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THE REPRESENTATION OF COMPOSITION STRUCTURES

By Alexander V. Gnedin

University of Göttingen

A composition structure is a sequence of consistent probability distri-
butions for compositions (ordered partitions) of n = 1�2� � � � � Any composi-
tion structure can be associated with an exchangeable random composition
of the set of natural numbers. Following Donnelly and Joyce, we study the
problem of characterizing a generic composition structure as a convex mix-
ture of the “extreme” ones. We topologize the family � of open subsets of
�0�1� so that � becomes compact and show that � is homeomorphic to
the set of extreme composition structures. The general composition struc-
ture is related to a random element of � via a construction introduced by
J. Pitman.

1. Introduction. The problem of describing all random exchangeable
partitions of N �= �1�2� � � �� was solved by Kingman [8, 9]. Let π be such a par-
tition thought of as a sequence of its restrictions �πn� onto �n� �= �1�2� � � � � n��
so that the probability distribution of each πn is invariant under permutations
of �n�. Suppose the classes of πn are arranged in order of decreasing size and
let fi�n be the size of the ith largest class, with the convenience fi�n = 0
if the number of classes represented in �n� is less than i. The sequence of
probability distributions for the vectors of counts �f1� n� f2� n� � � ��� n = 1�2� � � �
is what Kingman called a partition structure. By exchangeability, the distri-
bution of π is determined uniquely by the partition structure. A now classical
representation result of Kingman says that, for each i ≥ 1, there exists a limit
fi�n/n → fi� with f1 ≥ f2 ≥ · · · ≥ 0 and

∑
fi ≤ 1. The partition structure

can be recovered from the frequencies �f1� f2� � � �� via a “paintbox process”
construction. Aldous [1] suggested an elegant proof based on de Finetti’s
theorem.

It is implicit in Kingman’s representation that any class of π is either a
singleton or infinite. Each infinite class has a positive limiting frequency. The
singleton classes are present if and only if their total limiting proportion 1 −∑
fi is positive.
Ordering the classes of πn by size is not consistent for different values of

n. Pitman [11] studied the representation problem with a more informative
labelling of partition classes of πn by the order of their minimal elements.
That is to say, the first class contains 1, the second class contains the minimal
natural number which is not in the first class, and so on. Pitman showed that
the relative class sizes converge and described all possible distributions for the
limiting frequencies �g1� g2� � � ��. If

∑
gi = 1 (this is equivalent to

∑
fi = 1),

then �g1� g2� � � �� is a size-biased permutation of �f1� f2� � � ��. According to
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Pitman’s representation theorem, each partition π endowed with this labelling
can be derived from �g1� g2� � � �� via a sequential procedure generalizing the
Dubins–Pitman “Chinese restaurant process” [1, 11].

The situation changes radically for random exchangeable compositions of N,
that is, partitions with a total order on the collection of classes. Suppose the
classes represented on �n� are arranged consistently with their ordering in
the whole of the composition and let �h1� n� h2� n� � � �� be the class sizes counts.
Donnelly and Joyce [4] showed that the limiting frequencies, hi�n/n → hi�
exist also in this case, but in general the composition cannot be reconstructed
from �h1� h2� � � ��, unless

∑
hi = 1: a condition which holds iff the collection of

classes is simply ordered, that is, has the same order structure as a finite or
infinite set of natural numbers. Motivated primarily by applications in popu-
lation genetics, Donnelly and Joyce concentrated on the simply ordered case
to which the models of biological interest belong. To describe the most general
exchangeable composition, Donnelly and Joyce suggested an ordered version of
the “paintbox process” involving a random probability measure on �0�1�. How-
ever, they did not give an explicit limiting procedure to derive the representing
measure from �h1� n� h2� n� � � ��, nor did they suggest a unique parametrization
of extremes.

Pitman [10] studied recently compositions which are very different from
simply ordered: they satisfy hi = 0� i = 1�2� � � � � and the collection of classes
is isomorphic, as an ordered set, to the set of rational numbers. Pitman’s com-
positions are derived from excursion intervals of recurrent random processes
like Brownian motion by a different version of ordered paintbox construction.

