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LIMIT LAWS OF MODULUS TRIMMED SUMS

BY PHILIP S. GRIFFIN AND FOZIA S. QAZI

Syracuse University and St. Mary’s College

Let X,X1,X2, . . . be a sequence of independent and identically dis-
tributed random variables. Let (1)Xn, . . . ,

(n)Xn be an arrangement of X1,
X2, . . . ,Xn in decreasing order of magnitude, and set (rn)Sn = (rn+1)Xn +
· · · + (n)Xn. This is known as the modulus trimmed sum. We obtain a com-
plete characterization of the class of limit laws of the normalized modulus
trimmed sum when the underlying distribution is symmetric and rn →∞,
rnn

−1 → 0.

1. Introduction. Let X,X1,X2, . . . be a sequence of i.i.d. random variables.
Arrange X1,X2, . . . ,Xn in decreasing order of magnitude as (1)Xn, . . . ,

(n)Xn,
that is,

|(1)Xn| ≥ · · · ≥ |(n)Xn|,
and set

(rn)Sn = (rn+1)Xn + · · · + (n)Xn.(1.1)

Ties are broken according to the order in which the random variables occur. That
is, for 1≤ j ≤ n, let mn(j) be the number of i for which either |Xi |> |Xj |, i ≤ n

or |Xi | = |Xj | and i ≤ j . Then define (r)Xn =Xj if mn(j)= r .
(rn)Sn is known as the modulus trimmed sum. Its behavior depends on the

sequence rn. Considerable work has been done on the problem of describing the
asymptotic distribution of appropriately normalized modulus trimmed sums. The
case when rn is bounded is referred to as light trimming. Generally, light trimming
does not improve weak convergence results but does improve the almost sure
behavior of Sn; see, for example, Mori (1976, 1984) and Maller (1982, 1984).
For heavy trimming, that is, when rn is proportional to n, the trimmed sum can be
made to converge to a mixture of normal distributions provided only a smoothness
condition, but no moment condition, is satisfied by the distribution of X; see Maller
(1988).

We will consider rn for which

rn→∞, rnn
−1 → 0.(1.2)

This is known as intermediate trimming and offers an interesting and rich
collection of results. Some of the results that have been obtained for intermediate
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trimming, under the assumption that X is symmetric, include necessary and
sufficient conditions for asymptotic normality as well as a solution to the more
general problem of describing the class of subsequential limit laws and their
domains of partial attraction; see Griffin and Pruitt (1987) or, for the quantile-
transfrom approach, see Csörgő, Haeusler and Mason (1991). Griffin and Pruitt
(1991) also solved a special case of characterizing the class of limit laws along the
entire sequence when rn is nondecreasing. In this paper we will characterize the
class of limit laws in the general case, where rn is not necessarily monotone but
still assuming that X is symmetric. This is considerably more complex than in the
monotone case in that several new classes of limit laws arise and the dependence on
the sequence {rn} is much more involved. The problem when X is not symmetric
remains open, as is the case for many problems relating to modulus trimmed sums.

Other methods of trimming have also been considered in the literature. Among
those most closely related to the modulus trimmed sum include trimming upper
and lower order statistics [see Csörgő, Haeusler and Mason (1988) or Griffin and
Pruitt (1989)], and the variations on modulus trimming surveyed in Hahn, Kuelbs
and Weiner (1991). The methods of this paper can probably be adapted to solve
the analogous limit law problem for some of these other forms of trimming. An
overview of many aspects of trimming can be found in the volume edited by Hahn,
Mason and Weiner (1991).

2. Preliminaries. Throughout this paper we will assume that X is symmetric
and (1.2) holds. For x ≥ 0 let

G(x)= P (|X|> x)(2.1)

and define the right continuous inverse G̃ by

G̃(u)= sup{x :G(x) > u} if 0≤ u < 1,

with G̃(1) = G̃(1−), where G̃(u) = 0 if {x :G(x) > u} = ∅. Note that G̃ is

nonincreasing in u, and if U is uniform on (0,1), then |X| d= G̃(U).

For α ∈R let

un(α)= 0∨ (rn− αrn
1/2)n−1 ∧ 1(2.2)

and

τn(α)= (
E
(
G̃(U)2;U ≥ un(α)

))1/2
.(2.3)

If G is continuous, then (2.3) can be rewritten as

τn(α)= (
E
(
X2; |X| ≤ cn(α)

))1/2

where cn(α)= G̃(un(α)).
From (2.3) it follows that

τn is nonnegative, nondecreasing and continuous(2.4)
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while by (2.5) of Griffin and Pruitt (1991), for any λ > 0, if n is sufficiently large

τ 2
n is convex on [−λ,λ].(2.5)

Thus if τn→ τ pointwise, or more generally τnγ
−1
n → τ pointwise for some scalar

sequence γn, then τ ∈ L where

L= {τ : τ is nonnegative, nondecreasing and τ 2 is convex}.(2.6)

Furthermore, the convergence will be uniform on compact sets (u.c.), since any
convergent sequence of convex functions converges u.c.

Let

I({rn})= {Z : there exist X symmetric, γn and nk

such that (rnk )Snkγnk
−1 d→ Z}

and

L({rn})= {Y : there exist X symmetric and γn

such that (rn)Snγn
−1 d→ Y }.

Thus I({rn}) is the class of all possible subsequential limit laws and L({rn}) is the
class of all possible limit laws along the entire sequence. The families I({rn}) and
L({rn}), which a priori depend on rn, may be considered analogues of the infinitely
divisible laws and the stable laws respectively for modulus trimmed sums.

We will now state the aforementioned results of Griffin and Pruitt (1987)
concerning the class of subsequential limit laws and their domains of partial
attraction. Let N1, N2 be independent standard normal random variables, and write

Z ∼ τ if Z d=N1τ (N2). Set

L̃= {Z :Z ∼ τ for some τ ∈ L}.
Recall that we are assuming throughout that X is symmetric and rn satisfies (1.2).

THEOREM 2.1. Fix a sequence rn. Then

I({rn})= L̃.

