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A typical feature of the long time behavior of continuous super-Brownian
motion in a stable catalytic medium is the development of large mass clumps
(or clusters) at spatially rare sites. We describe this phenomenon by means
of a functional limit theorem under renormalization. The limiting process
is a Poisson point field of mass clumps with no spatial motion component
and with infinite variance. The mass of each cluster evolves independently
according to a non-Markovian continuous process trapped at mass zero,
which we describe explicitly by means of a Brownian snake construction in a
random medium. We also determine the survival probability and asymptotic
size of the clumps.
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1. Introduction

1.1. Motivation. Models of particle movement and branching in random
media have been widely studied in the last twenty years. A class which received
particular interest are models of measure-valued processes where, heuristically
speaking, the individual branching rates of the moving particles depend on the
amount of contact between the particle, called the reactant, and a singular random
medium, called the catalyst. In dimension 1 even very thin catalysts, for example,
point catalysts, can be considered. A particularly natural choice of a catalytic
medium are stable random measures � on R of index 0 < γ < 1, which are the
prototypes of a singular catalyst with infinite asymptotic density; see formula (3)
below, and [7], Sections 1.3–1.4, for further motivation for this choice of catalytic
medium. A rather general one-dimensional model combining super-stable motions
of the reactant particles with possibly moving random catalysts, covering the case
of the stable medium � was developed in [7, 8]. For an up-to-date introduction to
catalytic super-Brownian motion, we refer to [10].

Recent research on super-Brownian motion with a stable catalytic medium
has lead to several interesting results; we restrict our attention to the case of a
Brownian moving reactant, which branches with finite variance in the presence of
a nonmoving stable catalyst � in R. In this case, starting from a finite initial mass,
the compact support property was proved in [12], and finite time extinction in [11];
see [18] for a quick route. Already in [7], in the case of an infinite initial measure,
the long-term clumping behavior of the reactant was shown in a mass–time–space
rescaling limit theorem. It states that at a fixed macroscopic time t the suitably
mass–space-rescaled clumps form a random measure with independent increments
(see [7], Theorem 1.9.4). But it could not be settled (see [7], page 251) whether or
not the clumps are macroscopically spatially isolated, that is, whether the limiting
measure is carried by a Poisson point field on R as known in the constant medium
case [6].

The main motivation for the present paper was to attack this problem. We show
that in fact the clumps are isolated; that is, the limiting measure is supported
by a homogeneous Poisson point field [see Theorem 1(ii)]. This is achieved by
a refinement of a method of good and bad historical reactant paths, which was
developed in [11] and goes back to [13, 17, 26].

Beyond this problem, we describe the mass of the rescaled clumps as a process
in macroscopic time. For this purpose we provide a functional limit approach,
Theorem 1(i), which shows convergence of the rescaled processes on a path space
of continuous measure-valued processes. The time evolution of these masses is
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described in terms of exit measures of a Brownian snake in a random medium with
a motion process featuring the inverse of the collision local times of the reactant
paths with the medium [see Theorem 6(ii)]. Whereas the clumps of the original
process have finite variance given the medium, this property is lost in the limit,
a remarkable property conjectured in [7], page 253. In fact, the clump sizes of
the limit have probability tails of index 1 + γ < 2 [see Theorem 11(iii)]. This is
in contrast to the constant medium case studied in [6] and due to some form of
averaging over the stable catalyst, which has locally infinite expectations. We also
determine the (macroscopic) survival probability of clumps [see Theorem 11(ii)].

A main tool for the functional limit theorem is the representation of both the
catalytic super-Brownian motion and the limit process in terms of exit measures
of a Brownian snake in the stable medium �. The use of exit measures and
subordination for the historical particles to describe general branching mechanisms
goes back to [1], though the present paper seems to be the first instance where this
approach is used to deal with the case of space-dependent branching in an irregular
catalytic medium.

Following the circulation of a preprint version of the present paper, Klenke [22]
extended our approach constructing superprocesses with branching rates given by
a large class of (strictly) increasing additive functionals, in terms of a Brownian
snake construction. In a recent work, Dhersin and Serlet [15] use a quite different
approach to construct a modification of the Brownian snake to represent a class of
spatially interacting super-Brownian motion including catalytic super-Brownian
motion in a medium, which is a measure equivalent to Lebesgue measure; the case
of a singular medium � is not covered by their analysis.

Revealing the macroscopically isolated nature of the clumps embeds the present
investigation in the realm of the concept of intermittency. Roughly speaking,
intermittency means in our context that after a long time the catalytic superprocess
exhibits a spatially irregular structure consisting of islands of high mass peaks,
which are located at great distance from each other. See for instance [19, 20] or
[25] for other work in this direction.

1.2. Statement of the main results.

1.2.1. Super-Brownian motion in a stable catalytic medium: preliminaries.
Let M(R) denote the space of all locally finite (nonnegative) measures on R,
equipped with the vague topology generated by the mappings ϕ �→ 〈µ,ϕ〉, for all
ϕ : R→ [0,∞) continuous with compact support. Here and throughout the paper
we use both notations 〈µ,ϕ〉 and

∫
R ϕ dµ to denote integrals. There is a sequence

{ϕn :n≥ 1} of such functions such that

d(µ, ν) :=
∞∑
n=1

2−n
(|〈µ,ϕn〉 − 〈ν,ϕn〉| ∧ 1

)
for µ,ν ∈M(R)(1)

defines a metric, which makes M(R) Polish.
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Define
 to be the set of all continuous functions ϕ : R→ [0,∞) such that there
are constants a, b > 0 (depending on ϕ) with ϕ(x) ≤ a exp(−bx2) for all x ∈ R.
For all measure-valued processes in this paper we choose the state space to be the
space of tempered measures

Mtem :=Mtem(R) := {
µ ∈M(R) : 〈µ,ϕ〉<∞ for all ϕ ∈
}.(2)

Note that in particular the Lebesgue measure � belongs to Mtem. We let
Mtem ⊆M(R) inherit the vague topology of M(R).

Suppose that � is a stable random measure on R of index 0< γ < 1; that is, for
every measurable ϕ : R→ [0,∞) we have

E{exp〈�,−ϕ〉} = exp
(
−
∫

R

ϕ(x)γ dx

)
.(3)

Almost surely, � belongs to Mtem. This follows from the fact that the integral on
the right-hand side of (3) is always finite for ϕ ∈
. Moreover, � is almost surely
a purely atomic measure with atoms densely located in R. Note also that � is
spatially homogeneous and has independent increments.

The measure-valued processes under consideration may be considered as
random variables with values in the space C((0,∞),Mtem) of continuous
functions ν : (0,∞) → Mtem, where for topological reasons it is sometimes
convenient to exclude the time t = 0. We endow this space with the topology of
uniform convergence on compact time intervals, which is induced by the metric

d(µ, ν) :=
∞∑
n=1

2−n sup
1/n≤t≤n

d
(
µ(t), ν(t)

)
for µ,ν ∈C((0,∞),Mtem

)
(4)

and is easily seen to be Polish.
Let X := X[�] := {Xt : t ≥ 0} denote the continuous super-Brownian motion

in R in the catalytic random medium �. Throughout the paper we refer to
probabilities and expectations with respect to the random medium � with letters
P and E, respectively, and to the probabilities and expectations of the process
with given medium � by P� and E� , sometimes with a subscript indicating
the respective starting measure. With this convention, for given �, the process
X = X[�] is the continuous, time-homogeneous Markov process with Laplace
transition functionals

E
�
{
exp〈Xt,−ϕ〉 |Xs = µ}= exp〈µ,−V �t−sϕ〉 for t > s ≥ 0,(5)

where µ ∈ Mtem, ϕ ∈ 
 and V �ϕ = {V �t ϕ(x) : t ≥ 0, x ∈ R} is the unique
nonnegative solution of the equation

V �t ϕ(y)= Stϕ(y)− 2
∫ t

0
ds

∫
R

ps(x − y)[V �t−sϕ(x)]2�(dx)
(6)

for t ≥ 0, y ∈R.
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Here p denotes the standard heat kernel in R, and S = {St : t ≥ 0} the heat flow
semigroup defined by Stϕ(y) = ∫

R pt(x − y)ϕ(x) dx. The nonlinear semigroup
V � = {V �t : t ≥ 0} operates in 
. The interpretation of the process X as a process
whose reactant particles branch at site x ∈R with rate 2�(dx) corresponds to the
fact that, loosely speaking, given �, the function v = V �ϕ solves the symbolic
partial differential equation

∂

∂t
v = 1

2

∂2

∂x2 v − 2�v2 with initial condition v
∣∣
t=0 = ϕ.(7)

Existence and uniqueness of nonnegative solutions V � of (6) were established
in [8], X was constructed as a Markov process in [7], Section 2, and its
continuity follows from [9], Corollary 2, page 257, Proposition 12, page 230, and
Theorem 1(b), page 235, even in a stronger topology. Note also that in the case of a
finite starting measure the total mass process ‖X‖ := {‖Xt‖ : t ≥ 0} is a continuous
martingale [9], Proposition 3, page 236.

Already from the form of the transition functional (5) it is clear that, given �, for
µ1,µ2 ∈Mtem, the process X = X[�] with X0 = µ1 + µ2 can be constructed as
the sum of two (conditionally given �) independent copies of X[�] with X0 =µ1,
respectively X0 = µ2. We frequently refer to this property as the branching
property of the process X.

We stress the fact that we always use a quenched approach in dealing with the
model X = X[�] in the random medium �: First the catalyst � is sampled, and
then the reactant processX[�] is run, given the catalyst �. In particular, the law P�

of the reactant is random, and the randomness is inherited from the distribution P
of �.

1.2.2. Strong clumping of catalytic super-Brownian motion. Recall that γ is
the index of the stable catalyst �. Define the scaling index

η := (γ + 1)/(2γ )(8)

and observe that this number is larger than 1. For every k > 0 we introduce the
renormalized measure-valued process Xk =Xk[�] = {Xkt : t ≥ 0} by

Xkt (B) := k−ηXkt (kηB) for B ⊆R Borel, t ≥ 0.(9)

The next theorem summarizes the results on the limiting behavior of Xk obtained
before the present paper.

THEOREM 0 (Results of [7], Theorem 1.9.4).

(i) (Convergence). Starting X = X[�] in the Lebesgue measure X0 = �,
for every fixed t there is a random variable X∞t defined on some probability
space (!,A,P�) such that, in P-probability, the following weak convergence of
probability measures on Mtem holds:

lim
k↑∞P

�
� {Xkt ∈ · } = P�{X∞t ∈ · }.(10)
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(ii) (Characterization of the limit). For every bounded, measurable function
ϕ : R→[0,∞) let

U�ϕ = {U�
r ϕ(x) : r ≥ 0, x ∈R

}
(11)

be the nonnegative solution of the equation

U�
r ϕ(y)= Srϕ(y)− 2

∫ r

0
ds

∫
R

ps(x − y)[U�
r−sϕ(x)

]2
�(dx)

(12)
for r ≥ 0, y ∈R,

which is constructed in [8], Theorem 2.14. Then the Laplace functional of X∞t
satisfies

E�
{
exp

(−θX∞t (A))}= exp
(−�(A)EU�

t θ(0)
)

(13)
for A⊆R Borel, θ ≥ 0.

(iii) (Properties of the limit). P�-almost surely, X∞t is nondegenerate, homo-
geneous and has independent increments. Moreover, the scaling procedure is per-
sistent in the sense that E�X∞t = �.

The important feature of this result is that the nondegenerate limit is obtained
by a different, stronger scaling than in the classical case of a constant medium [6];
hence the qualitative nature of the clumping behavior is different.

Crucial questions about the spatial structure of the limit measures X∞t were
left open in [7]. A question of particular interest in this realm was posed in [7],
page 251: The problem is whether or not the X∞t are compound Poisson point
fields on R; that is, whether on the macroscopic level the clumps are spatially
separated. Our first main result answers this question in the affirmative. Our
second aim in this paper is to give a full description of the spatial and temporal
evolution of the field of clumps at a macroscopic level. This requires, as a first
step, a functional limit theorem. This question was not investigated in [7] and is
particularly interesting, as the limit process turns out to be non-Markovian and
continuous. Here is the precise statement.

THEOREM 1 (Main result). Let X be the continuous super-Brownian motion
in the stable random medium � started with X0 = �, and Xk = Xk[�] =
{Xkt : t > 0}, for k > 0, the renormalized processes defined in (9).

(i) (Functional limit theorem). In P-probability, the random laws of the
renormalized processes Xk[�] converge weakly on the function space
C((0,∞),Mtem) as k ↑ ∞ to the deterministic law of a limit process X∞ =
{X∞t : t > 0} defined on some probability space (!,A,P�). The limit process is
started in X∞0 = �.
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(ii) (Compound Poisson structure). For each time t > 0, the state X∞t of the
limit process of part (i) is a compound Poisson point field, that is, a random
discrete measure on R with atoms located in the points of a Poisson point
field and with independent identically distributed atomic weights. The temporal
development of X∞ is non-Markovian and as follows: almost surely, the atoms do
not move in space, no new atoms are born, but each atom dies in finite time.

REMARK 2 (The role of t = 0). If Z = {Zt : t > 0} is a random variable in
C((0,∞),Mtem), and Z0 a random variable in Mtem, we say that Z is started
in Z0, if Zε converges to Z0 in law, as ε ↓ 0. In the functional limit theorem
we get convergence of the processes Xk started in Xk0 = � (to X∞ started in
X∞0 = �). This requirement can be relaxed slightly but not completely omitted (see
Remark 17). Nevertheless it is possible to construct the process X∞ canonically
for any starting measureX∞0 =µ ∈Mtem (see Theorem 6 or Corollary 10), leaving
open the question of sample path continuity of X∞ at time t = 0. Moreover,
part (ii) of Theorem 1 holds for the process X∞ started in any measure X∞0 =
µ ∈Mtem.

REMARK 3 (Loss of the Markov property in the limit). Already from the
Laplace transform (13) it is clear that the law of X∞t is deterministic. Whereas
the conditioned law of Xt , given �, is determined by solutions of the log-Laplace
equation (7) for the given �, the law of the limit X∞t is described only by an
expectation of certain log-Laplace equation solutions. In this sense, in the limiting
model the random medium is “averaged.” The finite-dimensional distributions of
X∞ (see Corollary 10) are determined by an expectation of iterates of solutions
to (7). But this expectation operation destroys the nonlinear semigroup property
of solutions to (7) (given �). As a consequence, X∞ is not a Markov process
although it keeps the branching property, in the sense discussed in the paragraph
after (7).

Less formally, whereas the future motion and branching behavior of an intrinsic
reactant particle of X depend only on its present position relative to the catalyst,
in the scaling limit the situation changes drastically. By the strong contraction of
space, the information about the relative position of a particle to the medium is
getting lost in the limit and only some averaged features of � remain, which are
not sufficient for a Markovian evolution of the limiting reactant. However, it is
possible to construct a Markovian process on a larger state space, including both
microscopic and macroscopic space information, from which the process X∞ can
be recovered by projection. See Remark 9 for more details.

REMARK 4 (Continuous limit process). Note that convergence in our func-
tional limit theorem holds in the sense of weak convergence of laws on the space
C((0,∞),Mtem) of continuous Mtem(R)-valued paths. In particular, the limit
process X∞ is continuous on (0,∞) as well.
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1.2.3. The crossing property. An interesting path property of the unscaled
process X, which enters in the proof of the functional limit theorem and may be
of independent interest, is the following crossing property, which is reminiscent of
the compact support property investigated in [12]. For the precise formulation,
denote by �(a,b) for a, b ∈ R ∪ {−∞,∞}, a < b, the restriction of Lebesgue
measure � on R to the open interval (a, b). We show that for the catalytic super-
Brownian motion X started with �(0,∞) the amount of total mass at a time which
has travelled across the origin to the nonpositive halfline is bounded in time.

