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CAPACITY AND PRINCIPAL EIGENVALUES:
THE METHOD OF ENLARGEMENT

OF OBSTACLES REVISITED

BY ALAIN-SOL SZNITMAN

ETH-Zentrum

We describe a coarse graining method, which provides lower bounds
on the principal Dirichlet eigenvalue of the Laplacian in regions receiving
small obstacles, and sharpens the previous method of enlargement of
obstacles. Based on a quantitative Wiener criterion, one replaces the
actual obstacles by obstacles of a much larger size. Controls on the shift of
principal eigenvalues and capacity estimates on the locus where the
Wiener criterion breaks down are derived. The results are written in a
self-contained fashion.

Introduction. Capacity and principal eigenvalues have a well known
Ž � � � �interplay which has been studied by many authors e.g., Ancona 1 , Kac 7 ,

� � � � � �.Ozawa 8 , Rauch and Taylor 10 and Swanson 11 . The present article
describes another instance of this connection in the context of the ‘‘method of
enlargement of obstacles.’’

Ž � � .The method of enlargement of obstacles see 14 for a review aims at
deriving lower estimates on the principal Dirichlet eigenvalue of the Lapla-
cian in regions of � d, d � 1, which receive many small obstacles. These
obstacles are often produced by some random mechanism. A typical instance
to keep in mind is the case of closed balls of small radius � centered at the
points of a Poisson cloud with possibly high intensity, which are ‘‘deleted’’
from some given region of � d.

The rough idea of the method is to replace the original configuration of
small obstacles with size � by a configuration of obstacles with a much bigger
size � �. This replacement is performed in such a fashion that one does not
increase too much the eigenvalue under study, at least when its level in the
original configuration is not too high. The point is that the configurations of
enlarged obstacles now have a reduced combinatorial complexity and are
easier to analyze.

It turns out that in general one cannot enlarge every obstacle, for it may
Ž � �.cause a substantial upward shift of the eigenvalue see 14 . One needs to

distinguish between good obstacles, which are ‘‘well surrounded,’’ and ‘‘bad
obstacles,’’ which are ‘‘poorly surrounded.’’ One then enlarges only the
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obstacles corresponding to good points and discards the obstacles correspond-
ing to bad points.

When using this coarse graining method, there are essentially three
quantities which measure the efficiency of the procedure:

The uniform upper bounds one has on the possible upward
shift caused by the replacement of some of the trueI.1aŽ .
obstacles by enlarged obstacles.

The ratio of the typical size � of the true obstacles to the
size � � of the enlarged obstacles. This ratio in essence

I.1bŽ . controls the reduction of combinatorial complexity achieved
by considering enlarged obstacles instead of true obstacles.

The uniform controls on the volume of enlarged bad
obstacles. These are crucial when deriving probabilisticI.1cŽ .
estimates on configurations of enlarged obstacles.

The point of the present article is the description of a new way of
constructing such a coarse grained picture, which leads to estimates on

Ž . Ž .quantities like I.1a � I.1c quite better than those coming from the method
� �described in 12�14 . For instance, in the two-dimensional case, the method

� 4'previously used provides controls of order exp �const log 1�� , as � � 0,Ž .
Ž . Ž .on the quantities showing up in I.1a � I.1c . These estimates become worse

in higher dimension. The construction we present here, instead, produces
controls of order � const, as � � 0, regardless of the dimension.

At the heart of this improvement lies a new way of enlarging obstacles.
Roughly speaking, we decompose � d into L-adic boxes of size less than or
equal to 1. We use this decomposition to partition � d into a collection of

Ž � . Ž � .density boxes size approximately � , of bad boxes size approximately �
Ž � .and of boxes receiving no point of the cloud size approximately � ,

with 1 � � � � � 0. The scales � � and � � which show up in this coarse
grained picture are large compared to the scale � of the true obstacles. This

Ž .addresses I.1b .
The density boxes are those boxes of size approximately � � which fulfill a

� Ž .�certain quantitative Wiener criterion see 1.15 ; the closure of their union is
precisely the set where we ‘‘enlarge obstacles.’’ This leads to eigenvalue

Ž .estimates developed in Section 1, which take care of I.1a .
The bad boxes on the other hand are the boxes of size approximately � �,

contained in the complement of density boxes and receiving some point of the
� Ž .�cloud see 2.32 . We derive sharp controls on the volume of bad boxes; see

Ž .I.1c . This is essentially performed by means of capacity estimates developed
in Section 2. In particular, we show in Theorem 2.1 some rather general
exponential controls on the average capacity of obstacles attached to rarefac-

Ž � .tion boxes i.e., boxes of size approximately � which are not density boxes .
The estimates are worked out through the successive generations of boxes.
This has some flavor of renormalization theory or of the methods developed in

Ž � �.the study of harmonic measures see 3, 6 , and is also reminiscent of the
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arguments involving trees and capacity present in the series of work by
Ž � � � � .Benjamini, Pemantle and Peres see, e.g., 2 , 9 and references therein .

The motivation for the method we develop in the present article stemmed
from a problem, which we now briefly describe. Consider a Poisson cloud of

Ž . d Ž .points x in � , d � 2, with constant intensity � � 0. Let W � be a nonnega-i
tive, compactly supported, bounded measurable function, which is not a.e.

� �equal to 0. It was shown in 11 that the principal Dirichlet eigenvalue � ofu
Ž . Ž .d�	�2 � Ý W �� x in the box �u�2, u�2 has asymptotic behavior de-i i

scribed by

c d , �Ž .
I.2 �-a.s. � � as u � 
,Ž . u 2�dlog uŽ .

Ž . Ž .where c d, � � 0, 
 is a constant solely depending on d and � . What can
now be said about the fluctuations of the random variable � ? In particular,u
what bounds can be derived on the spread of the distribution of � around au
median? These questions, for instance, turn out to be of importance for the
fine study of Brownian motion in a Poissonian potential. Some preliminary
applications to the control of fluctuations of � are developed in Section 3, butu

� �the main body of applications will be developed in 15 .
As a result of this motivation, we wrote our results in the context of ‘‘soft

obstacles,’’ where the obstacle attached to a point x of the ‘‘cloud’’ isi
�2 Ž �1Ž ..� W � �� x . However our results can routinely be adapted to the casei

of ‘‘hard obstacles.’’ In this case we would instead delete the set � x � � Ki i
d d Žfrom � , with K a fixed nonpolar compact subset of � e.g., the closed ball of

.radius a � 0 centered at 0 .
Let us explain how the article is organized. Section 1 introduces the precise

notation, describes the notion of density and rarefaction boxes and derives
the eigenvalue estimates. The main results are Theorems 1.2 and 1.4. In

Ž .Theorem 1.2 a control as in I.1a is discussed. In Theorem 1.4 it is shown
that one can discard regions of space which are distant enough from places in

Žwhich the coarse grained configuration presents a noticeable hole the so-
.called clearing boxes without causing a substantial shift of the eigenvalue.

In Section 2 we define the notion of bad boxes. The main objective is to
Ž .control their volume; see I.1c . This is performed with the help of the

capacity estimates on rarefaction boxes shown in Theorem 2.1 together with
certain ‘‘solidification estimates’’ presented in Proposition 2.3.

Section 3 develops some first applications of our results to the study of
�fluctuations of the above-mentioned principal Dirichlet eigenvalue � seeu

Ž .�I.2 . It also tries to address the reader’s legitimate question ‘‘what is all this
good for?’’

The Appendix collects some results which are used in Section 1 in the
derivation of eigenvalue estimates. These are streamlined and reinforced

� � � �versions of the arguments developed in 12 or 13 .
Let us finally mention that the present article has been written in an

essentially self-contained way, which in particular does not require knowl-
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� � � �edge of 12�14 . We thank A. Ancona for mentioning 6 and I. Benjamini
� �for 3 .