It is easily seen that if Z ∼ τ1 and Z ∼ τ2 where τ1, τ2 ∈ L, then τ1 = τ2
[Theorem 3.7, Griffin and Pruitt (1987)]. Thus the subsequential limit laws can be
identified with a unique τ ∈ L. In particular Z has a normal distribution (possibly
degenerate at 0) if and only if τ ≡ a for some a ≥ 0.

One rather surprising consequence of Theorem 2.1 is that the subsequential limit
laws I({rn}), do not depend on the sequence rn. Criteria for convergence to a given
law in I({rn}) is the subject of the next result.
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THEOREM 2.2. Assume that Z ∼ τ where τ ∈ L. Fix a subsequence nk . Then

there exists γn such that (rnk )Snkγnk
−1 d→ Z

if and only if

for some (all) α0 with τ (α0) > 0,
τnk(α)

τnk(α0)
→ τ (α)

τ (α0)
for all α ∈R.(2.7)

In the special case where τ ≡ a for some a > 0, we obtain the following
necessary and sufficient conditions for asymptotic normality:

τnk(α)

τnk(0)
→ 1 for all α.

The characterization of L({rn}), analogous to Theorem 2.1, is much harder
as the class of limit laws may depend on the sequence rn. For some rn,
L({rn}) = I({rn}) and for others the inclusion L({rn}) ⊆ I({rn}) can be strict.
The characterization of L({rn}) for rn nondecreasing, given by Griffin and Pruitt
(1991), depends on the following condition:

(S): for any sequences mk,nk→∞, if

rmk

mk

= rnk

nk
+O

(
r

1/2
nk

nk

)

then
mk

nk
→ 1.

The delicate nature of this condition can be seen from the examples given by
Griffin and Pruitt [(1991), page 65]. Before stating their result we introduce two
classes of distributions;

N = {Y :Y
d= aN1, a ≥ 0}(2.8)

and

E = {Y :Y d= aN1 exp(λN2), a ≥ 0, λ≥ 0}.(2.9)

THEOREM 2.3. Fix a nondecreasing sequence rn.

If (S) fails, then L({rn})=N .(2.10)

If (S) holds, then L({rn})= E .(2.11)

By taking X to have a symmetric distribution in the Feller class it follows that
N ⊂L({rn}) for any sequence rn [Griffin and Pruitt (1987), Corollary 3.12]. Thus
the failure of Condition (S) restricts the class of limit laws to the smallest possible
class.
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3. Main results and proofs. In this section we will characterize the class of
limit laws L({rn}) in the general case, that is, when rn is not necessarily monotone.
The nature of L({rn}) depends on the structure of the set S where

S = S({rn})=
{
(β,ρ) ∈R× [0,∞) : there exist {nk}, {mk}→∞

such that (β,ρ)= lim

(
unk (0)− umk

(0)

νnk
,

(
nk

mk

)1/2)}

and

νn = r
1/2
n

n
.

If rn is assumed to be nondecreasing then one can show that S must contain
the line ρ = 1 [Griffin and Pruitt (1991), Lemma 4.2]. It then follows from
Theorems 3.7 and 3.8 below that this limits the possibilities for L({rn}) to just
two, namely those given in Theorem 2.3. If, however, the only assumptions on rn
are those of (1.2), then it turns out that S can be almost anything, subject to a few
obvious restrictions, as we now show.

First note that S is closed, being a set of limit points, and (0,1) ∈ S since we
can take nk = mk in the definition of S. Furthermore, S satisfies the following
condition; for any β ∈R and ρ > 0,

(β,ρ) ∈ S �⇒
(
−β

ρ
,

1

ρ

)
∈ S.(3.1)

To see this suppose (β,ρ) ∈ S and let {nk}, {mk} satisfy

unk(0)− umk
(0)

νnk
→ β,

(
nk

mk

)1/2

→ ρ.(3.2)

Then

1− umk
(0)

unk(0)
= unk (0)− umk

(0)

νnk

1

r
1/2
nk

∼ β

r
1/2
nk

→ 0,

giving
rnk

nk
= unk(0)∼ umk

(0)= rmk

mk

.

Since

nk
1/2 ∼mk

1/2ρ,

this leads to

νmk

νnk
=
(
rmk

/mk

rnk/nk

)1/2(
nk

mk

)1/2

∼
(
nk

mk

)1/2

∼ ρ.(3.3)
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Thus by interchanging the roles of {nk} and {mk} in (3.2) we get (3.1).
The three conditions, that S is closed, (0,1) ∈ S and (3.1), are in fact the only

restrictions on S.

THEOREM 3.1. Given any closed set C ⊆ R× [0,∞), containing (0,1) and
having the property that for every β ∈R and ρ > 0,

(β,ρ) ∈ C implies
(
−β

ρ
,

1

ρ

)
∈C,(3.4)

there exists a sequence {rn} with rn→∞, rnn
−1 → 0 such that S({rn})=C.

Since this result is not used in the remainder of the paper, its proof is omitted.
It can be found in Qazi (2001). It does show however that no simplifications are
likely to be obtained from any further study of the structure of the set S.

In order to describe the class of all possible limit laws L({rn}), we need to
introduce some further notation. Let

Lc = {τ ∈L : τ ≡ a for some constant a ≥ 0},(3.5)

and for (β,ρ) ∈R× [0,∞) let

L(β,ρ) = {
τ ∈ L : τ (αρ + β)τ (α0)= τ (α)τ (α0ρ + β) for all α,α0 ∈R

}
(3.6)

and

L̃(β,ρ) = {Y :Y ∼ τ for some τ ∈L(β,ρ)}.(3.7)

From (3.5) and (3.6) it follows trivially that Lc ⊆ L(β,ρ), and so N ⊆ L̃(β,ρ) for
every (β,ρ). Also, for later reference, note that L(0,1) =L and

L(β,ρ) =L(−β/ρ,1/ρ) for all β ∈R, ρ > 0.(3.8)

THEOREM 3.2. Fix a sequence rn. Then

L({rn})=
⋂

(β,ρ)∈S
L̃(β,ρ).(3.9)

In this paper we will prove the inclusion from left to right. In addition we
will give a simple description of

⋂
(β,ρ)∈S L̃(β,ρ) depending on the form of the

set S. The inclusion from right to left, which requires the detailed construction of
distributions satisfying (2.7), can be found in Qazi (2001).