In this paper we refine the general characterization result of [4]. We prove
that an exchangeable composition of N can be derived from a random open sub-
set of �0�1� via the construction used in [10]. Our basic observation is that this
open set arises as a limit of the interval partitions encoding �h1� n� h2� n� � � ��.
We show that the set of extreme composition structures is homeomorphic to
the family � of open subsets of �0�1�, provided � is properly topologized. It
follows that using a special class of uniformized measures suffices to make
the representation of Donnelly and Joyce unique.

The present study fits the general framework of questions around exchange-
ability surveyed in [1]. From another point of view, this is a particular instance
of the problem about the limiting shape of a random combinatorial object as
outlined in [12].

2. Compositions of numbers and sets. Let �n be the set of composi-
tions of the natural number n; each η ∈ �n is an ordered collection of natural
numbers �n1� � � � � nk� with sum n. The number of parts k may vary. We asso-
ciate with η an interval partition of �0�1�:

γ�η� �=
(

0�
n1

n

)
∪
(
n1

n
�
n1 + n2

n

)
∪ · · · ∪

(
n1 + · · · + nk−1

n
�1

)
(1)

This can be regarded as a normalized version of the graphical representation
of compositions described in [2]. Clearly, γ�η� encodes the same information
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as the vector of class sizes. There are 2n−1 compositions of n, because any of
the points 1/n� � � � � �n− 1�/n may be the left endpoint of one of the partition
intervals or not.

Suppose n identical objects are partitioned into classes with sizes given
by η, in the sense that, for each i ≥ 1, there are ni objects in the ith class.
Draw a random sample without replacement of size m < n and put the classes
represented in the sample in the order inherited from η. Let q�η� ξ�, for ξ ∈
�m, be the probability that the resulting composition of m is ξ.

Let �n be the class of probability distributions on �n. A composition struc-
ture is a sequence �pn� which satisfies pn ∈ �n and

pm�ξ� =
∑
η∈�n

q�η� ξ�pn�η�(2)

for all m < n� n = 1�2� � � � and ξ ∈ �m. The set � of all composition structures
is a projective limit of finite dimensional simplexes �n, with projections given
by (2), and as such is a Choquet simplex. By Choquet theory, any element of
� can be uniquely represented as a mixture of the extreme points of �. It is
therefore important to describe the set of extreme points.

Drawing a sample of m objects from the set of size n amounts to deleting,
one-by-one at random, n −m objects. Thus, the values of q can be computed
recursively from those for the case m = n − 1. In this special case, there are
two possible kinds of changes from η to ξ.

Case 1. ξ is derived from η by decrementing some ni by 1, where ni > 1.
Case 2. ξ is derived from η by deleting a 1 in a subsequence of 1’s (such

as 1�1� � � � �1) of length j.
It is easy to see that

q�η� ξ� =


ni/n� in Case 1�
j/n� in Case 2�
0� otherwise.

(3)

An alternative approach to composition structures involves sets with dis-
tinct elements.

A composition of the set �n� �= �1� � � � � n� is an ordered collection of dis-
joint nonempty subsets, say s = �A1� � � � �Ak�, with ∪Ai = �n�. Let �n be the
collection of all compositions of �n�. For s ∈ �n, the vector of class sizes,

l�s� �= �#A1� � � � �#Ak��
is a composition of the natural number n; we call l�s� the configuration of s�
For η = �n1� � � � � nk�, there are

D�η� �= n!
n1! · · ·nk!