1. Eigenvalue estimates. We begin with a description of our notations
and setting. We let � stand for the set of locally finite simple pure point
measures � � Ý 
 on � d, d � 1. To each point x of a ‘‘cloud configurationi x ii

� � Ý 
 ,’’ we attach a soft obstacle. This soft obstacle is defined by means ofi x i
Ž .a fixed shape function W � which is suitably scaled and translated to the

Ž .point x under consideration. We assume that W � is nonnegative, bounded,i
measurable, compactly supported and not a.e. equal to 0. The scaling is

Ž .governed by a parameter � � 0, 1 , and our soft obstacles are defined by the
potential function

1.1 V x , � � ��2 W ��1 x � x , x � � d , � � � .Ž . Ž . Ž .Ž .Ý� i
i

Ž .It is convenient to denote by a � a W � 0 the radius of the smallest closed
Ž .ball centered at the origin outside which W � vanishes:

c
1.2 a W � inf r � 0, W � � 0 on B 0, a .Ž . Ž . Ž . Ž .� 4

d Ž d .We let P , x � � , stand for the Wiener measure on C � , � starting fromx �
Ž .x and let Z stand for the canonical Brownian motion. Given U, at t � 0

nonempty open subset of � d, � � 0 and � � �, a central object of interest in
� Ž .what follows is � U , the bottom of the spectrum of the generator of the

2Ž .strongly continuous self-adjoint semigroup on L U, dx induced by

tU , �1.3 R f x � E T � t , exp � V Z , � ds f Z ,Ž . Ž . Ž . Ž .Ht x U � s t½ 5
0

d 2Ž . � 4with t � 0, x � � , f � L U, dx and T � inf s � 0, Z � U , the exit timeU s
Ž � � .from U. It is known see 5 , Proposition 3.1 that

1 2� 2 
 2� �1.4 � U � inf �f � V f dx , f � C U , f dx � 1 .Ž . Ž . Ž .Ž .H H� c2½ 5
� � Ž .In fact � U is the bottom of the spectrum of the Friedrichs extension of


Ž . � d�	�2 � V on C U . When B is a closed subset of � , we denote by H the� c B
entrance time of Z in B:�

� 41.5 H � inf s � 0, Z � B .Ž . B s

We are now ready to describe how we ‘‘enlarge obstacles.’’ We consider an
� Ž .�integer L � 2 which later will be chosen large enough; see 2.9 and intro-

d Ž .duce an L-adic decomposition of � : For m � i , i , . . . , i with k � 0,0 1 k
d � 4di � � and i , . . . , i � 0, . . . , L � 1 , we consider the box of generation k0 1 k

with size L�k associated with m:

i i 11 k d�1.6 C � i � � ��� � � 0, 1 .Ž . .m 0 k kL L L



A.-S. SZNITMAN1184

Ž . ŽWe denote by II resp., II the collection of indices m of the above form resp.k
.of indices m of generation k . We shall sometimes write C to recall them , k

generation k of m. There is a natural tree-like structure on II and we shall
write

1.7 m 	 m�,Ž .

when m� extends m. That is,

m � i , . . . , i , m� � i� , . . . , i� with k 
 k� and i � i� , . . . , i � i� .Ž . Ž .0 k 0 k � 0 0 k k

Ž . � 4dWhen m � i , . . . , i � II, j � 0, . . . , L � 1 . We shall also write0 k

1.8 m � j instead of i , . . . , i , j .Ž . Ž .0 k

Ž . � �Finally when m � i , . . . , i � II and 0 
 k� 
 k, m will stand for the0 k k k �

truncation of m to the k�th generation:

� �1.9 m � i , . . . , i � II .Ž . Ž .k � 0 k � k �

We shall now introduce two supplementary length scales which are interme-
diate between 1 and � . Namely, we pick

1.10 0 � � � � � 1,Ž .

and the above-mentioned scales will roughly be 1 � � � � � � � � . The scales
� � will correspond to the size of enlarged obstacles, whereas the scale � �,
which should be thought of as being close to 1, will come in the definition of

Ž .the quantitative Wiener criterion in 1.15 below. Since we are working with
the L-adic decomposition of � d, it is convenient to introduce

log 1�� log 1��Ž . Ž .
n � � � , n � � � andŽ . Ž .� �log L log L1.11Ž .

l � � n � � n � .Ž . Ž . Ž .� �

We then have

L�n ��1 � � � 
 L�n� , L�n��1 � � � 
 L�n� ,
� � a 1Ž .

l � � log as � � 0.Ž .
log L �

1.12Ž .

We are now going to define density and rarefaction boxes of the configuration
� � �. To this end we still need some notation. For m � II , an index ofk
generation k and � � � we define

kK � L B x , a� ,Ž .�m iž /
x �C1.13Ž . i m

cap � cap K ,Ž .m m
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d Ž .provided that for a compact subset K of � , cap K denotes the usual
Brownian capacity when d � 3 and the 1-capacity when d � 1, 2. That is,

�1

1.14 cap K � inf g x , y � dx � dy ; � probability on K ,Ž . Ž . Ž . Ž . Ž .HH½ 5ž /
where for x, y � � d,



2�d� �g x , y � p s, x , y ds � c d y � x when d � 3Ž . Ž . Ž . Ž .H

0



�s� e p s, x , y ds when d � 1, 2 ,Ž . Ž .H

0

Ž .provided p s, x, y stands for the Brownian motion transition density and

d
d �2c d � � � 1 2� when d � 3.Ž . Ž .ž /2

In other words, K corresponds to blowing up by a factor Lk the ‘‘skeleton ofm
Ž .obstacles’’ � B x , a� attached to the points of the cloud falling inx � C ii m

the box C of size L�k , and cap is the capacity of this set.m m
ŽThe quantitative Wiener criterion is now as follows. We pick 
 � 0 it will
.later turn out that a useful 
 should not be too large; see Theorem 2.1 . Given

Ž . �n�d, � , �, W � , L, � , � and 
 , we shall say that a box C of size L is am
density box when

1.15 cap � 
 l � � 
 n � � n � .Ž . Ž . Ž . Ž .Ž .Ý � m � � �k
Ž . Ž .n � �k
n �� �

Ž .When 1.15 fails, we shall say that C is a rarefaction box. It is convenient tom
write

DD � C ,� m
m�IIn�

m density index

RR � C .� m
m�IIn�

m rarefaction index

1.16Ž .

The interest in the notion of density box stems from a lemma which we shall
now state. It plays a crucial role in the eigenvalue estimates we shall derive.
For k � 0, we denote by H the stopping timek

� � �k1.17 H � inf s � 0, Z � Z � L ,Ž . � 4k s 0

where

� � � � d1.18 x � sup x for x � � .Ž . i
i�1, . . . , d
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Ž .LEMMA 1.1. There exists c d, W � 0, such that when1

1.19 4a� � L�n� Ž� . ,Ž .
Hn Ž� .�1.20 E exp � V Z , � ds 
 exp �c capŽ . Ž . ÝHx � s 1 � m �½ 5½ 5 k

0 n �k
n� �

for all � � �, m � II and x � C .n Ž� . m�

Ž .PROOF. Assume 1.19 and consider m � II , x � C , k with n � k 
n Ž� . m ���k �k� � Ž .n , z with z � x 
 L and K � L K � � B x , �� . It follows� � m � x � C ik i � m � k

Ž . � �from 1.19 that the 3a� closed � -neighborhood of K is contained in the
� � �k�1 � � �open � -ball of radius L centered at x. Define H � inf s � 0, Z � xs