As the statement of Theorem 3.2 makes clear, each point (β,ρ) ∈ S, places
a different restriction on the function τ representing a possible limit law. If S is
sufficiently large, in a certain sense, then it can happen that⋂

(β,ρ)∈S
L(β,ρ) =Lc.(3.10)
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In that case the class of limit laws contains only the normal distributions. This is
the situation, for example, in (2.10). On the other hand if S is sufficiently small
then other limit laws are possible. Table 1, following Theorem 3.10, describes the
various possibilities together with the appropriate reference in the paper.

Before giving the proof of Theorem 3.2, we need to make some preliminary
observations about the sets L(β,ρ).

LEMMA 3.3. Assume that τ ∈ L(β,ρ) and τ /∈ Lc.

If ρ = 0, then τ (α)= 0 for all α ≤ β .(3.11)

If ρ = 1 and β �= 0, then τ (α) > 0 for all α.(3.12)

If ρ �= 0,1, then τ (α)= 0 for all α ≤ β∗ and τ (α) > 0 for all α > β∗,(3.13)

where β∗ = β(1− ρ)−1.

PROOF. Setting ρ = 0 in (3.6) gives τ (β)τ (α0)= τ (α)τ (β) for all α,α0 ∈R.

Since τ /∈ Lc, this forces τ (β) = 0, which together with the monotonicity of τ

proves (3.11).
For (3.12), let ᾱ = sup{α : τ (α)= 0}. Note that ᾱ <∞ since τ �≡ 0. If ᾱ >−∞

then by continuity of τ we have τ (ᾱ) = 0. But if we now let α = ᾱ and ᾱ − β

respectively in (3.6), we obtain (since ρ = 1)

τ (ᾱ+ β)τ (α0)= τ (ᾱ)τ (α0 + β),

τ (ᾱ)τ (α0)= τ (ᾱ− β)τ (α0+ β)

for all α0. Since τ (ᾱ) = 0, this means that τ (ᾱ + |β|) = 0, contradicting the
definition of ᾱ. Hence ᾱ =−∞ and (3.12) holds.

For (3.13) we first let α = β∗ in (3.6). This gives

τ (β∗)τ (α0)= τ (β∗)τ (α0ρ + β)(3.14)

for all α0. Since τ /∈ Lc, this forces τ (β∗) = 0. Now again let ᾱ = sup{α :
τ (α) = 0}. Then ᾱ ≥ β∗ and by continuity τ (ᾱ) = 0. If ᾱ > β∗ then either
ᾱρ + β > ᾱ or ᾱρ + β < ᾱ, depending on whether ρ > 1 or ρ < 1 respectively. If
ᾱρ + β > ᾱ, then setting α = ᾱ in (3.6) we obtain

τ (ᾱρ + β)τ (α0)= τ (ᾱ)τ (α0ρ + β)(3.15)

for all α0. Since τ (ᾱρ + β) > 0 this implies τ (α0) = 0 for all α0, contradicting
τ /∈Lc. If ᾱρ+β < ᾱ, then (ᾱ−β)ρ−1 > ᾱ. Thus setting α = (ᾱ−β)ρ−1 in (3.6)
we obtain

τ (ᾱ)τ (α0)= τ
(
(ᾱ − β)ρ−1)τ (α0ρ + β)(3.16)

for all α0. Since τ ((ᾱ− β)ρ−1) > 0 this implies τ (α0ρ + β)= 0 for all α0, again
contradicting τ /∈ Lc. �
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COROLLARY 3.4. Fix τ ∈ L. The following are equivalent:

τ ∈L(β,ρ);(3.17)

τ (αρ + β)τ (α0)= τ (α)τ (α0ρ + β) for all α ∈R,
and for all α0 satisfying τ (α0) > 0 and τ (α0ρ + β) > 0.

(3.18)

PROOF. We need only consider the implication that (3.18) implies (3.17) as
the other direction is obvious. Thus fix τ ∈ L satisfying (3.18). If τ ∈ Lc, then
the result is trivial since Lc ⊆ L(β,ρ) for all (β,ρ). Thus we may assume τ /∈ Lc.
If (β,ρ) = (0,1) the result is again trivial since L(0,1) = L. We now consider
separately the three cases of Lemma 3.3. If ρ = 0, then τ (β) = 0 by (3.11). But
this clearly forces the functional equation in (3.6) to hold. Hence (3.17) holds. If
ρ = 1 and β �= 0, then by (3.12), τ is never 0. Hence the result holds in this case
also. Finally if ρ �= 0,1 then the result follows from (3.13), since α0 > β∗ implies
α0ρ + β > β∗ and α0 ≤ β∗ implies α0ρ + β ≤ β∗. �

PROOF OF THEOREM 3.2 (Inclusion from left to right). Fix Y ∈L({rn}) and
(β,ρ) ∈ S. By Theorem 2.1, Y ∼ τ for some τ ∈ L. We must show τ ∈ L(β,ρ).

By Theorem 2.2 there exists a symmetric distribution X such that for all α0
satisfying τ (α0) > 0,

τn(α)

τn(α0)
→ τ (α)

τ (α0)
(3.19)

for all α ∈R.
Since (β,ρ) ∈ S we can find {nk} and {mk} satisfying (3.2). Then by (3.3), for

all α, if k is sufficiently large,

umk
(α)= umk

(0)− ανmk

= unk(0)−
(
β + o(1)

)
νnk − α

(
ρ + o(1)

)
νnk

= unk
(
αρ + β + o(1)

)
.

Thus

τmk
(α)= τnk

(
αρ + β + o(1)

)
(3.20)

for all α ∈R. Since the convergence in (3.19) is u.c., it follows from (3.20) that for
all α,

τ (α)

τ (α0)
= τ (αρ + β)

τ (α0ρ + β)
,(3.21)

provided τ (α0) > 0 and τ (α0ρ + β) > 0. The result now follows from Corol-
lary 3.4. �
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Theorem 3.2 gives a characterization of L({rn}) in terms of the multiple
conditions, one for each (β,ρ) ∈ S, that the function τ representing the limit law,
must satisfy. This characterization is quite complicated, and it is not immediately
clear how to even recover the earlier result of Griffin and Pruitt described in
Theorem 2.3. The aim of the remainder of the paper is to provide a simple
description of

⋂
(β,ρ)∈S L̃(β,ρ) depending on the form of the set S. We begin with

a more informative description of the set L(β,ρ) depending on the particular value
of (β,ρ).

