn, with

α = r∗,

c1 = −s� − G′(s, r∗) + G′′(s, ρ),

c2 = s� + G′(s, 0) − G′′(s, ρ)

and

ξn = G′′(s, ρ)1{diam φsn(X) < 2ρ}.
The exponential tail bounds are trivial consequences of Lemma 2.1. This tells us
that, on the event diam φsn(X) → ∞, since ξn is nonzero only finitely often,

lim inf
n→∞

1

n
#{i ≤ n : ri < r} > 0

for all r > r∗, and that this asymptotic density goes to 1 as r → ∞.
We have not yet shown that this positive density holds for times which are not

integer multiples of s. For r > r∗, define A′
n to be the event that φsn(X) ∩ Br(ψn)

is nonempty, and A′′
n the event that φt(X) ∩ B2r (ψ(t)) is nonempty for all t

between sn and s(n + 1). By tracking one point from the intersection, we see
that

P(A′′
n |Fsn) ≥ (1 − b1e

−b2r )1A′
n
,

where b1 and b2 are constants depending only on the flow parameters, as given by
Lemma 2.1. Applying the law of large numbers for martingales, we see that

lim inf
t→∞ t−1m

{
s ≤ t :φs(X) ∩ B2r(ψ(s)) �= ∅

}

≥ lim inf
n→∞

1

n

n∑
i=1

1A′′
i
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≥ (1 − b1e
−b2r ) lim inf

n→∞
1

n

n∑
i=1

1A′
i

≥ (1 − b1e
−b2r ) lim inf

n→∞
1

n
#{i ≤ n : ri < r}.

We have shown that the theorem holds then for ε ≥ 2r∗. To extend it to
all positive ε requires an argument much like the preceding one. Let ε∗ =
min{s/2, ε/(4�)}. Keep A′

n as above, with r = 2r∗, but now define Aε
n to be

the event that φt(X) ∩ Bε(ψ(t)) is nonempty for all t ∈ [sn + ε∗, sn + 2ε∗]. On
the event A′

n, there is a point x ∈ X such that ‖φsn(x) − ψn‖ ≤ 2r∗. Let

Vt =


−φsn(x) + −ψn + φsn(x)

ε∗ t, if 0 ≤ t ≤ ε∗,

−ψn, if t > ε∗.

Then Aε
n contains the event that ‖Vt + φsn+t (x)‖ ≤ ε/2 for all 0 ≤ t ≤ 2ε∗. By

Lemma 2.4 there is a positive pε such that

P(Aε
n |Fsn) ≥ pε1A′

n
.

The law of large numbers for martingales then implies that

lim inf
n→∞

1

n

n∑
i=1

1Aε
i
≥ pε lim inf

n→∞
1

n

n∑
i=1

1A′
n

> 0

almost surely. This is true simultaneously for all positive ε. �

4. Images of points. In the previous section we showed that for a positive
fraction of the time points almost surely do exist in φt (X) whose distance
from ψ(t) is no more than any fixed constant, except in the case when φt(X)

shrinks to a point. This does not exclude the possibility that it is always
a different point, so that for each fixed x, the distance of φt (x) from ψ(t) would
eventually exceed any given constant. We do not know whether there are, in
general, individual points which spend a positive fraction of the time in balls of
constant radius around ψ(t). We can show, however, that “weak ball-chasing”
does occur pointwise; that is, given any fixed positive ε, and a nontrivial set X,
there are almost surely points in X which return infinitely often to a ball of
radius ε around ψ(t), as long as X does not shrink to a point. We also show, in
Theorem 4.2, that “strong ball-chasing” occurs pointwise for balls of size constant
times log t ; that is, conditioned on X not shrinking to a point, there are almost
surely points in X whose image under φt eventually occupies a ball of radius
c log t about ψ(t).