(4)

compositions s ∈ �n with configuration l�s� = η.
Let ρn� �n → �n−1 be the restriction mapping which respects the order

of classes. For s ∈ �n and r = ρn�s� ∈ �n−1, r is derived from s either by
removing the element n from one of classes of s with more than one element
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or by deleting a singleton class �n�. For ξ ∈ �n−1� η ∈ �n and r ∈ �n−1 with
l�r� = ξ, let

D�ξ�η� �= #�s ∈ �n� l�s� = η� ρn�s� = r�
be the number of extensions of r to a composition with configuration ξ. It is
easily seen that this number depends on r only through ξ and is given by

D�ξ�η� =



1� in Case 1�
j� in Case 2�
0� otherwise�

(5)

Let � be the projective limit of ��n� ρn�. Each sequence �sn� ∈ � corre-
sponds to a composition of N such that sn is the restriction on �n�. Each �n

is finite, so that � endowed with product topology becomes a compact, totally
disconnected space. A random composition of N is a random element of � ,
that is, a sequence �Sn� of random variables defined on a common probability
space such that the equality ρ�Sn� = Sn−1 holds with probability 1 for all
n ≥ 2� Invoke the Kolmogorov extension theorem to see that the probability
distribution P of �Sn� is uniquely determined by the marginal distributions
Pn of Sn, which must be consistent with respect to restrictions for different
values of n.

Permutations of �n� act naturally on the subsets of �n� and thus also on �n.
We call a random composition Sn of �n� exchangeable if the distribution of Sn

is invariant under all permutations of �n�. We call a random composition �Sn�
of N exchangeable if each Sn is exchangeable. In other words, exchangeability
of �Sn� amounts to the invariance under all one-to-one mappings N → N which
move only finitely many points.

Note that two compositions of �n� can be transformed into each other by
a permutation of �n� iff they have the same configuration. It follows that Sn

is exchangeable iff, for each η ∈ �n, the conditional distribution of Sn given
l�Sn� = η is uniform over all D�η� compositions with configuration η. This
means, of course, that l�Sn� is a sufficient statistic for the class of exchangeable
probability distributions on �n.

The next proposition says that composition structures and exchangeable
compositions of N are essentially the same objects.

Proposition 1. The formula

pn�η� = P�l�Sn� = η�� η ∈ �n� n = 1�2� � � �(6)

sets up a one-to-one correspondence between distributions of exchangeable ran-
dom compositions of N and composition structures.

Proof. Suppose �Sn� is exchangeable and let Pn be the distribution of Sn.
Consistency means that the equality

Pn−1�Sn−1 = r� = ∑
s∈�n� ρn�s�=r

Pn�Sn = s�
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holds for all n ≥ 2 and r ∈ �n−1. By exchangeability, this is equivalent to

pn−1�ξ� =
∑
η∈�n

D�ξ�η�D�ξ�
D�η� pn�η��

where �pn� is defined by (6) and ξ = l�Sn−1�� Computing the coefficient from
(5) and (4), we see that �pn� is a composition structure.

Conversely, suppose �pn� is a composition structure. Using (6) to define
exchangeable distributions Pn and reversing things, we see that the sequence
�Pn� is consistent and therefore determines a probability measure on the Borel
sigma algebra of � � ✷

Corollary 2. Equation (6) yields an affine homeomorphism between �
and the set of probability distributions for exchangeable random compositions
of N.

We use in the sequel the notation Ln �= l�Sn� for the configurations induced
by an exchangeable composition �Sn�� The sequence L1�L2� � � � is a Markov
chain, with cotransition probabilities given by q. The problem of describing
composition structures can be seen as the problem of describing all Markov
chains on ∪�n with given cotransition probabilities. Another interpretation
of the problem relies on a combinatorial construction of the underlying prob-
ability space in the spirit of “Brattelli diagrams” (see [5, 12]).

Construction 3. Consider a directed graph on � ∗ �= ⋃
n≥0 �n� where

�0 �= �� Think of �n as the nth floor of the graph. If vertices ξ and η lie
on adjacent floors and are as in Case 1 or 2, we join them by D�ξ�η� edges
[for convenience, set D���1� = 1] and label the edges by integers from 1 to
D�ξ�η�.