LEMMA 3.5.

L(β,0) = Lc ∪ {τ ∈L : τ (β)= 0
}
,(3.22)

L(β,1)
β �=0

=Lc ∪ {τ ∈ L : τ > 0 on (−∞,∞) and for all α ∈R

τ (α+ β)τ (0)= τ (α)τ (β)
}
,

(3.23)

L(β,ρ)
ρ �=0,1

=Lc ∪ {τ ∈ L : τ (β∗)= 0, τ > 0 on (β∗,∞) and for all α > 0

τ (β∗ + α)τ (β∗ + ρ)= τ (β∗ + 1)τ (β∗ + αρ)
}
.

(3.24)

PROOF. To prove (3.22), observe the left inclusion follows immediately from
(3.11). For the converse, let τ ∈ Lc ∪ {τ ∈ L : τ (β)= 0}. We may assume τ /∈ Lc

else there is nothing to prove since Lc ⊆ L(β,ρ) for all (β,ρ). Hence τ (β)= 0. But
then τ ∈L(β,0) by (3.6).

For (3.23), the left inclusion follows immediately by taking α0 = 0 and ρ = 1
in (3.6) and using (3.12). For the converse assume τ /∈ Lc (otherwise there is
nothing to prove), τ > 0 on (−∞,∞) and for all α ∈R,

τ (α + β)= τ (α)τ (β)

τ (0)
.

Then for any α,α0 ∈R,

τ (α+ β)τ (α0)= τ (α)τ (β)

τ (0)
τ (α0)= τ (α)

τ (α0)τ (β)

τ (0)
= τ (α)τ (α0+ β).

Hence τ ∈L(β,1) by (3.6).
For (3.24) first suppose τ ∈ L(β,ρ). If τ ∈ Lc then the left inclusion is trivially

true. So assume that τ /∈ Lc. From (3.13) we have τ (β∗)= 0 and τ (α) > 0 for all
α > β∗. Thus the only condition remaining to show is that for any α′ > 0,

τ (β∗ + α′)τ (β∗ + ρ)= τ (β∗ + 1)τ (β∗ + α′ρ).

But this follows easily by setting α0 = β∗ + 1 and α = β∗ + α′ in (3.6) and noting
that α0ρ + β = β∗ + ρ and αρ + β = β∗ + α′ρ.



LIMIT LAWS OF MODULUS TRIMMED SUMS 1475

Conversely, suppose that τ /∈ Lc, τ (β∗) = 0, τ > 0 on (β∗,∞) and for all
α > 0,

τ (β∗ + α)τ (β∗ + ρ)= τ (β∗ + 1)τ (β∗ + αρ).

Since α > β∗ if and only if αρ + β > β∗, to prove τ ∈ L(β,ρ), it is enough
in view of (3.13), to prove (3.18) for all α,α0 > β∗. In this case we can write
α = β∗ +α′ and α0 = β∗ +α′0 for some α′, α′0 > 0. Hence αρ+β = β∗ +α′ρ and
α0ρ + β = β∗ + α′0ρ. Thus

τ (αρ + β)τ (α0)= τ (β∗ + α′ρ)τ (β∗ + α′0)

= τ (β∗ + α′)τ (β∗ + ρ)

τ (β∗ + 1)
τ (β∗ + α′0)

= τ (β∗ + α′)τ (β∗ + α′0ρ)
= τ (α)τ (α0ρ + β).

Hence τ ∈ L(β,ρ) by (3.18). �

We are now ready to simplify the characterization of L({rn}) given in
Theorem 3.2. First observe that by (3.1) and (3.8),⋂

(β,ρ)∈S
L̃(β,ρ) =

⋂
(β,ρ)∈S′

L̃(β,ρ)

where

S′ = S ∩ (R× [0,1]).
We begin with the simplest case |S′| = 1, in which case S′ = {(0,1)}. Since

L(0,1) = L it then follows that ⋂
(β,ρ)∈S′

L̃(β,ρ) = L̃.(3.25)

The nature of
⋂

(β,ρ)∈S′ L̃(β,ρ) when |S′| > 1, is described in Theorems 3.7–
3.10. We first deal with the case where only normal limits can arise.

PROPOSITION 3.6. Assume that S′ ⊇ {(0,1), (β1, ρ1), (β2, ρ2)} where
(βi, ρi) �= (0,1) are distinct for i = 1,2. If any of the following conditions hold:

ρi �= 0,1, for i = 1,2 and
β1

1− ρ1
�= β2

1− ρ2
;(3.26)

ρ1 �= 1, ρ2 = 1;(3.27)

ρ1 �= 0,1, ρ2 = 0, and
β1

1− ρ1
< β2;(3.28)

then
⋂

(β,ρ)∈S′ L(β,ρ) =Lc and consequently
⋂

(β,ρ)∈S′ L̃(β,ρ) =N .



1476 P. S. GRIFFIN AND F. S. QAZI

PROOF. Let β∗i = βi(1 − ρi)
−1 if ρi �= 1 for i = 1,2. Assume that τ ∈⋂

(β,ρ)∈S′ L(β,ρ). We must show τ ∈ Lc.
If (3.26) holds then (3.24) implies that either τ ∈ Lc or τ (α) = 0 for α ≤ β∗i

with τ (α) > 0 for α > β∗i . Since β∗1 �= β∗2 , we conclude that τ ∈Lc .
Now assume that (3.27) holds and τ /∈Lc. Since ρ2 = 1, (3.23) implies that τ is

always positive, but at the same time because ρ1 �= 1, (3.22) and (3.24) imply that
τ (α)= 0 for some α. Hence τ ∈Lc.

