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ORLICZ NORMS OF SEQUENCES OF RANDOM VARIABLES
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Technion, Technion, Christian Albrechts Universität and Case Western Reserve
University

Let fi , i = 1, . . . , n, be copies of a random variable f and let N

be an Orlicz function. We show that for every x ∈ R
n the expectation

E‖(xifi )ni=1‖N is maximal (up to an absolute constant) if fi , i = 1, . . . , n,
are independent. In that case we show that the expectation E‖(xifi)ni=1‖N
is equivalent to ‖x‖M , for some Orlicz function M depending on N and on
distribution of f only. We provide applications of this result.

1. Introduction and main results. Let fi , i = 1, . . . , n, be identically
distributed random variables. We investigate here expectations

E
∥∥(xifi(ω))ni=1

∥∥
N,

where ‖ · ‖N is an Orlicz norm. We find out that these expressions are maximal
(up to an absolute constant) if the random variables are, in addition, required to be
independent.

In case the random variables are independent, we get quite precise estimates for
the above expectations. In particular, let f1, . . . , fn be independent standard Gauss
variables and let the norm on R

n be defined by ‖z‖k,∗ = ∑k
i=1 z

∗
i , where (z∗

i )i
is the nonincreasing rearrangement of the sequence (|zi |)i . Then we have, for all
x ∈ R

n,

c1‖x‖M ≤ E
∥∥(xifi(ω))ni=1

∥∥
k,∗ ≤ c2‖x‖M,

where the Orlicz function is M(t) = 1
k
e−1/(kt)2

, t < 1/(2k), M(1) = 1. This case
is of particular interest to us. In a forthcoming paper [2] these estimates are applied
to obtain estimates for various parameters associated to the local theory of convex
bodies. Let us note that in the case k = 1 the norm ‖ · ‖k,∗ is just the �∞-norm.

Some of the methods that are used here have been developed by Kwapień and
Schütt (cf. [4, 5, 9] and [10]).
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In this paper we consider random variables with finite first moments only. In
the proofs of our results we assume that the random variables have continuous
distributions; that is, P {ω | f (ω) = t} = 0 for every t ∈ R. The general case
follows by approximation. We define the following parameters of the distribution.
Let f be a random variable with a continuous distribution and with E|f |<∞. Let
tn = tn(f )= 0, t0 = t0(f )= ∞ and, for j = 1, . . . , n− 1,

tj = tj (f )= sup
{
t
∣∣∣P {ω ∣∣ |f (ω)|> t

}≥ j

n

}
.(1)

Since f has the continuous distribution we have, for every j ≥ 1,

P
{
ω
∣∣ |f (ω)| ≥ tj

}= j

n
.

We define the sets

�j = �j(f )= {
ω | tj ≤ |f (ω)|< tj−1

}
(2)

for j = 1, . . . , n. Clearly, for all j = 1, . . . , n,

P (�j )= 1

n
.

Indeed,

�j = {
ω | tj ≤ |f (ω)|< tj−1

}= {
ω | tj ≤ |f (ω)|} \ {ω | tj−1 ≤ |f (ω)|}.

Therefore we get

P (�j)= j

n
− j − 1

n
= 1

n
.

We put, for j = 1, . . . , n,

yj = yj (f )=
∫
�j

|f (ω)|dP (ω).(3)

We have
n∑

j=1

yj = E|f | and tj ≤ nyj < tj−1 for all j = 1, . . . , n.

We recall briefly the definitions of an Orlicz function and an Orlicz norm (see,
e.g., [3] and [6]). A convex function M: R

+ → R
+ with M(0)= 0 and M(t) > 0

for t �= 0 is called an Orlicz function. Then the Orlicz norm on R
n is defined by

‖x‖M = inf

{
ρ > 0 :

n∑
i=1

M(|xi |/ρ)≤ 1

}
.

Clearly, if two Orlicz functions M , N satisfy M(t) ≤ aN(bt) for every positive t ,
then ‖x‖M ≤ ab‖x‖N for every x ∈ R

n. Thus equivalent Orlicz functions generate
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equivalent norms. In other words, to prove the equivalence of ‖x‖M and ‖x‖N , it is
enough to prove the equivalence of M and N . Moreover, to define an Orlicz norm
‖ · ‖M , it is enough to define an Orlicz function M on [0, T ], where M(T )= 1.

Any Orlicz function M can be represented as

M(t) =
∫ t

0
p(s) ds,

where p(t) is a nondecreasing function continuous from the right. If p(t) satisfies

p(0)= 0 and p(∞) = lim
t→∞p(t) = ∞,(4)

then we define the dual Orlicz function M∗ by

M∗(t) =
∫ t

0
q(s) ds,

where q(s)= sup{t :p(t) ≤ s}. Such a function M∗ is also an Orlicz function and

‖x‖M ≤ ‖|x‖| ≤ 2‖x‖M,

where ‖| · ‖| is the dual norm to ‖ · ‖M∗ (see, e.g., [6]). Note that condition (4),
in fact, excludes only the case M(t) is equivalent to t . Note also that q satisfies
condition (4) as well and that q = p−1 if p is an invertible function.