There is a one-to-one correspondence between �n and the set of directed
paths in the graph joining � with a vertex on the nth floor. Indeed, fix η ∈
�n and argue inductively. Suppose a path of length n − 1 with endpoint ξ
corresponds to r ∈ �n−1. Because the number of extensions of r to some s ∈ �n

with l�s� = η is equal to D�ξ�η�, we can identify each extension with an edge
connecting ξ and η; joining such an edge to the path we get an extended path
of length n corresponding to some s. Note that in the case D�ξ�η� > 1, the
edges joining ξ and η encode the position where the singleton class �n� is to be
inserted into r. In this terms, the restriction mapping ρn amounts to cutting
the last edge.

Infinite directed paths in � ∗ which start at � encode compositions of N.
The space of paths is compact in product topology. A random exchangeable
composition corresponds to a probability measure on the space of infinite paths
with the following property: given that η is the nth node of the path, all paths
of length n which join � with η are equiprobable.

Remarks. (1) Terminology is difficult here. The notion of composition ap-
pears in combinatorics (see [2]). Donnelly and Joyce [4] speak of classes in-
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duced by “ranking” of N and call composition structures “consistent ordered
sampling distributions” (they miss Case 2 in the description of cotransition
probabilities on page 241). Kerov and Vershik [7] called a measure on the
path space of a graded graph “central” if it satisfies the equiprobability con-
ditions as in Construction 3.

(2) Pitman’s [11] scheme of labelling the classes by their minimal elements
leads also to a graded graph of compositions. The basic difference is that in
Pitman’s scheme, when n grows, the newly appearing singleton classes are
always posed at the end of the composition, while in our model they can be
inserted elsewhere. Kerov [6] investigated the central measures on Pitman’s
graph by combinatorial methods.

3. Uniformized measures. Sufficiency considerations of the preceeding
section show that the interval partition γ�Ln� contains all essential informa-
tion about exchangeable composition Sn� To discuss the convergence issue, as
n grows, one needs to topologize the set of interval partitions. We will do this
by representing an open subset of �0�1� as a probability measure.

Let � be the class of open subsets of �0�1�. Each u ∈ � is represented
canonically as a union of disjoint open component intervals.

Definition 4. For u ∈ �, the probability measure û on �0�1� defined by
the following conditions is called the uniformized measure associated with u�

(a) û��0� t�� = x − δ, if �x − δ� x� ⊂ u is a component interval and t ∈
�x− δ� x�.

(b) û��0� t�� = t for t ∈ �0�1�\u.

A generic uniformized measure is partly atomic and partly continuous, and
either of these parts is sufficient to reconstruct the measure. It is easy to
see that û puts zero mass on u and coincides with Lebesgue measure on the
set remaining after cutting out all component intervals together with their
endpoints. If �x − δ� x� ⊂ u is a component interval, then its right endpoint
is an atom of mass δ; thus the total atomic part of û coincides with the
Lebesgue measure of u. Clearly, u��0� t�� ≤ t for t ∈ �0�1�. Two extremes
are: �̂ =Lebesgue measure, and ̂�0�1� =unit mass at 1.

Let �̂ be the space of uniformized measures endowed with the weak to-
pology.

Proposition 5. �̂ is closed and is therefore a metrizable compactum.

Proof. We wish to show that any sequence �ûn� of uniformized measures
contains a subsequence converging weakly to a uniformized measure.

For any uniformized measure and positive ε there are finitely many atoms
with masses greater than ε. Selecting a subsequence we can assume without
loss of generality that, for any rational ε, each ûn has the same number, k�ε�
say, of atoms with masses greater than ε. Selecting a smaller subsequence we
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can achieve that all these k�ε� atoms, enumerated from the left to the right,
have converging masses and locations, as n → ∞. Setting n → ∞ and then
ε → 0, use the limiting masses and locations to define the atomic part of a
new uniformized measure, û say, associated with some u ∈ �.