Finally assume that (3.28) holds and τ /∈ Lc. Then τ (β2)= 0 by (3.22), while
τ (β2) > 0 by (3.24). Hence τ ∈Lc. �

For −∞<m≤∞, let

Sm = {
(β,ρ) :ρ =mβ + 1, ρ ≥ 0

}∪ {(β,0) :β ≤−m−1}(3.29)

where we interpret m=∞ to mean {(0, ρ) :ρ ≥ 0} ∪ {(β,0) :β ≤ 0} and m= 0 to
mean {(β,ρ) :ρ = 1}. It will be convenient to introduce

m∗ =
{

0, if m=∞,
−m−1, if −∞<m<∞, m �= 0.

Observe that if ρ �= 1 and (β,ρ) ∈ Sm then m �= 0, and either β∗ = m∗ or else,
ρ = 0 and β ≤m∗.

THEOREM 3.7. If S′ �⊆ Sm for any−∞<m≤∞, then
⋂

(β,ρ)∈S′ L(β,ρ) = Lc

and consequently
⋂

(β,ρ)∈S′ L̃(β,ρ) =N .

PROOF. If sup{β : (β,0) ∈ S′} = ∞, then by (3.22) it follows that⋂
(β,ρ)∈S′ L(β,ρ) = Lc and so

⋂
(β,ρ)∈S′ L̃(β,ρ) = N . Hence we may assume

sup{β : (β,0) ∈ S′} �= ∞ where sup∅ = −∞. In that case we claim there exist
(βi, ρi) ∈ S′ distinct and not equal to (0,1) for i = 1,2, such that one of (3.26)–
(3.28) hold. First suppose there exists (β2, ρ2) ∈ S′ with β2 �= 0 and ρ2 = 1. Since
S′ �⊆ S0 there must exist (β1, ρ1) ∈ S′ with ρ1 �= 1. Hence (3.27) holds. Thus
we may assume S′ ∩ S0 = {(0,1)}. If S′ ∩ (R × (0,1]) = {(0,1)} then clearly
S′ ⊆ Sm for any m ∈ (∞,∞] with m∗ ≥ sup{β : (β,0) ∈ S′}. Thus we may assume
S′ ∩ (R× (0,1]) �= {(0,1)}. If there exist two points in S′ satisfying (3.26) then we
are done. If not, S′ ∩(R× (0,1])⊆ Sm for some m. Let (β1, ρ1) ∈ S′ ∩(R× (0,1)).
Then in order that S′ �⊆ Sm, there must exist (β2,0) ∈ S′ with β1(1− ρ1)

−1 < β2
which means that (3.28) holds. Thus one of (3.26)–(3.28) must hold, and the result
then follows from Proposition 3.6. �

We are left then to consider the case where S′ ⊆ Sm for some m. We first
consider the case m= 0. Set

Le = {
τ ∈L : τ (α)= a exp(λα), a ≥ 0, λ≥ 0

}
.
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Let ( = {β : (β,1) ∈ S′} = {β : (β,1) ∈ S} and let A(() be the additive subgroup
of R generated by (. Since every additive subgroup of R is either cyclic or dense
in R, we have that if |S′|> 1 then either A(()= γZ for some γ �= 0, or A(() is
dense.

THEOREM 3.8. Assume that |S′|> 1 and S′ ⊆ S0.

If A(()= γZ, then
⋂

(β,ρ)∈S′ L(β,ρ) = L(γ,1)

and so
⋂

(β,ρ)∈S′ L̃(β,ρ) = L̃(γ,1).
(3.30)

If A(() is dense is R, then
⋂

(β,ρ)∈S′ L(β,ρ) = Le

and so
⋂

(β,ρ)∈S′ L̃(β,ρ) = E .
(3.31)

PROOF. We begin with the observation that for any β1, β2 ∈R,

L(β1,1) ∩L(β2,1) ⊆L(β1+β2,1).(3.32)

To see this let τ ∈ L(β1,1) ∩ L(β2,1). Since Lc ⊆ L(β,ρ) for any (β,ρ), we may
assume τ /∈ Lc. Since L(0,1) = L we may also assume βi �= 0 for i = 1,2 and
β1 + β2 �= 0, else the result is immediate. From (3.23) we then obtain, for any
α ∈R,

τ (α+ β1+ β2)τ (0)= τ (α+ β1)τ (β2)

= τ (α)τ (β1)τ (β2)

τ (0)

= τ (α)τ (β1+ β2),

and so (3.32) holds. It then follows by induction that for any β1, β2, . . . , βk ∈ (,

L(β1,1) ∩ · · · ∩L(βk,1) ⊆L(β1+···+βk,1).(3.33)

Now assume A(() = γZ. If τ ∈ L(γ,1), then by (3.33), τ ∈ L(kγ,1) for any
k ∈ Z [since L(γ,1) = L(−γ,1) by (3.8)]. In particular τ ∈ L(β,1) for all β ∈ (, and
so τ ∈⋂(β,1)∈S′ L(β,1). Conversely assume τ ∈ L(β,1) for all β ∈ (. Using (3.1) we
may write γ = β1+ β2+ · · · + βk for some β1, β2, . . . , βk ∈ (, where the βi need
not be distinct. It then follows from (3.33) that τ ∈ L(γ,1), thus proving (3.30).

Next assume A(() is dense in R. If τ (α) = a exp (λα) for some a ≥ 0 and
λ≥ 0, then trivially τ ∈L(β,1) for all β ∈R by (3.23). Hence τ ∈⋂(β,1)∈S′ L(β,1).
Conversely let τ ∈⋂(β,1)∈S′ L(β,1) and τ /∈ Lc (else there is nothing to prove). For
every η ∈ R there exists a sequence νn ∈ A(() such that νn → η. Furthermore
we can find β1, β2, . . . , βk ∈ ( such that νn = β1 + · · · + βk. Hence τ ∈ L(νn,1)
by (3.33). But then by (3.23), for any α ∈R,

τ (α+ η)τ (0)= τ

(
α + lim

n→∞νn

)
τ (0)= lim

n→∞ τ (α+ νn)τ (0)

= lim
n→∞ τ (α)τ (νn)= τ (α)τ (η).
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Since this holds for every α,η ∈ R, we conclude that τ (α) = a exp (λα). Since
τ ∈L it then follows that a ≥ 0 and λ≥ 0. Hence (3.31) holds. This completes the
proof. �

