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and University of Delaware

Let X, Xi, i ∈ N, be independent, identically distributed random
variables. It is shown that the Student t-statistic based upon the sam-
ple �Xi�ni=1 is asymptotically N�0�1� if and only if X is in the domain of
attraction of the normal law. It is also shown that, for any X, if the self-
normalized sums Un �= ∑n

i=1 Xi/�
∑n

i=1 X
2
i �1/2� n ∈ N, are stochastically

bounded then they are uniformly subgaussian that is, supn E exp�λU2
n�<∞

for some λ > 0.

1. Introduction. Let X�Xi, i ∈ N, be independent, identically dis-
tributed random variables and let

�1�1� Sn =
n∑
i=1

Xi� V2
n =

n∑
i=1

X2
i � n ∈ N�

Using this notation we can write the classical Student t-statistic as

�1�2� Tn = Sn/Vn√�n− �Sn/Vn�2�/�n− 1� �

The main object of this article is to prove that Tn or, equivalently, the self-
normalized sum Sn/Vn, is asymptotically standard normal if and only if X is
in the domain of attraction of the normal law, written X ∈ DAN, and EX = 0.

A basic requirement in the proof of this result is that the moments of Sn/Vn

converge to those of the standard normal whenever Sn/Vn is asymptotically
N�0�1�. This is a trivial consequence of our second main result, which states
that, if the sequence �Sn/Vn� is stochastically bounded, then it is uniformly
subgaussian in the sense that supn E exp

{
λ�Sn/Vn�2

}
< ∞ for some λ > 0 or,

equivalently, supn E exp�tSn/Vn� ≤ 2 exp�ct2� for all t ∈ R and some c < ∞.
To compare this with previous results, we recall that Logan, Mallows, Rice
and Shepp (1973) show, among other things, that if X is in the domain of
attraction of an α-stable law, 0 < α ≤ 2, centered if α > 1 and symmetric if
α = 1, then the sequence of self-normalized sums converges in distribution
to a limit which is subgaussian, and if moreover X is symmetric, then the
moments of Sn/Vn also converge to the corresponding moments of the limit. As
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a consequence of our second result, we obtain that if the sequence �Sn/Vn� is
stochastically bounded then all its subsequential limits in law are (uniformly)
subgaussian and there is convergence of the moment generating function of
Sn/Vn along each convergent (in distribution) subsequence to the moment
generating function of the limit, for all t ∈ R (there is even convergence of
some square exponential moments).

If X is symmetric then the self-normalized sums are always stochastically
bounded as a consequence of Khinchin’s inequality. But if X is not symmetric,
there are even centered random variables with good moment conditions for
which Sn/Vn fails to be shift tight. We present examples of this type and give
as well a criterion for stochastic boundedness of self-normalized sums.

The line of research leading to our results starts perhaps with Efron (1969),
who studied the limiting behavior of the Student t-statistic and, equivalently,
of self-normalized sums in some nonstandard cases. In a more strict sense, it
actually begins with the conjecture of Logan, Mallows, Rice and Shepp (1973)
stating that “Sn/Vn is asymptotically normal if [and perhaps only if] X is in
the domain of attraction of the normal law” (and X is centered).

The “if” part of this conjecture follows rather easily from basic principles
(Raikov’s theorem), as was noticed, among others, by Maller (1981), but the
parenthetical “only if” part has remained open until now for the general case
of not necessarily symmetric random variables. For X symmetric, Griffin and
Mason (1991) attribute to Roy Erickson a beautiful proof of the fact that con-
vergence in distribution of the self-normalized sums Sn/Vn to the standard
normal law does indeed imply that X ∈ DAN. This result and its method of
proof directly inspired ours.

As in the symmetric case [Griffin and Mason (1991)], proving that X ∈
DAN under the assumption that the self-normalized sums are asymptotically
standard normal, ultimately reduces—via O’Brien’s (1980) observation that
X ∈ DAN is equivalent to maxi≤n �Xi�/Vn → 0 in probability—to the analy-
sis of the terms in the development of E�Sn/Vn�4. Most of these terms vanish
in the symmetric case. The main difficulty in the absence of symmetry consists
in showing that the terms which are zero under symmetry are indeed asymp-
totically negligible in the general case. Control of these terms is achieved by
means of certain estimates (Lemma 3.1) of the moments

�1�3� E
(
X

m1
1 · · ·Xmr

r /Vk
n

)
� m1 + · · · +mr = k�

in combination with the result on uniform subgaussianness of Sn/Vn (only the
consequence on boundedness of moments is used here). The key to the proof
of this last theorem is another estimate (Lemma 2.1) of the same moments
(1.3) which allows us to derive a sort of converse Hölder inequality for Sn/Vn.
The (two types of) estimates of (1.3) just alluded to, which are probably of
independent interest, are the main new technical tools used in the present
work.

Section 2 contains the result on boundedness of exponential moments of
stochastically bounded self-normalized sums and some of its consequences, as
well as examples of variables for which the self-normalized sums are not shift
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tight. Section 3 is devoted to the asymptotic normality of self-normalized sums
and the Student t-statistic which, as indicated above, is our main goal.