THEOREM 4.1. Let M be a martingale field satisfying the standard condi-
tions, and φt : Rd → R

d the flow of homeomorphisms that it determines, and X
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a compact nontrivial set. Let � and ψ satisfy the same conditions as in Theo-
rem 3.2. Then if ε is any positive constant,

P
{
∃x ∈ X such that

{
t :‖φt (x) − ψ(t)‖ ≤ ε

}
is unbounded

∣∣
lim

t→∞ diamφt (X) = ∞
}
= 1.

PROOF. Let ε, δ > 0 be given. Proposition 3.1 gives us flow-bound con-
stants q , R and ρ0 ≤ ρ1 ≤ ρ2 ≤ · · · (depending also on δ), such that for any con-
nected set X and any finite, nonnegative stopping time t ,

P
{
∃ t ′ ≥ t such that diamφt ′(X) <

ε

4

∣∣∣Ft

}
≤ 1 − q1{diamφt(X) ≥ R}(38)

and

P
{∃ t ′′ ≥ t such that diamφt ′′(X) < R

∣∣Ft

}≤ δ2−k + 1{diamφt (X) < ρk}.(39)

That is, as long as the image of the set has diameter at least R at time t , there
is probability at least q that it will never fall under ε/4 at any later time; and if
the diameter is at least ρk at time t , the probability of it falling under R is no
more than δ2−k. Furthermore, the support lemma (Lemma 2.4) gives us a positive
flow-bound constant q ′ such that for any Ft -measurable random points x and y,

P
{
‖φt+1(x) − φt+1(y)‖ ≥ R and inf

s∈[t,t+1] ‖φs(x) − φs(y)‖ ≥ ε

4

∣∣∣Ft

}

≥ q ′1
{
‖φt (x) − φt (y)‖ ≥ ε

2

}
.

If diam φt(X) ≥ ε/2, then there are points x and y in X whose separation at time t

is at least ε/2, and their separation at future times provides a lower bound for the
diameter of the image. This allows us to improve (38) to

P
{
∃ t ′ ≥ t such that diamφt ′(X) <

ε

4

∣∣∣Ft

}
≤ 1 − p1

{
diamφt (X) ≥ ε

2

}
,(40)

where p = qq ′.
As usual, we define an increasing sequence of stopping times, τ0 < σ1 <

τ1 < σ2 < · · · . This time, we also define a corresponding decreasing sequence
of connected sets X = X0 ⊃ X1 ⊃ X2 ⊃ · · · . These are the candidates that we
will consider for the point that successfully tracks ψ . The stopping times and sets
are defined according to the following rules: first let

τ0 := inf
{
t : diam φt (X) ≥ ρ0

}
.
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Once τk−1 and Xk−1 have been determined, we let

σk := inf
{
t ≥ τk−1 : diamφt (Xk−1) ≥ ε and

∃x ∈ Xk−1 such that ‖φt (x) − ψ(t)‖ ≤ ε

2

}
.

When σk is finite, there is at least one compact connected component of{
x ∈ Xk−1 :‖φσk

(x) − ψ(σk)‖ ≤ ε
}
,

whose image at time σk has diameter at least ε/2. We choose such a component
and call it X∗

k . Then

τk := inf
{
t ≥ σk + 1 : diamφt(X

∗
k) /∈
[
ε

4
, ρk

]
and diamφt (Xk−1) > ρk

}

for k ≥ 1.

Finally, Xk is defined to be X∗
k if diamφτk

(X∗
k) ≥ ρk , and Xk−1 otherwise. The

infimum over the empty set is taken to be ∞.
We first compute the probability of A, the event that the stopping times

are all finite. Conditioned on τk−1 being finite, φτk−1(Xk−1) is a set with
diameter at least ρk−1. By Theorem 3.2 the conditional probability of σk being
infinite, is no more than P{limt→∞ diamφt(Xk−1) = 0}, which is no bigger
than δ2−k+1. By Proposition 3.1 the event {σk < ∞ and τk = ∞} is also
contained in {limt→∞ diamφt (Xk−1) = 0}, which then also has probability no
bigger than δ2−k+1. Thus P(A | τ0 < ∞) ≥ 1 − 4δ. On the event A, since the
sets Xk are decreasing, nonempty and compact, there is at least one point x in
their intersection.