We shall need the following property of M and M∗ (see, e.g., 2.10 of [3]):

s <M∗−1(s)M−1(s)≤ 2s(5)

for every positive s.
The aim of this paper is to prove the following theorem.

THEOREM 1. Let f1, . . . , fn be independent, identically distributed random
variables with E|f1| < ∞. Let N be an Orlicz function and let sk , k = 1, . . . , n2,
be the nonincreasing rearrangement of the numbers∣∣∣∣yi

(
N∗−1

(
j

n

)
−N∗−1

(
j − 1

n

))∣∣∣∣, i, j = 1, . . . , n,

where yi , i = 1, . . . , n, is given by (3). Let M be an Orlicz function such that, for
all � = 1, . . . , n2,

M∗
(

�∑
k=1

sk

)
= �

n2
.

Then, for all x ∈ R
n,

1

8
‖x‖M ≤ E

∥∥(xifi(ω))ni=1

∥∥
N ≤ 8

e

e− 1
‖x‖M.
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COROLLARY 2. Let f1, . . . , fn be independent, identically distributed
random variables with E|f1| < ∞. Let M be an Orlicz function such that, for
all k = 1, . . . , n,

M∗
(

k∑
j=1

yj

)
= k

n
.

Then, for all x ∈ R
n,

c1‖x‖M ≤ E max
1≤i≤n

|xifi(ω)| ≤ c2‖x‖M,

where c1, c2 are absolute positive constants.

PROOF. We choose p large enough so that the �p-norm ‖ · ‖p approximates the
supremum norm ‖ · ‖∞ well enough (p = n suffices). We consider N(t) = |t|p .
This means that for all t > 0 we have

N ′(t) = ptp−1 and N ′−1(t) =
(

1

p
t

)1/(p−1)

.

Therefore

N∗(t) =
∫ t

0
N ′−1(s) ds =

∫ t

0

(
1

p
s

)1/(p−1)

ds = p−1/(p−1)
(

1 − 1

p

)
t1+1/(p−1).

Thus

N∗−1(t) = p1/p
(

p

p − 1

)(p−1)/p

t1−1/p.

With this we get

N∗−1
(
j

n

)
−N∗−1

(
j − 1

n

)
= p1/p

(
p

p − 1

)(p−1)/p((
j

n

)1−1/p

−
(
j − 1

n

)1−1/p)
.

By the mean value theorem we get, for j ≥ 2,

p1/p
(

1 − 1

p

)1/p

n−1+1/pj−1/p ≤ N∗−1
(
j

n

)
−N∗−1

(
j − 1

n

)

≤ p1/p
(

1 − 1

p

)1/p

n−1+1/p(j − 1)−1/p.

For sufficiently large p we have, for all j with 1 ≤ j ≤ n,

1

n
≤ N∗−1

(
j

n

)
−N∗−1

(
j − 1

n

)
≤ 2

n
.
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Now we choose �= kn and get

k∑
i=1

yi ≤
�∑

j=1

sj ≤ 2
k∑

i=1

yi,

which implies the corollary. �

COROLLARY 3. Let f1, . . . , fn be independent, identically distributed
random variables with E|fi| = 1. Let k ∈ N, 1 ≤ k ≤ n, and let the norm ‖ · ‖k,∗
on R

n be given by

‖x‖k,∗ =
k∑

i=1

x∗
i ,

where x∗
i , i = 1, . . . , n, is the decreasing rearrangement of the numbers |xi|,

i = 1, . . . , n. Let M be an Orlicz function such that M∗(1) = 1 and, for all
m= 1, . . . , n− 1,

M∗
(

m∑
j=1

yj

)
= m

kn
.

Then, for all x ∈ R
n,

c1‖x‖M ≤ E
∥∥(xifi(ω))ni=1

∥∥
k,∗ ≤ c2‖x‖M,

where c1, c2 are absolute positive constants.

Clearly, Corollary 3 implies Corollary 2. We state them separately here, since
the proof of Corollary 3 is more involved. We could argue in the proof of this
corollary in the same way as in the proof of Corollary 2. But it is less cumbersome
to use the lemmas on which Theorem 1 is based.