THEOREM 5 (Crossing property). Suppose that {Xt : t ≥ 0} is the catalytic
super-Brownian motion in the stable medium � starting from X0 = �(0,∞). Then,
for P-almost every �,

sup
t≥0

Xt
(
(−∞,0])<∞ P

�-almost surely.(14)

1.2.4. Snake representations of X and X∞. As a further major tool in the
proof of Theorem 1 we construct representations of both the original process X
and the limiting process X∞ in terms of exit measures of a Brownian snake in the
stable medium �. This makes the limit process explicit and permits a comparison
of the two processesX and X∞. As this is also of independent interest, we present
the results here.

The idea of using the Brownian snake to represent classical super-Brownian
motion is due to Le Gall and has since been generalized to various other types
of superprocesses. Bertoin, Le Gall and Le Jan have extended this technique to
represent superprocesses with more general, but not space-dependent, branching
mechanisms. Roughly speaking, they use individual time changes for each particle,
which allow passing from one branching mechanism to a different one by
subordination on the particle level. References are [23, 24] for the first explicit
snake construction and [1] for the extension.

In the present paper we extend this idea to our particular case of a space-
dependent branching mechanism: recall that in rough terms the branching rate at
site x is given by 2�(dx). To formulate the result we briefly introduce the basic
notation of the Brownian snake w = w[�] in our random medium case, and its
excursion measures N�

(0,x), both in the quenched situation of a fixed sample � of
the random medium. More details can be found in Section 2.1.

To describe our approach, let us first look at a generic reactant particle, which
moves along a Brownian path W = {W(t) : t ≥ 0} in R until its death, when it
is frozen into its current position. Of course, the motion process could as well be
described by the two-dimensional Markov process t �→ (t,W(t)) with phase space
D := [0,∞)×R. The branching of the reactant particle, however, is governed by
its collision local time L[�,W ] with the medium �, defined by

L[�,W ](r)=
∫

R

�(dy)Ly(r) for r ≥ 0,(15)
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where r �→ Ly(r) is the continuous local time of W at level y ∈ R. L[�,W ]
is a (homogeneous, nondecreasing) continuous additive functional of Brownian
motion W . As the positions of the atoms of � are dense in R, it is easy to see that
L[�,W ] is (strictly) increasing. Moreover, L[�,W ](r) ↑∞ almost surely as r ↑∞.

We use the continuous inverse function L−1
[�,W ] : [0,∞)→ [0,∞) of L[�,W ] to

introduce a new time scale for the reactant particle on which its collision local
time grows linearly. More precisely, instead of t �→ (t,W(t)) we define a time-
homogeneous continuous Markov process ξ := ξ [�] := {ξr : r ≥ 0} with values in
D = [0,∞)×R by

ξr := (L−1
[�,W ](r), W ◦L−1

[�,W ](r)
)

for r ≥ 0,(16)

with W started in x (recall that � is a fixed sample). The first component of this
process can be interpreted as the new individual clock of the Brownian reactant
particle, travelling in the fixed medium �, and the second component as its position
along the new time scale. For all t > 0, define the first exit time

τt := τt (ξ) := inf
{
r > 0 : ξr /∈ [0, t)×R

}
(17)

of the path ξ from the domain Dt := [0, t) × R. At time τt the process ξ is in
the state (t,W(t)), and the reactant particle has accumulated the collision local
time

L[�,W ](t)= τt(18)

and is placed in W(t). Less formally, a single generic reactant particle of Xt is
represented by a path ξ stopped at the random time τt (instead of W stopped at t).

The Brownian snake can be interpreted as a natural parametrization of the
collection of all reactant particles in the range of X, where each particle is
represented by a stopped path. For this purpose, define the set of stopped paths
by

P := {f ∈ C([0,∞),D) : there exists ζ ≥ 0
(19) with f (r)= f (ζ ) for all r ≥ ζ }.

With every f ∈P we can associate the lifetime ζ = ζ(f ), which is the minimal
ζ ≥ 0 such that the path f is constant on [ζ,∞). We equip P with the metric d,
defined as follows: For f, f̃ ∈P let ζ, ζ̃ be the associated lifetimes and let

d(f, f̃ ) := |f (0)− f̃ (0)| + |ζ − ζ̃ |
(20)

+
∫ ζ∧ζ̃

0

(
sup
r∈[0,u]

|f (r)− f̃ (r)| ∧ 1
)
du.

The Brownian snakew =w[�] rooted in (0, x) ∈D with motion process ξ = ξ [�]
is a certain continuous strong Markov process w : [0,∞)→P whose state space
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FIG. 1. Erasing the path ws1 to renew it to ws2 .

is the set of all stopped paths f ∈ P with f (0) = (0, x). Brownian snakes with
general Markov processes as motion process were constructed in [1].

With every P-valued Markov process we can associate the lifetime process
ζ : [0,∞) → [0,∞) defined by ζs := ζ(ws). For the Brownian snake w, the
lifetime process ζ is by definition a reflected Brownian motion. Moreover, given ζ ,
two paths ws1 and ws2 , s1 < s2, agree up to time m :=mins∈[s1,s2] ζs , and the two
continuations {ws1(m+ r) : 0 ≤ r ≤ ζs1 −m} and {ws2(m+ r) : 0 ≤ r ≤ ζs2 −m}
with fixed starting point ws1(m) = ws2(m) are independent (see also Figure 1).
Heuristically, if m= 0 the particles represented by ws1 and ws2 belong to different
families, whereas if m> 0 and s ∈ [s1, s2] satisfies ζs =m, the path ws represents
the last common ancestor of ws1 and ws2 .

The constant path f ∈ P given by f (r) = (0, x) for all r ≥ 0 is a regular
recurrent point for the Markov process w. Indeed, this follows immediately from
the fact that the lifetime process ζ(w) is a reflected Brownian motion. Hence we
can define N�

(0,x) to be the suitably normalized excursion measure of the Brownian
snake w from the constant path f = (0, x); see, for example, [3] for the excursion
theory of Markov processes. Every sample of such an excursion from (0, x) is a
continuous path-valued function w : [0, σ ]→P for some finite σ = σ(w) > 0, the
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length of the excursion, such that w0 =wσ is the constant path remaining at (0, x),
and ws is not constant, for each s ∈ (0, σ ). Then N�

(0,x) is a σ -finite measure on
the set

W := ⋃
σ>0

C([0, σ ],P)(21)

of path-valued functions. Although it is stretching the usual terminology a bit, we
use the words “sample” and “process” also in the case of underlying nonprobability
measures such as N�

(0,x).
With each excursion w : [0, σ ]→P we can again associate the lifetime process

ζ : [0, σ ] → [0,∞) by letting ζs := ζ(ws), which under N�
(0,x) is a Brownian

excursion from 0. Heuristically, an excursion w represents the whole family tree
created by a reactant particle, which at time 0 was located at x.

Following [1] or [16], we can define, for every t > 0, exit local time at
level t (from our original time scale) of an excursion w ∈ W as the process
Lt :=Lt [w] := {Lts : s ∈ [0, σ ]} such that

Lts := lim
ε↓0

1

ε

∫ s

0
1{τt (wu)<ζu<τt (wu)+ε} du for 0≤ s ≤ σ,(22)

N�
(0,x)-almost surely, where τt was defined in (17). The total exit local time at level

t > 0 of an excursion w is Ltσ [w] := Ltσ [w][w]. Note that the measure associated
with the monotone function s �→Lts[w] is supported by those s where τt (ws)= ζs
and recall that exactly those paths ws represent particles of Xt . The exit measure
at level t > 0 is the measure Zt :=Zt [w] on ∂Dt := {t} ×R defined by

〈Zt [w], ϕ〉 :=
∫ σ

0
ϕ(ws(ζs))L

t
ds for ϕ : ∂Dt→[0,∞) measurable,(23)

where the integral is a Stieltjes integral with respect to the nondecreasing function
s �→ Lts[w]. Slightly abusing notation, for fixed t > 0, we can identify ∂Dt =
{t} × R with R; that is, we can consider Zt [w] and ϕ as a measure, respectively
a function, on R. Such identifications will often be used in the following. The
measure Zt [w] can be interpreted as the spatial distribution of the descendants
at time t of a reactant particle, which at time 0 was located as x. The quantity
Ltσ [w] describes the mass of the totally produced reactant progeny of this particle
at time t .

We now have the means to describe both X and X∞ in terms of the excursion
measures N�

(0,x). In the case of a measure µ ∈ Mtem different from Lebesgue
measure, (27) below should be understood as the natural definition of X∞ with
X∞0 = µ, defined on a probability space (!,A,Pµ).
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THEOREM 6 (Snake representations). Let µ ∈Mtem be an arbitrary starting
measure.

(i) (Representation ofX). Given �, let 3=3[�] be a Poisson point field on
the space W×R with intensity measure π = π [�] defined by

π(dwdx) :=
∫

R

N
�
(0,y)(dw)⊗ δy(dx)µ(dy).(24)

Then, for P-almost all �, the superprocess X = X[�] with X0 = µ can be
represented as

〈Xt,ϕ〉 =
∫
W×R

〈Zt [w], ϕ〉3(dwdx),(25)

for all t > 0 and ϕ : R→[0,∞) measurable.
(ii) (Representation of X∞). Let 3∞ be a Poisson point field on W×R with

intensity measure

π∞(dw dx) :=
(∫

Mtem

N
ϒ
(0,0)(dw)P(dϒ)

)
⊗µ(dx).(26)

Then the limit process X∞ with X∞0 =µ has the representation

〈X∞t , ϕ〉 =
∫
W×R

Ltσ [w]ϕ(x)3∞(dw dx),(27)

for all t > 0 and ϕ : R→[0,∞) measurable.

To get a feeling for the representations in Theorem 6, recall from the discussion
preceding the theorem that the offspring generated by a single initial particle
initially at position x ∈ R and catalyzed by the fixed medium � is described by
the process {Zt [w] : t ≥ 0} under the measure N�

(0,x)(dw). Hence (25) is just the
representation of {Xt : t ≥ 0} as the Poissonian sum of the individual families. In
fact, it is well known from the Lévy–Hincin formula that the decomposition of
the infinitely divisible random measureXt under P�µ into families yields a Poisson
field. Note that only the marginal measures3(dw×R) enter in the representation
(25). We have included the space coordinate into the definition of the Poisson
point field 3 just in order to simplify a comparison of the intensity measures (24)
and (26).

Furthermore, again recalling the previous discussion, the total mass of the
offspring generated by a single initial particle initially at position x ∈ R and
catalyzed by a randomly sampled medium ϒ with law P is described by the
process {Ltσ [w] : t ≥ 0} under the annealed measure ENϒ

(0,x)(dw). Hence the
representation (27) decomposesX∞ into a Poissonian sum of families, each family
remains in the position of its ancestor at time t = 0 and has a mass evolving
according to {Ltσ [w] : t ≥ 0} under ENϒ

(0,x)(dw).
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The snake representations enable us to make a comparison of X and X∞,
and, moreover, draw a revealing heuristic picture of the limit process X∞. For
both processes, mass is initially spread on R according to µ. In the case of the
original process X, starting from each infinitesimal small mass point µ(dx) a
potential family of reactant particles is evolving, whereas in the case of the limit
process X∞ at each infinitesimal small mass point µ(dx) a potential macroscopic
clump can be created. After an arbitrarily small, positive amount of time locally
only finitely many families survive in X, and, similarly, after an arbitrarily small,
positive amount of macroscopic time locally only finitely many macroscopic
clumps survive in X∞. The further development of the total mass of the offspring
progeny of any reactant particle in X or of any macroscopic clump in X∞ is in
both cases governed by the laws of t �→Ltσ [w] under the excursion measure.

There are however a number of significant differences:

1. In X each particle family uses the excursion measures N�
(0,x) for the same given

sample � (though around different places x). The clumps of X∞, however, are
based on the samples w of the measure E Nϒ

(0,0)(dw) which is independent of
the position x of the clump and of the medium sample �. For each individual
clump the sample w is in fact the result of a two-stage experiment: first, ϒ is
sampled with the law P of the stable medium, and then w is sampled according
to the law Nϒ

(0,0)(dw).
2. Whereas the reactant particle families of X have a spatial spread and their

motion component is visible, this is not the case with the clumps of X∞.
Macroscopic clumps are mass points, which remain at their original spatial
position, only their mass is variable. Indeed, whereas the full measure
Zt [w] enters into the representation (25) of Xt , only Ltσ [w] enters into the
representation (27) of X∞t , and the spatial structure of Zt [w] is suppressed.
This in particular leads to the loss of the Markov property in the limit process
X∞. Heuristically speaking, the clumps have a hidden microlife, governing the
branching behavior, but invisible from the outside, since the excursion measure
Nϒ
(0,0) in the random medium ϒ is used in the annealed sense E Nϒ

(0,0) only.
This microlife can be made explicit; see Remark 9.

REMARK 7 (Continuous versions of Z[w] and Lσ [w]). As the process X
has a continuous version, there is a continuous version of the process Z[w] :=
{Zt [w] : t > 0} of exit measures as well. We may henceforth assume that Z[w]
under N�

(0,x) is this continuous version. Similarly, from the continuity of the total
mass process ‖X‖ in the case of a finite starting measure, we can see that also the
process Lσ [w] := {Ltσ [w] : t > 0} has a continuous version, which we henceforth
use.

REMARK 8 (A finiteness property). From the representation (27) it can be
seen easily that X∞ has the compound Poisson structure stated in Theorem 1(ii) if
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and only if ∫
Mtem

N
ϒ
(0,0)

{
w :Ltσ [w]> 0

}
P(dϒ) <∞ for t > 0.(28)

This finiteness property of π∞ implies that after an arbitrarily small, positive
amount t of macroscopic time, locally only finitely many macroscopic clumps
exist. Moreover, together with the continuity of t �→ Ltσ [w], it also implies the
continuity of X∞ in the representation (27).

REMARK 9 (A Markovian process). As announced in Remark 3, one can
obtain the process X∞ by projection from a Markov process X̃∞ with state space
M(R2). Here the first component of (x, y) ∈ R2 serves as the macroscopic space
component and the second as the microscopic one. More precisely, for ν ∈M(R2)

let 3̃∞(dw dx) be a Poisson point field on W×R with intensity measure

π̃∞(dw dx) :=
∫

R

∫
Mtem

N
ϒ
(0,y)(dw)P(dϒ)ν(dx dy).(29)

Let X̃∞0 := ν and, for t > 0 and measurable ϕ : R2→[0,∞), define

〈X̃∞t , ϕ〉 :=
∫
W×R

∫
ϕ(x, y)Zt [w](dy)3̃∞(dw dx).(30)

The process X̃∞ = {X̃∞t : t ≥ 0} is Markovian. This can be checked by using
the special Markov property of the Brownian snake with an argument similar to
the proof given in equations (44)–(46). In order to recover the process X∞ with
initial measure µ ∈Mtem(R), run the process X̃∞ with starting point µ⊗ δ0 and
obtain X∞t as the first component marginal of X̃∞t .

From the snake representation (27) of the limit process X∞, we easily get the
Laplace functionals of its finite-dimensional marginals—of course, the result is
consistent with the representation of the one-dimensional marginals mentioned
already in (13).