Now consider the events Bk = {Xk = X∗
k} and B∗ = lim supBk . If σk is finite,

the image φσk
(X∗

k) has diameter at least ε/2. By condition (40),

P(Bk+1 |Fσk
) ≥ p

on the event {σk < ∞}. It follows, by the Neveu–Borel–Cantelli lemma that
P(B∗ | A) = 1, so P(A ∩ B∗ | τ0 < ∞) ≥ 1 − 4δ. Thus, since {τ0 < ∞} contains
the event {diam φt(X) → ∞}, and since

P
{
diam φt(X) → ∞| τ0 < ∞}≥ 1 − δ,

we get

P
(
A ∩ B∗ | diam φt (X) → ∞)

≥ 1

P{diam φt(X) → ∞}
× [P(A ∩ B∗ ∩ {τ0 < ∞}) + P{diam φt (X) → ∞} − P{τ0 < ∞}]
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≥ P{τ0 < ∞}
P{diam φt(X) → ∞} (1 − 4δ + 1 − δ − 1)

≥ (1 − 5δ).

On the event A ∩ Bk the point x is in Xk = X∗
k , which means that

‖φσk
(x) − ψ(σk)‖ ≤ ε.

On A ∩ B∗, there are infinitely many k for which this holds; since σk → ∞, it
follows that

P
{
∃x ∈ X such that

{
t :‖φt (x) − ψ(t)‖ ≤ ε

}
is unbounded

∣∣ diam φt(X) → ∞
}

≥ P
(
A ∩ B∗ | diam φt (X) → ∞)

≥ 1 − 5δ.

Since δ is an arbitrary positive number, weak ball-chasing is proved for the
arbitrary positive radius ε. �

THEOREM 4.2. Let M be a martingale field satisfying the standard condi-
tions, φt : Rd → R

d the flow of homeomorphisms that it determines and X a com-
pact nontrivial set. Let � and ψ satisfy the same conditions as in Theorem 3.2.
There is a positive constant c∗, depending on the flow bounds and also on �, such
that

P
{
∃T and x ∈ X such that ∀ t ≥ T ‖φt (x) − ψ(t)‖ ≤ c∗ log t

∣∣
lim

t→∞ diamφt (X) = ∞
}
= 1.

PROOF. Define s, ρ and ψn exactly as in the proof of Theorem 3.2. For
ease of notation we will take s to be 1. Let c̄ be any positive number, and fix
a positive integer m such that c̄ log m ≥ 2ρ. We will define a decreasing sequence
of connected sets, intended to catch points which have remained within the desired
ball of size constant times logn without interruption since some fixed time in the
past: X = X(m)

m ⊃ X(m)
m+1 ⊃ · · · .

We will define a retraction sequence (x
(m)
n , y

(m)
n ) tending toward ψ for

n ≥ m, with x
(m)
n , y

(m)
n ∈ X(m)

n . Once it is established, we will let r
(m)
n :=

min{‖φn(x
(m)
n ) − ψn‖.

For n = m, we choose x
(m)
m ∈ X(m)

m with φm(x
(m)
m ) at a minimum distance

from ψm, and y
(m)
m ∈ X(m)

m such that ‖φm(x
(m)
m ) − φm(y

(m)
m )‖ = ρ (if such a point

exists in X(m)
m ; otherwise, this separation is to be the maximum possible). Suppose

now that x
(m)
n−1, y

(m)
n−1 and X(m)

n−1 have been defined. We extend the sequence as
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follows: Suppose first that r
(m)
k < c̄ log k for all k ∈ {m,m + 1, . . . , n}, and that

diamφn(X(m)
n−1) ≥ 2ρ. If∥∥φn(x

(m)
n−1) − ψn

∥∥≤ ∥∥φn(y
(m)
n−1) − ψn

∥∥,
then x

(m)
n = x

(m)
n−1; otherwise x

(m)
n = y

(m)
n−1. In either case y

(m)
n is chosen to be a point

in X(m)
n−1 such that ‖φn(x

(m)
n ) − φn(y

(m)
n )‖ = ρ. Since ρ ≤ c̄ log n, they may be

chosen to lie both in the same connected component of

X(m)
n−1 ∩ φ−1

n

(
B3c̄ logn(ψn)

)
.

