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The aim of this note is to reduce a number of assumptions in the recent
paper of W. Bryc by showing that some of them imply the others and to give
alternative, simpler proofs of some of Bryc’s results.

1. Introduction. There exists a considerable literature dealing with stochastic
processes with linear regressions and quadratic second conditional moments (for
references see Chapter 8 in [2]). In one of the recent papers on this subject, Bryc [3]
used orthogonal polynomials to analyze and identify one-dimensional distributions
of such processes.

The aim of this note is to carry out a thorough analysis of the condition defining
first conditional moments in Bryc’s paper ([3], condition (1)). This will make it
possible to omit some of the assumptions from [3] and give an alternative, simpler
proof of a result contained therein.

Let X =(Xk)k∈Z be a square integrable random sequence indexed by the
integers, with nondegenerate covariance matrices and constant first two moments,
that is, EXk = EX0, EX2

k = EX2
0 ∀ k ∈ Z. We will follow Bryc in using the term

random field for X. This suggests expected extensions of the results from [3] to
the case of real random fields, indexed by the elements of Z

d . Proposition 2 may
be seen as a first step in this direction.

For simplicity of notation, we define

F≤m := σ(Xk :k ≤ m),

F≥m := σ(Xk :k ≥ m),

F �=m := σ(Xk :k �= m).

Following Bryc [3], condition (1), we assume that

E(Xk|F �=k) := L(Xk−1,Xk+1) ∀ k ∈ Z,(1.1)

where L(x, y) := a(x + y) + b. There is no loss of generality in assuming that
EX0 = 0 and EX2

0 = 1, which implies b = 0.
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2. Results. From now on we assume that X is a square integrable random
field having nondegenerate covariance matrices and constant first two moments.

PROPOSITION 1. If X satisfies (1.1) then X is L2-stationary.

Proposition 1 is closely related to the following, more general statement, due to
Janžura [4].

PROPOSITION 2. Let X =(Xk)k∈Zd be a square integrable random field such
that for all k ∈ Z

d ,

E(Xk|F �=k) =∑
j�=0

ajXk+j(2.1)

and ak = a−k. If E(Xk − E(Xk|F �=k))2 does not depend on k then X is
L2-stationary.

Let rk := corr(X0,Xk) denote the correlation coefficients. Some easy conse-
quences of the assumption on determinants of covariance matrices are that |r1| < 1,
|r2| < 1 and r2 + 1 − 2r2

1 > 0. It is also easy to see that a = r1/(1 + r2) and that
the correlation coefficients satisfy recurrence

rk(r2 + 1) = r1(rk+1 + rk−1), k ≥ 2.(2.2)

REMARK 1. Clearly a = 0 if and only if r1 = 0, so a = 0 implies rk = 0 for
k �= 0 by (1.1).

THEOREM 1 ([3], Theorem 3.1(i)). If X satisfies (1.1) and r1 �= 0, then
0 < |a| < 1

2 and rk = r
|k|
1 for all k ∈ Z.

REMARK 2. The proof of the above theorem shows that the restrictions on
the correlation coefficients in Bryc [3] can be weakened to nondegenerateness of
covariance matrices and to the assumption that r1 �= 0.

REMARK 3. Kingman [5] showed that the necessary condition for the
existence of L2 random variables Xk , k ∈ Z, satisfying

E(Xk|F �=k) = ∑
j �=k

akjXj(2.3)

is the existence of constants ui > 0 such that uiaij = ujaji . Theorem 1 provides
the necessary and sufficient condition in the case (1.1), which is a particular case
of (2.3).

Analysis of a boundary value problem for difference equation (2.2), motivated
by [6], Chapter 15.10, gives an alternative proof of another result of Bryc.
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THEOREM 2 ([3], Theorem 3.1(ii)). If X satisfies (1.1) then one-sided
regressions are linear,

E(Xk|F≤0) = rkX0, k = 1,2, . . . .