We will prove that convergence ûn��0� t�� → û��0� t�� holds for any t not
an endpoint of a component interval of u. Indeed, assume first that t /∈ u
and fix ε. Then t is not covered by an interval of un with size greater than
ε for all sufficiently large n. Therefore, condition (a) in Definition 4 implies
ûn��0� t�� ≥ t− ε . Along with ûn��0� t�� ≤ t and condition (a) this yields

ûn��0� t�� → t = û��0� t���
Another case: t is covered by a component interval �x − δ� x� ⊂ u. For n

large, t is covered by a component interval �xn − δn� xn� ⊂ un. Denoting by x
and δ the respective limits, we have

ûn��0� t�� = xn − δn → x− δ = û��0� t���
Weak convergence of ûn to û becomes obvious by noting that convergence

of distribution functions may fail for at most countably many values of t. ✷

Call a distribution function uniformized if it corresponds to a uniformized
measure. Uniformized distribution functions arise as a result of probability
integral transform as follows. Let X be a real random variable with right
continuous distribution function F. Consider the random variable F�X� and
set

F∗�t� �= P�F�X� ≤ t��
Observe that F∗ is uniformized, and the relevant open set u is found from

û��0� t�� = F∗�t�� t ∈ �0�1��(7)

Geometrically, u is the union of flats of F∗ (note that F∗ has the same flats
in �0�1� as the inverse F−1). For t ∈ �0�1�, we can write F∗�t� = F− ◦F−1�t�,
where F− is the left continuous version of F and F−1 the right continuous
generalized inverse. Obviously, F∗∗ = F∗. The equality F∗ = F holds iff F is
uniformized.

Uniformized distributions are useful to characterize the order properties of
random reals. To be precise, consider the sigma algebra � on R

∞ generated
by the events �xi ≤ xj�� i� j ∈ N� where �x1� x2� � � �� is a generic element of
R

∞� Each F induces in a natural way a measure on � .

Proposition 6. Let F and G be distribution functions. The following are
equivalent:

(a) F∗ = G∗;
(b) F and G induce the same measure on � ;
(c) F and G can be obtained from each other by a monotone change of

variable.
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Proof. The proof of (a) ⇐⇒ (c) is straightforward using inverses. (c) ⇒ (b)
follows by noting that the events �xi ≤ xj� and �F�xi� ≤ F�xj�� coincide. A
more delicate assertion (b) ⇒ (a) follows from Proposition 10. ✷

This proposition says that the order properties of an iid sample are deter-
mined by masses and arrangement of atoms of F. This is plain for F contin-
uous, because ties appear in an iid sample with probability 0 and the sample
can be uniquely ranked.

Remarks. (1) Weak convergence Fn ⇒ F does not imply convergence
F∗
n ⇒ F∗. Indeed, for Fn continuous and F atomic, all F∗

n are uniform, while
F∗ is atomic.

(2) Elementary analysis shows that the topology on � introduced here coin-
cides with the topology induced by the Hausdorff distance for the complement
closed sets.

4. Ordered paintbox process. The following ordered version of King-
man’s paintbox process was introduced in [10].

Construction 7. Fix u ∈ � and let R1�R2� � � � be iid uniform �0�1�
random variables. Denote by R1 �n � � � �Rn �n the increasing sequence of order
statistics of the first n variables. With probability 1 there is a unique permu-
tation σn� �n� → �n� satisfying Rσn�1� = R1 �n� � � � �Rσn�n� = Rn �n. The classes
of Sn are defined inductively for i = 1� � � � � n by the rule: σn�1� is in the first
class of Sn; σn�i� is attached to the same class as σn�i − 1� iff both Ri−1 �n
and Ri �n fall in the same component interval, otherwise σn�i� starts the next
class of Sn not represented by the integers σn�1�� � � � � σn�i− 1�.

With probability 1, each class of �Sn� in this construction is either a sin-
gleton or infinite. The integers i with Ri /∈ u constitute singleton classes.
Two integers i and j are in one composition class iff Ri and Rj fall in the
same component interval. Exchangeability of �Sn� follows at once from ex-
changeability of R1�R2� � � � � Note that the order of classes is induced by the
standard ordering of �0�1�, so that the minimum of R1� � � � �Rn is always in
the first class of Sn.