COROLLARY 10 (Finite-dimensional distributions). The finite-dimensional
marginals of the limit process X∞ with initial measure X∞0 = µ ∈ Mtem are
determined by

Eµ

{
exp

(
−

n∑
i=1

〈X∞ti , ϕi〉
)}

(31)

= exp
(
−
∫

R

EU�
t1,...,tn

[ϕ1(x), . . . , ϕn(x)](0)µ(dx)
)
,

for 0 ≤ t1 ≤ · · · ≤ tn and measurable ϕ1, . . . , ϕn : R→ [0,∞) for n ≥ 1. Here
U�
t1
[a1] := U�

t1
a1 is taken from (12) with constant function ϕ = a1 ≥ 0, and
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U�
t1,...,tn

[a1, . . . , an] is defined inductively; for n≥ 2,

U�
t1,...,tn

[a1, . . . , an] =U�
t1

[
a1+U�

t2−t1,...,tn−t1[a2, . . . , an]],(32)

for all 0≤ t1 ≤ · · · ≤ tn and a1, . . . , an ≥ 0.

1.2.5. Further properties of the limit process. To round out the picture of the
limit model X∞ we describe the major indices related to the survival probability
and the tail behavior of the mass clumps on the macroscopic level. Recall the index
γ ∈ (0,1) of our stable medium �, and the scaling index η introduced in (8).

THEOREM 11 (Properties of the limit process). Run the limit processX∞ with
initial measure �.

(i) (Self-similarity). X∞ satisfies, for every k > 0,

X∞t (B)= k−ηX∞kt (kηB) in distribution, for t ≥ 0 and B ⊆R Borel.

(ii) (Survival probability). The ratio of the intensities λ(t) and λ(s) of the
Poisson point fields carrying the (nonzero) clumps at various macroscopic times
t > s > 0, respectively, satisfies

λ(s)/λ(t)= (t/s)η.
Hence, denoting by s(t)ג the mass at the macroscopic time t of a clump at time s,
the survival probability of s(t)ג is given by

P�{גs(t) > 0} = (s/t)η for all t > s > 0.

Moreover, we have, for all t > s > 0,

tג (t)= (t/s)ηגs(s) in distribution.

(iii) (Clump size tails). The tail behavior of the clump size tג (t) is governed
by

P�{גt (t) > a} ≈ tη(γ+1)a−γ−1 as a ↑∞.
Here ≈ means that the ratio of the quantities involved is bounded away from zero
and infinity as a ↑∞ by constants independent of t > 0.

REMARK 12 (Index of self-similarity). In [21] the process L[W,�] =
{L[W,�](t) : t ≥ 0} is studied under the joint law of the independent pair (W,�).
The process is shown to be the functional limit of a random walk in random
scenery. Moreover, L[W,�] is self-similar with the index η we encounter in Theo-
rem 11(i).

REMARK 13 (Infinite variance). It is quite remarkable that the clump size is
heavy-tailed; in particular it has infinite variance. The latter fact was conjectured
in [7], Section 1.14.
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REMARK 14 (Open problem). Note that the intensity λ(t) of the carrying
Poisson point field at time t > 0 occurring in (ii) is positive and finite, but it is
an open problem to determine its exact value.

1.3. Outline of the paper. Here we indicate the further structure of the paper,
give a guideline to where various parts of the proofs can be found and briefly
review the main methods of proof.

Section 2 is devoted to those aspects of the paper related to the Brownian
snake construction in a random medium. In Section 2.1 we establish the Brownian
snake representation of super-Brownian motion X in the catalytic medium �

[Theorem 6(i)]. Section 2.2 contains the proofs of the Laplace functionals in
Corollary 10 and the description of X∞ in Theorem 1(ii), which both rely on the
definition of X∞ in terms of its snake representation [Theorem 6(ii)]. Both snake
representations are used in Section 2.3, together with Birkhoff’s individual ergodic
theorem, to prove the functional limit theorem. The proof also relies on two further
steps of independent interest, whose proofs are deferred to Section 3: the finiteness
property (28), and the crossing property, Theorem 5.

Section 3 concerns the aspects of proof related to the method of good and bad
paths. In Sections 3.1 and 3.2 we formulate a quantitative extension of this method.
The key step is to give an upper bound on the survival probability of the catalytic
super-Brownian motion X with a finite starting measure in terms of a quantitative
characteristic of the random medium �. This is then applied in Section 3.3 to prove
the crossing property, Theorem 5, and in 3.4 to verify the finiteness statement (28)
and thus derive the compound Poisson structure of the limit processX∞. We would
also like to point out that our approach to the method of good and bad paths
(other than the approach of [11]) does not rely on the compact support property
of catalytic super-Brownian motion established in [12] and conversely seems to be
a good starting point for an independent, new probabilistic proof of the compact
support property.

Section 4 deals with the more analytical proof techniques. We first investigate
the time evolution of the mass of the clumps in our limit model. The calculations of
the Poisson intensities and survival probabilities stated in Theorem 11 exploit the
natural scaling invariance of the limit process together with the Poisson carrier
structure; see Section 4.1. The calculation of the tail behavior in Theorem 11
is based on a Feynman–Kac representation of the solutions of the log-Laplace
equation (6), provided in Section 4.2 and a simple version of the Tauberian theorem
of Bingham and Doney ([2], Theorem 8.16).

2. The Brownian snake approach in the case of a catalytic medium. In
this section we prove the snake representations, Theorem 6 and the functional limit
theorem, Theorem 1(i).
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2.1. The Brownian snake representation of catalytic super-Brownian motion.
We now formalize the construction of the Brownian snake and verify the snake
representation of X, Theorem 6(i). As announced, we first take a fixed sample
of the catalytic medium �. Recall that L−1

[�,W ] denotes the inverse function of the
collision local time L[�,W ] of a Brownian path W with �, which was introduced
in (15).

The continuous time-homogeneous Markov process ξ = {ξr : r ≥ 0} on D =
[0,∞)×R with starting point (a, x) ∈D is defined by

ξr = (
a+L−1

[�,W ](r),W ◦L−1
[�,W ](r)

)
for r ≥ 0,(33)

where W is a Brownian motion in R started from x ∈R. Let P(a,x) denote the law
of ξ started at time r = 0 at (a, x) and, for b ≥ 0, denote by P b(a,x) the law of the
related stopped paths {ξr∧b : r ≥ 0}.

We now define the Brownian snake with motion process ξ , following the
construction of the Brownian snake for an arbitrary continuous Markovian motion
process in [24].

Consider a stopped path f ∈P with lifetime ζ(f ) > 0 and such that f (0) =
(0, x) as introduced around (20). If 0≤ a ≤ ζ(f ) and b≥ a we define Qa,b(f, df̃ )

to be the unique probability measure on P such that:

1. Qa,b(f, df̃ )-almost surely f̃ (r)= f (r), for all r ∈ [0, a].
2. The law under Qa,b(f, df̃ ) of {f̃ (a+ r) : r ≥ 0} is the law of {ξr : r ≥ 0} under
P b−af (a) .

This transition can be thought of as follows. From its endpoint ζ(f ), the path f
is erased backwards in its original time until the absolute time a, and then renewed
according to the random motion process ξ , but stopped at the absolute time b. In
particular, Q0,b(f, df̃ )= P b(0,x)(df̃ ).

The parameters a, b entering into the transition laws Qa,b are used to control
erasing and renewal of the paths. In snake constructions, these parameters are
determined continuously by a stochastic process, for the Brownian snake this
role is played by a reflected Brownian motion. To be more precise, for r, s ≥ 0,
denote by ϑrs (da db) the joint distribution of the pair (mins̃∈[0,s] |Bs̃ |, |Bs |), where
B = {Bt : t ≥ 0} is a Brownian motion on R with B0 = r . Note that ϑrs {(a, b) ∈
[0, r] × [0,∞) :a ≤ b} ≡ 1.

The Brownian snake with motion process ξ and root (0, x) is defined to be
the time-homogeneous continuous strong Markov process w = {ws : s ≥ 0} whose
transition kernels are given by

Qs(f, df̃ )=
∫ ∞

0

∫ ∞
0

ϑζ(f )s (da db)Qa,b(f, df̃ )

(34)
for s ≥ 0 and f ∈P with f (0)= (0, x)
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(see [1], Proposition 5). Recall that the lifetime process ζ = {ζs : s ≥ 0} is defined
by ζs = ζ(ws). Under the law of w determined by the transition kernels Qs , s ≥ 0,
the lifetime process ζ is by construction a reflected Brownian motion with initial
state ζ0 = ζ(w0).

To interpret the dynamics of the snake w, observe that if s1 < s2 the path ws2
is obtained from ws1 by erasing from its endpoint ζs1 down to the absolute time
m := mins∈[s1,s2] ζs , and adding an independent tip of time length ζs2 − m at the
end. Figure 1 tries to show this. The pathsws1 and ws2 , which are stopped versions
of ξ , have to be identical on the time interval [0,m], but to be independent on the
intervals [m,ζs1 ] and [m,ζs2], respectively, except for the common starting point
ws1(m) = ws2(m). In particular, if m = 0, a new path is created, starting again
from (0, x). In this case the paths do not have a common part, which means that
the reactant particles they represent do not have a common ancestor. This can also
interpreted in the sense that the excursions from (0, x) of the Markov process w
correspond to different families of particles.

To be more precise, note that the constant path (0, x) is a regular recurrent
point of the Markov process w. Denote by N�

(0,x) the excursion measure of w
from this path, which is a σ -finite measure on the space W defined in (21).
Under N�

(0,x) every excursion w : [0, σ ] → P has a finite length σ(w) = σ > 0.
Again we can associate with every excursion w: [0, σ ] → P a lifetime process
ζ(w) := ζ := {ζs : s ∈ [0, σ ]}. Observe that under the measure N�

(0,x) the process ζ

is a Brownian excursion of length σ , hence ζs > 0 on (0, σ ). As usual, N�
(0,x) is

normalized such that

N
�
(0,x)

{
sup

s∈[0,σ ]
ζs > ε

}
= 1

2ε
.(35)

At this point it is worth looking back at the definition of the intensity measures
π = π [�] and π∞ in (24) and (26), respectively, and noting that (35) implies that
both are in fact σ -finite measures, as needed for the definition of the Poisson point
fields.

PROOF OF THEOREM 6(i). Recall that a sample � is fixed. For each measure
µ ∈Mtem we consider a Poisson point field 3 with intensity measure π as in (24),
defined on a probability space (!,A,P�µ). We have to verify that the process X
defined on this space by (25) is indeed a catalytic super-Brownian motion in the
medium �, with initial state X0 = µ.

Recall the function space 
 introduced before (2). For ϕ ∈
, t > 0 and x ∈R,
using µ= δx , let

Utϕ(x) := − log E�δx {exp〈Xt,−ϕ〉}.(36)

It suffices to verify the following two points:

(a) Uϕ := {Utϕ(x) : t > 0, x ∈R} solves equation (6).
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(b) For all 0≤ h < t and ϕ ∈
,

E�µ
{
exp〈Xt,−ϕ〉

∣∣Xυ,υ ≤ h}= exp〈Xh,−Ut−hϕ〉.(37)

Fix ϕ ∈
 and t > 0 for the remaining proof. In order to give the proof of (a)
we need some more facts concerning the exit measures Zt [w] of (23) under the
excursion measures N�

(0,x) (see [1], Proposition 6). For x ∈ R and 0 ≤ s < t ,
define

ut(s, x) :=
∫
W

N
�
(0,x)(dw)(1− exp〈Zt−s[w],−ϕ〉),(38)

where we identified ∂Dt−s = {t − s}×R with R. Recalling that P(0,x) denotes the
law of ξ with ξ0 = (0, x), this ut satisfies the equation

ut(0, x)=E(0,x){ϕ(ξτt )1{τt<∞}}− 2E(0,x)

{∫ τt

0
[ut(ξs)]2 ds

}
(39)

for x ∈R,

with τt = τt (ξ) from (17), using ξτt ∈ ∂Dt = {t} ×R and again the identification
of ∂Dt and R. On the other hand, by the Laplace functional formula for Poisson
point fields, from the definitions (36) and (25) we have

Utϕ(x)=
∫
W

N
�
(0,x)(dw)(1− exp〈Zt [w],−ϕ〉).(40)

Consequently, ut(s, x)=Ut−sϕ(x). Then (39) shows that

Utϕ(x)=E(0,x){ϕ(ξτt )1{τt<∞}}− 2E(0,x)

{∫ τt

0
[ut(ξs)]2 ds

}
.(41)

Recalling that ξ with law P(0,x) can by definition be expressed by a Brownian
motion W starting at time 0 from x, whose law we denote by P0,x , and that at
time τt =L[�,W ](t) the process ξ is in the state (t,W(t)), which is identified with
W(t), the identity in (41) can be rewritten as

Utϕ(x)= E0,x
{
ϕ(W(t))

}
(42)

− 2E0,x

{∫ L[�,W ](t)

0

[
U
t−L−1

[�,W ](s)
ϕ
(
W ◦L−1

[�,W ](s)
)]2
ds

}
.

We now substitute s for L−1
[�,W ](s) in the second term. Thus

Utϕ(x)= E0,x
{
ϕ(W(t))

}− 2E0,x

{∫ t

0

[
Ut−sϕ(W(s))

]2
dL[�,W ](s)

}
,(43)

hence Uϕ solves (6) and we have proved (a).
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For the proof of (b) we reformulate the statement equivalently in terms of
Laplace functionals: For all 0< t1 < · · ·< tn+1 and ϕ1, . . . , ϕn+1 ∈
,n≥ 1,

E�µ

{
exp

(
n+1∑
j=1

〈Xtj ,−ϕj 〉
)}

(44)

= E�µ

{
exp

(
n∑
j=1

〈Xtj ,−ϕj 〉 + 〈Xtn,−Utn+1−tnϕn+1〉
)}
.

The main tool for the proof is the special Markov property of the exit measures
Zt [w]; see, for example, [1], Proposition 7. In our particular situation it states that,
for all x ∈R, 0< t1 < · · ·< tn+1 and ϕ1, . . . , ϕn+1 ∈
, n≥ 1, for N�

(0,x)-almost
all w,

N
�
(0,x)

{
exp

[
n+1∑
j=1

〈Ztj ,−ϕj 〉
]
− 1

∣∣∣∣∣Ztj =Ztj [w], 1≤ j ≤ n
}

= exp

[
n∑
j=1

〈Ztj [w],−ϕj 〉 −
∫

R

Ztn [w](dz)(45)

×
∫
W

N
�
(0,z)(dv)

(
1− exp〈Ztn+1−tn [v],−ϕn+1〉)

]
− 1.

Recalling the formula for the Laplace functionals of Poisson point fields we obtain
from definition (25) of X, using the special Markov property (45) in the second
step, (40) and again definition (25) in the final step,

E�µ

{
exp

(
n+1∑
j=1

〈Xtj ,−ϕj 〉
)}

= exp

[∫
R

µ(dx)

∫
W

N
�
(0,x)(dw)

{
exp

(
n+1∑
j=1

〈Ztj [w],−ϕj 〉
)
− 1

}]

= exp

[∫
R

µ(dx)

∫
W

N
�
(0,x)(dw)

(46)

×
{

exp

(
n∑
j=1

〈Ztj [w],−ϕj 〉 −
∫

R

Ztn [w](dz)
∫
W

N
�
(0,z)(dv)

× (1− exp〈Ztn+1−tn [v],−ϕn+1〉)
)
− 1

}]

= E�µ

{
exp

(
n∑
j=1

〈Xtj ,−ϕj 〉 + 〈Xtn,−Utn+1−tnϕn+1〉
)}
.