3. Proofs.

PROOF OF PROPOSITION 1. Set Rj,k := EXjXk . Obviously Rj,j = 1 and
Rj,k = Rk,j . Condition (1.1) implies

Rj,k = a(Rj−1,k + Rj+1,k) for j �= k.(3.1)

In the trivial case a = 0 one has Rj,k = 0 for j �= k and X is L2-stationary. Now
assume a �= 0. Substituting j = n, k = n − 1 and j = n, k = n + 1 into (3.1) yields

Rn,n−1 = a(Rn−1,n−1 + Rn+1,n−1),

Rn,n+1 = a(Rn−1,n+1 + Rn+1,n+1).

Hence Rn,n−1 = Rn,n+1 ∀n ∈ Z and it does not depend on n. We now proceed by
induction. Assume that (m ≥ 1),

Rn,n−m = Rn+1,n−m+1 ∀n ∈ Z;(3.2)

we will prove (3.2) for m + 1. Substituting j = n, k = n − m − 1 and j = n − m,
k = n + 1 into (3.1) yields

Rn,n−m−1 = a(Rn−1,n−m−1 + Rn+1,n−m−1),

Rn−m,n+1 = a(Rn−m−1,n+1 + Rn−m+1,n+1).

Since |n − 1 − (n − m − 1)| = |n − m + 1 − (n + 1)| = m, we get Rn,n−m−1 =
Rn−m,n+1 ∀n ∈ Z by induction assumption (3.2). This proves (3.2) for m+1. Thus
Rj,k depends only on the difference |j − k|. �

PROOF OF PROPOSITION 2. We define infinite matrices R and A by the
formulae R(i, j) := EXiXj, A(i, j) := ai−j, A(i, i) := −1 for i, j ∈ Z

d . Multiplying
both sides of (2.1) by Xu (u �= k) and then taking the expected value yields

R(k,u) =∑
j�=0

ajR(k + j,u).

Substituting w = k + j and using the fact that A(k,k) = −1 shows that product of
matrices A and R has all coefficients equal to zero except for the diagonal. Since∑

w�=k

A(k,w)R(w,k) = E[XkE(Xk|F �=k)] = R(k,k) − E[Xk − E(Xk|F �=k)]2,

we get that (AR)(k,k) = −E(Xk − E(Xk|F �=k))2. Let Rp, p ∈ Z
d , be an infinite

matrix defined by Rp(i, j) := R(i + p, j + p). Observe that

(ARp)(i, j) = (AR)(i + p, j + p) = (AR)(i, j)

by the assumption that (AR)(i, i) = −E(Xi − E(Xi|F �=i))
2 does not depend on i.

Since A is nonsingular, the proof is complete. �
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REMARK 4. The proof of Proposition 1 shows that if X satisfies (1.1) then
E(Xk − E(Xk|F �=k))

2 = 1 − a(Rk,k+1 + Rk,k−1) (with Rk,l = EXkXl as in the
proof of Proposition 1) does not depend on k.

PROOF OF THEOREM 1. The general solution of (2.2) depends on the sign of
4a2 − 1.

If a = 1
2 then rk = k(r1 −1)+1 and the only sequence of correlation coefficients

satisfying (2.2) is rk ≡ 1. If a = −1
2 then rk = (−1)k[1 − k(r1 + 1)] and the only

sequence of correlation coefficients satisfying (2.2) is rk = (−1)k .
If |a| > 1

2 then

rk = A sinkτ + coskτ,(3.3)

where τ := arccos 1
2a

, A := r1−cos τ
sin τ

. We claim that for any initial values r1, r2,
sequence (3.3) is not positive definite. To obtain a contradiction, suppose that
there exist r1, r2 such that (rk)k defined by (3.3) is positive definite. By the
Carathéodory–Toeplitz theorem ([1], Theorem 5.1.1, or by an easy calculation
0 ≤ E(

∑∞
k=0 xkXk)