Next, we consider the case where m �= 0 in (3.29), and S′ contains at least one
point (β,ρ) with ρ �= 0,1. Let * = {ρ : (β,ρ) ∈ S, ρ �= 0,1} and let G(*) be
the multiplicative subgroup of (0,∞) generated by *. Observe that by (3.1), the
same subgroup is generated if S is replaced by S′ in the definition of *. Since the
multiplicative subgroups of (0,∞) are either cyclic or dense in (0,∞), we have
that either G(*)= 〈θ〉 for some θ ∈ (0,1) or G(*) is dense in (0,∞). Let

Lm =Lc ∪ {τ ∈ L : τ (α)= a(α −m∗)p+ for some a ≥ 0, p ≥ 1/2
}

and

Pm = {Y :Y ∼ τ for some τ ∈Lm}.(3.34)

THEOREM 3.9. Assume that |S′|> 1, S′ ⊆ Sm where m �= 0, and S′ contains
at least one point (β,ρ) with 0 < ρ < 1.

If G(*)= 〈θ〉 then
⋂

(β,ρ)∈S′ L(β,ρ) = L((1−θ)m∗,θ)
and so

⋂
(β,ρ)∈S′ L̃(β,ρ) = L̃((1−θ)m∗,θ).

(3.35)

If G(*) is dense in (0,∞) then
⋂

(β,ρ)∈S′ L(β,ρ) = Lm

and so
⋂

(β,ρ)∈S′ L̃(β,ρ) = Pm.
(3.36)

PROOF. Recall that if (β,ρ) ∈ Sm and ρ �= 0,1 then β∗ =m∗. Thus points in
Sm with ρ �= 0,1 are precisely those of the form ((1− ρ)m∗, ρ). This is also the
case if ρ = 1 because then β = 0 since m �= 0.

Now assume that (βi, ρi) ∈ Sm and ρi �= 0 for i = 1,2. We claim that

L(β1,ρ1) ∩L(β2,ρ2) ⊆L((1−ρ1ρ2)m
∗,ρ1ρ2).(3.37)

To see this let τ ∈L(β1,ρ1)∩L(β2,ρ2). If τ ∈ Lc then trivially τ ∈L((1−ρ1ρ2)m
∗,ρ1ρ2),

thus we may assume τ /∈ Lc. Also we may assume ρ1 �= 1, ρ2 �= 1 and ρ1ρ2 �= 1
else the result is trivial since L(0,1) = L. Then by (3.24) we have τ (m∗)= 0, τ > 0
on (m∗,∞), and for any α > 0,

τ (m∗ + α)= τ (m∗ + 1)

τ (m∗ + ρ1)
τ (m∗ + ρ1α)

= τ (m∗ + 1)2

τ (m∗ + ρ1)τ (m∗ + ρ2)
τ (m∗ + ρ1ρ2α)

= τ (m∗ + 1)

τ (m∗ + ρ1ρ2)
τ (m∗ + ρ1ρ2α).
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Thus (3.24) is satisfied with β = (1−ρ1ρ2)m
∗ and ρ = ρ1ρ2, which proves (3.37).

Since ((1 − ρ1ρ2)m
∗, ρ1ρ2) ∈ Sm it then follows by induction that for any

(β1, ρ1), . . . , (βk, ρk) ∈ Sm with ρi �= 0 for 1≤ i ≤ k, we have

L(β1,ρ1) ∩ · · · ∩L(βk,ρk) ⊆L((1−ρ1···ρk)m∗,ρ1···ρk).(3.38)

Now assume G(*) = 〈θ〉. If τ ∈ L((1−θ)m∗,θ), then by (3.38) and (3.8), τ ∈
L((1−θk)m∗,θk) for all k ∈ Z. Thus τ ∈ L(β,ρ) for all (β,ρ) ∈ S′, ρ �= 0. Since
L((1−θ)m∗,θ) ⊆ L(β,0) for all β ≤ m∗ by (3.22) and (3.24), it then follows that
τ ∈⋂(β,ρ)∈S′ L(β,ρ). Conversely assume τ ∈⋂(β,ρ)∈S′ L(β,ρ). Using (3.1) we can
write θ = ρ1 · · ·ρk for some ρ1, . . . , ρk ∈*. Thus by (3.38), τ ∈ L((1−θ)m∗,θ).

Now assume G(*) is dense in (0,∞). If τ ∈ Lm, then it follows immediately
from (3.24) that τ ∈⋂(β,ρ)∈S′ L(β,ρ). Conversely assume τ ∈⋂(β,ρ)∈S′ L(β,ρ) and
τ /∈ Lc. For every ξ ∈ (0,∞) there exists a sequence ζn ∈ G(*) such that ζn→ ξ .
Furthermore we can find ρ1, . . . , ρk ∈ * such that ζn = ρ1 · · ·ρk . Hence τ ∈
L((1−ζn)m∗,ζn) by (3.38). In particular τ (m∗)= 0, τ > 0 on (m∗,∞) and by taking
limits in (3.24), we obtain, for any α > 0,

τ (m∗ + α)τ (m∗ + ξ)= τ (m∗ + 1)τ (m∗ + αξ).

Setting h(α)= τ (m∗ + α)τ (m∗ + 1)−1 this becomes

h(α)h(ξ)= h(αξ)(3.39)

for all α, ξ ∈ (0,∞). Now h(α) > 0 for all α ∈ (0,∞), therefore taking natural log
of both sides and writing g for ln◦ h we obtain

g(αξ)= g(α)+ g(ξ).

As g is strictly increasing, g−1 exists. Thus

αξ = g−1(g(α)+ g(ξ)).

Since the range of g is R, this implies

g−1(x)g−1(y)= g−1(x + y)

for all x, y ∈R. Hence g−1 is exponential, say g−1(x)= eqx for some constant q .
This gives h(α) = α1/q , for α ∈ (0,∞) where 0 < q ≤ 1/2 since τ is increasing
and τ 2 is convex. Thus

τ (m∗ + α)=
{

0, for α ≤ 0,
aαp, otherwise,

for some a > 0 and p ≥ 1/2. This completes the proof. �

The only remaining case is the following.