�k�14� L . Then

H
E exp � V Z , � dsŽ .Hz � s½ 5

0

H� �
 P H � H � E H � H , E exp � V Z , � dsŽ .Hz K z K Z � s½ 5HK 01.21Ž .
H� �
 1 � P H � H 1 � sup E exp � V Z , � dsŽ .Hz K z � � s½ 5ž /0z ��K

� �
 1 � P H � H 1 � K d , W ,Ž .Ž .z K

Ž .where in the last step we used the observation preceding 1.21 , scaling and
the notation

TBŽ0 , 3a.K d , W � sup E exp � W Z ds � 0, 1 .Ž . Ž . Ž .Hz s½ 5�
0Ž .z ��B 0, a

k Ž .Now observe that L K � K , thanks to 1.19 , is included in the closed� m � k d k� � Ž .1�4 � -neighborhood of some box C of size 1 q � � such that L x � C .q q
If we now use scaling, the correspondence between equilibrium charge and

Ž � � .last visit of killed Brownian motion see 4 , Chapter 5 , together with
� �standard comparisons of Green functions, we find that for z with z � x 


L�k ,
� �1.22 P H � H � K � d cap .Ž . Ž .z K � m � k

Ž . Ž .As a result, the left member of 1.21 is smaller than 1 � c d, W cap . If1 � m � k
Ž .we now use the strong Markov property at the times H defined in 1.17 , wek

find

Hn�E exp � V Z , � ds 
 1 � c capŽ . Ž .ŁHx � s 1 � m �½ 5 k
0 n �k
n� �


 exp �c cap ,Ý1 � m �½ 5k
n �k
n� �

Ž .which proves our claim 1.20 . �
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We can now define our enlarged obstacles. We shall ‘‘solidify’’ each density
box. More precisely, with each nonempty open subset U of � d, we associate
the open set
1.23 U� � U � DD.Ž .

� Ž .When U� is empty � U� will be �
 by convention. Our first main result is
the following theorem:

THEOREM 1.2. If
� � �Ž .

� � 0, 
c ,1ž /d � 2 log LŽ .
then for M � 0,

1.24 lim sup ��� �� U� � M � �� U � M � 0.Ž . Ž . Ž .Ž .
��0 � , U

Ž .� Ž .4�1PROOF. Pick M � 0, 0 � � � �� � 
c � � � log L d � 2 and for1
given U, � � 0, � define

1.25 � � �� U� � M � � �� .Ž . Ž .Ž .�

If � � 0, then M � � ��, so that

� ��

�1.26 � 
 � U� 1 � ,Ž . Ž . ž /M

and from Proposition A.1 in the Appendix, we find that
�1�d�2� �


 �def
�s U � , �1.27 A � 1 � sup �e R 1 x ds 
 K d ,Ž . Ž . Ž .H s ž /M0x

� Ž .�since A increases with � see A.16 .
We now want to apply Theorem A.3 in the Appendix. To this end we choose

� Ž .� Ž .� � H with the notations of 1.17 , U � U� and U � U. If � � 0, 1 isn Ž� . 1 2�

Ž .small enough so that 1.19 holds and

� 41.28 E exp 2 M� 
 K � d � 
,Ž . Ž .0

Ž . Ž .then clearly A.11 holds and the quantities A and B from A.10 are finite,
Ž .that is, A.12 holds. We now consider

�def
1.29 C � sup E � � T , exp �� � V Z , � dsŽ . Ž .Hx U � s½ 5

c 0Ž .x� U�

and wish to prove that A � C � 1 for a suitable choice of parameters. Observe
Ž .that the expectation in 1.29 vanishes when x � U and we thus only need

consider x � U � U� 
 DD.
Ž .From the Cauchy�Schwarz inequality and 1.28 , it follows that

�
2C 
 K � d sup E exp � 2V Z , � dsŽ . Ž .Hx � s½ 5

0x� DD


 K � d exp �c 
 l �� 4Ž . Ž .1
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Ž . Ž .by Lemma 1.1 and 1.15 . In view of 1.27 , we find
d 1 c1

1.30 AC 
 K d , M exp �� � 1 log � 
 l � .Ž . Ž . Ž .½ 5ž /2 � 2

Ž . Ž . ŽŽ . . Ž .Observe that by 1.12 , l � � � � � �log L log 1�� , as � � 0. Our choice
of �� now ensures that when � is small enough, A � C � 1 and therefore by
Ž . � Ž .A.14 , � 
 � U .

Ž Ž . .We have thus shown that when � � � d, � , � , 
 , ��, L, W � , M for arbi-0
� Ž . � Ž . ��trary U, �, either � � 0, so that � U� � M � � U � M 
 � , or � � 0

� Ž .and � 
 � U , which together with the fact that � 
 M implies

�� U� � M � � �� 
 �� U � M .Ž . Ž .
Ž .Our claim 1.24 easily follows. �

� Ž .We shall now discuss a second result. We shall show that � TT , provided
it has a ‘‘reasonable value,’’ does not increase too much when we replace the
open set TT by its intersection with a suitable neighborhood of the boxes of
unit size, where the complement of the enlarged obstacles is not too small
Ž . dthe so-called clearing boxes . For each box C , q � � , of size 1, we defineq

� �1.31 v � C � DD ,Ž . q q

the volume of the complement of density boxes within C .q
Ž .We now introduce a parameter r � 0, 1�3 and call a box C of size 1 aq

clearing box when
1.32 v � r d .Ž . q

Ž .If 1.32 fails, we say that C is a forest box. We denote by AA the closed setq

1.33 AA � CŽ . � q
q : C clearing boxq

Ž .and by OO the open neighborhood of size R � 0, 
 of AA:
d � �1.34 OO � x � � , � y � AA, y � x � R .� 4Ž .

� Ž c.As we shall now see, we have natural lower bounds on � AA .

Ž . Ž .PROPOSITION 1.3. There exists a constant c d � 0, 
 such that when2
Ž .1.19 holds together with

1.35 L�n�Ž� . � rŽ .
and
1.36 
c l � � log 2,Ž . Ž .1

then
1.37 �� AA c � c d �r 2 .Ž . Ž . Ž .2

PROOF. We now apply Lemma A.2 from the Appendix, choosing U � AA c

and
� �S � inf s � 0, Z � Z � 5r .� 41 s 0
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First observe that when x � AA c and x � C , q � �d, then from the definitionq
of AA,

d3 d1.38 B x , 3r � DD � C � � 1 r ,Ž . Ž . Ž .½ 5
 q 2

Ž . � �where B x, 3r is the -ball of radius 3r and center x, and 0 � r � 1�3


Ž . Ž . Ž .was used. Now when 1.19 , 1.35 and 1.36 hold, it follows from Lemma 1.1
Ž .and 1.38 that

S1E exp � V Z , � dsŽ .Hx � s½ 5
0


 P T � Hx B Ž x , 4 r . DD


Hn�� P H 
 T , E exp � V Z , � dsŽ .Hx DD B Ž x , 4 r . Z � s½ 5
 H DD 0

1
 1 � P H 
 T ,x DD B Ž x , 4 r .2 


so that

S11.39 E exp � V Z , � ds 
 c d � 1.Ž . Ž . Ž .Hx � s½ 5
0

Ž . 2 Ž .Picking � � c d �r , we can make sure by picking c d small enough that2 2
for any z � � d,

1
� 4E exp 2�S � c� d � .Ž .z 1 c dŽ .