PROOF. Let ε > 0 which will be specified later. Consider the vector

z = (1, . . . ,1, ε, . . . , ε)

[n/k] + (n− [n/k])ε ,

where the vector contains [n/k] coordinates that are equal to 1. (For technical
reasons we require that all the coordinates of z are nonzero; otherwise, the function
M∗ might not be well defined.) First we show that if ε is small enough then, for
every x ∈ R

n,

c1‖x‖k,∗ ≤ n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xizji | ≤ c2‖x‖k,∗.(6)
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To obtain this, we observe first that we can choose ε so small that we can actually
consider the vector z̄ = (1, . . . ,1,0, . . . ,0)/[n/k] instead. By Lemma 7 we have

cn

n∑
i=1

si(x, z̄)≤ n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xi z̄ji | ≤
n∑

i=1

si(x, z̄),

where sl(x, z̄) is the decreasing rearrangement of the numbers |xiz̄j |, i, j =
1, . . . , n. On the other hand,

k∑
i=1

x∗
i ≤

n∑
i=1

si(x, z̄)≤ n/k

[n/k]
k∑

i=1

x∗
i ≤ 2

k∑
i=1

x∗
i .

Let N be an Orlicz function that satisfies

N∗
(

k∑
i=1

zi

)
= k

n
.

Lemmas 5 and 9 and inequality (6) imply

c3‖x‖N ≤ ‖x‖k,∗ ≤ c4‖x‖N
for some absolute constants c3, c4. Clearly,

N∗−1
(
j

n

)
−N∗−1

(
j − 1

n

)
= zj .

Now we apply Theorem 1 to the Orlicz function N and obtain the numbers sk and
the function M as in the statement of Theorem 1. Choosing ε small enough we
obtain

s1 = · · · = s[n/k] =
([

n

k

]
+
(
n−

[
n

k

])
ε

)−1

y1,

s[n/k]+1 = · · · = s2[n/k] =
([

n

k

]
+
(
n−

[
n

k

])
ε

)−1

y2,

...

s(n−1)[n/k]+1 = · · · = sn[n/k] =
([

n

k

]
+
(
n−

[
n

k

])
ε

)−1

yn.

The following numbers sk , k = n[n/k] + 1, . . . , n2, are all smaller than εy1. Since∑n
j=1 yj = E|fi | = 1, we get

∑n2

k=1 sk = 1, which means M∗(1)= 1 and

j [n/k]∑
i=1

si = [n/k]
[n/k] + (n− [n/k])ε

j∑
i=1

yi.
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This means that, for j = 1, . . . , n,

M∗
( [n/k]

[n/k] + (n− [n/k])ε
j∑

i=1

yi

)
= j [n/k]

n2 .

Therefore there are absolute constants c and C such that

c
j

kn
≤ M∗

( j∑
i=1

yi

)
≤ C

j

kn
.

Theorem 1 implies the result. �

REMARK. In particular in the proof we get that, for every x ∈ R
n,

cn‖x‖k,∗ ≤ n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xiz̄ji | ≤ cn,k‖x‖k,∗,(7)

where cn = 1 − (1 − 1/n)n and cn,k = n
k
/[n

k
] ≤ 2.

THEOREM 4. Let f1, . . . , fn, g1, . . . , gn be identically distributed random
variables. Suppose that g1, . . . , gn are independent. Let M be an Orlicz function.
Then we have, for all x ∈ R

n,

E
∥∥(xifi(ω))ni=1

∥∥
M ≤ 16e

e − 1
E
∥∥(xigi(ω))ni=1

∥∥
M.

REMARK. The subspaces of L1 with a symmetric basis or symmetric structure
can be written as an average of Orlicz spaces; more precisely, the norm in such
a space is equivalent to an average of Orlicz norms. Thus our theorems and
corollaries extend naturally (for subspaces of L1 with a symmetric basis, see [1];
for the case of symmetric lattices, see [7]).

2. Proofs of the theorems. To approximate Orlicz norms on R
n, we will use

the following norm. Given a vector z ∈ R
m with z1 ≥ z2 ≥ · · · ≥ zm > 0, denote

‖x‖z = max∑n
i=1 ki=m

n∑
i=1

(
ki∑

j=1

zj

)
|xi|.

In this definition we allow some of the ki to be 0 (setting
∑0

i=1 zj = 0).
The following lemma was proved by Kwapień and Schütt (Lemma 2.1 of [5]).

LEMMA 5. Let n,m ∈ N with n ≤ m, let y ∈ R
m with y1 ≥ y2 ≥ · · · ≥ ym > 0

and let M be an Orlicz function that satisfies, for all k = 1, . . . ,m,

M∗
(

k∑
i=1

yi

)
= k

m
.
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Then we have, for every x ∈ R
n,

1
2‖x‖y ≤ ‖x‖M ≤ 2‖x‖y .

REMARK. Note that for every Orlicz function M there exists a sequence
y1 ≥ y2 ≥ · · · ≥ ym > 0 such that

M∗
(

k∑
i=1

yi

)
= k

m

for every k ≤ m.

To prove both our theorems, it is enough to prove the following proposition
because of Lemma 5.

PROPOSITION 6. Let f1, . . . , fn be identically distributed random variables
(not necessarily independent). Let N be an Orlicz function and denote

zj = N∗−1
(
j

n

)
−N∗−1

(
j − 1

n

)
, j = 1, . . . , n.