Letting Tn be the Student t-statistic as in (1.2) based on n samples from
X, Bentkus and Götze (1994) obtained sharp bounds for supx∈R

�Pr�Tn <x�
−��x�� that depend rather explicitly on the law ofX and tend to zero whenever
X ∈ DAN. Because of our main result, remarkably, these estimates tend
to zero whenever there is convergence. For other important aspects of self-
normalized sums we refer to LePage, Woodroofe and Zinn (1981), S. Csörgő
(1989) and the references therein.

Finally, here are some notational conventions. Most statements of results in
this article refer to the self-normalized sums Sn/Vn, with Sn and Vn as in (1.1)
from a sequence of i.i.d. random variables Xi distributed like X. We implicitly
assume this set-up throughout and avoid describing it in every statement.
We denote by � �Y� the probability distribution of the random variable Y.
Limits of probability laws are always to be understood in the sense of weak
convergence, that is, in the sense of limits in distribution of the variables
involved. If Vn�ω� = 0 [in which case, also Sn�ω� = 0�, with some abuse of
notation we define Sn�ω�/Vn�ω� �= 0; that is, we adhere to the convention
0/0 = 0.

2. Uniform subgaussianness of stochastically bounded self-normal-
ized sums and some consequences. The proof of the main result of this
section (Theorem 2.5) is ultimately based on the observation that the compo-
nents in the development of E�Sn/Vn�k, k > 1, are dominated, up to precise
multiplicative constants, by powers of moments of order one, �E�S�/V���s, for
some � ≤ n and s ≤ k. We isolate this fact as the following lemma.

Lemma 2.1. Let r� k� n�m1� � � � �mr be natural numbers such that 1 ≤ r ≤
k ≤ n, mi ≥ 1 for all i and m1 + · · · +mr = k. Define nr = �n/r� and s = #�i ≤
r� mi = 1�. Then the following inequality holds for any set of i.i.d. random
variables Xi� i ≤ n:

�2�1� nrr

(
k

m1� � � � �mr

)1/2∣∣∣∣EX
m1
1 · · ·Xmr

r

Vk
n

∣∣∣∣ ≤
(

E

∣∣∣∣Snr

Vnr

∣∣∣∣
)s

�

Proof. Setting

S�i� �=
nr∑
j=1

X
mi

�i−1�nr+j� V�i� �=
[ nr∑
j=1

X2
�i−1�nr+j

]1/2

for i = 1� � � � � r�

we have

nrr

∣∣∣∣EX
m1
1 · · ·Xmr

r

Vk
n

∣∣∣∣ =
∣∣∣∣ES�1� · · ·S�r�Vk

n

∣∣∣∣�
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Also, by the multinomial theorem,

Vk
n ≥

([ r∑
j=1

�V�j��2
]k)1/2

≥
(

k

m1� � � � �mr

)1/2 r∏
j=1

�V�j��mj�

so that
(

k

m1� � � � �mr

)1/2∣∣∣∣S�1� · · ·S�r�Vk
n

∣∣∣∣ ≤
r∏
i=1

∣∣∣∣ S�i�
�V�i��mi

∣∣∣∣�
[Note that, provided we adhere to our convention 0/0 = 0, this inequality
holds even if some of the V�i� are zero as, in this case, both sides are zero.]
Since the random variables S�i�/�V�i��mi are independent, we obtain from
the above that

nrr

(
k

m1� � � � �mr

)1/2∣∣∣∣EX
m1
1 · · ·Xmr

r

Vk
n

∣∣∣∣ ≤
r∏

i=1

E

∣∣∣∣ S�i�
�V�i��mi

∣∣∣∣�
Now, if mi > 1 then S�i� ≤ �V�i��mi , and therefore the last product is domi-
nated by the product of the terms for which mi = 1,

∏
1≤i≤r� mi=1

E

∣∣∣∣ S�i�
�V�i��mi

∣∣∣∣ =
(

E

∣∣∣∣Snr

Vnr

∣∣∣∣
)s

�

giving inequality (2.1). ✷

Inequality (2.1) produces a kind of reverse Hölder (or hypercontractivity)
inequality for the variables

∣∣Sn/Vn

∣∣, as follows.

Lemma 2.2. The following inequality holds for all n, k ∈ N:

�2�2�
∣∣∣∣E
(
Sn

Vn

)k∣∣∣∣ ≤ c�k�max
[
1�max

�≤n
E

∣∣∣∣S�

V�

∣∣∣∣
]k
�

where c�k� can be taken to be

�2�3� c�k� =
(

4e
3

+ 1
)k

�k!�1/2 ≤ 5k�k!�1/2�

Proof. For n ≤ 4k we have, by Cauchy–Schwarz,

�Sn/Vn�k ≤ nk/2 ≤ 2kkk/2 < c�k�
since k! ≥ 2kk/ek for all k (we will make repeated use of this elementary
inequality). So, we can assume n > 4k, in which case 1/nr < 4

3r/n for all
r ≤ k. Let us set

�2�4� Mn = max
[
1�max

�≤n
E

∣∣∣∣S�

V�

∣∣∣∣
]
�
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Then, inequality (2.1) gives

∣∣∣∣E
(
Sn

Vn

)k∣∣∣∣ =
∣∣∣∣

k∑
r=1

∑
m1+···+mr=k

mi≥1

(
n

r

)(
k

m1� � � � �mr

)
E
X

m1
1 · · ·Xmr

r

Vk
n

∣∣∣∣

≤ Mk
n

k∑
r=1

(
n

r

)
n−r
r

∑
m1+···+mr=k

mi≥1

(
k

m1� � � � �mr

)1/2

≤ Mk
n�k!�1/2

k∑
r=1

(
4
3

)r rr

r!