It now follows, in the notation of Lemma A.2, that � � 
 and
2

S12
c� � sup E S � T , exp �S � V Z , � dsŽ .Hx 1 AA 1 � s½ 5ž /0x

S1
 c� d sup E exp � 2V Z , � ds � 1.Ž . Ž .Hx � s½ 5
c 0x�AA

Ž . Ž .Since A.5 is clearly fulfilled, it follows from A.8 that

� � c d �r 2 
 �� AA c .Ž . Ž .2

This proves our claim. �

We are now ready to state our second main result of this section.

Ž . Ž . Ž . Ž .THEOREM 1.4. There exists c d � 0, 
 and r d, M � r d, M �3 0 1
Ž . Ž .0, 1�5 such that for M � 0 and d, � , � , 
 , L and W � as above,

R
lim sup sup sup exp c3½ 55r��0 R�5r � , TT11.40Ž . �n Ž� .�L �r�r0

� �� TT � OO � M � �� TT � M 
 1.Ž . Ž .Ž .
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PROOF. As in the proof of Theorem 1.2, we shall apply Theorem A.3 from
Ž .the Appendix. We consider M � 0 and assume � � 0, 1 is small enough so

Ž . Ž . Ž .that 1.19 and 1.36 hold. We choose r d, M � 1�5, such that1

1.41 c d �r 2 � 4MŽ . Ž .2 1

Ž �n � Ž ..and assume from now on that r � L , r d, M .1
The nonempty open set TT will play the role of U in Theorem A.3, whereas2

TT � OO will play that of U . We now choose1

� � H � T c ,Ž .AA AA

Ž .and observe that A.11 holds. We pick some c � 0 and define3

R
�1.42 � � � TT � OO � M � exp �c .Ž . Ž . 3½ 5ž /5r �

In the case � � 0, we have

R 1
�0 � � 
 � TT � OO 1 � exp �c ,Ž . 3½ 5ž /5r M

and applying Proposition A.1, we find that


def
�u TT � OO , �A � 1 � sup �e R 1 x duŽ .H u

0x

Ž .d�2�1R

 K d M exp c .Ž . 3½ 5ž /5r

1.43Ž .

Ž .A second application of Proposition A.1, together with 1.41 , shows that the
Ž . Ž .quantity B from A.10 is finite, so that A.12 holds. Now consider

def H AAC � sup E H � T , exp �H � V Z , � ds .Ž .Hx AA TT AA � s½ 5
0x�TT�OO

The above expectation vanishes when x � TT, and we thus only need consider
x � TT � OO. Consequently,

HAA2C 
 sup E H � T , exp 2�H � V Z , � dsŽ .Hx AA TT AA � s½ 5
0x�TT �OO

HAA
� sup E exp � V Z , � ds ,Ž .Hx � s½ 5

0x�TT�OO

Ž .and by A.16 and Fubini’s theorem,


 c2 2 M s AA , �C 
 sup 1 � 2 Me R 1 x dsŽ .H sž /0x

HAA
� sup E exp � V Z , � ds .Ž .Hx � s½ 5

0x�TT�OO

1.44Ž .
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� �Observe that when x � TT � OO, it requires at least R�5r successive dis-
� � Ž . Ž .placements of Z at -distance 5r to reach AA. In view of A.2 and 1.39 we�

obtain
� �R�5r2 Žd �2�1.1.45 C 
 K d 2 c d .Ž . Ž . Ž .

Ž .If we now choose c d such that3

d 1 1
1.46 � 1 c � log ,Ž . 3ž /2 4 c dŽ .

we find
d R

AC 
 K d , M exp �c � 1 .Ž . 3½ 5ž /2 5r

Ž .Since we only consider R � 5r , we can make sure by picking r � r d, M 
1 0
Ž . � Ž .r d, M that AC � 1. By Theorem A.3, it follows that � 
 � TT and in fact1

� Ž . Ž .� 
 � TT � M since � 
 M. Our claim 1.40 now follows by the same
reasoning as at the end of the proof of Theorem 1.2. �

Ž .REMARK 1.5. i The uniformity of the controls in Theorem 1.4 enable us
to consider situations where the parameters r and R may depend on � . This
will for instance be of use in Section 3. In fact variations of the above
argument can be given to handle other examples of TT, OO and AA. We omit
them for the sake of simplicity.

Ž .ii The eigenvalue estimates of Theorems 1.2 and 1.4 could in fact be
combined, essentially by picking a different � in the application of Theorem

Ž � �.A.3 see also 12 . However we refrained from doing so in order to give more
transparency to the arguments.

When TT is a nonempty open set of � d, we define

˜1.47 TT � TT � OO � DD.Ž .
Ž � � .That is, we restrict TT to the R neighborhood for � of the clearing boxes

and delete the enlarged obstacles. The combination of Theorems 1.2 and 1.4
now shows the following corollary.

COROLLARY 1.6. Assume

� � �Ž .
� � 0, 
c .1ž /log L d � 2Ž .

Then for M � 0,

R
��lim sup sup sup exp c � �3½ 5ž /5r��0 R�5r � , TT11.48Ž . �n Ž� .�L �r�r0

� ˜ �� � TT � M � � TT � M 
 1.Ž .Ž .Ž .
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2. Capacity and volume estimates. We shall define in this section the
Ž .notion of bad boxes; see 2.32 below. Roughly speaking, this involves a third

length scale � � which is intermediate between � and � �: the ‘‘bad boxes’’ will
be the boxes of size approximately � � which are included in the rarefaction

� Ž .�set RR of the cloud see 1.16 and receive a point of the cloud. Our main
objective is to derive estimates on the volume of bad boxes within each box of

Ž . Ž .size 1 see Theorem 2.4 . These estimates address I.1c of the Introduction.
They are important in the case where the cloud � is random, when one
wishes for instance to derive controls on the probability that a given box of

� Ž . �size 1 is a ‘‘clearing box’’ see 3.6 of the next section or on the distribution of
˜the coarse grained picture TT of some given bounded open set TT.

The volume estimates of Theorem 2.4 will come as consequences of two
capacity estimates given in Theorem 2.1 and Proposition 2.4. The first esti-
mate, in Theorem 2.1, is quite general and gives upper bounds on the

� Ž .� Žcapacity cap see 1.13 attached to ‘‘the average rarefaction box C ’’ ofm m
�n� .size L . The second estimate, in Proposition 2.4, provides upper bounds on

the possible increase of capacity, which might occur when replacing cap ,m
when C is some rarefaction box, by the capacity of the suitably scaled unionm
of bad boxes contained in C .m

We are now ready to begin with the first estimate. We assume from now on
Ž . Ž .that � � 0, 1 is small enough so that 1.19 holds. This has the effect that for

any index m of II , with n � k 
 n ,k � �

k � �2.1 the closed 1�4 neighborhood of L C relative to contains K .Ž . m m

Ž k .The box L C has size 1. Moreover, we have the consistency relationm

2.2 K � L�1K for any m � II , with n � k � n .Ž . �m m� j k � �
d� 4j� 0, . . . , L�1

The results we shall now prove are quite general. They only rely on the fact
Ž . Ž .that the possibly empty compact sets K , m � � II , satisfy 2.1 ,m n � k 
 n k� �

Ž . Ž . � Ž .� Ž .2.2 and cap is cap K see 1.14 . The specific definition 1.13 plays nom m
Ž .role. Theorem 2.1 applies as well if instead of 1.13 we define K viam

kŽ . �Ž .K � L K � C , when m � II , K being some fixed compact set 2.1 andm m k
Ž . �2.2 are automatically fulfilled .

Let us mention that in the one-dimensional case, we shall see that when
� 4 � Ž . �
 � cap 0 see 2.35 below there are no bad boxes. This is why we only

consider the d � 2 situation in the following theorem.