Let s = (sk)k ∈ R
n2

be the nonincreasing rearrangement of the numbers |yizj |,
i, j = 1, . . . , n, where the numbers yi, i = 1, . . . , n, are given by (3). Then, for all
x ∈ R

n,

E
∥∥(xifi(ω))ni=1

∥∥
z ≤ 2

cn
‖x‖s ,

where cn = 1 − (1 − 1/n)n > 1 − 1/e.
Moreover, if the random variables f1, . . . , fn are independent, then, for all

x ∈ R
n,

1
2‖x‖s ≤ E

∥∥(xifi(ω))ni=1

∥∥
z.

To prove this proposition, we need Lemmas 7–11.

LEMMA 7. Let ai,j , i, j = 1, . . . , n, be a matrix of real numbers. Let s(k), k =
1, . . . , n2, be the decreasing rearrangement of the numbers |ai,j |, i, j = 1, . . . , n.
Then

cn

n

n∑
k=1

s(k) ≤ n−n
n∑

j1,...,jn=1

max
1≤i≤n

|ai,ji | ≤
1

n

n∑
k=1

s(k),

where cn = 1 − (1 − 1/n)n. Both inequalities are optimal.
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PROOF. Both expressions

n−n
n∑

j1,...,jn=1

max
1≤i≤n

|ai,ji | and
n∑

k=1

s(k)

are norms on the space of n× n matrices. We show first the right-hand inequality.
The extreme points of the unit ball of the norm

∑n
k=1 s(k) are—up to a permutation

of the coordinates—of the form

(ε1a, ε2b, ε3b, . . . , εn2b),

with a ≥ b ≥ 0, a + (n − 1)b = 1 and εi = ±1, i ≤ n2. This means that such a
matrix has the property: the absolute values of the coordinates are b except for one
coordinate which is a. We get

n−n
n∑

j1,...,jn=1

max
1≤i≤n

|ai,ji | =
1

n
a + n− 1

n
b = 1

n
.

Now we show the left-hand inequality. Clearly, we may assume that at most n
coordinates of the matrix are different from 0. Next we observe that we may
assume that for each row in the matrix there is at most one entry that is different
from 0. In fact, we may assume that this is the first coordinate in the row. Now we
average the nonzero entries, leaving us with the case that all nonzero coordinates
are equal. In fact, we may assume that these coordinates equal 1.

Thus max1≤i≤n |ai,ji | takes the value 0 or 1. In fact, it takes the value 0 exactly

(n− 1)n

out of nn times. It follows

n−n
n∑

j1,...,jn=1

max
1≤i≤n

|ai,ji | = 1 −
(

1 − 1

n

)n
,

which proves the lemma. �

LEMMA 8. Let ai,j,k , i, j, k = 1, . . . , n, be nonnegative real numbers. Let
s�, � = 1, . . . , n3, be the decreasing rearrangement of the numbers ai,j,k , i, j, k =
1, . . . , n. Then

1

2n2

n2∑
�=1

s� ≤ n−2n
∑

1≤j1,...,jn≤n

1≤k1 ,...,kn≤n

max
1≤i≤n

ai,ji ,ki ≤ 1

n2

n2∑
�=1

s�.

PROOF. The right-hand inequality is shown as in Lemma 7. For the left-hand
inequality we use here a counting argument.
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Note that without loss of generality we may assume that the sequence
{sk} is strongly decreasing. There are exactly n2n−2 out of n2n multi-indices
(j1, . . . , jn, k1, . . . , kn) such that

max
1≤i≤n

ai,ji ,ki = s1.

Now we estimate for k ≥ 2 how many multi-indices there are such that

max
1≤i≤n

ai,ji ,ki = sk.

Clearly, one of the coordinates ai,ji ,ki has to equal sk, but none of these coordinates
may equal sj for j = 1, . . . , k − 1. The second condition means that for every i

(except for the row with the coordinate equal to sk) there are jki coordinates that
have to be avoided and

∑n
i=1 j

k
i = k − 1. Let us assume that the coordinate that

equals sk is an element of the first row. This leaves us with

n∏
i=2

(n2 − jki )

multi-indices. Therefore we get

n−2n
∑

1≤j1,...,jn≤n

1≤k1,...,kn≤n

max
1≤i≤n

ai,ji ,ki ≥ 1

n2

n2∑
k=1

sk

n∏
i=2

(
1 − jki

n2

)

≥ 1

n2

n2∑
k=1

sk

(
1 − k − 1

n2

)
≥ 1

n2

n2 + 1

2n2

n2∑
k=1

sk,

since

n2∑
k=1

ksk =
n2∑
j=1

n2∑
k=j

sk =
n2∑
j=1

(
n2∑
k=1

sk −
j−1∑
k=1

sk

)

≤
n2∑
j=1

(
n2∑
k=1

sk − j − 1

n2

n2∑
k=1

sk

)
= n2 + 1

2

n2∑
k=1

sk.