(
k− 1

r− 1

)

≤ 1
2
Mk

n�k!�1/2
k∑

r=1

(
4e
3

)r(k− 1

r− 1

)

≤ 2e
3
Mk

n�k!�1/2
(

1 + 4e
3

)k−1

< c�k�Mk
n�

where we use that #��m1� � � � �mr��m1+· · ·+mr = k� mi ≥ 1� mi ∈ N� = (
k−1
r−1

)
and bound the multinomial coefficients by k!. ✷

Lemma 2.2 has the following immediate consequence:

Lemma 2.3. With Mn defined by (2.4), we have that, for all n ∈ N,

�2�5��i� E exp
{ �Sn/Vn�2

4�1 + 4e/3�2M2
n

}
≤ 2

and

�2�6��ii� E exp
{
t�Sn/Vn�

} ≤ 2 exp
{�1 + 4e/3�2M2

nt
2}

for all t > 0.

Proof. Let us fix n and set

λ0 = 1
4�1 + 4e/3�2M2

n

�

Then, inequality (2.2) and the definition of c�k� readily give

E exp
{
λ0

(
Sn

Vn

)2}
≤

∞∑
k=0

λk0��2k�!�1/2�1 + 4e/3�2kM2k
n

k!

<
∞∑
k=0

λk02k
(

1 + 4e
3

)2k

M2k
n = 2�
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since �2k�! ≤ (
2kk!

)2, proving (2.5). Using the inequality �ab� ≤ a2/2+b2/2 we
have, for all t > 0,

t

∣∣∣∣Sn

Vn

∣∣∣∣ ≤ 1
2

(
21/2λ

1/2
0

∣∣∣∣Sn

Vn

∣∣∣∣
)2

+ 1
2

(
t

�2λ0�1/2

)2

= λ0

(
Sn

Vn

)2

+ t2

4λ0
�

Then, (2.5) gives

E exp
{
t

∣∣∣∣Sn

Vn

∣∣∣∣
}
≤ 2 exp

{
t2

4λ0

}
�

that is, (2.6). ✷

Inequality (2.2) also allows us to apply Paley–Zygmund’s argument [e.g.,
Kahane (1968), page 6, or Kwapień and Woyczyński (1992), Lemma 0.2.1]
along a subsequence and conclude that if the sequence �Sn/Vn� is stochasti-
cally bounded then it is L1-bounded, as follows.

Lemma 2.4. If the sequence �Sn/Vn� is stochastically bounded then

�2�7� sup
n

E

∣∣∣∣Sn

Vn

∣∣∣∣ < ∞�

Proof. Suppose, to the contrary, that

sup
n

E

∣∣∣∣Sn

Vn

∣∣∣∣ = ∞�

and, for each � ∈ N, define

n� = min
{
n� E

∣∣∣∣Sn

Vn

∣∣∣∣ > �1/2
}
�

Then,

n� < ∞ for all � ∈ N and n� > � → ∞�

(The number n� is finite by the assumption, and n� > � because, as observed
above, �Sn/Vn� ≤ n1/2 for all n.) Moreover, the definition of n� implies

max
n≤n�

E

∣∣∣∣Sn

Vn

∣∣∣∣ = E

∣∣∣∣
Sn�

Vn�

∣∣∣∣ > �1/2�

Therefore, inequality (2.2) for n = n� and k = 2 becomes

�2�8� E

(
Sn�

Vn�

)2

≤ c�2�
(

E

∣∣∣∣
Sn�

Vn�

∣∣∣∣
)2

�

Now we observe that, by Hölder, for all a > 0,

E

∣∣∣∣Sn

Vn

∣∣∣∣ ≤ a+ E

(∣∣∣∣Sn

Vn

∣∣∣∣I
(∣∣∣∣Sn

Vn

∣∣∣∣ > a

))
≤ a+

[
E

(
Sn

Vn

)2]1/2[
Pr

{∣∣∣∣Sn

Vn

∣∣∣∣ > a�
}]1/2

�
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Then, this last inequality for a = a� = E
∣∣Sn�

/Vn�

∣∣/2, in combination with
inequality (2.8), gives(

Pr
{∣∣∣∣
Sn�

Vn�

∣∣∣∣ > a�

})1/2

≥
1
2E�Sn�

/Vn�
�

�E�Sn�
/Vn�

�2�1/2 ≥ 1

2
√
c�2� > 0

for all � ∈ N (this is Paley–Zygmund’s argument). Since n� > � → ∞ and
a� > �1/2/2 → ∞ as � → ∞, it follows that the sequence

{
Sn/Vn

}∞
n=1 is not

stochastically bounded, a contradiction. ✷

Combining Lemmas 2.3 and 2.4 we obtain the main result of this section.