Ž .THEOREM 2.1. Assume d � 2 and L � 2 is large enough so that 2.9
Ž . Ž . Ž . � Ž .holds. Then there exists 
 d, L � 0, c d, L � 0 and c d, L � 0 see 2.200 4 5

Ž . � Ž . Ž .and 2.29 below such that for K , m � � II , satisfying 2.1 , 2.2m n � k 
 n k� �

Ž .and 
 � 
 d, L ,0

1 

d2.3 cap 
 c exp �c 1 � l for q � � .Ž . Ý m 4 5dn ½ 5� ž /
L 0m�q

m� IIn�

m rarefaction index

Ž d .here l � n � n and q � � � II .� � 0
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PROOF. With no loss of generality we assume that q � 0 � �d, n � 0 and�

n � l � 0. We are first going to derive three recurrence relations on the�

numbers cap , which ‘‘govern the interaction of one generation with them
next’’; this has some flavor of renormalization methods. The first relation is

Ž . Ž .immediate. In view of 2.1 , there is a c d � 0 such that6

2.4 cap 
 c d for m of generation k , 0 � k 
 l.Ž . Ž .m 6

Ž . Ž .Then note that when d � 3, the Green function g �, � in 1.14 has an exact
� �scaling property, whereas when d � 2, for x � y 
 4,

x y
2.5 g , 
 c� d � 2 log L � g x , y 
 c d � 2 log Lg x , y .Ž . Ž . Ž . Ž . Ž .Ž .ž /L L

� 4d Ž . �1Now for m � II , 0 � k � l, and j � 0, . . . , L � 1 , 2.2 implies L K �k m j
K . It thus follows from the above-mentioned Green function estimates thatm

� 4dfor m � II , 0 � k � l, and j � 0, . . . , L � 1 ,k

1
2.6 cap 
 c d , L cap K 
 c cap ,Ž . Ž .m j 7 m� j 7 mž /L

where

LŽd�2. , when d � 3,
2.7 c d , L �Ž . Ž .7 ½ c d � 2 log L, when d � 2 c � 1 by construction .Ž . Ž .7

This is our second recurrence relation. We are now ready to derive the third
Ž .and main recurrence relation. We let G � stand for the continuous decreasing

Ž � Ž . Ž � �.function from � to 0, 
 , such that g x, y � G y � x . We then define�
˜ Ž . Ž .
 d, L and 
 d, L via1 1

1
d˜ ˜2.8 
 L G � 1, 
 � 
 c ,Ž . 1 1 1 7ž /2 L

as well as

�1d 2� 3 � 1 L , when d � 3,Ž .
�1d d 2�c d , L � 3 � 1 c L �Ž . Ž .� 4 1 L8 7

, when d � 2.�10c d � 2 log LŽ .

We assume from now on that L is such that

2.9 c d , L � 1.Ž . Ž .8

LEMMA 2.2. For m � II , 0 � k � l,k

1
2.10 cap � c cap � 
 .Ž . Ž .Ým 8 m j 1dL d� 4j� 0, . . . , L�1

PROOF. Consider m as above. If for each j, cap � 0, there is nothing tom j
d ˜� 4prove. Otherwise, we choose for each j � 0, . . . , L � 1 a compact subset K j
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Ž .of 1�L K such thatm j

1 1˜ ˜K � K if cap K 
 
 ,j m j m j 1ž /L L

1˜ ˜ ˜cap K � 
 if cap K � 
 .ž /j 1 m� j 1ž /L

2.11Ž .

This can for instance be done with the help of the L-adic partitioning,
˜approximating K from above and below by an increasing and decreasingj

˜sequence of compact sets. We denote by � the equilibrium measure of Kj j
˜ ˜ �1� Ž .i.e., � � 0 if cap K � 0, and otherwise cap K � is the unique minimumj j j j

˜Ž . � �of the variational problem 1.14 associated to K ; see 4 , Chapter 5, Sectionj
� Ž .2 . In view of 2.6 , not all � � 0. We definej

1
2.12 � � � ,Ž . Ý j˜Ý cap K jž /j j

˜Ž .where the sum runs over all j with cap K � 0. Observe that � is aj
probability supported on K andm

cap�1 
 g x , y � dx � dyŽ . Ž . Ž .HHm

1 ˜� cap K � � dx g x , y � dyŽ . Ž . Ž .Ý Ý ÝH Hž /j j j�2 ž /
j j j��j˜Ý cap Kž /ž /j j

2.13Ž .

1 � dxŽ .j� 1 � g x , y � dy .Ž . Ž .Ý ÝH H j�ž /˜ ˜Ý cap K Ý cap Kj j��jž / ž /j j j� j�

Observe now that for fixed j,

2.14 g x , y � dy 
 3d � 1 � � g x , y � dy ,Ž . Ž . Ž . Ž . Ž .Ý ÝH j� j�
j��j j�

where Ý� stands for the sum over indices j� � j such that C is not aj� m j�
Ž .neighbor C . This and 2.1 imply that when x � Supp � and y � Supp � ,m j j j�

� � Ž .then x � y � 1�2 L. Therefore the left member of 2.14 is smaller than

1 1
d d d d˜ ˜3 � 1 � � G 
 
 3 � 1 � L G 
 � 3 .Ý 1 1ž / ž /2 l 2 Lj�

Ž .Inserting this inequality in 2.13 we see that

�1
�1 d˜2.15 cap 
 cap K 1 � 3 .Ž . Ž .Ý ž /m jž /

j
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Ž .On the other hand we know from 2.6 that

1 1˜ ˜cap K � cap K � 
 � cap � 
 .Ž .ž /j m� j 1 m j 1ž /L c7

Ž .Combining with 2.15 we find

1
cap � cap � 
 ,Ž .Ým m j 1d3 � 1 cŽ . 7 j

Ž .from which our claim 2.10 immediately follows. �

Ž . Ž . Ž .We are now going to exploit 2.4 , 2.6 and 2.10 . To this end we consider
Ž� 4d4 lthe auxiliary space � � 0, . . . , L � 1 endowed with the uniform probabil-

� 4dity Q. We denote by X , . . . , X the canonical 0, . . . , L � 1 -valued coordi-1 l
Ž .nates on this space and denote by GG , k � 0, the filtration on � defined viak

� 4GG � � , � , GG � � X , . . . , X for k � 1.Ž .0 k 1 k � l

Ž .We now view 0, X , . . . , X for 1 
 k 
 l as a random index in II and1 k k
consider the stochastic process

2.16 Y � cap for 1 
 k 
 l.Ž . k Ž0 , X , . . . , X .1 k

Ž . Ž . Ž .Observe that Y is GG -adapted, and our basic relations 2.4 , 2.6 and 2.10k k
now imply that

2.17 Y 
 c , 1 
 k 
 l ,Ž . k 6

2.18 Y 
 c Y , 1 
 k 
 l ,Ž . k�1 7 k

�2.19 Y � c E Y � 
 GG , 1 
 k � l.Ž . k 8 k�1 1 k

Ž .We now introduce 
 d, L via0

1 �1 �12.20 
 � 
 c � 
 c � 
 .Ž . Ž .0 1 7 1 7 12

We shall now construct a certain supermartingale based on Y , 1 
 k 
 l,k
Ž .which will produce our exponential estimates 2.3 . We need to consider the

excursions of Y below 
 and above 
 c�1. Accordingly we introduce two� 0 1 7
sequences of GG -stopping times � and � , i � 1, as follows:k i i

� 4� � inf k � 1, Y 
 
 � l ,1 k 0

� � inf k � � , Y � 
 c�1 � l , and for i � 2,� 41 1 k 1 7

� 4� � inf k � � , Y 
 
 � l ,i i�1 k 0

2.21Ž .