That completes the proof. �

LEMMA 9. Let n ∈ N and let y ∈ R
n with y1 ≥ y2 ≥ · · · ≥ yn > 0. Then we

have, for x ∈ R
n,

cn‖x‖y ≤ n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xiyji | ≤ ‖x‖y,

where cn = 1 − (1 − 1/n)n.
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PROOF. We show the right-hand inequality. By Lemma 7,

n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xiyji | ≤
n∑

k=1

sk(x, y),

where {sk(x, y)}k≤n2 is the nonincreasing rearrangement of {|xiyj |}i,j≤n. There-
fore there are numbers ki , i = 1, . . . , n, with

∑n
i=1 ki = n such that

n−n+1
∑

1≤j1,...,jn≤n

max
1≤i≤n

|xiyji | ≤
n∑

i=1

|xi |
ki∑
k=1

yk ≤ ‖x‖y .

Now we show the left-hand inequality. By Lemma 7,

cn

n∑
k=1

sk(x, y)≤ n−n+1
n∑

j1,...,jn=1

max
1≤i≤n

|xiyji |.

Therefore we have, for all numbers ki , i = 1, . . . , n, with
∑n

i=1 ki = n,

cn

n∑
i=1

|xi|
ki∑
k=1

yk ≤ n−n+1
n∑

j1,...,jn=1

max
1≤i≤n

|xiyji |.

The result follows by the definition of ‖ · ‖y . �

LEMMA 10. Let f1, . . . , fn be independent, identically distributed random
variables with E|f1|< ∞. Let yj , j = 1, . . . , n, be defined as in (3). Let ‖ · ‖ be a
one-unconditional norm on R

n. Then we have, for all x ∈ R
n,

n−n+1
n∑

j1,...,jn=1

‖(xiyji )ni=1‖ ≤ E
∥∥(xifi(ω))ni=1

∥∥.

PROOF. Let tj (fi) and �i
j :=�j(fi), i, j ≤ n, be defined by (1) and (2).

Since the functions fi, i = 1, . . . , n, are identically distributed, the numbers ti (fj )
do not depend on the functions fj . Below we will write just tj .

For j1, . . . , jn with 1 ≤ j1, . . . , jn ≤ n we put

�j1,...,jn =
n⋂

i=1

�i
ji
.

Since f1, . . . , fn are independent we have

P (�j1,...,jn)= n−n.

For (j1, . . . , jn) �= (i1, . . . , in) we have

�j1,...,jn ∩�i1,...,in = ∅.
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Using this and the unconditionality of the norm, we obtain

E
∥∥(xifi(ω))ni=1

∥∥=
n∑

j1,...,jn=1

∫
�j1,...,jn

∥∥(xifi(ω))ni=1

∥∥dP (ω)

≥
n∑

j1,...,jn=1

∥∥∥∥
(
xi

∫
�j1,...,jn

|fi(ω)|dP (ω)

)n
i=1

∥∥∥∥
= n−n+1

n∑
j1,...,jn=1

‖(xiyji )ni=1‖.

For the last equality we have to show∫
�j1,...,jn

|fi(ω)|dP (ω)= n−n+1yji .

We check this. The functions

|fi |χ�i
ji

, χ�1
j1
, . . . , χ

�i−1
ji−1

, χ
�i+1
ji+1

, . . . , χ�n
jn

are independent. Therefore we get∫
�j1,...,jn

|fi(ω)|dP (ω)=
∫
�

|fi(ω)|χ�1
j1

· · ·χ�n
jn
dP (ω)

= n−n+1
∫
�i
ji

|fi(ω)|dP (ω). �

LEMMA 11. Let f1, . . . , fn be identically distributed random variables (not
necessarily independent) with E|f1| < ∞. Let yj , j = 1, . . . , n, be defined as
in (3). Let z1 ≥ z2 ≥ · · · ≥ zn ≥ 0. Let sk(x, y, z), k = 1, . . . , n3, be the decreasing
rearrangement of the numbers |xiyjzk|, i, j, k = 1, . . . , n. Then we have, for all
x ∈ R

n,

n−n
∑

1≤k1,...,kn≤n

E max
1≤i≤n

|xizkifi(ω)| ≤
2

n

n2∑
k=1

sk(x, y, z).

PROOF. Let µ be the normalized counting measure on {k = (k1, . . . , kn) |
1 ≤ k1, . . . , kn ≤ n}. For i = 1, . . . , n define the functions ζi : {k = (k1, . . . , kn) |
1 ≤ k1, . . . , kn ≤ n} → R, i = 1, . . . , n, by ζi(k)= zki and put

*i =
{
(ω,k)

∣∣ |xiζi(k)fi(ω)| = max
1≤�≤n

|x�ζ�(k)f�(ω)|
}
.
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We may assume that the sets *i , i = 1, . . . , n, are disjoint. In case they are not
disjoint, we make them disjoint. Therefore

n∑
i=1

P ×µ(*i)= 1.