Theorem 2.5. Let the sequence �Sn/Vn� be stochastically bounded. Then

�2�9� M �= max
[
1� sup

n
E

∣∣∣∣Sn

Vn

∣∣∣∣
]
< ∞

and, moreover,

�2�10��i� sup
n

E exp
{ �Sn/Vn�2

4�1 + 4e/3�2M2

}
≤ 2

and

�2�11��ii� sup
n

E exp
{
t�Sn/Vn�

} ≤ 2 exp
{�1 + 4e/3�2M2t2}

for all t > 0.

Proof. By Lemma 2.4, M < ∞ and inequalities (2.10) and (2.11) follow
from (2.5) and (2.6) in Lemma 2.3 since M ≥ Mn for all n. ✷

A random variable Z, or its probability law, is subgaussian if Pr��Z� > t� =
O�e−ct2� as t → ∞, for some c < ∞ or, equivalently, if EetZ ≤ eτt

2
for all

t ∈ R and some τ < ∞ [see Kahane (1968), page 62]. Theorem 2.5 then shows
that if the self-normalized sums are uniformly tight, they are automatically
uniformly subgaussian.

Corollary 2.6. Assume the sequence �Sn/Vn� is stochastically bounded,
let Z be any of its subsequential limits in law and let �nk� be a subsequence
such that

lim
k→∞

�
(
Snk

/Vnk

) = � �Z��

Then Z is subgaussian and

�2�12� lim
k→∞

E exp
{ �Snk

/Vnk
�2

4�1 + 4e/3�2M2

}
= E exp

{
Z2

4�1 + 4e/3�2M2

}
≤ 2�

Hence,

�2�13� lim
k→∞

E exp
{
t�Snk

/Vnk
�} = E exp�tZ� ≤ 2 exp

{�1 + 4e/3�2M2t2}
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for all t ∈ R and, in particular, the moments of Snk
/Vnk

also converge to the
corresponding moments of Z.

Proof. Letting λ = �4�1 + 4e/3�2M2�−1, which is positive by Theorem 2.5,
the proof of Lemma 2.3 shows that for example, supn E exp��4λ/3��Sn/Vn�2� <
∞, thus providing enough uniform integrability to interchange limits and ex-
pectations in the relevant sequences. ✷

Since subgaussian variables are determined by their moments, by, for ex-
ample, Proposition 8.49, page 182 in Breiman (1968), this is true in particu-
lar for any subsequential limits of a sequence of stochastically bounded self-
normalized sums. [This is relevant to the fact that, when we prove below that
if the self-normalized sums are asymptotically N�0�1� then X ∈ DAN, the
only use we make of the particular form of the limit is that the second and
fourth moments of N�0�1� are, respectively, 1 and 3.]

Theorem 2.5 and Corollary 2.6 are best possible except perhaps for the
constants in the exponents: if X is in the domain of attraction of the normal
law and X is centered, then Sn/Vn converges in law to N�0�1�, as mentioned
in the Introduction and proved in Section 3.

The symmetric case of Theorem 2.5 deserves special consideration.

Remark 2.7 (The symmetric case). If X is symmetric, Theorem 2.5 has a
stronger version with a much simpler proof as a consequence of Khinchin’s in-
equality [e.g., Kwapień and Woyczyński (1990), inequality (3.4.3)]. Let �εi�∞i=1
be a Rademacher sequence independent of the sequence �Xi�∞i=1. (The vari-
ables εi are i.i.d. and Pr�εi = 1� = Pr�εi = −1� = 1/2.) Then, by symmetry,
the sequences �Xi� and �εiXi� have the same joint distributions. This and
Khinchin’s inequality readily give

�2�14�

sup
n

E

∣∣∣∣Sn

Vn

∣∣∣∣
k

= sup
n

E

∣∣∣∣
∑n

i=1 εiXi

Vn

∣∣∣∣
k

= sup
n

EEε

∣∣∣∣
∑n

i=1 εiXi

Vn

∣∣∣∣
k

≤ �k− 1�k/2 sup
n

E

[∑n
i=1 X

2
i

V2
n

]k/2

= �k− 1�k/2 sup
n

Pr�Vn �= 0�
= �k− 1�k/2�

where Eε denotes conditional expectation given Xi� i ∈ N. As a consequence
of these inequalities, it follows that �Sn/Vn� is always stochastically bounded
when X is symmetric. Moreover, proceeding as in the proof of Theorem 2.5 but
using the estimate (2.14) instead of inequality (2.2), we obtain

sup
n

E exp
{
λ�Sn/Vn�2} < ∞

for λ < �2e�−1, which is an improvement on inequality (2.9).
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In view of the previous remark, we may ask whether the sequence of self-
normalized sums is stochastically bounded for all random variables X, sym-
metric or not. A (related) question that one may also ask is whether such
a result, as well as Theorem 2.5, follows in fact from the inequalities (2.14)
by some sort of symmetrization argument. Both questions have a negative
answer since, as we see immediately below, there exist centered random vari-
ables X for which the sequence �Sn/Vn−cn�∞n=1 is not stochastically bounded
for any choices of centering constants cn (that is, it is not shift tight) but, on
the other hand, by Remark 2.6, the sequence of randomized self-normalized
sums

∑n
i=1 εiXi/Vn� n ∈ N, is stochastically bounded, which is in contrast

with the case of numerical normalizations.