That connected component then becomes X(m)
n . If the conditions are not

satisfied—that is, if r
(m)
k ≥ c̄ log k for some k ≤ n or diam φn(X(m)

n−1) < 2ρ—

we keep x
(m)
n = x

(m)
n−1, y

(m)
n = y

(m)
n−1, and X(m)

n = X(m)
n−1. We define a stopping

time σ (m) to be the smallest n > m such that r
(m)
n ≥ c̄ logn, or ∞ if no such n

exists.
At the same time, we define another retraction sequence x̃

(m)
n and ỹ

(m)
n , tending

away from ψn. These points are also chosen to lie in X(m)
n . We start by choosing

φm(x̃
(m)
m ) to lie at a maximal distance from ψm (within X(m)

m ), and φm(ỹ
(m)
m )

at distance ρ (or the maximum possible distance, if this is smaller than ρ)
from φm(x̃

(m)
m ). We set

R(m)
n := max

{∥∥φn(x̃
(m)
n−1) − ψn

∥∥,∥∥φn(ỹ
(m)
n−1) − ψn

∥∥},
Once x̃

(m)
n−1 and ỹ

(m)
n−1 have been determined, we extend the sequence as follows:

1. If R
(m)
k > 2c̄ log k for all m ≤ k ≤ n, if σ (m) > n, and if both x̃

(m)
n−1 and ỹ

(m)
n−1

lie in X(m)
n , then x̃

(m)
n is whichever one of x̃

(m)
n−1 and ỹ

(m)
n−1 has its image at

time n farther from ψn. In this case, ỹ
(m)
n is chosen to be a point in X(m)

n such
that ‖φn(x̃

(m)
n ) − φn(ỹ

(m)
n )‖ = ρ. [As we assumed that σ (m) > n, it must be

that r
(m)
n ≤ c̄ logn. This means that there is a point of X(m)

n inside a ball of
radius c̄ log n around ψn. The distance from x̃

(m)
n must therefore be at least

c̄ logn ≥ 2ρ. Since X(m)
n is connected, and includes x̃

(m)
n , there are indeed

points in φn(X(m)
n ) at distance ρ from φn(x̃

(m)
n ).]

2. If R
(m)
k > 2c̄ log k for all m ≤ k ≤ n, if σ (m) > n, and if x̃

(m)
n−1 or ỹ

(m)
n−1

lie outside X(m)
n , then x̃

(m)
n is chosen to be any point in X(m)

n such that
‖φn(x̃

(m)
n ) − ψn‖ = 3c̄ logn, and ỹ

(m)
n to be a point in X(m)

n such that
‖φn(ỹ

(m)
n ) − ψn‖ ≤ 3c̄ logn and ‖φn(ỹ

(m)
n ) − φn(x̃

(m)
n )‖ = ρ. Note that this is

possible, because the construction of X(m)
n cuts the precursor X(m)

n−1 only at

the boundary of its intersection with φ−1
n (B3c̄ logn(ψn)). If either x̃

(m)
n−1 or ỹ

(m)
n−1

drops out in this action, it can only be because X(m)
n meets the boundary.
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3. If R
(m)
k ≤ 2c̄ logk for some m ≤ k ≤ n, or σ (m) ≤ n, then x̃

(m)
n = x̃

(m)
n−1 and

ỹ
(m)
n = ỹ

(m)
n−1.