� � inf k � � , Y � 
 c�1 � l.� 4i i k 1 7

Of course we have

1 
 � 
 � 
 ��� 
 � 
 � 
 ��� 
 l1 1 i i

and these inequalities, except maybe for the first one, are strict when the left
Ž . Ž .member is less than l. The key elementary observation is that in fact 2.24
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holds. The proof follows a classical supermartingale argument, suggested by
Ž .2.19 :

U Ž i. � cn � Ž� i�� i.Y , n � 0,n 8 Ž� �n.� �i i

is a GG -supermartingale.Ž .� �ni n�0

2.22Ž .

Indeed, U Ž i. is clearly GG -adapted andn � �ni

Žn�1.� Ž� �� .i i �E c Y GG8 Ž� �n�1.� � � �ni i i2.23Ž .
Žn�1. Ž i.� � 4� E c Y , � � n � � GG � 1 � � n � � U .8 � �n�1 i i � �n i i ni i

Ž . Ž . � 4As a consequence of 2.18 and 2.21 , on � � n � � ,i i


1
Y 
 Y c 
 c � 
 .� �n�1 � �n 7 7 1i i c7

Ž . � 4Therefore using 2.19 and the fact that on � � k , with k � n � l,i

� �� 4E Y � 
 , � � n � � GG � 1 k � n � � E Y � 
 GG ,� �n�1 1 i i � �n i k�n�1 1 k�ni i

we have
n�1 �E c Y , � � n � � GG8 � �n�1 i i � �ni i

n �� c E c Y � 
 , � � n � � GGŽ .8 8 � �n�1 1 i i � �ni i

n � 4
 c Y 1 � � n � � .8 � �n i ii

Ž .Inserting this inequality in 2.23 , we now see that
Ž i. Ž i.�E U GG 
 U , n � 0,n�1 � �n ni

Ž .which shows 2.22 .
Ž .If we now choose n � l, it follows from 2.22 that

� ��i i �2.24 E c Y GG 
 Y for any i � 1.Ž . 8 � � �i i i

� 4Using the convention Y �Y � 0 on Y � 0 , it follows by repeated use of� � �i i i
Ž .2.24 that

Y� i� ��i i2.25 E c GG 
 1Ž . Ł 8 � 1Yi�1 � i

Ž .the ‘‘infinite product’’ can of course be reduced to i 
 l . Now on the set
� 4 � 4� Y � 0 � Y � 0 , we consideri�1 � li

Y Y Y1def � � �i 1 M�1H � � ��� Y ,Ł �MY Y Y Yi�1 � � � �i 1 2 M

� 4provided M � inf i � 1, � � l . If M � 1, then clearly H � 1 � Y �Y . Oth-i l � 1

erwise, M � 2 and either � � l 
 � , in which caseM� 1 M

Y � 
 c�1 , Y � Y 
 c , Y � Y for 1 
 i � M � 1,� 1 7 l � 6 � �M� 1 M i i�1
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� Ž .�see 2.21 and therefore
Y 
l 1

H � ,
Y c � c� 6 71

or � � l 
 � , in which caseM� 1 M�1

Yl
H � .

Y�1

Ž .It thus follows from 2.25 that

Y 
l 1Ý Ž� �� .i i i �2.26 c E c , Y � 0 GG 
 1 with c � � 1.Ž . 9 8 l � 91 ž /Y c � c� 6 71

Ž � 4.As a result recall that Y � 0 on Y � 0 ,l � 1

Ý Ž� �� . �1 �1i i i2.27 E c Y 
 c E Y 
 c c .Ž . 8 l 9 � 6 91

Ž . � Ž .�We now assume that 
 � 
 d, L see 1.15 . Observe that for0

� � � �k � 1, � � 1 � � � , � � 1 ,1 i� 2 i�1 i

Y � 
 andk 0

� � 1 � � � � � 1 � � � � � l.Ž . Ž .Ý Ý1 i i�1 i i
i�2 i�1

�Ž .On the other hand, if we define the event A � 0, X , . . . , X is a rarefaction1 l
4index , then by definition, on A,

l


 l � Y � 
 � � 1 � � � � ,Ž .Ý Ýk 0 1 i i�1ž /
1 i�2

so that



2.28 1 � � � � � 1 � l on A.Ž . Ý i i ž /
0i�1

Ž .This and 2.27 now imply that

� � �1 1�Ž1�
 �
 0 .lE Y , A 
 c c c ,l 6 9 8

Ž .which is exactly 2.3 , provided we define

2.29 c � c c c�1 and c � log c . �Ž . 4 6 8 9 5 8

Ž .REMARK 2.3. i Observe that the fact that m is a rarefaction index is not
� Ž .� Ž .very sensitive to the individual value of cap see 1.15 . However 2.3m

provides a global constraint on the cap , for rarefaction subboxes of a givenm
box of size 1.

Ž .ii It is possible at this point to directly derive estimates on the volume of
Ž .rarefaction boxes which receive some point of the cloud. Indeed 2.3 is easily

seen to imply controls on
1

� �K .Ý md�n�L m�q , m� IIn�

m rarefaction index
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On the other hand, it is easy to argue that when � is small and C is am
rarefaction box receiving a point of �,

� �n� � � � dŽ1�� .L K � C � const d , a, L � .Ž .m m

The combination of the two estimates now shows that the volume of rarefac-
tion boxes within a given box of size 1 which receive some point of � is
smaller than const � �, with � � 0, at least when � is chosen close enough to
1. However we can sharpen these estimates with the notion of bad boxes
which we now define.

We consider a new parameter � such that

2.30 1 � � � � � � � 0.Ž .
Ž . Ž .As in 1.12 we introduce for � � 0, 1 ,

log 1��Ž . �n Ž� .�1 � �n Ž� .� �2.31 n � � � so that L � � 
 L .Ž . Ž .� log L

Ž .We now define, for given d, � , �, W � , L, � , � , 
 and �, the bad boxes as the
�n� Ž .boxes C of size L i.e., m � II such thatm n�

2.32 C � RR and C receives a point of � .Ž . m m

We also write

2.33 BB � C .Ž . � m
m� IIn�

C bad boxm

Observe that our definitions are such that

DD � BB � � and � � d � DD � BB � 0Ž .Ž .
2.34Ž .

� has no point in the complement of DD � BB .Ž .
Our main objective in this section is to derive uniform estimates showing that
the restriction of BB to boxes of size 1 has small volume. Observe that in the

Ž .special case of dimension 1, it follows from 1.16 that

� 42.35 BB � � as soon as 
 � cap 0 .Ž .
We are now ready to state our second main capacity estimate. We restrict

Ž .ourselves to the case d � 2, thanks to 2.35 .