Example 2.8. Let X be a random variable such that EX = 0 and, for some
1 < α < 2,

Pr
{
X = 22k} = c12−α2k� k = 0�1�2� � � � � Pr�X = −c2� = c3�

with c1 �= 0. We will show that if �Xi� is a sequence of i.i.d. random variables
with the law of X, then there is no sequence of constants �cn� such that
the sequence �Sn/Vn − cn� of shifted self-normalized sums is stochastically
bounded. This will be a direct consequence of the following fact: the row sums
of the triangular array of two-dimensional random vectors:

Yk� i =
(
Xi

22k
�
X2

i

22k+1

)
� 1 ≤ i ≤ nk �= [

2α2k]�
satisfy

�2�15� lim
k→∞

�

( nk∑
i=1

Yk� i

)
= �

(
Nc1

− c1�Nc1

)
�

where Nc1
is a Poisson random variable with parameter c1. Equation (2.15)

follows in a standard way from the general central limit theorem in R
2 [the

CLT in R
d is usually stated for the Euclidean norm, but the details in the

derivation of (2.15), which we omit, work better if one takes instead the norm
��x1� x2�� �= max��x1�� �x2��; for a precise statement in any norm, see for exam-
ple Theorem 7.7, Chapter 3, in Araujo and Giné (1980), taking into account
that condition (3) there is automatically satisfied for finite-dimensional Ba-
nach spaces]. As a consequence of (2.15), letting 0 < τ < c1 ∧ 1, 0 < δ < 1, we
obtain

lim
M→∞

lim sup
n

Pr
{∣∣∣∣Sn

Vn

∣∣∣∣ >M

}

≥ lim
δ→0

lim sup
k

Pr
{∑nk

i=1 Xi

22k
∈ �−c1 − τ�−c1 + τ��

∑nk
i=1 X

2
i

22k+1 < δ

}

= lim
δ→0

Pr
{
Nc1

∈ �−τ� τ�� Nc1
< δ

}

= lim
δ→0

Pr
{
Nc1

= 0
} = e−c1 > 0�
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showing that the sequence �Sn/Vn� is not stochastically bounded. Finally,
we show that this sequence is not shift tight either; that is, that there is no
sequence of numerical constants cn for which the shifted sequence ��Sn/Vn�−
cn� is stochastically bounded. By the previous computation, such a sequence
necessarily satisfies that �cnk � → ∞. On the other hand, if r ∈ N is such that
r > c1+1 and 0 < τ < 1, and we set J �= ��r−τ−c1�/

√
r+ τ� �r+τ−c1�/

√
r− τ�

then, obviously, �cnk � → ∞ implies that, for all M > 0, the shifted interval
J− cnk is eventually contained in ��x� >M�, and therefore we have, again by
(2.15),

lim inf
k

Pr
{∣∣∣∣
Snk

Vnk

− cnk

∣∣∣∣ >M

}

≥ lim inf
k

Pr
{
Snk

Vnk

∈ J

}

≥ lim
k

Pr
{
r− τ− c1 <Snk

/22k < r+ τ− c1� r− τ <V2
nk
/22k+1

<r+ τ
}

= Pr
{
Nc1

= r
}
> 0�

contradicting the stochastic boundedness of the sequence ��Snk
/Vnk

� − cn�.

Example 2.8 shows that for every 1 < τ < 2 there are centered random
variables X with finite absolute moment of order τ for which the sequence
�Sn/Vn� is not shift tight.

Example 2.9. Let X be a random variable in the domain of attraction of a
stable law of index α = 1, written X ∈ D�1�. It is easy to see from the general
central limit theorem in R

2 and from the properties of D�1� that there exist
constants an ↗ ∞ and bn such that

lim
n→∞�

(
Sn − bn
an

�
V2

n

a2
n

)
= �

(
θ1� θ1/2

)
�

where θ1 is 1-stable and θ1/2 is positive and 1
2 -stable [see Csörgő, Haeusler

and Mason (1988), and Csörgő (1989), for an approach to domains of at-
traction based on quantiles and Feller (1971), Section XVII.5, or Araujo and
Giné (1980), Section 2.6, for the classical approach]. Clearly then, whenever
�bn/an� → ∞ it is impossible for �Sn/Vn�∞n=1 to be shift tight. The following ex-
ample shows that this can even happen when EX = 0. Let X be any centered
random variable whose tail probabilities are of the order

Pr
{
X > t

} ∼ c1

t�log t��log log t�2
� Pr

{
X < −t} ∼ c2

t�log t��log log t�2

as t → ∞, with c1 �= c2 and at least one of the constants c1 and c2 different
from zero. Concretely we can take X to be such that its quantile function,
defined as Q�s� = inf

{
x� Pr�X ≤ x� ≥ s

}
, 0 < s < 1, is precisely

Q�s� = −h�s� +
∫ 1

0
h�s�ds
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with h�s� = s−1�L�s−1��−1�LL�s−1��−2 and L�s� �= log�s∨e�. Then, by choosing
an and bn as in Corollary 3 of Csörgő, Haeusler and Mason (1988), it is readily
checked that

bn ∼ −n
log n log log n

and an ∼ n

log n�log log n�2
�

so that �bn/an� → ∞.