We introduce two other variables:

r̃ (m)
n := R(m)

n ∧ 3c̄ logn

and

s(m)
n := 3c̄ logn − r̃ (m)

n .

We define σ̃ (m) to be the first time n > m such that s
(m)
n > c̄ log n, or σ (m) if that

time occurs first.
For any n < σ̃ (m), the distance ‖φn(x̃

(m)
n ) − ψn‖ is r̃

(m)
n , while R

(m)
n+1 is the

larger of ‖φn+1(x̃
(m)
n ) − ψn+1‖ and ‖φn+1(ỹ

(m)
n ) − ψn+1‖. Since ‖ψn+1 − ψn‖ is

bounded by the constant �,

P
{∣∣R(m)

n+1 − r̃ (m)
n

∣∣≥ λ
∣∣Fn

}
≤ P
{∥∥φn+1(x̃

(m)
n ) − φn(x̃(m)

n )
∥∥+ ∥∥φn+1(ỹ

(m)
n ) − φn(ỹ(m)

n )
∥∥

+ ∥∥ψn+1 − ψn

∥∥≥ λ − ρ
∣∣Fn

}
≤ P
{∥∥φn+1(x̃

(m)
n ) − φn(x̃(m)

n )
∥∥≥ λ − � − ρ

2

∣∣∣Fn

}

+ P
{∥∥φn+1(ỹ

(m)
n ) − φn(ỹ(m)

n )
∥∥≥ λ − � − 2ρ

2

∣∣∣Fn

}
.

By Lemma 2.1,

P
{∣∣R(m)

n+1 − r̃ (m)
n

∣∣≥ λ
∣∣Fn

}≤ 2 · 4d√
π

exp
{
−(λ − � − 2ρ)2

8d2A2

}
.

Thus there are flow-bound constants b̃1 and b̃2 such that

P
{∣∣R(m)

n+1 − r̃ (m)
n

∣∣≥ λ
∣∣Fn

}≤ b̃1e
−b̃2λ ∀λ > 0.(41)

Since ∣∣s(m)
n+1 − s(m)

n

∣∣≤ ∣∣R(m)
n+1 − r̃ (m)

n

∣∣+ 3c̄ log
(

1 + 1

n

)
,

we may find b1 and b2 which satisfy the exponential tail bounds (18) and (20)
for s

(m)
n in place of Xn. The equivalent statement for r

(m)
n is more straightforward.

We may take b1 and b2 to satisfy the tail bounds for both sequences simultaneously.
Using Lemma 2.5, we see that there are positive flow-bound constants c1, c2, c3

and r∗, such that for n < σ (m),

E
[
R

(m)
n+1

∣∣Fn

]≥ r̃ (m)
n + c1 − c31

{
r̃ (m)
n − r(m)

n < 2ρ
}

and

E
[
r

(m)
n+1

∣∣Fn

]≤ r(m)
n − c11{r(m)

n ≥ r∗} + c21{r(m)
n < r∗} + c31

{
r̃ (m)
n − r(m)

n < 2ρ
}
.
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Here we have used the fact that diamφn(X(m)
n ) ≥ r̃

(m)
n − r

(m)
n . [Naively, the

terms r̃
(m)
n and r

(m)
n appear to refer to points in φn(X(m)

n−1). But these extreme points

are the ones which are kept in X(m)
n .] Observe, too, that

s
(m)
n+1 − s(m)

n = 3c̄ log
(

1 + 1

n

)
− (R(m)

n+1 − r̃ (m)
n

)+ (R(m)
n+1 − 3c̄ log(n + 1)

)+
.

By the exponential tail bounds (41), we get

E
[(

R
(m)
n+1 − 3c̄ log(n + 1)

)+ ∣∣Fn

]
≤
∫ ∞

0
P
{
R

(m)
n+1 − r̃ (m)

n > 3c̄ log(n + 1) − r̃ (m)
n + λ |Fn

}
dλ

≤
∫ ∞

3c̄ log(n+1)−r̃
(m)
n

b1e
−b2λ dλ

= b1

b2
exp
{−b2
(
3c̄ log(n + 1) − r̃ (m)

n

)}

≤ b1

b2
exp{−b2s

(m)
n }.