We will use in the sequel the notation Pu for the distribution of �Sn� cor-
responding to u and �pu

n� for the related composition structure.
Donnelly and Joyce [4] suggested the following model.

Construction 8. Let X1�X2� � � � be iid random variables and X1 �n� � � � �
Xn �n be the order statistics of the first n. Define σn to be a permutation of �n�
with Xσn�1� =X1 �n� � � � �Xσn�n� =Xn �n. Use the rule: σn�1� is in the first class
of Sn; σn�i� is attached to the same class as σn�i − 1� iff Xσn�i� = Xσn�i−1�;
otherwise σn�i� starts the next class.
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Of course, Construction 8 yields a fine composition of N, such that all classes
are singletons, iff the X’s are continuously distributed. In general, the per-
mutation σn is not unique, but this does not matter.

Both constructions describe the same class of compositions. Denote by F
the distribution function of the X’s. Let F∗ be the uniformization of F and u
the union of flats of F∗, so that (7) holds. To establish the equivalence, recall
the well-known fact that F−1�Ri� and Xi have the same distributions and
note that the following events coincide:

�F−1�Ri� = F−1�Rj�� = �F∗�Ri� = F∗�Rj��
= �Ri and Rj fall in one interval��

Next is the law of large numbers for the Donnelly–Joyce–Pitman construc-
tion. The role of “empirical distribution” is played by the random uniformized
measure corresponding to the interval partition Un �= γ�Ln��

Proposition 9. Let �Sn� be an exchangeable random composition associ-

ated with some u ∈ �, as in Construction 7. As n → ∞, Ûn converges weakly
to û a.s. Henceforth, the composition structure derived via Construction 8 can
be parametrized uniquely by uniformized distribution functions.

Proof. Use Construction 8 with some F satisfying (7). One can see that

Ûn��0� t�� =
1
n

n∑
i=1

1�0� t��Fn�Xi���

where Fn is the empirical d.f. of X1� � � � �Xn. By the law of large numbers for
independent Bernoulli trials,

1
n

n∑
i=1

1�0� t��F�Xi�� → F∗�t� ∀ t ∈ �0�1��

Weak convergence follows from these formulas and the Glivenko–Cantelli
theorem.

The second assertion follows from the first and Proposition 6. ✷

For open sets of the form

u = �0� x1� ∪ �x1� x1 + x2� ∪ �x1 + x2� x1 + x2 + x3� ∪ · · · �
with xi ≥ 0�

∑
xi = 1� we have

pu
n�n1� � � � � nk� =

∑
j1<···<jk

D�n1� � � � � nk��xj1
�n1 · · · �xjk�nk�

This family of open sets is dense in �.
Keep in mind permanently that we have topologized the collection of open

sets through correspondence � ↔ �̂.
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Proposition 10. The correspondence u ↔ �pu
n� is continuous and one-to-

one.

Proof. Continuity of composition structure means continutity of each pu
n�

Let uε be the open set derived from u by removing all subintervals of length
smaller than ε. Suppose another open set v is sufficiently close to u, so that vε
and uε have the same number, say k�ε�, of intervals whose respective 2k�ε�
endpoints are close to each other. The probability p

uε
n is easily seen to be a

polynomial in these 2k�ε� variables; therefore pvε
n is close to puε

n . Those sample
points R1� � � � �Rn which fall into the complement to uε make up singleton
classes of the composition associated with uε. The probability that a uniform
�0�1� sample hits twice any of the intervals of u with length less than ε is
of the order O�ε� uniformly in u, that is, the sample points falling into the
difference set u\uε are likely to form singleton classes. It follows that

pu
n�η� = puε

n �η� +O�ε��
The same holds also for pv

n�η�, therefore this probability is close to pu
n�η� and

the continuity follows.
We shall prove now that u can be recovered from �pu

n�� Indeed, set

αn = n
∫ 1

0
tn−1 dû�t��

The sequence �αn� determines measure û uniquely, as in the Hausdorff mo-
ment problem. On the other hand, αn can be expressed through composition
structure as the expected size of the last part of η = �n1� � � � � nk�:

αn = ∑
η∈�n

nkp
u
n�η�(8)

To see this, denote by A the last class of Sn and use exchangeability of the
R’s in Construction 7 to obtain

αn = nPu�1 ∈ A� = nP�1 ∈ A� R1 ∈ uc� + nP�1 ∈ A� R1 ∈ u��
Assume first that R1 falls into uc, then 1 is in the last class iff it is the sample
maximum, whence

P�1 ∈ A� R1 ∈ uc� = P�R1 = Rn �n� R1 ∈ uc� =
∫
uc
tn−1 dt =

∫
uc
tn−1 dû�t��

Alternatively, R1 may fall into a component interval �x−δ� x� ⊂ u; then 1 is in
the last class iff other points R2� � � � �Rn fall into �0� x�: an event of probability
δxn−1. Consequently,

P�1 ∈ A� R1 ∈ u� =
∫
u
tn−1 dû�t��

whence (8) and the moments can be derived from �pu
n�. ✷
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5. The representation. Let �n be the subclass of � consisting of open
sets such that the endpoints of component intervals are integer multiples of
1/n, and the total length of the intervals is 1. Obviously, (1) sets up a one-to-
one correspondence �n ↔ �n. With a slight abuse, we will denote by pn both
a generic distribution on �n and its image on �.

A composition structure �pn� can be considered as a sequence of distribu-
tions on �. Similarly, an exchangeable composition �Sn� induces a random
sequence Un �= γ�Ln�. A fundamental fact is that Un converges.

Theorem 11. Suppose �Sn� is an exchangeable composition of N. Then the
sequence �Un� converges almost surely to a random element U ∈ �. The con-
ditional distribution of �Sn� given U = u is Pu, as in Construction 7.

Proof. Pick n, ξ ∈ �n and an arbitrary sequence ηN ∈ �N� N = 1�2� � � � �
Set uN = γ�ηN�, and let puN

n be the distribution on �N associated with uN,
as in Construction 7. Obviously, uN ∈ �N.

The probability that a random point from the uniform �0�1� distribution
discovers a component interval of uN is the same as the probability of pick-
ing this interval by the following scheme: select j uniformly at random from
�1�2� � � � �N� and mark the component interval covering ��j− 1�/N�j/N�.
This means that, for this special case (i.e., when the open set is in �N), the
construction yields ξ with the same probability as via repeated sampling from
the discrete uniform distribution. On the other hand, if the sampling is with-
out replacement, the probability of ξ is q�ηN� ξ�. Estimating the probability
of ties in the sampling with replacement we get for large N,

q�ηN� ξ� = puN
n �ξ� +O�n2/N��(9)

Now let Zn be the size of the last class of Sn. Using (9) and arguing as in
the proof of Proposition 10 we obtain

E�Zn�LN� = n
∫ 1

0
tn−1 dÛN +O�1/N��(10)

where Ûn is the random uniformized measure associated with Un. The Markov
property of �LN� implies that the conditional expectation in the LHS of (10) is
a reversed martingale and as such must converge as N → ∞� Therefore, the
RHS of (10) converges as well. Recall that convergence of all moments in the
Hausdorff moment problem implies the convergence of measures. Therefore,
there is a weak limit for Ûn, which by Proposition 5 must be also a uniformized
measure, say Û.

Apply the martingale convergence once again to conclude that E�Zn�LN� →
E�Zn�U�� The conditional distribution of �Ln� given U is uniquely determined
by the conditional expectations of E�Zn�U�, as in Proposition 10. ✷

Next is our main result. In words: any composition structure is a unique
mixture of ordered paintbox processes.
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Corollary 12. Let �pn� be a composition structure. There exists a unique
probability measure µ on � such that the representation

pn�η� =
∫
�
pu
n�η�dµ�u�(11)

holds for all n and η ∈ �n� As measures on �� the distributions pn converge
to µ weakly.