This example is interesting in that it shows that �Sn/Vn� may fail to be
shift tight even if X is centered and there are numerical normalizers an for
which the sequence �Sn/an� is shift tight.

In view of the previous examples, it makes sense to ask for analytic condi-
tions ensuring stochastic boundedness of self-normalized sums. Although this
subject is tangential to the main object of this article, we present one such
necessary and sufficient condition as another corollary of Theorem 2.5.

Corollary 2.10. A necessary and sufficient condition for the sequence of
self-normalized sums �Sn/Vn�∞n=1 to be stochastically bounded is that for some
δ > 0�

�2�16� lim sup
n

n2
∫ δ

0

[
EX exp�−λX2�]2[

E exp�−λX2�]n−2
dλ < ∞�

Proof. If X is degenerate, the result is trivial, so we can assume X takes
more than one value. By Corollary 2.6 the sequence �Sn/Vn�∞n=1 is stochas-
tically bounded if and only if the sequence of second moments is bounded.
Since E�Sn/Vn�2 = 1 + E�∑1≤i�=j≤n XiXj/V

2
n�, stochastic boundedness of the

self-normalized sums is equivalent to the condition

�2�17� lim sup
n→∞

n2
E
X1X2

V2
n

< ∞�

For any δ > 0 we can write

�2�18� X1X2

V2
n

=
∫ δ

0
X1X2 exp�−λV2

n�dλ+
∫ ∞

δ
X1X2 exp�−λV2

n�dλ

(this identity is obvious for Vn �= 0, and it holds also for Vn = 0 because of
the convention in force for 0/0.) Now, since �∑1≤i�=j≤n XiXj� ≤

∑
i� j≤n�X2

i +
X2

j�/2 −V2
n = �n− 1�V2

n, we have

E

∫ ∞

δ
X1X2 exp�−λV2

n�dλ = E

[
X1X2

V2
n

exp�−δV2
n�
]

= 1
n�n− 1�E

[ ∑
1≤i�=j≤n

XiXj

V2
n

exp�−δV2
n�
]

≤ 1
n

E exp�−δV2
n�

= 1
n

[
E exp�−δX2�]n�
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With X being nondegenerate, there exists τ > 0 such that Pr��X� ≤ τ� < 1
and therefore,

E exp
(
−δ

2
X2

)
≤ Pr��X� ≤ τ� + exp

(
−δτ2

2

)
Pr��X� > τ� �= σδ < 1�

Hence,

�2�19� n2
E

∫ ∞

δ
X1X2 exp�−λV2

n�dλ ≤ nσn
δ → 0 as n → ∞

for all δ > 0. Since

E

∫ δ

0
X1X2 exp�−λV2

n�dλ =
∫ δ

0

[
EX exp�−λX2�]2[

E exp�−λX2�]n−2
dλ�

the proposition follows from (2.18) and (2.19). ✷

In connection with (2.16), it is interesting to note that if EX = 0 then
E
[
X exp�−λX2�] = −λE

[
X3 exp�−λθX2�], where θ is uniform on �0�1�, inde-

pendent of X. For example, using Corollary 2.10 and this observation it can
be proved without much effort that if X is centered and there exist C > 0 and
α > 1 such that lim supn→∞ EX2I��X� ≤ tx�/EX2I��X� ≤ t� ≤ Cx2−α for all
x > 1, then the sequence �Sn/Vn� is stochastically bounded [this condition
means that X is in the Feller class, “above α = 1”; see Feller (1966), Section 9].

3. The Student t-statistic and the domain of attraction of the nor-
mal law. If we only assume stochastic boundedness of the self-normalized
sums, then Lemma 2.1 and Theorem 2.5 give that E

(
X

m1
1 · · ·Xmr

r /Vk
n

) =
O
(
n−r), a bound that cannot in general be improved. However, the proof of

our main theorem requires improving this bound to o
(
n−r) when mi = 1 for

at least one 1 ≤ i ≤ r, under the assumption that the self–normalized sums
are asymptotically N�0�1�. This is what the following Hölder type inequality
will do for us.

Lemma 3.1. Let r� k� n�m1� � � � �mr be natural numbers such that k is even,
1 ≤ r ≤ k, mi ≥ 1 for all i, m1 + · · · + mr = k and n ≥ max�2m1�2�k −
m1��. Then, the following inequality holds for any set of i.i.d. random variables
Xi� i ≤ n:

�3�1�

∣∣∣∣EX
m1
1 · · ·Xmr

r

Vk
n

∣∣∣∣ ≤ ��m1 − 1�!�k−m1 − 1�!�1/2
��k/2� − 1�!