2 = 2
1−x2 (

1
2 +∑∞

k=1 rkx
k)),

F(x) := 1
2 +

∞∑
k=1

rkx
k,

defined for |x| < 1, is an analytic function with values in R+. Hence for all |x| < 1,

1

2
+

∞∑
k=1

(xk coskτ + Axk sinkτ ) = −x2 + 2Ax sin τ + 1

2(1 − 2x cosτ + x2)
≥ 0,

that is satisfied only if 2A sin τ = 0, or equivalently 1 + r2 − 2r2
1 = 0, which

contradicts the nondegenerateness of the covariance matrices.
We now turn to the case 0 < |a| < 1

2 (the case a = 0 is described in Remark 1).
If 0 < |a| < 1

2 then

rk =
(

q2 − r1

q2 − q1

)
qk

1 +
(

r1 − q1

q2 − q1

)
qk

2 ,

where q1 = (2|a|)−1(signa − √
1 − 4a2), q2 = (2|a|)−1(signa + √

1 − 4a2). Let
us observe that if a ∈ (0, 1

2) (equivalently r1 > 0) then q1 ∈ (0,1) and q2 > 1.
Hence r1 = q1 and consequently rk = rk

1 for all k ≥ 1. Analogously, if a ∈ (−1
2 ,0)

(equivalently r1 < 0) then q1 < −1 and q2 ∈ (−1,0). Hence r1 = q2 and rk = rk
1

for all k ≥ 1, which completes the proof. �

PROOF OF THEOREM 2. In the trivial case a = 0, one has that E(Xk|F≤0) = 0
for all k ≥ 1. Now assume a �= 0. Theorem 1 implies 0 < |a| < 1

2 . The solution of
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the boundary value problem

E(Xr | F≤s,F≥t ) = a
[
E(Xr−1 | F≤s,F≥t ) + E(Xr+1 | F≤s,F≥t )

]
,

E(Xs | F≤s,F≥t ) = Xs,

E(Xt | F≤s,F≥t ) = Xt,

is

E(Xr | F≤s,F≥t ) =
(

qt
2q

r
1 − qr

2qt
1

qt
2q

s
1 − qs

2q
t
1

)
Xs +

(
qr

2qs
1 − qs

2q
r
1

qt
2q

s
1 − qs

2q
t
1

)
Xt,(3.4)

where q1 and q2 are as in the last paragraph of the proof of Theorem 1. Putting
r = k, s = k − u, t = k + l for u, l ∈ N and k ∈ Z into (3.4) we obtain

E(Xk | F≤k−u,F≥k+l) = ql
2 − ql

1

qu+l
2 − qu+l

1

Xk−u + qu
2 − qu

1

qu+l
2 − qu+l

1

Xk+l .

Since

qu
2 − qu

1

qu+l
2 − qu+l

1

−−−→
u→∞

{
ql

2, a ∈ (−1
2 ,0

)
ql

1, a ∈ (0, 1
2

)
}

= rl
1,

by Lévy’s downward theorem there exists a.s. a limit

L := lim
u→∞

ql
2 − ql

1

qu+l
2 − qu+l

1

Xk−u

and

E

(
Xk

∣∣∣ +∞⋂
u=1

σ(F≤k−u,F≥k+l)

)
= rl

1Xk+l + L.(3.5)

However,

E|L| = E lim
u↓−∞

∣∣∣∣ Xu

q−u
2 − q−u

1

∣∣∣∣≤ lim
u↓−∞

E|Xu|
|q−u

2 − q−u
1 | = 0,

so L = 0 a.s. Taking the conditional expectation of both sides of (3.5) with respect
to F≥k+l yields E(Xk | F≥k+l ) = rl

1Xk+l .
On the other hand, putting r = k, s = k − l, t = k + u with u, l ∈ N and k ∈ Z

into (3.4) and applying similar arguments as above, one gets E(Xk+l | F≤k) =
rl

1Xk . �
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