We define numbers λi and sets *̃i , i = 1, . . . , n, by

P ×µ
{
(ω,k)

∣∣ |ζi(k)fi(ω)| ≥ λi
}= P ×µ(*i)

and

*̃i = {
(ω,k)

∣∣ |ζi(k)fi(ω)| ≥ λi
}
.

The existence of these numbers λi follows from the continuity of distribution of
the functions fi [cf. the definition of tj (f )]. We have

n∑
i=1

P ×µ(*̃i) = 1

and

*̃i =
n⋃

�=1

{
k | ζi(k)= z�

}×
{
ω
∣∣ |fi(ω)| ≥ λi

z�

}
.

Since µ{k | ki = �} = µ{k | ζi(k)= z�} = 1
n

we get

P ×µ(*̃i)= 1

n

n∑
�=1

P

{
ω
∣∣ |fi(ω)| ≥ λi

z�

}
.

As in the previous lemma we denote

�i
j =�j(fi)= {

ω | tj ≤ fi(ω) < tj−1
}
.

For (i, �) we choose ji,� = 1 if t1 ≤ λi/z� and ji,� with

tji,� ≤ λi

z�
< tji,�−1

otherwise. Then we have

{
ω
∣∣ |fi(ω)| ≥ λi

z�

}
⊆ {

ω
∣∣ |fi(ω)| ≥ tji,�

}=
ji,�⋃
i=1

�i
j

and

{
ω
∣∣ |fi(ω)| ≥ λi

z�

}
⊇ {

ω
∣∣ |fi(ω)| ≥ tji,�−1

}=
ji,�−1⋃
i=1

�i
j ,
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setting
⋃0

j=1 �
i
j = ∅. Therefore we have

1 =
n∑

i=1

P ×µ(*̃i)=
n∑

i=1

1

n

n∑
�=1

P

{
ω
∣∣ |fi(ω)| ≥ λi

z�

}
≥

n∑
i=1

1

n

n∑
�=1

P

(ji,�−1⋃
j=1

�i
j

)
.

Thus we get

n2 ≥
n∑

i,�=1

(ji,� − 1),

which gives us

2n2 ≥
n∑

i,�=1

ji,�.

By the definitions of the sets *i and *̃i we obtain

n−n
∑

k

E max
1≤i≤n

|xiζi(k)fi(ω)| =
n∑

i=1

∫
*i

|xiζi(k)fi(ω)|dP (ω)dµ(k)

≤
n∑

i=1

∫
*̃i

|xiζi(k)fi(ω)|dP (ω)dµ(k).

Since *̃i ⊆⋃n
�=1({k | ζi(k)= z�} ×⋃ji,�

j=1 �
i
j ),

n−n
∑

k

E max
1≤i≤n

|xiζi(k)fi(ω)| ≤ 1

n

n∑
i=1

n∑
�=1

|xiz�|
∫
⋃ji,�

j=1 �
i
j

|fi(ω)|dP (ω)

≤ 1

n

n∑
i=1

n∑
�=1

|xiz�|
ji,�∑
j=1

yj .

Since 2n2 ≥∑n
i,�=1 ji,�, we get

n−n
∑

k

E max
1≤i≤n

|xiζi(k)fi(ω)| ≤ 1

n

2n2∑
i=1

si(x, y, z)≤ 2

n

n2∑
i=1

si(x, y, z). �

PROOF OF PROPOSITION 6. Let t�, � = 1, . . . , n3, denote the decreasing
rearrangement of the numbers∣∣∣∣xiyj

(
N∗−1

(
k

n

)
−N∗−1

(
k − 1

n

))∣∣∣∣, i, j, k = 1, . . . , n.
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Then, by the definitions of the numbers sl , there are numbers ki with
∑n

i=1 ki = n2

such that

n2∑
�=1

t� =
n∑

i=1

|xi |
ki∑
�=1

s�,

setting
∑0

�=1 s� = 0. Moreover, for all numbers mi with
∑n

i=1 mi = n2, we have

n2∑
�=1

t� ≥
n∑

i=1

|xi|
mi∑
�=1

s�,

which means

n2∑
�=1

t� = ‖x‖s .

By Lemma 9,

E
∥∥(xifi(ω))ni=1

∥∥
z ≤ 1

cn
n−n+1

∑
1≤k1,...,kn≤n

E max
1≤i≤n

|xizki fi(ω)|.

By Lemma 11,

E
∥∥(xifi(ω))ni=1

∥∥
z ≤ 2

cn

n2∑
�=1

t� = 2

cn
‖x‖s .

Now we show the “moreover” part of the proposition. By Lemma 10,

E
∥∥(xifi(ω))ni=1

∥∥
z ≥ n−n+1

n∑
j1,...,jn=1

‖(xiyji )ni=1‖z.