Thus we may also choose the constants c1, c2, c3, and additional flow-bound
constants s∗ and m∗, such that for all m ≥ m∗,

E
[
s
(m)
n+1

∣∣Fn

]≤ s(m)
n − c11{s(m)

n ≥ s∗} + c21{s(m)
n < s∗} + c31

{
r̃ (m)
n − r(m)

n < 2ρ
}
.

If we assume that c̄ > γ −1, where γ = γ (c1, b1, b2), we may apply Lemma 2.7
with Xk = r

(m)
m+k and ξk = c31{r̃ (m)

m+k − r
(m)
m+k < 2ρ} (σ ≡ ∞, N = m and c = c̄),

and again with Xk = s
(m)
m+k , the same ξk , σ = σ (m), and σ (c)(N) = σ̃ (m). Note that

ξk = 0 for k < σ̃ (m), and so

{∃k,m + k < σm < ∞ and ξk > 0
}⊂ {σ̃ (m) < σ (m) < ∞}

and

{
σ (m) = σ̃ (m) < ∞}∪ {∃k,m + k < σ̃m < ∞ and ξk > 0

}⊂ {σ (m) = σ̃ (m) < ∞}.
Bound (27) of Lemma 2.7 may now be applied to each of these sequences,

giving us a constant k such that

P
{
σ (m) < ∞|Fm

}≤ exp{γ r(m)
m }m−γ c̄ + km1−γ c̄

+ P
{
σ̃ (m) < σ (m) < ∞|Fm

}
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and

P
{
σ̃ (m) < ∞|Fm

}≤ exp{γ s(m)
m }m−γ c̄ + km1−γ c̄

+ P
{
σ (m) = σ̃ (m) < ∞|Fm

}
.

Adding these two inequalities yields

P
{
σ (m) < ∞ or σ̃ (m) < ∞|Fm

}≤ (2k + 2) exp
{
γ (r(m)

m ∨ s(m)
m ∨ r∗)

}
m1−γ c̄.

Let Am be the event{
inf

x∈X
‖φm(x) − ψm‖ ≤ r∗ and sup

x∈X
‖φm(x) − ψm‖ ≥ 3c̄ log m

}
.

Then

P
{
σ̃ (m) < ∞|Fm

}≤ (2k + 2) exp{γ r∗}m1−γ c̄ + 1AC
m
.

Thus, conditioning on A∗ = lim supAm, the event that Am occurs infinitely often,

P
{∃m such that σ̃ (m) = ∞|A∗

}= 1

if c̄ > γ −1. By Proposition 3.1, on the event {diam φn(X) → ∞} the diameter
of φn(X) grows linearly, so that eventually supx∈X ‖φm(x) − ψm‖ ≥ 3c̄ logm.
Theorem 3.2 (actually, the discrete-time version, which was proved along the way
to the full theorem) then tells us that P{A∗ | diam φn(X) → ∞} = 1. This means
that on the event {diam φn(X) → ∞} there is almost surely an m such that σ̃ (m)

is infinite.
Observe now that X(m)

n is a nonempty compact set for all m ≤ n. Since

X(m)
m ⊃ X(m)

m+1 ⊃ X(m)
m+2 ⊃ · · · ,

there is a point xm in
⋂∞

n=m X(m)
n . If σ̃ (m) = ∞, this point satisfies

‖φn(xm) − ψn‖ < 3c̄ log n

for all n ≥ m. Thus we have proved the statement of this theorem for integer times.
Now let Bn be the event{∃x ∈ X and t ∈ [0, 1] such that ‖φn(x) − ψn‖ < 3c̄ logn and

‖φn+t (x) − ψn+t‖ > 3(c̄ + ε) log(n + t)
}
.