THEOREM 3.10. Assume that |S′| > 1, S′ ⊂ Sm where m �= 0, and S′ does
not contain any point (β,ρ) with 0 < ρ < 1. Then

⋂
(β,ρ)∈S′ L(β,ρ) = L(δ,0) and so⋂

(β,ρ)∈S′ L̃(β,ρ) = L̃(δ,0) where δ = sup{β : (β,0) ∈ S′}.
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TABLE 1

S L({rn}) Reference

|S| = 1 S = {(0,1)} L̃ (3.25)

|S|> 1 S ⊆ Sm, m= 0 A(()= γZ L̃(γ,1) Theorem 3.8
A(() dense E Theorem 3.8

S ⊆ Sm, m �= 0 *=∅ L̃(δ,0) Theorem 3.10
G(*)= 〈θ〉 L̃((θ−1)m−1,θ) Theorem 3.9
G(*) dense Pm Theorem 3.9

S �⊆ Sm N Theorem 3.7

PROOF. This follows immediately from (3.22). �

Table 1 summarizes our results.
The table is expressed in terms of S rather than S′, but the results are equivalent

since |S| > 1 if and only if |S′| > 1 and S ⊆ Sm if and only if S′ ⊆ Sm. Thus
we have a complete description of the limiting behavior of (rn)Sn when rn→∞,
rnn

−1 → 0 and X is symmetric. In particular the only possible classes of limit
laws are N , E , Pm, L̃ and L̃(β,ρ). The description of the first four classes, given
in (2.8), (2.9), (3.34) and (2.6) respectively, is explicit. To make the description of
the fifth class equally explicit, we conclude by constructing all functions satisfying
the functional equation in (3.6). We need to consider separately the cases ρ = 1 and
0 < ρ < 1.

PROPOSITION 3.11. For β �= 0 the following are equivalent:

(i) τ ∈ L(β,1);
(ii) there exists a nondecreasing, positive convex function g : [0, |β|]→R such

that

g′R(0)≥
g(0)

g(|β|)g
′
L(|β|)(3.40)

and

τ 2(α)=
(
g(|β|)
g(0)

)k
g(α− k|β|)(3.41)

for all α ∈ [k|β|, (k + 1)|β|] and any k ∈ Z.

PROOF. Since L(β,1) =L(−β,1), we may assume that β > 0. If τ ≡ c, for some
constant c, then we may take g ≡ c1/2 on [0, β]. Conversely, if g ≡ constant on
[0, β], then we must have τ ∈ Lc. Hence we may also assume that τ /∈ Lc and
g �≡ constant.
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We will first prove that (i) ⇒ (ii). Assume τ ∈ L(β,1) and let f = τ 2. Then
by (3.23), f > 0 on (−∞,∞) and for all α ∈R,

f (α+ β)f (0)= f (α)f (β).(3.42)

Let λ= f (β)
f (0) . Thus (3.42) becomes, for every α ∈R,

f (α+ β)= λf (α).(3.43)

It then follows by induction that

f (α)= λkf (α− kβ) for all α ∈R, k ∈ Z.(3.44)

Now f is convex and thus its right-hand and left-hand derivatives exist every-
where. Taking the right-hand derivative of (3.43) with respect to α and then setting
α = 0 we get

f ′R(0)= λ−1f ′R(β).(3.45)

Now set

g(α)= f (α) for all α ∈ [0, β].
Clearly g is nondecreasing, convex on [0, β] and g > 0. Then (3.40) follows
easily from (3.45) by using f ′R(0)= g′R(0), f ′L(β) = g′L(β), f ′R(β) ≥ f ′L(β) and
λ= g(β)

g(0) . Also, (3.41) follows from (3.44) by observing that if α ∈ [kβ, (k+ 1)β],
then α− kβ ∈ [0, β] and so f (α − kβ)= g(α − kβ). Hence (i) ⇒ (ii).

To prove the reverse direction let g be a function defined on [0, β] with the
given properties. We must show the function τ : R→R defined by (3.41), satisfies
τ ∈ L(β,1). Let f = τ 2. Then by taking k = 0 in (3.41) we get f = g on [0, β].
Letting λ= g(β)

g(0) , (3.41) then becomes

f (α)= λkg(α − kβ)(3.46)

for any α ∈ [kβ, (k+ 1)β], k ∈ Z. Observe that f (kβ)= λkg(0) and also f (kβ)=
λk−1g(β) = λk−1λg(0) = λkg(0). Thus f is a well defined function and clearly
continuous and positive on R. Furthermore, f is nondecreasing on every interval
of the form (kβ, (k+1)β) since g is nondecreasing on (0, β). Then continuity of f
ensures that it is nondecreasing for all α ∈R.

By (3.23) it remains to show that f is convex and (3.42) holds. We will first
show that (3.42) holds. Let α ∈ [kβ, (k + 1)β] for some k ∈ Z. Then α = r + kβ

for some 0≤ r ≤ β . Hence, by (3.46),

f (α + β)f (0)= f
(
r + (k + 1)β

)
f (0)

= λk+1g(r)g(0)

= λkg(r)λg(0)

= f (r + kβ)f (β)

= f (α)f (β),
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and so (3.42) holds.
Finally, we need to show that f is convex. Since λk > 0 and g is convex on

(0, β), we must have f convex on (kβ, (k + 1)β) for every k ∈ Z. So the only
points to check are those of the form kβ . To ensure convexity at these points
it is enough to show that f ′L(kβ) ≤ f ′R(kβ). Taking the right-hand and left-hand
derivatives of (3.46) with respect to α we obtain

f ′R(α)= λkg′R(α − kβ) for all α ∈ [kβ, (k + 1)β
)

and all k ∈ Z(3.47)

and

f ′L(α)= λk−1g′L
(
α − (k − 1)β

)
for all α ∈ ((k − 1)β, kβ

]
and all k ∈ Z.