Along with Propositions 5 and 9, this implies that the parametrization of
extremes by open sets is also nice topologically.

Corollary 13. The set of extreme composition structures is homeomorphic
to ��

Remarks.

1. We get also some information about asymptotic combinatorics of compo-
sitions of large integers. For ξ ∈ �n� ηN ∈ �N and N > n define the
dimension function D�ξ�ηN� to be the number of directed paths in the
compositions graph (see Construction 3) with endpoints ξ and ηN� Equiv-
alently, this is the number of extensions of ξ to ηN. For the cotransition
probability we have

q�ηN� ξ� = P�Ln = ξ�LN = ηN� = D�ξ�ηN�
D�ηN� �

As in the proof of Theorem 11, the limit of the RHS exists for all n and
ξ iff γ�ηN� converge. A similar fact for Pitman’s graph was established by
Kerov [6] by direct analysis of the dimension function.

2. Note that Proposition 9 is a particular case of Corollary 12. The represen-
tation (11) could be derived from this proposition and Theorem 8 of [4].

3. The method of moments used here suggests also a new proof of King-
man’s representation theorem (see [8]). Indeed, given that the decreas-
ing class sizes of an exchangeable partition of �N� are �f1�N� f2�N� � � ��,
the probability that the partition of �n� is the single-class partition equals∑

i�fi�N/N�n +O�1/N�. Along with martingale convergence, this implies
the existence of limits for the relative frequencies fi�N/N.

6. The simply ordered case. For exchangeable composition �Sn�, let
�h1� n� h2� n� � � �� be the vector of class sizes of Sn complemented by zeros, as
in the Introduction. The following assertion is a reformulation of Theorem 5
from [4].

Proposition 14. For i = 1�2� � � �, the limit hi �= hi�n/n exists with proba-
bility 1. Furthermore, if hi = 0 for some i then also hj = 0� for j ≥ i.
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Proof. It is sufficient to consider only the extreme compositions, because
the general case is a mixture. Let Pu be the distribution of �Sn�� as in Con-
struction 7.

Assume first that 0 is not an isolated point of uc. Fix i and ε. The law of
large numbers guarantees that the set �j� Rj < ε� contains the first i classes
of Sn for all sufficiently large n. Hence �h1� n+· · ·+hi�n�/n < ε and the relative
frequencies converge to 0�

If 0 is an isolated point of uc then u has a component interval starting
at 0. Letting h1 be the length of this interval, we have h1� n/n → h1. Argue
inductively: if h1 is a concentration point of uc then �h2� n+h3� n+ · · ·�/n→ 0;
otherwise the point h1 starts the second most left interval and h2� n/n con-
verges, and so on. ✷

Recall that a random composition of N is simply ordered if, with probabil-
ity 1, there is a well-defined first, second, and so on, class, as defined in the
Introduction.

Proposition 15. An exchangeable composition of N is simply ordered iff
the associated composition structure satisfies the condition

lim
j→∞

∑(
n1 + · · · + nj

n

)
pn�η� = 1�

where the sum is extended over all η = �n1� � � � � nk� ∈ �n� and ni = 0 for i > k�

Proof. In the simply ordered case, the complement to the directing open
set cannot have concentration points different from 1. This holds iff

∑
hi = 1

or, equivalently, E
∑
hi = 1� ✷

It would be interesting to know more about the limiting properties of
�h1� n� h2� n� � � ��� It follows from the results of [3] that the asymptotic be-
havior of h1� n can be rather irregular. Another question of interest is a
characterization of uniformized measures in terms of moments.

Acknowledgments. I am indebted to Erich Berger for the idea of direct
proof of Proposition 9 and to a referee for helpful comments. My special thanks
go to Jim Pitman for the suggestion to clarify a topological point (Remark 2
in Section 3).
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