PROPOSITION 2.4. Assume d � 2. Then

n�cap L BB � CŽ .Ž .mŽd�2.Ž1�� .2.36 lim sup � sup � 
.Ž .
cap��0 m� , m� IIn�

Ž If cap � 0 and therefore BB � C � �, the above fraction is understood asm m
.equal to 0.
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PROOF. We assume that � is small enough so that

2.37 4�� � L�n� Ž� . .Ž .
We consider m , an index of II , such that BB � C � �. Consider PP , some0 n m m� 0

maximal collection of indices m � II , m � m , of bad subboxes of C , suchn 0 m� 0

that any two distinct subboxes with indices in PP are not neighbors. Wem0

consider
�2.38 BB � BB � C and BB � C .Ž . �m m m m0 0 0

m� PPm0

The maximality of PP implies that BB is included in the union of 3d
m m0 0

translates of BB
� so thatm0

2.39 cap Ln� BB 
 3d cap Ln� BB
� .Ž . Ž . Ž .m m0 0

We let � denote the equilibrium measure of Ln� BB
� and define for m � PP ,m m0 0

n2.40 � � 1 � � ,Ž . �m L Cm

so that � � Ý � . Clearly, we havem� PP mm0

n�g x , y � dy 
 1 on L C , when m � PP ,Ž . Ž .H m m m0

so that for m � PP ,m0

dn n n �n� � � � � �� 1 � � L C 
 cap L C � cap L 0, 1Ž . Ž . Ž . Ž .m m m m

d�Žd�2.Žn �n .� � � �� L cap 0, 1 when d � 3Ž .Ž .2.41Ž .
C LŽ .


 when d � 2 and � small enough .Ž .
n � n� �

For each m � PP , we let x be a point of the cloud � falling in C . Wem m m0

define
2.42 � � � 1 e ,Ž . Ž .Ý m m

m�PPm0

n� Ž .where e stands for the normalized equilibrium measure of L B x , a�m m
n�� Ž . �i.e., the normalized surface measure on L � B x , �� , when d � 3 . Them

n� Ž Ž ..measure � is concentrated on L � B x , �� � K .m� PP m mm 00
n� Ž .On the other hand, when x � L B x , a� , with m � PP , we havem m0

g x , y � dyŽ . Ž .H
� 1Ž .m� � � 1 g x , y e dy .Ž . Ž . Ž .Ý Hm� mn�cap L B 0, a�Ž .Ž . m��m

m��PPm0

2.43Ž .

n n� �Ž . Ž .Observe that when x � L B x ,a� , y � L B x , a� , where m � m� arem m�

in PP , then x � C , x � C , two nonneighboring boxes of size L�n�. Ifm m m m� m�0
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n� Ž .y� is some point of L C , we have, thanks to 2.37 ,m�

1 3' '� � � � � � � � � � � �x � y� 
 x � y � y � y� 
 x � y � 2 d � x � y � � 2 d x � y .Ž . Ž .4 2

Ž .It follows that we have c d � 0, such that for x, y, y� as above,

2.44 g x , y 
 c d g x , y� .Ž . Ž . Ž . Ž .
n�Ž . Ž .Inserting in 2.43 we find that for x � L B x , a� , m � PP ,m m0

� 1Ž .m
g x , y � dy 
Ž . Ž .H n�cap L B 0, a�Ž .Ž .

� c d g x , y� � dy�Ž . Ž . Ž .Ý H m�
m��m

2.45Ž .

� 1Ž .m
 � c d ,Ž .n�cap L B 0, a�Ž .Ž .
since � � Ý � is the equilibrium measure of Ln� BB

� . We can nowm� PP m mm 00
Ž . Ž . Ž .combine 2.45 with the upper bound on � 1 given in 2.41 and thus obtainm

Ž . Ž .an upper bound on H g x, y � dy for x � Supp � � K . It implies thatm0

dn �n� � � �cap L 0, 1Ž .
cap � c d �� 1 � � 1Ž . Ž . Ž .m n0 �ž /cap L B 0, a�Ž .Ž .

� cap Ln� BB
�Ž .m0

2.46Ž .

� 3�d cap Ln� BBŽ .m0

in view of 2.39 .Ž .

Ž .Now for small � , the multiplicative factor to the left of 2.46 is smaller than
Ž . �Ž d�2.Ž1�� . ŽŽ . Ž .. Ž .c d, a, L � , when d � 3, and 2 1 � � � � � � � c d , when d �

Ž .2. Our claim 2.36 follows. �

We shall now state our main estimate on the volume of bad boxes. We
Ž .restrict ourselves to the case of dimension d � 2, thanks to 2.35 , and define

� d
 log 3 � 1Ž .
1 � � � � 2 � � d � 2 1 � � ,Ž . Ž . Ž .ž / ž /
 log L0

when d � 3,�2.47 � �Ž . 0

 log 10c d � 2 log LŽ .

1 � � � � 2 � ,Ž .ž / ž /
 log L0�
when d � 2

� Ž . �see 2.5 for the notation .
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Ž .THEOREM 2.5. Assume that d � 2 and that L is large enough so that 2.9
Ž .holds and 
 � 
 d, L . Then0

�� 0 � �2.48 lim sup sup � BB � C � 
.Ž . q
d��0 q�� , �

PROOF. Observe that
d� �K 1 5def

2.49 K d � sup , K compact, K 
 � � 
Ž . Ž . ½ 5cap K 4 4Ž .
Ž � �see 16 , page 58, where the argument is given for the d � 2 case, but can

. deasily be extended to the d � 3 situation . As a result when q � � and
� � �, we find

1
n�� �BB � C 
 L BB � CŽ .Ýq mdn�L m�q , m� IIn�

m rarefaction index

n�cap L BB � C 1Ž .Ž .m
 K d sup cap .Ž . Ý mdn�cap Lm� , m� II m�qm�

m rarefaction index

2.50Ž .

Ž . Ž .Our claim now follows from 2.3 , 2.36 and the explicit value of the constants
Ž .involved in 2.3 . �

We shall conclude this section with the following remarks.

Ž . Ž .REMARK 2.6. i If � is chosen close enough to 1 and 2.9 holds, then
� �� � 0. As a consequence BB � C is small uniformly in q and � for small � ,0 q

Ž .and Theorem 2.5 takes care of the estimates mentioned in I.1c of the
Introduction.

Ž . �ii We have introduced the scale � in order to define bad boxes. The
main reason why we did not simply define bad boxes as rarefaction boxes

Ž .receiving a point of � is that the constant � of 2.47 is worse if one uses0
this latter definition. If one follows the method explained in Remark 2.3, one

Ž . Ž .Ž . Ž .obtains a term �d 1 � � instead of � d � 2 1 � � in 2.47 .
Ž . diii By our very construction, when q � � , the set DD � C can have atq

most 2 Ld n� 
 2��d�

possible shapes. A similar estimate holds of course for
� Ž .�BB � C , with � being replaced by �. In fact when � � 0 in 2.47 , one canq 0

do better.
The classical Cramer estimates on the binomial distribution show that´

there are at most 2 NH Ž p. subsets of a given set of size N with less than pN
Ž . Ž . Ž .elements, when p 
 1�2, where H p � �p log p � 1 � p log 1 � p2 2

Ž .logarithm to the base 2 . It follows from Theorem 2.5 that when 0 � � � � �
� � for small � , BB � C for any q � �d can take no more than 2 Ld n� H Ž� � �. 
0 q

2��d ���

distinct shapes. In other words the ‘‘combinatorial complexity’’ of the
coarse grained picture made of DD � C , BB � C is no bigger than 2��d��� �d ���

q q
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for small � . The natural complexity of the original cloud of obstacles in a box
of size 1 can be viewed as 2��d

. We thus have a reduction of combinatorial
� Ž .�complexity due to the coarse graining see I.1b .

3. One example. We shall now discuss some first applications of the
results of the previous two sections to the control of fluctuations of the

Ž . Ž .dprincipal Dirichlet eigenvalue of �	�2 � Ý W �� x in a large box �t, t ,i i
d � 2, when the points x form a Poisson cloud of constant intensity � � 0.i
Intuitively, this principal eigenvalue is very much influenced by the presence

Ž .din the box �t, t of certain ‘‘big holes’’ within the cloud. The coarse graining
method we have developed in Sections 1 and 2 enable us to study these big
holes. Our main goal will be Proposition 3.2.