By Lemma 9,

E
∥∥(xifi(ω))ni=1

∥∥
z ≥ n−2n+2

∑
1≤j1,...,jn≤n

1≤k1 ,...,kn≤n

max
1≤i≤n

|(xiyji zki )ni=1|.

By Lemma 8,

E
∥∥(xifi(ω))ni=1

∥∥
z ≥ 1

2

n2∑
�=1

t� = 1
2‖x‖s ,

which proves the proposition. �
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REMARK. Using (7) and repeating the proof of Proposition 6, we can obtain
estimates for the constants in Corollary 3. Namely, for every f1, . . . , fn satisfying
the condition of the proposition, we have

E
∥∥(xifi(ω))ni=1

∥∥
k,∗ ≤ 2

cn
‖x‖s ,

where s = (sl)
n2

l=1 is the nonincreasing rearrangement of the numbers |yizj |, 1 ≤
i, j ≤ n, z = (1, . . . ,1,0, . . . ,0)/[n/k]. Moreover, if f1, . . . , fn are independent,
then

‖x‖s ≤ 2cn,kE
∥∥(xifi(ω))ni=1

∥∥
k,∗.

In particular, we have the variant of Theorem 4 for ‖ · ‖k,∗:

E
∥∥(xifi(ω))ni=1

∥∥
k,∗ ≤ 4cn,k

cn
E
∥∥(xigi(ω))ni=1

∥∥
k,∗,(8)

where f1, . . . , fn satisfy the condition of Proposition 6, g1, . . . , gn are independent
copies of f1 and cn,k = n/k/[n, k] < 2, cn = 1 − (1 − 1/n)n > 1 − 1/e. Let us
note that taking m = k([n/k] + 1) and applying (8) for the sequences (x̄ifi)i≤m,
(x̄igi)i≤m, where x̄ = (x1, x2, . . . , xn,0, . . . ,0), we obtain

E
∥∥(xifi(ω))ni=1

∥∥
k,∗ ≤ 4e

e − 1
E
∥∥(xigi(ω))ni=1

∥∥
k,∗,(9)

since cm,k = 1.

3. Examples. In this section we provide a few examples. We need the
following two lemmas about the normal distribution.

LEMMA 12. For all x with x > 0,
√

2π

(π − 1)x + √
x2 + 2π

e−x2/2 ≤
√

2

π

∫ ∞
x

e−s2/2 ds ≤
√

2

π

1

x
e−x2/2.

The left-hand inequality can be found in [8]. The right-hand inequality is trivial.

LEMMA 13. Let f be a Gauss variable with distribution N(0,1). Let the
numbers tj and yj be defined by (1) and (3). Then there are absolute positive
constants c1, c2, c3 such that:

(i) for all 1 ≤ j ≤ n/e we have√
1

2
ln

n

j
≤ tj ≤

√
2 ln

n

j
and

c1 n√
lnn

≤ exp
(
t21
2

)
≤ c2 n√

lnn
;
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(ii) for all 2 ≤ j ≤ n/e we have

1

n

√
1

2
ln

n

j
≤ yj ≤ 1

n

√
2 ln

n

j − 1
and

√
lnn

n
≤ y1 ≤ c3

√
lnn

n
.

PROOF. The inequalities for t1 and y1 follow by direct computation. The
inequalities for the yj ’s follow from the inequalities for the tj ’s, since tj /n ≤ yj ≤
tj−1/n for every 2 ≤ j ≤ n. Let us prove the inequalities for the tj ’s. By definition,

P
{
ω
∣∣ |f (ω)| ≥ tj

}= j

n
.

This means √
2

π

∫ ∞
tj

e−s2/2 ds = j

n
.

By Lemma 12 we get
√

2π

(π − 1)tj +
√
t2j + 2π

e
−t2j /2 ≤ j

n
≤
√

2

π

1

tj
e
−t2j /2

.(10)

First we show tj ≤
√

2 ln n
j

. For this we observe that 1
s
e−s2/2 is decreasing on

(0,∞). Suppose now that for some j we have tj >
√

2 ln n
j

. Therefore, using (10),
we get

j

n
≤
√

2

π

1

tj
e
−t2j /2 ≤

√
2

π

1√
2 ln n

j

j

n
.

Thus we have √
2 ln

n

j
≤
√

2

π
,

which is not true if ej ≤ n.

We show now that
√

1
2 ln n

j
≤ tj . The function

√
2π

(π − 1)x + √
x2 + 2π

e−x2/2

is decreasing on (0,∞). Suppose now

tj <

√
1

2
ln

n

j
.
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Then we have, by (10),

j

n
≥

√
2π

(π − 1)tj +
√
t2j + 2π

e
−t2j /2 ≥

√
2π

(π − 1)
√

1
2 ln n

j
+
√

1
2 ln n

j
+ 2π

(
j

n

)1/4

,

which is false for j ≤ n/e. That proves the lemma. �

EXAMPLE 14. Let f1, . . . , fn be independent Gauss variables with distribu-
tion N(0,1). Let M be the Orlicz function given by

M(t) =



0, t = 0,
e−3/(2t2), t ∈ (0,1),
e−3/2(3t − 2), t ≥ 1.