(3.48)

Setting α = kβ in (3.47) and (3.48) and using (3.40) then gives

f ′R(kβ)= λkg′R(0)

≥ λk−1g′L(β)
= f ′L(kβ)

as required. �

PROPOSITION 3.12. For 0 < ρ < 1 the following are equivalent:

(i) τ ∈ L(β,ρ);
(ii) there exists a nondecreasing, positive convex function g : [β∗ + ρ,

β∗ + 1]→R such that

g′R(β∗ + ρ)≥ g(β∗ + ρ)

ρg(β∗ + 1)
g′L(β∗ + 1)(3.49)

and

τ 2(β∗ + α)=
(
g(β∗ + 1)

g(β∗ + ρ)

)j
g(β∗ + αρj )(3.50)

for all α ∈ [ρ−j+1, ρ−j ], j ∈ Z, and τ (β∗ + α)= 0 for all α ≤ 0.

PROOF. The general idea of the proof is similar to Proposition 3.11. As in
Proposition 3.11, we may assume that τ /∈Lc and g �≡ constant.

To prove (i) ⇒ (ii) we assume τ ∈ L(β,ρ). Then by (3.24), τ (β∗ + α) = 0 for
α ≤ 0. Let f = τ 2. Again by (3.24), f > 0 on (β∗,∞) and for all α > 0,

f (β∗ + α)f (β∗ + ρ)= f (β∗ + 1)f (β∗ + αρ).(3.51)

Let λ= f (β∗+1)
f (β∗+ρ) . Then (3.51) becomes, for every α > 0,

f (β∗ + α)= λf (β∗ + αρ).(3.52)
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It then follows by induction that

f (β∗ + α)= λjf (β∗ + αρj ) for all α > 0, j ∈ Z.(3.53)

Now f is convex and thus its right-hand and left-hand derivatives exist every-
where. Taking the right-hand derivative of (3.52) with respect to α and then setting
α = 1 we get

f ′R(β∗ + 1)= λρf ′R(β + ρ).(3.54)

Now set

g(α)= f (α) for all α ∈ [β∗ + ρ,β∗ + 1].
It is clear that g is nondecreasing, convex and g > 0 on [β∗ + ρ,β∗ + 1].
Then (3.49) follows easily from (3.54) by using f ′R(β∗ + ρ) = g′R(β∗ + ρ),

f ′L(β∗+1)= g′L(β∗+1), f ′R(β∗ +1)≥ f ′L(β∗ +1) and λ= g(β∗+1)
g(β∗+ρ) . Also, (3.50)

follows from (3.53) by observing that if α ∈ [ρ−j+1, ρ−j ], then αρj ∈ [ρ,1] and
so f (β∗ + αρj )= g(β∗ + αρj ). Hence (i) ⇒ (ii).

To prove the reverse direction let g be any function defined on [β∗ + ρ,β∗ + 1]
with the given properties. We must show the function τ : R→R defined by (3.50)
with τ (β∗ + α) = 0 for α ≤ 0, satisfies τ ∈ L(β,ρ). Let f = τ 2. Then by taking

j = 0 in (3.50) we get f = g on [β∗ + ρ,β∗ + 1]. Let λ = g(β∗+1)
g(β∗+ρ) , then (3.50)

becomes

f (β∗ + α)= λjg(β∗ + αρj )(3.55)

for any α ∈ [ρ−j+1, ρ−j ], j ∈ Z. Observe that f (β∗ + ρ−j ) = λjg(β∗ + 1)
and also f (β∗ + ρ−j ) = λj+1g(β∗ + ρ) = λjλg(β∗ + ρ) = λjg(β∗ + 1) and
so f is a well defined function and clearly continuous and positive on (β∗,∞).
Furthermore, f is nondecreasing on every interval of the form (β∗ + ρ−j+1,

β∗ + ρ−j ) since g is nondecreasing on (β∗ + ρ,β∗ + 1). Then continuity of f
ensures that it is nondecreasing on (−∞,∞).

By (3.24) it remains to show that f is convex and (3.51) holds. We will first
show that (3.51) holds. Let α ∈ [ρ−j+1, ρ−j ] for some j ∈ Z. Then αρj ∈ [ρ,1]
and so by (3.55),

f (β∗ + α)f (β∗ + ρ)= λjg(β∗ + αρj )g(β∗ + ρ)

= λj−1g(β∗ + αρj )λg(β∗ + ρ)

= λj−1g(β∗ + αρj )g(β∗ + 1)

= λj−1g(β∗ + (αρ)ρj−1)f (β∗ + 1)

= f (β∗ + αρ)f (β∗ + 1)

for all α > 0.
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Finally, we need to show that f is convex. Again for any α ∈ (ρ−j+1, ρ−j ),
since λj > 0 and g is convex on (β∗ + ρ,β∗ + 1), we must have f convex on
(β∗ + ρ−j+1, β∗ + ρ−j ) for every j ∈ Z. So the only points to check are β∗ and
those of the form β∗ +ρ−j , j ∈ Z. To ensure convexity at these points it is enough
to show that f ′L(β∗)≤ f ′R(β∗) and f ′L(β∗+ρ−j )≤ f ′R(β∗+ρ−j ), j ∈ Z. The first
inequality is trivial since f ′L(β∗)= 0 while f ′R(β∗)≥ 0 since f is nondecreasing
and convex on [β∗,∞). For the remaining inequalities we take the right-hand and
left-hand derivatives of (3.55) with respect to α to obtain

f ′R(β∗ + α)= (λρ)j+1g′R(β∗ + αρj+1)

for all α ∈ [ρ−j , ρ−j−1) and all j ∈ Z
(3.56)

and
f ′L(β∗ + α)= (λρ)jg′L(β∗ + αρj )

for all α ∈ (ρ−j+1, ρ−j ] and all j ∈ Z.
(3.57)

Setting α = ρ−j in (3.56) and (3.57) and using (3.49) then gives

f ′R(β∗ + ρ−j )= (λρ)j+1g′R(β∗ + ρ)

≥ (λρ)j+1(λρ)−1g′L(β∗ + 1)

= (λρ)jg′L(β∗ + 1)

= f ′L(β∗ + ρ−j )

as required. �

When ρ > 1, the same characterization holds provided ρ is replaced by ρ−1

in (ii) and g is now defined on the interval [β∗ + 1, β∗ + ρ]. This follows easily
from the previous proposition and (3.8).

Finally when ρ = 0, the characterization of L(β,0) in (3.22) is already explicit,
since there is no functional equation satisfied by the functions in L(β,0).
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