Let zn = !3c̄
√

d logn"d . We may cover the ball of radius 3c̄ logn around ψ(n)

with zn balls of radius 1. We number these in some arbitrary order, U1, . . . ,Uzn ,
and let

B(i)
n = {∃x ∈ X and t ∈ [0, 1] such that φn(x) ∈ Ui and

‖φn+t (x) − ψn+t‖ > 3(c̄ + ε) log(n + t)
}
.
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If we let ui be the center of Ui , B(i)
n is contained in the union of the events{

sup
0≤t≤1

‖ψ(n + t) − ψ(n)‖ > ε log n

}
,

{
sup

0≤t≤1
‖φn+t (ui) − φn(ui)‖ > ε logn

}

and {
sup

0≤t≤1
diam φτ,τ+t (Ui) > ε logn

}
.

Because of the Lipschitz condition on the path ψ , the first of these has probability 0
for n > e�/ε. By Lemma 2.1, the second event has probability no more than

c4e
−c5(ε logn)2

,

where c4 and c5 are flow-bound constants. By Lemma 2.3 we know that there is
a flow-bound constant K such that the third event is bounded by

K exp
{
− (ε log n)2

9 log3(ε logn)

}

for n > e6/ε.
The probability of Bn is bounded by zn times the sum of these three bounds.

Thus
∑∞

n=1 P(Bn) is finite, implying that almost surely only finitely many of
the Bn occur. The ball of radius 3c̄ log n around ψ(n) eventually stays in the ball
of radius 3(c̄ + ε) log t around ψ(t) for all times t ∈ [n,n + 1]. This includes the
point xm, once it settles into the ball of radius 3c̄ logn around ψ(n). The theorem
then follows for any c∗ larger than 3c̄. �

Acknowledgment. The authors thank an anonymous referee who pointed out
omissions in several of the proofs.

REFERENCES

[1] BASS, R. (1998). Diffusions and Elliptic Operators. Springer, New York.
[2] BAXENDALE, P. and HARRIS, T. E. (1986). Isotropic stochastic flows. Ann. Probab. 14 1155–

1179.
[3] CARMONA, R. and CEROU, F. (1999). Transport by incompressible random velocity fields:

Simulations and mathematical conjectures. In Stochastic Partial Differential Equations:
Six Perspectives (R. Carmona and B. Rozovskii, eds.) 153–181. Amer. Math. Soc.,
Providence, RI.

[4] CRANSTON M., SCHEUTZOW, M. and STEINSALTZ, D. (1999). Linear expansion of isotropic
Brownian flows. Electron. Comm. Probab. 4 91–101.

[5] CRANSTON M., SCHEUTZOW, M. and STEINSALTZ, D. (2000). Linear bounds for stochastic
dispersion. Ann. Probab. 28 1852–1869.



2080 M. SCHEUTZOW AND D. STEINSALTZ

[6] HALL, P. and HEYDE, C. C. (1980). Martingale Limit Theory and Its Application. Academic
Press, New York.

[7] KUNITA, H. (1990). Stochastic Flows and Stochastic Differential Equations. Cambridge Univ.
Press.

[8] LEDOUX, M. and TALAGRAND, M. (1991). Probability in Banach Spaces. Springer, New York.
[9] NEVEU, J. (1975). Discrete-Parameter Martingales. North-Holland, Amsterdam.

[10] VAN DER VAART, A. and WELLNER, J. (1996). Weak Convergence and Empirical Processes.
Springer, New York.

TECHNISCHE UNIVERSITÄT BERLIN

MA 7-5
STR. DES 17. JUNI 136
10623 BERLIN

GERMANY

E-MAIL: ms@math.tu-berlin.de

DEPARTMENT OF STATISTICS

UNIVERSITY OF CALIFORNIA

367 EVANS HALL

BERKELEY, CALIFORNIA 94720
E-MAIL: dstein@demog.berkeley.edu