[
E
X

m1
1 X

m1
2

V
2m1
n

]1/2

×
[
E
X

m2
3 X

m2
4 · · ·Xmr

2r−1X
mr

2r

V
2�k−m1�
n

]1/2

�

where the expected values at the right-hand side are nonnegative.
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Proof. We apply the elementary identity
∫ ∞

0
λm−1 exp�−λa�dλ = �m− 1�!

am
�

which is valid for all positive integers m and positive real numbers a, with
a = V2

n and m = k/2, to obtain

E
X

m1
1 · · ·Xmr

r

Vk
n

= 1
��k/2� − 1�!E

∫ ∞

0
λ�k/2�−1X

m1
1 · · ·Xmr

r exp�−λV2
n�dλ�

[Because of the 0/0 = 0 convention, this identity is true even if Vn�ω� is not
different from zero for all ω.] The order of the integrals can be reversed since
��Xm1

1 · · ·Xmr
r �/Vk

n�I�Vn �= 0� ≤ 1. Hence, setting

ϕ�λ� = E exp�−λX2��
we have

�3�2�

E
X

m1
1 · · ·Xmr

r

Vk
n

= 1
��k/2� − 1�!

∫ ∞

0
λ�k/2�−1

E
[
X

m1
1 · · ·Xmr

r exp�−λV2
n�
]
dλ

= 1
��k/2� − 1�!

∫ ∞

0
λ�k/2�−1

[ r∏
j=1

(
EXmj exp�−λX2�)

]

× [
E exp�−λX2�]n−r dλ

= 1
��k/2� − 1�!

∫ ∞

0

[ r∏
j=1

λmj/2EXmj exp�−λX2�
ϕ�λ�

]
ϕn�λ�
λ

dλ�

Now we can apply Hölder’s inequality with respect to the measure dµ�λ� =
λ−1ϕn�λ�dλ, and obtain from (3.2) that
∣∣∣∣EX

m1
1 · · ·Xmr

r

Vk
n

∣∣∣∣ ≤ 1
��k/2� − 1�!

[ ∫ ∞

0

(
λm1/2EXm1 exp�−λX2�

ϕ�λ�
)2ϕn�λ�

λ
dλ

]1/2

×
[ ∫ ∞

0

( r∏
j=2

λmj/2EXmj exp�−λX2�
ϕ�λ�

)2ϕn�λ�
λ

dλ

]1/2

=
[�m1 − 1�!�k−m1 − 1�!]1/2

(�k/2� − 1
)
!

[
E
X

m1
1 X

m1
2

V
2m1
n

]1/2

×
[
E
X

m2
3 X

m2
4 · · ·Xmr

2r−1X
mr

2r

V
2�k−m1�
n

]1/2

�

and it is clear from these identities that the last two expected values are
nonnegative. ✷

Proving that if X ∈ DAN and EX = 0 then the self-normalized sums
are asymptotically normal is a simple consequence of Raikov’s theorem as
observed, for example, by Maller (1981). For this, as well as for proving that
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X is centered if Sn/Vn is asymptotically normal, we require a small variation
on Raikov’s theorem, and we include its very simple proof for the reader’s
convenience.

Lemma 3.2. Let X�Xi� i ∈ N, be i.i.d. random variables in the domain of
attraction of the normal law and such that EX2 = ∞. Let bn ↗ ∞ be a set of
constants for which

�3�3� �

(
1
bn

n∑
i=1

�Xi − EX�
)
→w N�0�1��

Then,

�3�4� 1
b2
n

n∑
i=1

X2
i → 1 in probability�

Proof. We should recall that if X ∈ DAN then E�X�2−τ < ∞ for all 0 <
τ < 2 and that constants bn, for which (3.3) holds, always exist and have the
form bn = n1/2��n� for some function � slowly varying at infinity. If EX2 =
∞, truncated variances can be replaced by truncated second moments in the
general criterion for normal convergence and therefore, if (3.3) holds, then

lim
n→∞

n

b2
n

EX2I��X� ≤ δbn� = 1 and lim
n→∞nPr

{�X� > δbn
} = 0

for all δ > 0. [For these and other facts on domains of attraction, see Csörgő,
Haeusler and Mason (1988), Feller (1971), or Araujo and Giné (1980)]. The
last two limits imply that for all ε > 0 and δ > 0 there is an N < ∞ such
that, for n ≥ N,

Pr
{∣∣∣∣

∑n
i=1 X

2
i

b2
n

− 1
∣∣∣∣ > ε

}

≤ nPr��X� > δbn�

+ Pr
{∣∣∣∣∣

n∑
i=1

X2
i I��Xi� ≤ δbn� − nEX2I��Xi� ≤ δbn�

∣∣∣∣ > b2
nε

2

}

≤ nPr��X� > δbn� +
4n
ε2b4

n

EX4I��Xi� ≤ δbn�

≤ nPr��X� > δbn� +
4δ2

ε2

n

b2
n

EX2I��Xi� ≤ δbn��

and (3.4) follows by letting first n → ∞ and then δ → 0. ✷

We are now ready to prove our main result characterizing asymptotic nor-
mality of self-normalized sums.
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Theorem 3.3. The following two statements are equivalent:

(a) X is in the domain of attraction of the normal law and EX = 0;

�3�5��b� lim
n→∞�

(
Sn

Vn

)
= N�0�1��

Proof. Assume condition (a) holds. Then, if EX2 < ∞, the self-normalized
sums converge in distribution to the standard normal law by the central limit
theorem and the law of large numbers. If EX2 = ∞, then (3.5) is a direct
consequence of (3.3) and (3.4) in Lemma 3.2. So (b) is proved.