This finishes the proof of (b), and thus completes the proof of Theorem 6(i). �
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2.2. The Brownian snake representation of the limit process. We now assume
that an arbitrary starting measure µ ∈ Mtem is fixed and a Poisson point
field 3∞ with intensity measure π∞ as in (26) is defined on a probability
space (!,A,Pµ). Recall from (35) that π∞ is σ -finite and hence the Poisson
point field is well defined. We define the process X∞ on this space by (27).
In this subsection we show that this process has the properties claimed in
Theorem 1(ii) and Corollary 10. The proof uses (28), which is shown in
Section 3.4, and (57) which is proved in Section 4.1 below. The proof of the
convergenceXk→X∞ is deferred to Section 2.3, which then completes the proof
of Theorem 6(ii).

PROOF OF COROLLARY 10. Let µ, t1, . . . , tn and ϕ1, . . . , ϕn as in the
corollary. By definition (27) of X∞, recalling the formula for the Laplace
functional of a Poisson point field,

Eµ

{
exp

(
−

n∑
i=1

〈X∞ti , ϕi〉
)}

= Eµ

{
exp

(
−
∫
W×R

n∑
i=1

Ltiσ [w]ϕi(x)3∞(dw dx)
)}

(47)

= exp

(∫
R

∫
Mtem

∫
W

(
exp

(
−

n∑
i=1

Ltiσ [w]ϕi(x)
)
− 1

)

×N
ϒ
(0,0)(dw)P(dϒ)µ(dx)

)
.

The total mass process of {Xt : t ≥ 0} started in a finite measure X0 = ν has, as is
easily seen by induction using (5), the Laplace transform

E
�
ν

{
exp

(
−

n∑
i=1

ci‖Xti‖
)}
= exp

(
−
∫

R

U�
t1,...,tn

[c1, . . . , cn](z)ν(dz)
)

(48)

with U�
t1,...,tn

[c1, . . . , cn] from (32). On the other hand, by the snake representation
(25) of X, this Laplace transform can also be written as

E
�
ν

{
exp

(
−

n∑
i=1

ci‖Xti‖
)}

(49)

= exp

(∫
R

∫
W

(
exp

(
−

n∑
i=1

ciL
ti
σ [w]

)
− 1

)
N
�
(0,x)(dw)ν(dx)

)
.
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Comparing (48) and (49) as well as taking expectations with respect to the
medium �,

E
∫

R

∫
W

(
exp

(
−

n∑
i=1

ciL
ti
σ [w]

)
− 1

)
N
�
(0,x)(dw)ν(dx)

(50)

=−
∫

R

EU�
t1,...,tn

[c1, . . . , cn](z)ν(dz).

Specializing to ν = δ0 gives

∫
Mtem

∫
W

(
exp

(
−

n∑
i=1

ciL
ti
σ [w]

)
− 1

)
N
ϒ
(0,0)(dw)P(dϒ)

(51)

=−EU�
t1,...,tn

[c1, . . . , cn](0).
Plugging this into (47) yields the formula stated in Corollary 10. �

PROOF OF THEOREM 1(ii). We still allow an arbitrary starting measure µ
(cf. Remark 2). From the definition (27) of X∞ in terms of the Poisson point field
3∞ it is clear that, for every t > 0, the measure X∞t is supported by the points of
a Poisson point field on R with intensity measure(∫

Mtem

N
ϒ
(0,0)

{
w :Ltσ [w]> 0

}
P(dϒ)

)
µ(dx).(52)

By the finiteness property (28), the factor in front of the measure µ(dx) is finite,
say c > 0. Moreover, the masses of the atoms at these locations are independent
with common distribution

1

c

∫
Mtem

N
ϒ
(0,0)

{
Ltσ [w] ∈ · ; Ltσ [w]> 0

}
P(dϒ).(53)

This establishes the compound Poisson property.
Suppose that I ⊆ R is a bounded interval and that t > 0. Again by (28), Pµ-

almost surely, the point field3∞ restricted to the set
{
(w,x) ∈W×I :Ltσ [w]> 0}

is supported by finitely many points in W× I , say

(w1, x1), . . . , (wn, xn) with x1 ≤ · · · ≤ xn.(54)

For every s ≥ t , the measure X∞s is supported by the set {xi : 1 ≤ i ≤ n,
Lsσ [wi] > 0}. Hence atoms cannot move in space. To show that no new atoms
can be born it would suffice to show that zero is an absorbing state for the
process s �→ Lsσ [wi]. However, it is easier to argue via the Laplace transform of
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Corollary 10. Indeed, for all s, t > 0,

Pµ
{
X∞t (I )= 0

}= lim
θ↑∞exp

(−µ(I)EU�
t θ (0)

)

= lim
θ↑∞exp

(−µ(I)EU�
t [θ +U�

s θ](0)
)

(55)

= Pµ
{
X∞t (I )= 0 and X∞t+s (I )= 0

}
since 0≤U�

s θ ≤ θ and by monotonicity. This shows that zero is an absorbing state
for t �→X∞t (I ) and hence also for t �→ Ltσ [w].

Finally, for the proof that macroscopic clumps have almost surely finite
lifetimes, it suffices to show that, for every bounded interval I ,

lim
t→∞Pµ

{
X∞t (I )= 0

}= lim
t→∞ lim

θ↑∞exp
(−µ(I)EU�

t θ(0)
)= 1.(56)

This does not depend on the starting measure µ, so that we can assume µ = �.
Now recall the definition of the clump sizes s(t)ג introduced in Theorem 11(ii). In
Section 4.1 below we show that

P�{גs(t) > 0} = (s/t)η for t > s > 0,(57)

which is clearly stronger than (56). �

2.3. The functional limit theorem. In this section we prove the weak conver-
gence in P-probability of the random distributions of Xk[�], as k ↑∞, which was
claimed in Theorem 1(i). For this purpose we r escale the catalytic medium, but
with a different spatial scaling, namely

�k( · ) := k1/(2γ )�
( ·/√k ) for k > 0.(58)

However, note that by self-similarity the rescaled stable medium �k has the same
distribution as �. Our strategy is to look at the distributions of the renormalized
process Xk[�k] = {Xkt [�k] : t ≥ 0} with changing medium �k (instead of �), and
show, using the representation of Theorem 6(i), that the random distributions
of Xk[�k] converge weakly, P-almost surely(!). This clearly implies weak
convergence in P-probability of the random distributions of the rescaled processes
Xk[�] in the unscaled medium.

We start by looking at the case of the constant test function ϕ ≡ 1, that is, at the
total mass process t �→ ‖Xkt ‖, and start X with the restricted Lebesgue measure,
Xk0 = �(a,b) for a < b real. The following proposition is the core of our proof of
the functional limit theorem. We equip the space C((0,∞),R) with the Polish
topology of uniform convergence on compact intervals, which matches the earlier
definition of the topology on C((0,∞),Mtem).
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PROPOSITION 15 (Total mass process). Fix real numbers a < b.

(i) (Convergence). P-almost surely, the random laws of the renormalized total
mass processes ‖Xk[�k]‖ = {‖Xkt [�k]‖ : t > 0} with Xk0[�k] = �(a,b) converge
weakly on the path space C((0,∞),R) as k ↑ ∞ to the deterministic law of a
limit process X∞(a, b)= {X∞t (a, b) : t > 0}.

(ii) (Identification of the limit). Let 3∞a,b be a Poisson point field on W with
intensity measure

π∞a,b(dw) := (b− a)
∫
Mtem

N
ϒ
(0,0)(dw)P(dϒ).

Then the limit process satisfies

X∞t (a, b)=
∫
W

Ltσ [w]3∞a,b(dw) for t > 0.(59)

PROOF. Fix a < b. To begin with, we infer from the normalization condition
(35) that π∞a,b is σ -finite and hence the Poisson point field 3∞a,b is well defined.
In accordance with (27), we can thus assume that the process X∞(a, b) :=
{X∞t (a, b) : t > 0} is defined by (59), and our aim is to show that P-almost surely
the processes ‖Xk[�k]‖ with Xk0[�k] = �(a,b) converge in law on C((0,∞),R) to
X∞(a, b) as k ↑∞.

The first step is to derive a representation of ‖Xk[�k]‖ as a k-independent
functional of a Poisson point field, with k-dependent intensity measure. To do this,
fix k > 0 and the medium sample � throughout the first step. From the Brownian
snake representation of Theorem 6(i) we infer that

∥∥Xkt [�k]∥∥= k−η
∫
W

Lktσ [w]3(dw) for t > 0,(60)

where 3 = 3[�k] is a Poisson point field on W with intensity measure∫ kηb
kηa N�k

(0,x) dx. As the total exit local time Lkt [w] of a snake excursion w does
not depend on the second component of the motion process ξ , we can equivalently
use the intensity measure ∫ kηb

kηa
N
T x�k

(0,0) dx.(61)

We claim that the distributions of {k−ηLktσ [w] : t > 0} under NT x�k

(0,0) and of

{Ltσ [w] : t > 0} under k−ηNT x/
√
k�

(0,0) coincide.
Indeed, a Brownian scaling of time and space yields for the collision local times

the following identity in law:

L[�k,x+W ](kt)= kηL[�,x/√k+Wk](t) for t > 0,(62)
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where Wk is defined by Wk
t = (1/

√
k )Wtk , for t ≥ 0. We now define a scaling

W→W mapping w to wk in such a way that:

1. The lifetime process ζ k of wk is given by r �→ ζ kr = k−ηζk2ηr .
2. The motion process of wk is ξk given as

r �→ ξkr =
(
L−1
[�,x/√k+Wk](r),W

k ◦L−1
[�,x/√k+Wk](r)

)
.(63)

Hence, ifw has the distribution NT x�k

(0,0) , thenwk has the distribution k−ηNT x/
√
k�

(0,0) .

Note that σ(wk) = k−2ησ (w) is the length of the excursion wk . For the stopping
times τt we obtain from the formula lines (62), (63) and (18) the relation

τkt (wu)= kητt(wkk−2ηu

)
for all u ∈ [0, σ ], t > 0, w ∈W.(64)

Looking at the total exit local times Lktσ(w)[w] and using (22) and (64) and

substitutions v = k−2ηu and δ = k−ηε gives, for all t > 0,

Lktσ(w)[w] = lim
ε↓0

1

ε

∫ σ

0
1{τkt (wu)<ζu<τkt (wu)+ε} du

= lim
ε↓0

1

ε

∫ σ

0
1{kητt (wk

k−2ηu
)<ζu<kητt (w

k

k−2ηu
)+ε} du

(65)

= k2η lim
ε↓0

1

ε

∫ k−2ησ

0
1{τt (wkv)<k−ηζ(k2ηv)<τt (wkv)+k−ηε} dv

= kη lim
δ↓0

1

δ

∫ σ(wk)

0
1{τt (wkv)<ζ k(v)<τt (wkv)+δ} dv = kηLtσ(wk)[wk].

Hence, the claim formulated after (61) is proved.
From (60) and this claim we get the representation

∥∥Xkt [�k]∥∥=
∫
W

Ltσ [w]3k
a,b(dw) for t > 0,(66)

where 3k
a,b =3k

a,b[�] is a Poisson point field on W with intensity measure

πka,b = πka,b[�] := k−η
∫ kηb

kηa
N
T x/

√
k�

(0,0) dx = k−ρ
∫ kρb

kρa
N
T x�
(0,0) dx,(67)

with ρ := η− 1/2> 0. This finishes the first step in the proof.
Comparing (59) and (66) we note that ‖Xk[�k]‖ and the right-hand side in (59)

are defined by the same functional of a Poisson point field on W, of course with
different intensity measures.

To do the second step in the proof and show that P-almost surely the processes
‖Xk[�k]‖ converge in law on C((0,∞),R) to X∞(a, b), one has to verify, by
definition of the topology on C((0,∞),R), that for every compact set I ⊂ (0,∞),
P-almost surely, the processes {‖Xkt [�k]‖ : t ∈ I } converge in law on the space
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C(I,R) with the uniform topology to {X∞t (a, b) : t ∈ I }. Clearly, it suffices to
show this for compact sets of the form I = [1/n,n], so fix an arbitrary positive
integer n.

Abbreviate Cn := C([1/n,n],R), and, for w ∈ W, let Ln[w] ∈ Cn denote
the function defined by Ln[w](s) := Lsσ [w] for all s ∈ [1/n,n]. By Birkhoff’s
individual ergodic theorem applied to the group of spatial shifts acting ergodically
on the stable random measure � we obtain, for each measurable F :Cn→ [0,∞),
P-almost surely,

lim
k↑∞k

−ρ
∫ kρb

kρa

∫
W

F(Ln[w])NT x�
(0,0)(dw)dx

(68)

= (b− a)
∫
Mtem

P(dϒ)
∫
W

F(Ln[w])Nϒ
(0,0)(dw).

Define random measures µk on Cn by

µk(B) := k−ρ
∫ kρb

kρa

∫
W

1B\{0}(Ln[w])NT x�
(0,0)(dw)dx

(69)
for B ⊆Cn Borel.

Define, similarly, a measure µ on Cn by

µ(B) := (b− a)
∫
Mtem

P(dϒ)
∫
W

1B\{0}(Ln[w])Nϒ
(0,0)(dw)

(70)
for B ⊆Cn Borel.

Note that, by (28), µk and µ are finite measures since we did not allow them to
have mass at the zero function in Cn.

As the spaceCn is Polish, there is a countable family {Fm :Cn→[0,∞) :m≥ 1}
of continuous and bounded functions, which are convergence determining for the
weak convergence of finite measures on Cn. This fact together with (68) implies
that P-almost surely the measures µk converge weakly to the measure µ on Cn.

Equations (66) and (67) together state that ‖Xk[�k]‖n := {‖Xkt [�k]‖ : t ∈
[1/n,n]} is equal in law to the sum of all functions in Cn in the support of a Poisson
point field with intensity measure µk . By the finiteness of µ and elementary
properties of Poisson point fields we infer that P-almost surely this sum converges
in distribution to the sum of all functions in the support of a Poisson point field in
Cn with intensity measure µ. In other words, P-almost surely, in distribution on
the space Cn with the topology of uniform convergence,

lim
k↑∞‖X

k[�k]‖n = lim
k↑∞

∫
W

Ln[w]3k
a,b(dw)=

∫
W

Ln[w]3∞a,b(dw).(71)

This finishes the proof of the second step and thus proves statements (i) and (ii) in
the proposition. �
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Now we return to the scaled processes Xk = Xk[�] based on the unscaled
medium �. In order to be able to deal with the real-valued processes t �→Xkt (a, b),
started in X0 = �, we use the crossing property, Theorem 5 (which is proved in
Section 3) to derive the following corollary.

COROLLARY 16 (No mass transport on macroscopic scales). Let (a, b) be
a bounded interval and consider the rescaled processes {Xkt : t > 0} with Xk0 =
�(−∞,a) or Xk0 = �(b,∞). Then, in P-probability, the processes {Xkt (a, b) : t > 0}
converge in distribution on C((0,∞),R) to the zero function as k ↑∞.

PROOF. By translation and (if needed) reflection, we see that it is sufficient to
show that, in P-probability, the processes{

Xkt (a− b,0) : t > 0
}

for X0 = �(0,∞),(72)

converge in distribution on C((0,∞),R) to the zero function. Now observe that

sup
t≥0

Xkt (a − b,0)= sup
t≥0

k−ηXkt
(
kη(a − b),0)

(73)
≤ k−η sup

t≥0
Xt(−∞,0] →

k↑∞0,

P�-almost surely, for P-almost all �, by Theorem 5. This completes the proof. �

We now have the means to complete the proof of Theorem 1 subject to the proof
of the crossing property, Theorem 5, the finite mass property (28), and (57). We
start the process X in X0 = � and show the convergence in the sense claimed in
Theorem 1(i) of the rescaled processesXk to the processX∞ defined by (27) with
starting measure X∞0 = �.