Then we have, for all x ∈ R
n,

c‖x‖M ≤ E max
1≤i≤n

|xifi(ω)| ≤ C‖x‖M,

where c and C are absolute positive constants.

PROOF. It is easy to see that there are absolute constants c1, c2 such that

c1k
√

ln(en/k)≤
k∑

j=1

√
ln(n/j)≤ c2k

√
ln(en/k)

for every k ≤ n. Since
∑n

j=1 yj = E|f1| = √
2/π , Lemma 13 implies that, for

every k ≤ n,

c3
k
√

ln(en/k)

n
≤

k∑
j=1

yj ≤ c4
k
√

ln(en/k)

n
,(11)

where c3, c4 are absolute constants.
By the condition of the example, M−1(t) = √−3/(2 ln t) on (0, e−3/2). Thus

M−1(t) ≈ √
3/(2 ln(e/t)) on (0,1). By (5) we observe

t
√

2 ln(e/t)/
√

3 ≤ M∗−1(t) ≤ 2t
√

2 ln(e/t)/
√

3.

Taking t = k/n and using (11), we get, for every k ≤ n,

c5

k∑
j=1

yj ≤ M∗−1
(
k

n

)
≤ c6

k∑
j=1

yj ,

where c5, c6 are absolute constants. Applying Corollary 2 we obtain the result. �

The next example is proved in the same way as the previous one; we just use
Corollary 3 instead of Corollary 2 at the end.
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EXAMPLE 15. Let gi , i = 1, . . . , n, be independent Gauss variables with
distribution N(0,1), k ≤ n and ‖x‖ =∑k

i=1 x
∗
i . Let

M(t)=




0, t = 0,
1

k
e−3/(2k2t2), t ∈

(
0,

1

k

)
,

e−3/2
(

3t − 2

k

)
, t ≥ 1

k
.

Then for all λ ∈ R
n we have

c1‖λ‖M ≤ E
∥∥(λigi(ω))ni=1

∥∥≤ c2‖λ‖M,

where c1 and c2 are positive absolute constants.

The following example deals with the moments of Gauss variables.

EXAMPLE 16. Let 0 < q ≤ lnn, aq = max{1, q}, gi , i = 1, . . . , n, be
independent Gauss variables with distribution N(0,1) and fi = |gi |q , i =
1, . . . , n. Let

M(t)=




0, t = 0,
1

k
exp

(
− aq

(kt)2/q

)
, t ∈ (0, t0),

at − b, t ≥ t0,

where

t0 = 1

k

(
2aq
q + 2

)q/2

, a = q + 2

eqkt0
e−q/2, b = 2

eqk
e−q/2.

Then for all λ ∈ R
n we have

c(aq)
q/2‖λ‖M ≤ E

∥∥(λifi(ω))ni=1

∥∥≤ C(Caq)
q/2‖λ‖M,

where 0 < c < 1 <C are absolute constants and ‖x‖ =∑k
i=1 x

∗
i .

This example is proved in the same way as the previous two examples. We use
that

k
(√

ln(n/k)
)q/2 ≤

k∑
j=1

(√
ln(n/j)

)q/2 ≤ 2k
(√

ln(n/k)
)q/2

for every k ≤ n/eq and that

caq ≤ (
E|g(ω)|q)2/q ≤ Caq

for some absolute positive constants c, C.
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Finally, we apply our theorem to the p-stable random variables. Let us recall
that a random variable f is called p-stable, p ∈ (0,2], if the Fourier transform of
f satisfies

E exp(−itf ) = exp(−c|t|p)
for some positive constant c (in the case p = 2 we obtain the Gauss variable).

EXAMPLE 17. Let p ∈ (1,2). Let f1, . . . , fn be p-stable, independent,
random variables with E|fi| = 1. Let k ≤ n and ‖x‖ =∑k

i=1 x
∗
i . Let

M(t) =




1

k
(kt)p, t ∈

[
0,

1

k

]
,

pt + p − 1

k
, t >

1

k
.

Then, for all x ∈ R
n,

cp‖x‖M ≤ E
∥∥(λifi(ω))ni=1

∥∥≤ Cp‖x‖M,

where cp, Cp are positive constants depending on p only.
In particular,

cp|x|p ≤ E max
1≤i≤n

|xifi(ω)| ≤ Cp|x|p,

where | · |p denotes the standard �p-norm.

PROOF. There are positive constants c1 and c2 depending on p only such that,
for all t > 1,

c1t
−p ≤ P

{
ω
∣∣ |f (ω)| ≥ t

}≤ c2t
−p.

Thus (
c1
n

j

)1/p

≤ tj ≤
(
c2
n

j

)1/p

.

Repeating the proof of Example 14, we obtain the desired result. �
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