If X ∈ DAN, then the sequence ��Sn − nEX�/Vn�∞n=1 converges in law (as
above, by the CLT and the LLN if EX2 < ∞, and by Lemma 3.2 if EX2 = ∞).
Suppose for the moment that the sequence �Sn/Vn�∞n=1 also converges in law.
Then the sequence of centerings n�EX�/Vn, n ∈ N, must be stochastically
bounded. But if bn is as in Lemma 3.2 for EX2 = ∞, and bn = n1/2 for
EX2 < ∞, then bn/Vn converges in probability to a finite number whereas
n/bn → ∞ [recall bn = n1/2��n� with ��x� slowly varying at infinity]. Hence,
we must have EX = 0.

The proof of the theorem is thus reduced to showing that if (b) holds, then
X ∈ DAN. One of the several necessary and sufficient conditions for X ∈
DAN is that

�3�6� lim
n→∞

maxi≤n �Xi�
Vn

= 0 in probability�

[O’Brien (1980)], as mentioned above. Then, since

Pr
{

max
i≤n

�Xi�
Vn

> ε

}
≤ nPr

{ �X1�
Vn

> ε

}
≤ n

ε4
E

(
X1

Vn

)4

�

it suffices to prove

�3�7� E

(
X1

Vn

)4

= o�n−1�

under the assumption that Sn/Vn is asymptotically N�0�1�. Let us then as-
sume (3.5). The left-hand side of (3.7) is one of the summands in the develop-
ment of E�Sn/Vn�4, n ≥ 4,

E

(
Sn

Vn

)4

=
4∑

r=1

∑
m1+···+mr=4

mi≥1

(
n

r

)(
4

m1� � � � �mr

)
E
X

m1
1 · · ·Xmr

r

V4
n

= nE

(
X1

Vn

)4

+ 6
(
n

2

)
E
X2

1X
2
2

V4
n

+ 8
(
n

2

)
E
X1X

3
2

V4
n

+ 36
(
n

3

)
E
X1X2X

2
3

V4
n

+ 24
(
n

4

)
E
X1 · · ·X4

V4
n

�
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We will obtain (3.7) by taking limits in this identity, using the fact that
the moments of Sn/Vn converge, together with Lemmas 2.1 and 3.1. Since∑

1≤i�=j≤n X
2
iX

2
j/V

4
n = 1 −∑n

i=1 X
4
i /V

4
n, we have

2
(
n

2

)
E
X2

1X
2
2

V4
n

= 1 − nE

(
X1

Vn

)4

and the previous development simplifies to

�3�8�
E�Sn/Vn�4 = 3 − 2nE

(
X1

Vn

)4

+ 8
(
n

2

)
E
X1X

3
2

V4
n

+ 36
(
n

3

)
E
X1X2X

2
3

V4
n

+ 24
(
n

4

)
E
X1 · · ·X4

V4
n

�

Now, by Corollary 2.6, there is also convergence of moments in the limit (3.5).
Hence,

�3�9� lim
n→∞ E�Sn/Vn�4 = 3�

and therefore (3.7) will be proved if we show that the last three summands at
the right of equation (3.8) tend to zero. So, we must obtain the bound

�3�10�
∣∣∣∣EX1X

m2
2 · · ·Xmr

r

V4
n

∣∣∣∣ = o�n−r�

for all 1 ≤ r ≤ 4 and 1+m2 + · · · +mr = 4. For this we use Lemma 3.1, which
gives that, for n ≥ 6,

�3�11�
∣∣∣∣EX1X

m2
2 · · ·Xmr

r

V4
n

∣∣∣∣ ≤ 21/2
[
E
X1X2

V2
n

]1/2[
E
X

m2
3 X

m2
4 · · ·Xmr

2r−1X
mr

2r

V6
n

]1/2

�

To bound the first factor at the right of (3.11), we observe that by Corollary
2.6 and the limit (3.5),

lim
n→∞ E�Sn/Vn�2 = 1�

which, since �Sn/Vn�2 = 1 −∑
1≤i�=j≤n XiXj/V

2
n, implies

�3�12� E
X1X2

V2
n

= o
(
n−2)�

Lemma 2.4 implies, by (3.5), that supn E�Sn/Vn� < ∞, and this, combined with
Lemma 2.1, yields

�3�13� E
X

m2
3 X

m2
4 · · ·Xmr

2r−1X
mr

2r

V6
n

= O
(
n−2�r−1�)�

Equations (3.11)–(3.13) give (3.10), proving the theorem. ✷
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As mentioned in the Introduction, the classical Student tn-statistic,

Tn�X� = �1/n1/2�∑n
i=1 Xi

��1/n− 1�∑n
i=1�Xi − X̄n�2�1/2 �

where X̄n �= Sn/n, satisfies equation (1.2). Therefore, if Tn�X� or Sn/Vn

has a limiting distribution, so does the other and both coincide (this is well
known). Hence, replacing X by X− a in this observation and in Theorem 3.3
(note that X ∈ DAN iff X− a ∈ DAN), we obtain the theorem.

Theorem 3.4. The following two statements are equivalent:

(i) X is in the domain of attraction of the normal law;
(ii) There exists a finite constant a such that

lim
n→∞�

(
Tn�X− a�) = N�0�1��

Moreover, if either (i) or (ii) holds, then a = EX.

Theorem 3.4 provides a full answer to this article’s title question.
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