Let a < b again. Given �, by the branching property, {Xkt (a, b) : t ≥ 0} is
the sum of independent processes started in Xk0 = �(a,b), �(b,∞) and �(−∞,a),
respectively. Combining the total mass convergence, Proposition 15(i), and
Corollary 16 we see that, in P-probability, the processes {Xkt (a, b) : t ≥ 0} converge
in distribution on C((0,∞),R) to the limit process {X∞t (a, b) : t ≥ 0}, which is
described in Proposition 15(ii) and coincides, of course, with the limit process
X∞ applied to the interval (a, b).

It remains to lift the result from the indicator functions 1(a,b) to any continuous
function ϕ: R→[0,∞) with bounded support, say, contained in (a, b). Let δ > 0.
We choose step functions (i.e., linear combinations of indicator functions on
bounded, open intervals) g,h: (a, b)→ [0,∞) with h≤ ϕ ≤ g and ‖g−h‖∞ < δ.
Then, for all positive integers n,

sup
1/n≤t≤n

〈Xkt , h〉 ≤ sup
1/n≤t≤n

〈Xkt , ϕ〉 ≤ sup
1/n≤t≤n

〈Xkt , g〉.(74)
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In P-probability, the left- and right-hand side as well as sup1/n≤t≤n〈Xkt , g − h〉
converge in distribution as k ↑∞ to

sup
1/n≤t≤n

〈X∞t , h〉 ≤ sup
1/n≤t≤n

〈X∞t , g〉 and

(75)
sup

1/n≤t≤n
〈X∞t , g − h〉, respectively.

Moreover, the latter term is bounded by δ sup1/n≤t≤n X∞t (a, b). As, by Propo-
sition 15(i), the process X∞(a, b) has almost surely continuous paths, this can
be made arbitrarily small by choice of δ. Recalling the definition (1) of the
metric on M(R), we see that this implies convergence of the processes Xk on
C
(
(0,∞),M(R)). But the states of the limit process are again in Mtem, because

E�〈X∞t , ϕ〉 = 〈�,ϕ〉<∞ for all ϕ ∈
 and t > 0;(76)

recall Theorem 0(iii), and path continuity. This finishes the proof of Theo-
rem 1(i). �

REMARK 17 (Other starting measures). It is possible to start the process X
with k-dependent initial measures X0 = µ(k) on R such that Xk0 ≡µ, where µ is a
sufficiently diffuse measure in Mtem. For example it is sufficient to require that µ
has a continuous density g with the property that, for some constants a, b≥ 0,

lim
x↑∞

∫ ∞
x
|g(y)− a|dy = lim

x↓−∞

∫ x

−∞
|g(y)− b|dy = 0.(77)

To show this, observe that one can extend the proof of convergence easily from
the case Xk0 = � to Xk0 = �(a,b). By uniform approximation from above and below
one can then get convergence for all starting measures satisfying (77). However,
the functional limit law does not hold without any condition for the scaled initial
measure Xk0 =µ. Starting, for example, with the counting measure Xk0 ≡

∑
z∈Z δz

does not lead to a limit process X∞ with deterministic law.

3. The method of good and bad paths. In Sections 3.1 and 3.2 we formulate
a quantitative approach to the method of good and bad paths extending a recent
result of [11]. The main result of this part, Theorem 22, enables us to prove
the crossing property of Theorem 5, in Section 3.3, and the compound Poisson
property of Theorem 1(ii), in Section 3.4.

3.1. Regularity of the catalytic medium. In this subsection we introduce a
characteristic quantityN(�), which measures the regularity of any sample medium
� of the catalyst. This is used in Section 3.2, to formulate an upper bound on the
survival probability of the superprocess X =X[�] at a Brownian stopping time.

For every n≥ 1 and purely atomic measure µ we denote by πn[µ] ⊆R the set
of spatial positions of the atoms of µ whose weights are in [2−n,2−n+1). For our
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stable random measure � of index 0 < γ < 1 the set πn[�] is the support of a
homogeneous Poisson point field on R with intensity

an := cγ 2γ n where cγ := 1− 2−γ

γ
∫∞

0 ((1− e−r)/r1+γ ) dr
;(78)

see, for example, [8].

DEFINITION 18 (p-perfect medium). Fix a value β ∈ (0, γ log 2) once and for
all.

(i) For any positive integer n and positive real k, we denote by A(n, k)

the event that all connected components of [−k, k] \ πn[�] are shorter than
In := e−βn.

(ii) For an integer p ≥ 1, a purely atomic measure J ∈Mtem(R) is called a
p-perfect medium if all connected components of R \ πp[J] are shorter than Ip .

Note that stable measures � are almost surely not p-perfect, for any integer
p ≥ 1. But we see in Remark 20 below that, for any fixed bounded window, almost
surely there exists a p such that, for all n ≥ p, the measure � agrees with an n-
perfect medium on this window. This fact allows us sometimes to study particles in
a fixed perfect medium instead of a stable medium, making use of the high degree
of regularity a perfect medium has.

We now study the event A(n, k) where the window size k depends on n. More
precisely, assume that {k(n) :n ≥ 1} is an increasing sequence of positive reals
with log logk(n)= o(n) as n ↑∞. Then distances larger then In occur only with
an exponentially small probability.

LEMMA 19 (Large gaps in πn[�]). Let L = γ log 2− β > 0. Then there are
constants c, d > 0 such that, for every N ≥ 1,

P
{
there is an n≥N such that A(n, k(n)) fails

}≤ c exp(−deLN).(79)

REMARK 20 (p-perfect medium). By the Borel–Cantelli lemma one can see
that for a stable measure � there is a (random) integer N such that A(n, k(n))
holds for every n ≥ N . Suppose that a bounded interval I is given, then there
exists p ≥ N with I ⊂ [−k(n), k(n)] for all n ≥ p, hence � agrees with an n-
perfect medium J on the set I . In particular, for a Brownian particle W which
does not leave I , we have L[�,W ] =L[J,W ].

PROOF OF LEMMA 19. We adapt results of [11], page 634. Write J (n) for
the number of points in (−1/2,1/2)∩ πn[�]. Denote by x0 := −1/2 and by x1 <

x2 < · · · the points in (−1/2,∞) ∩ πn[�]. Define the distances yk := xk − xk−1
for k ≥ 1.
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From [11], Section 5.2, we quote that there are constants c1, c2 > 0 such that

P
{

max
1≤i≤J (n)+1

yi > e
−βn

}
≤ c1 e

nγ log 2 exp(−c2 e
Ln).(80)

Estimate (80) is proved in the following way. Recall that an = cγ 2γ n and note that
y1, y2, . . . are an i.i.d. sequence of exponential random variables with parameter
an. A tail estimate for the maximum of exponential distributions taken from
extreme value theory gives; see [11], (164)–(167), that, for suitable constants
c,C > 0,

P
{

max
1≤i≤2an

yi > e
−βn}≤ C enγ log 2 exp(−c eLn).(81)

As J (n) has a Poisson distribution with parameter an, a standard large-deviation
estimate for J (n); see [11], (162), yields, for a constant k > 0,

P
{
J (n)+ 1> 2an

}≤ exp
(−kenγ log 2).(82)

Now

P
{

max
1≤i≤J (n)+1

yi > e
−βn}≤ P

{
max

1≤i≤2an
yi > e

−βn
}
+ P

{
J (n)+ 1> 2an

}
.(83)

As L < γ log 2, the term (81) dominates in the sum and one obtains (80).
From this we infer that, for some c3, c4 > 0,

P
{
A(n,1/2) fails

}≤ c3 exp(−c4 e
Ln).(84)

This probability is invariant under shifts of the interval (−1/2,1/2) and thus, by
taking the union of the events, we obtain for some c5, c6 > 0, and all n≥ 1,

P
{
A(n, k(n)) fails

}≤ c3k(n) exp(−c4 e
Ln)≤ c5 exp(−c6 e

Ln).(85)

Finally, we take the union of the complements of the events A(n, k(n)) over all
n≥N and find a suitable c and d := c6, such that (79) holds. �

From now on we specialize to

k(n) := exp exp
√
n for n≥ 1.(86)

DEFINITION 21 (Characteristic N(�)). Define the characteristic N(�) of a
medium sample � by

N(�) :=min
{
N ≥ 1 :A(n, k(n)) holds for all n≥N}.(87)

Using the Borel–Cantelli lemma and Lemma 19, one can see that N(�) is a well
defined integer, P-almost surely.

Consequently, from the level N(�) = n on, in our rapidly increasing window
(−k(n), k(n)), neighboring �-atoms of weight about 2−n have at most a distance
In. We consider samples� with smallN(�) as smooth samples. Later in the paper
they allow sharper estimates on the survival probabilities of the super-Brownian
motions they catalyze.



2020 D. A. DAWSON, K. FLEISCHMANN AND P. MÖRTERS

3.2. An upper bound on the survival probability. In this subsection we
determine an upper bound on the survival probability of super-Brownian motion
in a fixed catalytic medium sample � with characteristic N(�) at certain stopping
times. The approach taken here is similar to the key technique of [11]; in particular
we also work in a historical setting and use a decomposition into good and bad
reactant paths, but we have to make a more quantitative approach. Moreover, our
argument does not rely on the compact support property of X[�] from [12]. The
most crucial point is that we work out explicitly how the upper bound of the
survival probability depends on N(�).

The terminology “good” and “bad” is motivated by the fact, that we want to
have enough killing of the reactant to verify that not too much reactant mass
crosses to the left (Theorem 5) or that the macroscopic reactant clumps get isolated
[Theorem 1(ii)]. Loosely speaking, a reactant path is good if it has sufficiently
much contact with the catalyst to collect enough branching rate. All this has now
to be made precise.

For further development, we presuppose the reader is familiar with basic
ideas and the formalism of historical catalytic super-Brownian motion. Here
we closely follow the presentation of [11]. Denote by Y = Y [�] = {Yt : t ≥ 0}
the historical super-Brownian motion in the catalytic medium � with starting
measure µ ∈Mtem defined on a probability space (!,G, P̃�µ). At the same time
we use, for any Brownian stopping time T , Dynkin’s stopped measure YT and
the pre-T σ -field G(T ) for the historical superprocess as introduced in [16] and
reviewed in [11], Section 3.2. Denote by Pr,x the distribution of a Brownian
path W = {Ws : s ≥ r} started at time r at Wr = x. Note that the collision local
time L[�,W ](ds) is well defined also for Brownian paths W distributed according
to Pr,x .

It might be useful to indicate here briefly the formalism of the historical setting
leading to Y and the meaning of a stopped measure YT ; for a detailed study we
recommend [13] and [16].

Recall that Xt(dx) is a measure on R which measures the population mass at
time t at site x. Thinking of an approximation of X by branching particle systems,
to each infinitesimal particle ofXt(dx), there is an ancestor at time 0, and the mass
transport along subsequent branchings followed a continuous path W from 0 to t .
The idea of the historical process is to represent the infinitesimal particle at time t
not only by its position, but by this path. In order to define all the states Yt , t ≥ 0,
of the historical process on a common space,W is considered as a continuous path
defined on [0,∞) but stopped at time t . Thus, Yt is a measure on the set of paths
which is supported by the paths stopped at time t . The medium � does not play
a role at this stage since it influences the branching only but not the migration of
surviving mass. Of course, the different paths W in the support of Yt are coupled,
expressing family relations of the population at time t .

If T = T [W ] is a stopping time on the (filtered) space of continuous paths
W : [0,∞)→ R. Then YT is a measure on the paths W stopped at time T <∞.
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Note that in a branching particle system approximation of X and Y , it makes
immediately sense to stop all the particles’ evolution, if along their ancestry path
lines the stopping time T is reached. We stress the fact that T is a stopping time
for the underlying motion process, Brownian motion in our case, and not for the
historical superprocess Y .

Let I be an interval, T a stopping time as above and denote

W(I, T ) := {
W : [0,∞)→R continuous :W(0) ∈ I and T [W ]<∞}

.(88)

We introduce two formal hypotheses, H1 and H2, on an increasing sequence
Tn ↑ T of stopping times of W with T0 = 0. Suppose a positive integer p, a
sequence of positive thresholds ln and small reals ε1, ε2 > 0 are given. For
every nonnegative integer n and purely atomic measure J ∈Mtem define the set
B(n)= B(n)[J] of bad paths for the mediumJ on the time interval [Tn,Tn+1] as
the set of paths W ∈W(I, Tn+1) satisfying∫ Tn+1

Tn

L[J,W ](ds) < ln.(89)

Recall the definition of the sequence k(n) from (86).

HYPOTHESIS H1 . The sequence of stopping times satisfies Hypothesis
H1(p, ε1) if

∞∑
n=0

2n+1P0,x

{
sup

Tn≤s≤Tn+1<∞
|Ws |> k(n+ p)

}
≤ ε1 for all x ∈ I.(90)

HYPOTHESIS H2 . The sequence of stopping times satisfies Hypothesis
H2(p, l·, ε2) if there exists a sequence of positive reals bn such that

∞∑
n=0

bn ≤ ε2,(91)

and, for every n≥ 0 and (n+ p)-perfect medium J, we have

PTn,W(Tn)

{
W̃ ∈B(n)[J]}≤ bn for W ∈W(I, Tn).(92)

Roughly speaking, H1(p, ε1) is satisfied if Brownian motion starting from x

leaves the window (−k(n + p), k(n + p)) during [Tn,Tn+1] only with a very
small probability. This ensures that, for p ≥N(�) the pathW spends a sufficiently
large time in a region where the stable medium � agrees with an (n+ p)-perfect
medium. On the other hand, H2(p, l·, ε2) holds, if the probability that the collision
local time accumulated in the periods [Tn,Tn+1] in an (n + p)-perfect medium
exceeds the threshold ln is sufficiently high.
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Here is the announced result on the survival probability.

THEOREM 22 (Upper bound on survival probability). Fix 0 < ε < 1 and a
probability measure µ supported by a compact interval I . Put T0 = 0 and suppose
that Tn ↑ T is a sequence of stopping times. Assume further there are nonnegative
integers m and d and a sequence of thresholds ln > 0 such that

∞∑
n=0

2−m−n

ln
≤ ε

3
,(93)

and the Hypotheses H1
(
m+d, ε/3) and H2(m+d, l·, ε/6) are satisfied. Then, for

P-almost every � with N(�)≤m and for the stopped measure YT = YT [�] for the
process starting from Y0 = 2−mµ, we have

P̃
�
2−mµ{YT $= 0} ≤ ε.(94)

This relatively abstract result provides, loosely speaking, the upper bound for
the survival of Y at a Brownian stopping time T , which enters as a key tool in
the proof of the crossing property (see Section 3.3) and the compound Poisson
property (see Section 3.4). In these applications, checking Hypotheses H1 and H2
amounts to estimating from above the probability that a single particle is bad. To
get a feeling for the versatility of the result we just mention here that the stopping
time T we use is the first hitting time of the origin by a Brownian motion started
at some x ∈ (0,∞) in the case of the crossing property, and T is a deterministic
finite time in the case of the compound Poisson property.

The remainder of this subsection is devoted to the proof of Theorem 22. We
work with a fixed catalyst sample � with characteristicN =N(�)≤m and use the
notation from the theorem, additionally abbreviatingMn := 2−m−n for the fixedm.
We start with a simple lemma taken from [11], Section 3.4.

LEMMA 23 (Extinction by partitioning). Define events An := {‖YTn‖ ≤Mn}
and A :=⋂∞

n=1An. Then, for every ν ∈Mtem(R), we have P̃�ν -almost surely on A
that YT = 0.

PROOF. By Markov’s inequality, for each n≥ 1 and arbitrary ζ > 0,

P̃
�
ν

({‖YT ‖> ζ } ∩A)≤ ζ−1
Ẽ
�
ν

{
1An‖YT ‖

}
(95)

and, by the special Markov property for historical superprocesses and criticality,

Ẽ
�
ν

{
1An‖YT ‖

}= Ẽ
�
ν

{
1AnẼ

�
YTn
{‖YT ‖}}= Ẽ

�
ν

{
1An‖YTn‖

}≤Mn.(96)

As n was arbitrary, we infer that

P̃
�
ν

({‖YT ‖> ζ } ∩A)= 0,(97)

and as ζ can be made arbitrarily small, we get the statement. �
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Formally, define the set E(n) = E(n)[�] of good paths on the interval
[Tn,Tn+1] with respect to the medium � as the set of paths W ∈ W(I, Tn+1),
which are not bad, that is, where inequality (89) fails. For the good paths we use
the comparison with the survival probability in Feller’s branching diffusion from
[11], Proposition 12.

LEMMA 24 (Comparison with Feller’s branching diffusion). For all n ≥ 0,
and every ν in Mtem(R), we have, for P-almost every �,

P̃
�
ν

{
YTn+1(E(n)) > 0

∣∣G(Tn)}≤ ‖YTn‖
ln

.(98)

This lemma takes care of the good paths; it is not too likely that good paths
survive. It remains to verify that the probability of survival of bad paths is
also sufficiently small. To show this we use Hypotheses H1(m + d, ε/3) and
H2(m+ d, l·, ε/6) as in the theorem. There are two possible reasons, why a path
could be bad on [Tn,Tn+1] for the medium �, namely the occurrence of one of the
following two disjoint events.

1. Event B1(n): the set of paths W ∈W(I, Tn+1), that leave the space interval
[−k(d +n+m), k(d+n+m)] during [Tn,Tn+1] and thus enter an area where
we have no control over the catalytic atoms.

2. Event B2(n): the set of paths W ∈ W(I, Tn+1), that stay inside the interval
[−k(d + n+m), k(d + n+m)] but for which the collision local time L[�,W ]
accumulated during [Tn,Tn+1] is below the threshold ln.

Note that in case of event B2(n), if m ≥ N(�), the path stays in a window,
where the medium � coincides with an (n+m+ d)-perfect medium J. It is clear
that we have the decompositions

suppYTn+1 ⊆ E(n)∪B(n) and B(n)⊆ B1(n)∪B2(n),(99)

where supp indicates the closed support of a measure. The following lemma
provides estimates for the extinction probability of the bad paths. We still use
notation from Theorem 22.

LEMMA 25 (Mass of bad paths). Under the conditions of Theorem 22, for
P-almost every � with N(�)≤m, and ν = 2−mµ,

(i)
∞∑
n=0

P̃
�
ν

{
YTn+1(B1(n))≥Mn+1

}≤ ε

3
,

(ii)
∞∑
n=0

P̃
�
ν

{
YTn+1(B2(n))≥Mn+1

∣∣‖YTn‖ ≤Mn

}≤ ε

3
.
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PROOF. (i) From Markov’s inequality, the expectation formula for super-
processes, and (90), we infer

∞∑
n=0

P̃
�
ν

{
YTn+1(B1(n))≥Mn+1

}

≤
∞∑
n=0

M−1
n+1Ẽ

�
ν

{
YTn+1(B1(n))

}
(100)

=
∞∑
n=0

M−1
n+12−m

∫
R

P0,x

{
sup

Tn≤s≤Tn+1<∞
|Ws |> k(d + n+m)

}
µ(dx)

≤ ε

3
,

which is (i).
(ii) The proof of (ii) is based on the expectation formula for the historical mass

on a set B of stopped paths W̃ : [0, Tn+1]→ R with Tn+1[W̃ ]<∞. If B depends
only on {W̃ (s) : s ≥ Tn}, we have

Ẽ
�
ν

{
YTn+1(B)

∣∣YTn}=
∫

R

PTn,W(Tn){W̃ ∈B}YTn(dW),(101)

see, for example, [11], (37). Note that every path W̃ /∈ B1(n) spends the time
[Tn,Tn+1] inside a compact interval in which the medium � coincides with an
(n + m + d)-perfect medium Jn. Hence we can use the bound in (92) together
with Markov’s inequality, the special Markov property and the expectation formula
(101) to see that

∞∑
n=0

P̃
�
ν

{
YTn+1(B2(n))≥Mn+1

∣∣‖YTn‖ ≤Mn

}

≤
∞∑
n=0

M−1
n+1Ẽ

�
ν

{
YTn+1(B2(n))

∣∣‖YTn‖ ≤Mn

}

≤
∞∑
n=0

M−1
n+1Ẽ

�
ν

{
Ẽ
Jn
{
YTn+1(B2(n))

∣∣YTn} ∣∣∣‖YTn‖ ≤Mn

}
(102)

≤
∞∑
n=0

M−1
n+1Ẽ

�
ν

{∫
PTn,W(Tn)

{
W̃ ∈ B2(n)

}
dYTn(W)

∣∣∣‖YTn‖ ≤Mn

}

≤
∞∑
n=0

MnM
−1
n+1 sup

W∈W(I,Tn)

PTn,W(Tn)

{
W̃ ∈ B2(n)

}≤ 2
∞∑
n=0

bn ≤ ε

3
,

which is (ii). This ends the proof of the lemma. �
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Completion of the proof of Theorem 22. Recall Lemma 23 and in particular
the definition of the sets An and A. Lemmas 24 and 25 provide the ingredients
we need to bound P̃�ν (A

c) by ε, for the starting measure ν = 2−mµ. Note that the
event A0 has probability 1. Hence, for P-almost all � with N(�)≤m,

P̃
�
ν (A

c)=
∞∑
n=0

P̃
�
ν

(
A0 ∩ · · · ∩An ∩Acn+1

)
(103a)

≤
∞∑
n=0

P̃
�
ν

{
YTn+1(B1(n))≥Mn+1

}
(103b)

+
∞∑
n=0

P̃
�
ν

{
YTn+1(B2(n))≥Mn+1

∣∣‖YTn‖ ≤Mn

}
(103c)

+
∞∑
n=0

P̃
�
ν

{
YTn+1(E(n))≥Mn+1

∣∣‖YTn‖ ≤Mn

}
.(103d)

Now, by Lemma 25, the series in (103b) and (103c) are each bounded by ε/3. By
Lemma 24, we obtain for (103d), using (93),

∞∑
n=0

P̃
�
ν

{
YTn+1(E(n))≥Mn+1

∣∣‖YTn‖ ≤Mn

}≤ ∞∑
n=0

Mn

ln
≤ ε

3
.(104)

Hence P̃�ν (A
c) ≤ ε and, by Lemma 23, this implies the statement of Theo-

rem 22. �

3.3. The crossing property. In this section we prove Theorem 5. The idea is
to apply the abstract upper bound of Theorem 22 for the survival of YT in the case
of the stopping time T , which is the (almost surely finite) first hitting time of the
origin by a Brownian motion. From this we get an upper bound for the rate of
decay, as x ↑∞, of the probability that the superprocess started with a fixed mass
at x > 0 charges (−∞,0). This result, Lemma 26, is the main step in the proof.
From there it is quite simple, using the Borel–Cantelli lemma, to obtain the desired
almost sure result.

We denote

d(x) := [
log

(
1+ 5

2 logx
)]2 for x ≥ 1.(105)

Observe that d(x) is growing slower than logarithmically as x ↑∞. Thus, we can
choose an x ≥ 1 such that

1≤ d(x)≤ logx

4(log 2+ β) for all x ≥ x.(106)
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LEMMA 26 (Decay of crossing probability). There is an integer m depending
only on the characteristicN(�) of the catalytic medium �, such that for x ≥ x,

P
�
2−mδx

{∫ ∞
0

Xt(−∞,0]dt > 0
}
≤ 1

x3/2
.(107)

The lemma is proved by choosing the right ingredients for the use of the survival
probability bound of Theorem 22 with µ= δx , I = {x}, ε = 1/x3/2, and d = d(x),
for fixed x ≥ x. As a preparation for the proof, define the Brownian stopping
time T to be the first hitting time of level 0, then the event we are interested
in is the survival of YT . To define the remaining quantities for an application of
Theorem 22, we first leave the integer parameter m≥ 0 open and define Tn and ln
in terms of m. Recall that α < β < 2α and define, for n≥ 0,

dn := e(α−β)n

1− eα−β =
1

ε(m)
e(α−β)(n+m) where ε(m) := e(α−β)m

1− eα−β
.(108)

Define barriers

x0 = x and xn+1 = xn− xdn.(109)

As
∑∞
n=0 dn = 1, we have xn ↓ 0, and we can define an increasing sequence of

hitting times

Tn := inf
{
t > 0 :W(t)= xn} for n≥ 0,(110)

so that Tn ↑ T as n ↑∞. Finally, define

ln := x3/2m(n+ 1)2 2−n−m.(111)

Lemma 26 follows from Theorem 22 if we verify (93) and Hypotheses H1(m +
d, ε/3) and H2(m+ d, l·, ε/6) for ε = 1/x3/2 and a suitable m, which we choose
when we complete the proof of Lemma 26 almost at the end of the subsection.

The next lemma prepares the verification of Hypothesis H1.

LEMMA 27 (Escape probability I). With x ≥ x, fixed, xn and Tn from (109)
and (110), respectively, for all integers n,m≥ 0, the events

D0(n) :=
{

sup
t∈[Tn,Tn+1]

|Wt |> k(d + n+m)
}

(112)

have probability

P0,x(D0(n))=PTn,xn(D0(n))≤ 2

x3/2
exp(− exp

√
n+m).(113)
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PROOF. To begin with, note that d = d(x) is chosen in such a way that, for all
n≥ 0,

x5/2 ≤ exp exp
√
d + n

expexp
√
n

= k(d + n)
k(n)

.(114)

Note that the inequality holds by definition (105) of d(x) for n= 0, and the right-
hand side of the inequality is increasing in n. A Brownian path starting in xn is
in D0(n) if and only if it hits level k(d + n + m) before xn+1. Using first the
formula for the exit probabilities of Brownian motion from an interval (see, for
instance, [27], Proposition II.3.8), then dn ≤ 1 and xn+1 ≤ k(d + n+m)/2 (check
for n,m= 0!), and finally (114), we get

PTn,xn(D0(n))= xdn

k(d + n+m)− xn+1
≤ 2x

k(d + n+m)
(115)

≤ 2

x3/2k(n+m). �

We observe that Hypothesis H1(m+ d, ε/3) is verified if m is chosen such that

∞∑
n=0

2n+2 exp(− exp
√
n+m)≤ 1

3 .(116)

However, there will be other constraints onm coming from Hypothesis H2 and we
turn to the verification of this hypothesis now.

Recall α < β < 2α and fix β < δ < 2α. Further, fix 0 < θ0 < 1/2 such that
δ(1− θ0)≤ α and (7/4)(1− θ0)≤ 1, and θ0 < θ1 < 1/2 and put θ := 1− 2θ1. For
a start, let m be arbitrary but large enough to satisfy

m1−θ0 ≤ eβmθ0 .(117)

Let n≥ 0 be an arbitrary integer and fix an (m+ d + n)-perfect medium J. Let

an = an(x) := x7/4 eδnmeβm.(118)

To estimate the probability from above that a pathW is bad in [Tn,Tn+1] it suffices
to consider a special hitting strategy: As the medium J is (m + d + n)-perfect
we can select atoms of mass in [2−m−n−d , 2−m−n−d+1) in such a way that all
neighboring atoms have distance in [Im+n+d/2, 3Im+n+d/2]. We call this set of
atoms π̃n+m = π̃n+m(x). During [Tn,Tn+1] we count collisions with the atoms in
π̃n+m in the following way: We define a sequence {κj } of Brownian stopping times
by κ0 := Tn and, for j ≥ 1,

κj := inf
{
t ≥ κj−1 :Wt hits π̃n+m \ {Wκj−1}

}
(119)
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and denote the number of collisions by

Kn :=max{j :κj ≤ Tn+1}.(120)

Further, let yi =W(κi) the ith visited atom and

Li :=
∫ κi+1

κi

Lyi (ds)(121)

the local time accumulated during the ith visit. It is crucial to note that

Kn−1∑
i=1

Li ≤ L[J,W ](Tn+1)−L[J,W ](Tn).(122)

The verification of Hypothesis H2(m+ d, l·, ε/6) will be carried out with the help
of the following lemma.

LEMMA 28 (Upper bound for bad paths). There are constantsC0,C1 > 0 such
that, for all integers n≥ 0, the events

D(n) :=
{

2−d−n−m
Kn−1∑
i=1

Li < ln

}
(123)

have probability

PTn,W(Tn)(D(n))≤ C0 exp(−C1a
θ
n) for all W ∈W(I, Tn).(124)

To get the upper bound of PTn,W(Tn)(D(n)), an easy coupling argument shows
that we may assume from now on that any two neighboring atoms in π̃n+m have
minimal distance (1/2)In+m+d and the number of atoms in π̃n+m ∩ [xn+1, xn) is
also minimal possible, that is, equal to⌊

xdn

(3/2)Id+n+m

⌋
.(125)

(Here &·' denotes the integer part.) If a path is in D(n), then either the path has
a small number Kn of collisions with the catalytic atoms of π̃n+m, say less than
an; or it takes more than an visits to the chosen atoms before the accumulated
local time on the left-hand side of inequality (122) exceeds the threshold ln. More
formally, let

D1(n) := {Kn− 1≤ an}(126)

and

D2(n) :=
{
an∑
i=1

2−(d+n+m)Li < ln
}
,(127)
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then B(n) ⊆D(n)⊆D1(n) ∪D2(n) and hence we have to check the probability
that a single Brownian path encounters one of the two events D1(n) and D2(n).
This is accomplished in the next two lemmas, which are mainly based on large-
deviation estimates. Note that Lemma 28 is an immediate consequence of these
two lemmas.

LEMMA 29 [Probability of eventD1(n)]. There are constantsC2,C3 > 0 such
that, for all integers n≥ 0,

PTn,W(Tn)(D1(n))≤ C2 exp(−C3a
θ
n) for all W ∈W(I, Tn).(128)

PROOF. Observe that W(Tn) = xn. Let c = (2/3)(1− eα−β). By our choice
of θ0 and by (117) we have

xdn

(3/2)Id+n+m
≥ 2x

3ε(m)
eα(n+m) ≥ ca1−θ0

n .(129)

The probability in our lemma is thus bounded above by the probability that a
simple random walk Sn defined on a probability space (!,A,P ) needs less than
&an' = &x7/4meδn+βm' steps to cross the level ca1−θ0

n . By the reflection principle,

P

{
max

1≤k<&an'
Sk > ca

1−θ0
n

}
≤ 2P

{
S&an'−1 ≥ ca1−θ0

n

}
.(130)

By the refinement of Cramér’s theorem given in [14], (3.7.1), for θ0 < θ1 < 1/2
there is a constant C > 0 such that, for all integers k,

P
{
Sk ≥ ck1−θ0

}≤ C exp
(−k1−2θ1(c2/2)

)
.(131)

Hence we can use (131) and let C0 :=Cec2
to get

P
{
S&an'−1 > ca

1−θ0
n

}≤ C0 exp
(−aθn(c2/2)

)
,(132)

which is the required estimate with C1 := 2(1− eα−β)2. �

LEMMA 30 [Probability of event D2(n)]. There are constants C3 > 0 and
C4 > 0 such that, for all integers n≥ 0,

PTn,W(Tn)(D2(n))≤ C2 exp(−C3an) for all W ∈W(I, Tn).(133)

PROOF. {Li} is a sequence of independent, identically distributed positive
random variables. By scaling, the distribution of Li/In+m+d is independent of
d,n and m. Hence,

PTn,W(Tn)(D2(n))≤PTn,W(Tn)

{
an∑
j=1

2−n−m−dLj < ln
}

(134)

≤PTn,W(Tn)

{
1

an

an∑
j=1

Lj

In+m+d
<

2n+m+d ln
anIn+m+d

}
.
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Note that, for all n≥ 0,

2n+m+d ln
anIn+m+d

= (n+ 1)22d eβd

e(δ−β)nx1/4 ≤ (n+ 1)2e(β−δ)n→ 0 as n ↑∞,(135)

using that 2d eβd ≤ x1/4 by (106). Hence, by Cramér’s theorem (see, e.g., [14],
Theorem 2.2.3), the right-hand side in (134) is bounded above by C2 exp(−C3an),
for suitable constants C2,C3 > 0. �

Completion of the proof of Lemma 26. It is now time to choose the value of m
large enough such that m≥N(�), (117) holds and the following set of conditions
is satisfied, for ε = 1/x3/2:

∞∑
n=0

2n+2 exp(− exp
√
n+m)≤ 1

3
,(136a)

∞∑
n=0

C0 exp(−C1 a
θ
n)≤

ε

6
,(136b)

∞∑
n=0

1

m(n+ 1)2
≤ 1

3
.(136c)

Note that an = an(x) defined in (118) is a multiple of x7/4 and hence m can be
chosen independently of x. We have already seen in (116) that (136a) implies
H1
(
m + d, ε/3). Moreover, (136b) together with Lemma 28 implies Hypothesis

H2(m + d, l·, ε/6) and, finally (136c) is (93). Hence Lemma 26 follows from
Theorem 22. �

Completion of the proof of the crossing property, Theorem 5. We use the result
of Lemma 26 to see that, for all � and m as in the lemma, for sufficiently large
integers x,

P
�
2−m�[x,x+1]

{∫ ∞
0

Xt(−∞,0]dt = 0
}

= exp
(∫ x+1

x
logP

�
2−mδy

(∫ ∞
0

Xt(−∞,0]dt = 0
)
dy

)
(137)

≥ exp
(∫ x+1

x
log(1− y−3/2) dy

)
≥ 1− 1

x3/2 .

Hence P�2−m�[x,x+1] {
∫∞

0 Xt(−∞,0]dt] > 0} is summable over all positive inte-
gers x. Therefore, by the Borel–Cantelli lemma and path continuity only for fi-
nitely many positive integers x the process X with X0 = 2−m�[x,x+1] will ever
attach mass to (−∞,0]. By the branching property, repeating this argument 2m

times, the same is true for the processes X with X0 = �[x,x+1]. Thus it suffices to
show

sup
t≥0

Xt(−∞,0]<∞ for X0 = �[0,K],(138)



SBM WITH STABLE CATALYSTS 2031

for all numbers K > 0. Because the process X with finite starting measure with
compact support has the finite time extinction property, by [11], Theorem 6, there
is a random time t0 > 0 such that Xt = 0 for all t ≥ t0. Finally, by path continuity,
Xt(−∞,0] is bounded on [0, t0] and we are done. �

3.4. The compound Poisson property. In this section we prove Theorem 1(ii).
Recall that we need only verify the finiteness property (28). We use the abstract
bound of Theorem 22 for a deterministic time T > 0 to obtain an upper bound for
the survival probability of XT in terms of N(�) only. This leads to Corollary 31,
which constitutes the main step in the proof. It allows obtaining (28) from the
finiteness of an integral involving only the stable medium. This finiteness is easily
obtained using the large gaps lemma, Lemma 19.

COROLLARY 31 (Upper bound on survival probability). For every time t > 0
there is a constant θ = θ(t) ∈ (0,1) such that for P-almost all �,

P
�
�[0,1] {Xt $= 0} ≤ 1− θ(2N(�)).(139)

To prove Corollary 31 by application of Theorem 22 we proceed similarly as in
the proof of finite time extinction carried out in [11]. However, we carefully keep
track of the dependence on the medium � in terms of N(�).

We fix t , leave the integer parameterm open for a while and define deterministic
times Tn and thresholds ln in terms of m. We first let

ε(m) :=
(

2

t

∞∑
n=m

e(α−β)n
)1/3

.(140)

We then define mn := &eα(n+m)/ε(m)' and sn := e−β(n+m)/ε(m)2. Put I = [0,1],
T0 := 0 and Tn+1 := Tn + 2mnsn.(141)

Note that t ≥ T := limn↑∞ Tn. Finally, define

l̄n :=mn√sn2−n.(142)

We later define ln to be a constant multiple of l̄n. Corollary 31 follows from
Theorem 22 if we verify (93) and Hypotheses H1(m + d, ε/3) and H2(m + d,
l·, ε/6), for d = 0, ε = 1/2 and a suitable integer m, which we choose at the end
of the proof. Indeed, define θ := (1/2)(2m) > 0. By the branching property and
Theorem 22 we obtain, for M =m+N(�),

P
�
�[0,1] {Xt = 0} ≥ (P̃��[0,1]2−M {Yt = 0})(2M) ≥ (1/2)(2M) = θ(2N(�)),(143)

which gives the statement of Corollary 31.
To prepare the verification of Hypotheses H1 and H2 and hence the estimates

for the bad paths, we formulate three lemmas. The constants C0, . . . ,C3 in these
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lemmas depend only on the fixed values of α and β . The first lemma is the main
ingredient in the verification of Hypothesis H1.

LEMMA 32 (Escape probability II). With the Tn from (141), there is a constant
C0 > 0 such that, for all starting points x ∈ I = [0,1] and all integers n,m ≥ 0,
the events

D0(n) :=
{

sup
s∈[Tn,Tn+1]

|Ws |> k(n+m)
}

(144)

have probability

P0,x
(
D0(n)

)≤ C0 exp(− exp
√
n+m).(145)

PROOF. Recall that the random variable sup0≤s≤t |Ws | has finite first moment.
Hence, using Markov’s inequality, there is a constantC0 > 0, depending only on t ,
such that

P0,x

{
sup

Tn≤s≤Tn+1

|Ws |> k(n+m)
}
≤P0,x

{
sup

0≤s≤t
|Ws |> k(n+m)

}

≤ C0 exp(− exp
√
n+m)

for all x ∈ [0,1] and n,m≥ 0. �

We conclude that H1(m+ d, ε/3) holds if m is chosen such that

∞∑
n=0

C02n+1 exp(− exp
√
n+m)≤ 1

6 .(146)

Again further restrictions onm follow from the verification of H2. For this purpose
let J be an (n+m)-perfect medium and let πn+m := πn+m[J].

Note that the neighboring pairs of atoms in πn+m are no further than In+m
apart. On the interval [Tn,Tn+1] we consider only the collisions with the atoms of
πn+m. In fact, we can even restrict our view to a selection of collisions chosen
according to a special strategy of [11], which is based on our choice of the
sequences sn > 0 of small times and mn of positive integers. Heuristically, on the
interval [Tn,Tn+1] the strategy suggests waiting until the Brownian particle hits the
first atom of πn+m, count the collision local time with this particular atom for sn
time units and then wait for the next collision with πn+m. This procedure is iterated
for mn periods. A visualization of this procedure can be found in [18], Figure 5.
If the path W is bad on [Tn,Tn+1] either the mnth period does not finish before
time Tn+1 or the accumulated collision local time during mn periods is below the
threshold ln.
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Formally, define a sequence {κn} of Brownian stopping times by κ0 := Tn and,
for j ≥ 1,

κj := κ̄j + sn where κ̄j := inf
{
s ≥ κj−1 :Ws hits πn+m

}
,(147)

and denote waiting times by Hm := κ̄m − κm−1. Define the events

D1(n) :=
{
mn∑
j=1

Hj ≥mnsn
}

(148)

and

D2(n) :=
{∫ κmn

Tn

L[W,�](dr) < ln
}
.(149)

Clearly, we have the decomposition

B(n)⊆D1(n)∪D2(n).(150)

We now formulate estimates for the probabilities for these two events, the second
one also providing the final definition of the threshold values ln.

LEMMA 33 [Probability of event D1(n)]. There is a constant C1 > 0 such
that, for all starting points x ∈R at time Tn and integers n≥ 0,

PTn,x

(
D1(n)

)≤ C−1
1 mn exp

(
− C1sn

I2
n+m

)
.(151)

This is estimate (93) in [11]. The proof is based on an explicit eigenfunction
representation for the distribution of the exit times of Brownian motion from a
bounded interval.

LEMMA 34 [Probability of event D2(n)]. There are constants C2 > 0 and
C3 > 0 with the property that, with ln =C2 l̄n, for all starting points x ∈R at time
Tn, and integers n≥ 0,

PTn,x

(
D2(n)

)≤ exp(−C3mn).(152)

PROOF. This is estimate (99) in [11]. The idea here is to estimate∫ κmn
Tn

L[W,�](dr) from below by the scaled sum of the local times of W during
different time windows and at the levels given by the atoms in the strategy de-
scribed above. These local times are independent and the desired estimate can be
derived using large-deviation theory. �
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Completion of the proof of Corollary 31. Having provided the estimates for
the probability of a path being bad, it is now time to make precise the value of m.
We choose m large enough such that the following set of conditions is satisfied:

∞∑
n=0

C02n+1 exp(− exp
√
n+m)≤ 1

6
,(153a)

∞∑
n=m

1

C1

eαn

ε(m)
exp

(
−C1

eβn

ε(m)2

)
≤ 1

12
,(153b)

∞∑
n=m

exp
(
−C3

⌊
eαn

ε(m)

⌋)
≤ 1

12
,(153c)

1

C2
2−mε(m)

∞∑
n=0

eβ/2(n+m)

&eα(n+m)/ε(m)' ≤
1

6
.(153d)

Note that it is possible to find such an m: For (153a) this is trivial, for (153c)
this is because ε(m) ↓ 0 and for (153d) note that α > β/2. For (153b) it suffices
to check that, for a, b ≥ 1, the function x �→ (a/x) exp(−b/x2) is increasing on
the interval (0,1). Hence Hypothesis H1(m,1/6) holds by (153a) [see (146)] and
H2(m, l·,1/12) holds by (153b), (153c) together with Lemmas 33 and 34 and
(150). Finally, (153d) is (93). This completes the proof. �

Completion of the proof of the compound Poisson property, Theorem 1(ii).
Fixing t > 0 and a starting measure �(a,b), for (a, b) an interval of unit length,
we have to show that the measure

π∞(dw dx)=
∫ b

a

∫
Mtem

N
ϒ
(0,0)(dw)⊗ δy(dx)P(d�)dy(154)

is finite on the set

S = {(w,x) ∈W× (a, b) :Ltσ [w]> 0
}
.(155)

Then the snake representation Theorem 6(ii) of the limit process describes a
compound Poisson point field on (a, b) with underlying Poisson intensity λ(t) :=
π∞(S). To prove finiteness of λ(t) we have to show that the following expression
is finite:

λ(t)= E
{
N
ϒ
(0,0)

{
w :Ltσ [w]> 0

}}= E
{∫ 1

0
N
ϒ
(0,x)

{
w :Ltσ [w]> 0

}
dx

}
,(156)

where we have used the fact that the law of Nϒ
(0,x)

{
w :Ltσ [w] > 0} under P is

independent of x. To interpret the integrand on the right-hand side of (156), recall
the snake representation in Theorem 6(i). The process X started in X0 = �[0,1]
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has become extinct at time t if and only if a Poisson point field with intensity∫ 1
0 N�

(0,x){w :Lt [w]> 0}dx, has the value 0, the probability of this event is

exp
(
−
∫ 1

0
N
�
(0,x)

{
w :Ltσ > 0

}
dx

)
.(157)

This reduces our task to showing that

E
{− logP

�
�[0,1] {Xt = 0}}<∞.(158)

We now apply Fubini’s theorem to rewrite

E
{− logP

�
�[0,1] {Xt = 0}}= ∫ ∞

0
P
{− log P

�
�[0,1] {Xt = 0}> a}da

(159)

=
∫ ∞

0
P
{
P
�
�[0,1] {Xt = 0}< e−a}da.

Hence our problem can be formulated as∫ ∞
0

P
{
P
�
�[0,1] {Xt = 0}< e−a}da <∞.(160)

Here comes the key idea of our proof: With respect to the random medium � the
event {

P
�
�[0,1] {Xt = 0}< e−a}(161)

can only occur if � has unusually low density, or equivalently, if the points in the
Poisson point fields πn introduced before (78) are unusually far apart. This can be
expressed in terms of the quantity N(�). In fact, by Corollary 31,

P
�
�[0,1] {Xt = 0} ≥ exp

(
(log θ)2N(�)

)
,(162)

and hence, the latter event implies

(log θ)2N(�) <−a which implies N(�) >
1

log 2
log(−a/ log θ).(163)

We can now use the estimate (79) obtained in the large gaps lemma, Lemma 19,
for the quantity N(�),∫ ∞

0
P
{
P
�
�[0,1] {Xt = 0}< e−a}da

≤
∫ ∞

0
P
{
N(�) >

1

log 2
log(−a/ log θ)

}
da

(164)

≤ c
∫ ∞

0
exp

(−d exp
[
(L/ log2) log(−a/ log θ)

])
da

≤ c0+ c1

∫ ∞
0

exp(−c2a
c3) da <∞,

using suitable constants c0, c1, c2, c3 > 0. This proves (160), and Theorem 1(ii) is
established. �
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4. Properties of the macroscopic clumps. In this section we prove the
various parts of Theorem 11. Part (i) and, perhaps surprisingly, part (ii) can be
obtained by soft arguments, whereas part (iii) requires a new approach based on a
Feynman–Kac formula for the solutions of (6).

4.1. The extinction probability of the clumps. In this subsection we prove
Theorem 11(i) and (ii). From the definition of the renormalized processes (9) we
infer, for all k, l > 0 and t ≥ 0,

Xklt (B)= k−ηXl(kt)(kηB) for B ⊆R Borel.(165)

Choose any continuity set B ⊆ R, that is, any Borel set with �(∂B) = 0. Letting
l ↑∞ we obtain the self-similarity property

X∞t (B)= k−ηX∞kt (kηB) in distribution,(166)

first for all continuity sets B ⊆ R and then, by approximation, for all Borel sets
B ⊆R. This proves Theorem 11(i) and is also the key to part (ii). By the compound
Poisson structure of X∞t , the Laplace functionals have the form

E�
{
exp

(−θX∞t (0, a))}= exp
(−λ(t) a(1−Ut(θ)))

(167)
for a > 0, θ ≥ 0,

where λ(t) is the intensity of the Poisson point field underlying the compound
Poisson point field and Ut is the Laplace functional of the weights of an atom.
Using (166) one obtains

exp
(−λ(t)a(1−Ut(θ)))= E�

{
exp

(−θX∞t (0, a))}
= E�

{
exp

(−θk−ηX∞kt (0, kηa))}(168)

= exp
(−λ(kt)kηa(1−Ukt(θk−η))).

Letting θ ↑ ∞, we infer that λ(t) = kηλ(kt), hence Ut(θ) = Ukt(θk−η). The
former expression gives us the decay of the intensity λ(t)= t−ηλ(1) of the Poisson
point field; the latter yields the equality in distribution of tג (t) and (t/s)ηגs(s).
Using λ(s)P�{גs(t) > 0} = λ(t) for t > s, we infer that the survival probabilities
of the clumps satisfy

P�
{
s(t)ג > 0

}= (s
t

)η
and

(169)

P�
{
X∞t (0, a) > 0

}∼ λ(1)a

tη
as a ↑∞,

where the latter form is obtained by conditioning on the number of clumps in an
interval.
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4.2. The tail behavior of the clump size. This subsection is devoted to the
proof of Theorem 11(iii). We first note that it suffices to give the proof for
a fixed value of t , because the particular dependence on t , which is claimed
in Theorem 11(iii), already follows from the self-similarity of the process
tג} (t) : t > 0} proved in Section 4.1.

Recall (12) for the case of a constant function ϕ = θ > 0. This equation can also
be written probabilistically as

Utθ(y)= θ − 2Ey

{∫ t

0
[Ut−sθ(Ws)]2L[�,W ](ds)

}
,(170)

where Es,y is used to indicate expectation with respect to a Brownian motion W
started at time s in y, Ey := E0,y , and L[�,W ] is the collision local time between �
andW , as defined in (15). We use the Feynman–Kac representation of the solutions
Uθ := U�θ of (170) in order to obtain the tail asymptotics of the mass clumps.

LEMMA 35 (Feynman–Kac representation). For each fixed � the family U =
{Utθ(y) : t ≥ 0, y ∈R} is a solution of (170) if and only if it is a solution of

Utθ(y)= θEy
{

exp
(
−2

∫ t

0
Ut−sθ(Ws)L[�,W ](ds)

)}
(171)

for t ≥ 0, y ∈R.

PROOF. Fix �. For both parts of the proof it suffices to consider θ = 1, as a
simple scaling argument shows that U�θ is a solution of (170), respectively (171),
for arbitrary θ > 0 in the medium � if and only if

V = {Vt(y) : t ≥ 0, y ∈R
}

with Vt(y) := 1

θ
Uθ−1/ηt θ(θ

−1/2ηy)(172)

is a solution of (170), respectively, (171) for θ = 1 in the rescaled medium �̃ given
by

�̃(A) := θ1/(γ+1)�(θ−γ /(γ+1)A) for A⊆R Borel.(173)

We first show that every solution of (171) solves (170). Let U = {Ut(y) : t ≥ 0,
y ∈ R} be a bounded solution of (171), which is continuous in t . In the sense of
distributions we calculate the derivative

d

ds
exp

[
−2

∫ t

s
Ut−r (Wr) dL[�,W ](r)

]
(174)

= 2Ut−s(Ws) exp
[
−2

∫ t

s
Ut−r (Wr) dL[�,W ](r)

]
L[�,W ](ds).
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Integrating this over [0, t] yields

1− exp
[
−2

∫ t

0
Ut−r (Wr)L[�,W ](dr)

]
(175)

= 2
∫ t

0
Ut−s(Ws) exp

[
−2

∫ t

s
Ut−r (Wr) dL[�,W ](r)

]
L[�,W ](ds).

Taking expectations,

Ut(y)− 1=−2Ey

{∫ t

0
Ut−s(Ws)

(176)

× exp
[
−2

∫ t

s
Ut−r (Wr) dL[�,W ](r)

]
L[�,W ](ds)

}
.

The Markov property (and a glance at the definition of Stieltjes integrals) allows
us to continue this with

=−2Ey

{∫ t

0
Ut−s(Ws)

× EWs

{
exp

(
−2

∫ t−s
0

Ut−s−r (W̃r) dL[W̃ ,�](r)
)}
L[�,W ](ds)

}
(177)

=−2Ey

{∫ t

0

{
Ut−s(Ws)

}2
L[�,W ](ds)

}

=−2
∫

R

�(dx)

∫ t

0
ps(y − x)[Ut−s(x)]2 ds,

where W̃ is a Brownian motion started in Ws . This is the formula we had to prove.

To show conversely that every solution Ut(y) of (170) solves (171), we start
with the formula

2
∫ t

0
exp

(
−2

∫ s

0
Ut−r (Wr)L[�,W ](dr)

)[
Ut−s(Ws)− 1

]
×Ut−s(Ws)L[�,W ](ds)(178)

=−
∫ t

0

[
Ut−s(Ws)− 1

]
ds

(
exp

(
−2

∫ s

0
Ut−r (Wr)L[�,W ](dr)

))
.
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We take the expectation, use (170), apply the Markov property as before, and
finally use Fubini’s theorem to see

Ey

{
2
∫ t

0
exp

(
−2

∫ s

0
Ut−r (Wr)L[�,W ](dr)

)
[Ut−s(Ws)]2L[�,W ](ds)

}

− 2Ey

{∫ t

0
exp

(
−2

∫ s

0
Ut−r (Wr)L[�,W ](dr)

)
Ut−s(Ws)L[�,W ](ds)

}

=−Ey

{∫ t

0
Es,Ws

{
−2

∫ t

s
[Ut−v(W̃v)]2L[�,W̃ ](dv)

}

× ds
(

exp
(
−2

∫ s

0
Ut−r (Wr)L[�,W ](dr)

))}

= Ey

{
2
∫ t

0

∫ t

s
[Ut−v(Wv)]2L[�,W ](dv) ds

×
(

exp
(
−2

∫ s

0
Ut−r (Wr)L[�,W ](dr)

))}

= Ey

{
2
∫ t

0

∫ v

0
ds

(
exp

(
−2

∫ s

0
Ut−r (Wr)L[�,W ](dr)

))
[Ut−v(Wv)]2

×L[�,W ](dv)
}

= Ey

{
2
∫ t

0

[
exp

(
−2

∫ v

0
Ut−r (Wr)L[�,W ](dr)

)
− 1

]
[Ut−v(Wv)]2

×L[�,W ](dv)
}
.

From this and (170) we infer that

Ey

{
2
∫ t

0
exp

(
−2

∫ s

0
Ut−v(Wv)L[�,W ](dv)

)
Ut−s(Ws)L[�,W ](ds)

}
(179)

= Ey

{
2
∫ t

0
[Ut−r (Wr)]2L[�,W ](dr)

}
= 1−Ut(y).

Writing the integrand on the left-hand side of (179) as a distributional derivative,
as before, we see that the left-hand side of (179) equals

1+ Ey

{
− exp

(
−2

∫ t

0
Ut−r (Wr)L[�,W ](dr)

)}
,(180)

from which (171) follows. �

We now aim for upper and lower bounds of EUtθ(0), which give the tail
asymptotic of the clump sizes by means of a Tauberian theorem. From (170)
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one immediately sees that Utθ(y) ≤ θ and hence EUtθ(0) ≤ θ . Now plugging
Utθ(y) ≤ θ into (170) leads only to a trivial lower bound for EUtθ(y). A better
lower bound is obtained by means of the Feynman–Kac representation (171).

LEMMA 36 (Asymptotic behavior of EUtθ ). For every t > 0 there are
positive, finite constants C1 =C1(t) and C2 =C2(t), such that

θ −C1(t)θ
γ+1 ≤ EUtθ(0)≤ θ −C2(t)θ

γ+1 for all θ ∈ (0,1).(181)

PROOF. Fix t > 0 and let 0< θ < 1. Plugging Utθ(y)≤ θ into the Feynman–
Kac representation (171) yields,

Utθ(y)≥ θEy{exp
(−2θL[�,W ](t)

)}
for all y ∈R.(182)

Taking expectation with respect to the medium, using the Laplace functional
formula (3) for stable random measures, and the definition (15) of collision local
time, gives

EUtθ(0) ≥ θ EE0
{
exp

(−2θL[�,W ](t)
)}

= θE0 exp
(
−2γ θγ

∫
R

(Lx(t))γ dx

)
(183)

≥ θ
(

1− 2γ θγ E0

∫
R

(Lx(t))γ dx

)

= θ − θγ+12γ
∫

R

E0
{
(Lx(t))γ

}
dx.

We now show that

C1(t) := 2γ
∫

R

E0
{(
Lx(t)

)γ }
dx = tγ η γ

γ + 1

2γ (η+1)

√
π

G

(
γ

2

)
<∞,(184)

where G denotes the Gamma function (usually denoted by �, which would be in
conflict with our catalyst notation). Indeed, for x, y > 0 the density function of
Lx(t) at y with respect to P0 is given by 2pt(x + y) (see, e.g., [4], 1.3.4). Hence∫

R

E0
{(
Lx(t)

)γ }
dx = 2

∫ ∞
0

yγ
∫ ∞
y

2pt(z) dz dy

(185)

=
√

8

πt

∫ ∞
0

yγ+1

γ + 1
exp(−y2/2t) dy,

using integration by parts. One can get the result by substituting x = y2/2t and
recalling the definition of the Gamma function G.

We turn to the upper bound. We use (182) in (171) and obtain

Utθ(y)≤ θEy
{

exp
(
−2θ

∫ t

0
EWs

{
exp

(−2θL[W̃ ,�](t − s)
)}
L[�,W ](ds)

)}
(186)
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for a Brownian motion W̃ started in Ws . By the definition of collision local time
and Jensen’s inequality,

EUtθ(0)≤ θ EE0

{
exp

(
−2θ

∫ t

0
L[�,W ](ds)EWs

{
exp

(−2θL[W̃ ,�](t − s)
)})}

≤ θ EE0

{
exp

(
−2θ

∫
R

�(dx)

∫ t

0
Lx(ds)Ex

×
(

exp
(
−2θ

∫
R

�(dy)L̃y(t − s)
)))}

(187)

≤ θ EE0

{
exp

(
−2θ

∫
R

�(dx)

∫ t

0
Lx(ds)

×
[
exp

(
−2θ

∫
R

�(dy)Ex
{
L̃y(t − s)})])},

where L̃ refers to local time built with W̃ . Using monotonicity we can continue
the estimate with

θ EE0

{
exp

(
−2θ

∫
R

�(dx)

∫ t

0
Lx(ds)

×
[
exp

(
−2θ

∫
R

�(dy)Ex
{
L̃y(t − s)})])}

≤ θ EE0

{
exp

(
−2θ

∫
R

�(dx)Lx(t)

(188)

×
[
exp

(
−2θ

∫
R

�(dy)Ex
{
L̃y(t)

})])}

≤ θ EE0

{
exp

(
−2θ

∫
|x|≤1

�(dx)Lx(t)

×
[
exp

(
−2θ

∫
R

�(dy)Ex
{
L̃y(t)

})])}
.

Now we split the integral in the innermost exponential into the integral over |y| ≤ 1
and |y|> 1, respectively. Recall that

Ex{L̃y(t)} = qt(x − y) for qt (x) :=
∫ t

0
ps(x) ds.(189)

For |y| ≤ 1 we use the estimate

Ex{L̃y(t)} ≤ c0 :=
√

2t

π
,(190)
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which gives

θ EE0

{
exp

(
−2θ

∫
|x|≤1

�(dx)Lx(t)

[
exp

(
−2θ

∫
R

�(dy)Ex
{
L̃y(t)

})])}
(191)

≤ θ EE0

{
exp

(
−2θ

∫
|x|≤1

�(dx)Lx(t) exp(−2θc0�1) exp(−2θ�2)

)}

with

�1 := �(−1,1) and �2 :=
∫
|y|>1

�(dy)qt(|y| − 1).(192)

Under P the random variables �1 and �2 are independent, almost surely finite, and
stable of index γ . We infer that, for arbitrary fixed c > 0, the event

A :=
{

inf|x|≤1
Lx(t)≥ c

}
∩
{
�2 ≤ 1

θ

}
∩
{

1

θ
≤ �1 ≤ 2

θ

}
(193)

has (annealed) probability

EP0(A)=P0

{
inf|x|≤1

Lx(t)≥ c
}

P
{
�2 ≤ 1

θ

}
P
{

1

θ
≤ �1 ≤ 2

θ

}
(194)

≥ P0

{
inf|x|≤1

Lx(t)≥ c
}
(1− c1θ

γ )(c2θ
γ )≥ c3θ

γ ,

for a suitable choice of constants c1, c2, c3 > 0 where c3 = c3(t), recall that
0< θ < 1. On A we have

exp
(−2θc�1 exp(−2θc0�1) exp(−2θ�2)

)
(195)

≤ exp(−2ce−4c0 e−2)=: c4 < 1.

We can thus continue the estimate (191) with

θ EE0

{
exp

(
−2θ

∫
|x|≤1

�(dx)Lx(t) exp(−2θc0�1) exp(−2θ�2)

)}

≤ θ − θ EE0
{
1A
(
1− exp

[−2θc�1 exp(−2θc0�1) exp(−2θ�2)
])}

(196)

≤ θ − θ EP0(A)(1− c4)= θ −C2θ
γ+1,

by (194) for a suitable choice of C2 = C2(t) > 0. This completes the proof. �

The bounds for EUtθ in Lemma 36 translate easily into bounds for the Laplace
transform

Ut(θ)= E�
{
exp

(−θ tג (t)
)}

for θ ≥ 0,(197)

of the mass of a clump alive at a macroscopic time t .
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LEMMA 37 (Asymptotic behavior of Ut ). For all t > 0, as θ ↓ 0,

1− 1

λ(t)
θ + C2(t)

λ(t)
θγ+1 ≤Ut(θ)= 1− 1

λ(t)
θ + C1(t)

λ(t)
θγ+1.(198)

PROOF. Using the Laplace transform of a general compound Poisson point
field,

EUtθ(0)=− log E�
{−θX∞t [0,1]}= λ(t)(1−Ut(θ)),(199)

hence the statement follows by applying Lemma 36 and the scaling relation
of λ(t). �

Finally, to get the tail behavior of the clump sizes we observe that Theo-
rem 11(iii) follows directly from the previous lemma together with the following
version of the Tauberian theorem of Bingham and Doney (see [2], Theorem 8.1.6,
for the original statement). Here we can apply the definition of the relation ≈ oc-
curring in Theorem 11(iii) in a t-independent situation.

LEMMA 38 (Tauberian theorem). Suppose ξ is a nonnegative random
variable defined on a probability space (!,A,P ) with positive and finite mean m
and Laplace transformU. Then

U(θ)− (1−mθ)≈ θγ+1 as θ ↓ 0,(200)

implies

P {ξ > x} ≈ 1

xγ+1 as x ↑∞.(201)

PROOF. We denote F(x) := P {ξ ≤ x} and

h(x) := 1

m

∫ ∞
x

(
1− F(y))dy.(202)

Then, using integration by parts twice and then plugging in the assumption,∫ ∞
0

e−θxh(x) dx = 1

θ
− 1

θm

∫ ∞
0

e−θx
(
1− F(x))dx

(203)

= 1

θ
− 1

θm

1−U(θ)
θ

≈ θγ−1.

We now apply the Tauberian theorem of de Haan and Stadtmüller ([2], Theo-
rem 2.10.2) to infer ∫ x

0
h(y) dy ≈ x1−γ as x ↑∞.(204)
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Next we use the O-version of the monotone density theorem ([2], Proposi-
tion 2.10.3) twice to conclude

first h(x)≈ x−γ and then 1− F(x)≈ 1

xγ+1 as x ↑∞,(205)

as claimed. �
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