Ž .1� dIt is convenient to pick log t as unit scale. After rescaling, we are led
Ž .to study, with the notation of 1.4 ,

def
�� � � � TT ,Ž . Ž .t

3.1Ž .
d�1�d �1�d �1�dwith TT � �t log t , t log t and � � log t ,Ž . Ž . Ž .Ž .

and � is now a Poisson point measure on � d, d � 2, with intensity ���d �
Ž .� log t . We shall denote by � its law on �. We now choose the parameters�

Ž . Ž . Ž .0 � � � � � � � 1, L such that 2.9 holds, 
 � 
 d, L and � � 0 in 2.47 .0 0
Ž .As truncation value M in Theorems 1.2 and 1.4 , it is convenient to choose

�2�dddef
3.2 M � 2c d , � � 2� ,Ž . Ž . d ž /��d

Ž . Ž .where c d, � refers to I.2 , � is the principal Dirichlet eigenvalue of �	�2d
Ž . Ž .in B 0, 1 and � is the volume of B 0, 1 .d

Ž .We shall also define clearing boxes, see discussion before Proposition 1.3
Ž Ž .. Ž .by picking a fixed value r � 0, r d, M . From the construction of r d, M0 0

� Ž . �see 1.41 and the end of the proof of Theorem 1.4 this implies

3.3 c d �r 2 � 4M .Ž . Ž .2

In view of Proposition 1.3, this ensures that when t is large, uniformly in �,
Ž c. � Ž . Ž .�� AA � 4M. The neighborhood OO of the set AA see 1.33 and 1.34 is now

Ž .determined by picking R � R t, d, � � 1 as the smallest integer for which

R
3.4 c d � 3 log log t .Ž . Ž .3 5r

We shall first derive some controls on the size of connected components of OO

which meet TT. To this end we consider the event:

�� � �, all connected components of OO intersecting
dŽ � �.C � TT are contained in some q � 0, � log log t ,3.5Ž . 1

d4q � � ,

Ž . Ž .where � d, � is defined in 3.14 below.1



CAPACITY AND PRINCIPAL EIGENVALUES 1203

PROPOSITION 3.1. For large t,
�

d d3.6 � C � AA 
 exp � log t r for any q � � ,Ž . Ž .� q ½ 52

� � �d3.7 � C � 1 � t .Ž . �

Ž . Ž d ŽPROOF. We begin with 3.6 . We know that DD � BB � � and � � � DD �
.. Ž .BB � 0. Moreover for each box C of size 1, the random set C � DD � BB hasq q

2 ��d � Ž .no more than 2 possible shapes a very rough upper bound ; see our
Ž .discussion of Remark 2.6 iii . Using Theorem 2.5, we find for large t and

� � � ,0

d d �� �� C � AA � � C � DD � r 
 � C � DD � BB � r � �Ž .� q � q � q
3.8 .Ž .

�d � �d d �
 exp 2� log 2 � �� r � �� 4Ž .

Ž . Ž .Our claim 3.6 follows. We now shall prove 3.7 . To this end we define
d4d � r 1

3.9 M � 2 � 1 , � � � ,Ž . 0 d ž /ž / 4d 2� r

as well as

� � ��� dKK , the collection of blocks of the form q � 0, t ,t3.10Ž . dq � � , which intersect TT

and the event

˜ � 43.11 C � � � � , all blocks of KK contain at most M clearing boxes .Ž . t 0

Then for large t,
Mc d d� M 00˜ � �� �� C 
 t t � C � AA� � 0

�
�d d
 exp � d � M r � d�0½ 5ž /ž /23.12Ž .

� r d
�d �d
 exp � d � M 
 t .0½ 5ž /4

Ž .Our claim 3.7 will now follow from the observation

˜3.13 C � C when t is large.Ž .
Indeed consider some connected component VV of OO intersecting TT. Compo-

� �nent VV contains a clearing box C which is at most within -distance Rq
from TT. Denote by B a block of KK with center in C and by W the union ofq t q q

� �open R-neighborhoods in -distance of clearing boxes included in B . Whenq
t is large, then

d� �t t
OO � q � � � W .qž /ž /4 4
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˜On the other hand on the event C the projection of W on each coordinateq
Ž .axis has measure less than 2 R � 1 M . Observe that0

d� �VV � q � � t �4 t �4Ž . Ž .Ž .Ž .
contains q. Thus its connected component containing q has diameter smaller
than

t �

2 R � 1 M � t is large .Ž . Ž .0 4
Ž .It follows that VV has diameter smaller than 2 R � 1 M , and our claim0

Ž . Ž .3.13 follows once we choose � d, � to be the smallest integer so that1

� �3.14 � log log t � 2 R t , d , � � 1 M for large t . �Ž . Ž .Ž .1 0

Define
Ž � �. dBB , the collection of blocks of the form q � 0, � log log t ,t 13.15Ž . dq � � , which intersect TT.

The next proposition shows that � can roughly be viewed as a minimumt
� Ž . �value of the not too dependent random variables � B � TT , B � BB seet

Ž . �3.15 for the notation . This will conclude our first applications of the results
� Ž .of Sections 1 and 2 to the study of fluctuations of � TT . Let us mention that

� Ž .�we could adjust the size of R i.e., replace 3 by a larger number in 3.4 to
Ž .�k Ž .�2 Ž .produce an arbitrary correction log t , instead of log t , in 3.16 below.

Ž . � �However, 3.16 will be sufficient for our later use in 15 .

PROPOSITION 3.2. When t is large,

�2� � �d3.16 � inf � B�TT �� � inf � B � TT � log t �1 � 2 t ,Ž . Ž . Ž . Ž .� t
B� BB B� BBt t

�1�d � �d3.17 � c d , � �� d , � , W log t � inf � B�TT �1� t .Ž . Ž . Ž . Ž . Ž .� 2
B� BBt

� Ž .PROOF. The inequality � 
 inf � B � TT is of course automatic. Ont B � KKt

the other hand, Theorem 1.4 implies that for large t and any �,
R

�� � M � � TT � OO � M � 2 exp �cŽ .t 3½ 55r3.18Ž .
�3�� � TT � OO � M � 2 log t ,Ž . Ž .

Ž .where we used 3.4 in the last step, and any number greater than 1 could be
Ž .used in the place of 2. However, on the event C of 3.5 ,

3.19 �� TT � OO � M � inf �� B � TT � M .Ž . Ž . Ž .
B� BBt

Ž .1� dFinally observe that as soon as TT contains a ball of radius d��� �d
def

Ž .a� � R t large , receiving no point of the cloud, then1

inf �� B � TT 
 c d , � � � d , � , a W � 
 2c d , � � M .Ž . Ž . Ž . Ž .Ž .2
B� BBt
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Slicing TT in boxes of sizes 2 R and using standard estimates, we see that the1
probability of occurrence of such a spherical hole of the cloud within TT is
greater than

Ž . dŽ .�1const d , � t log t�d d1 � 1 � exp ��� � R� 4Ž .d 1

�1d �d d� 1 � exp �const� d , � t log t exp ��� � R t largeŽ . Ž . Ž .� 4½ 5d 13.20Ž .
�1 �Žd�1.� 1 � exp �const� d , � log t exp � � .Ž . Ž . Ž .½ 53

Ž . Ž . Ž . Ž .Combining this, 3.7 and 3.19 , we see our claims 3.16 and 3.17 follow. �

With the help of Theorem 1.2, which we did not use so far, and the
� Ž .Faber�Krahn inequality we shall derive lower bounds for inf � B � TT inBBt

� � � �terms of sup B � TT � DD , in 15 , Section 2. Thanks to Theorem 2.5, thisBBt
� Ž . �latter quantity can be controlled with sup B � DD � BB , which is nowBBt

amenable to probabilistic estimates. This is the rough outline of the strategy
� �we use in Section 2 of 15 to obtain confidence intervals on � .t

APPENDIX

The object of this Appendix is to collect in a rather self-contained way the
results which were used in Section 1 to derive eigenvalue estimates. We
present here streamlined and improved versions of arguments developed in
� �12, 13 .

Ž .Throughout the sequel, V � is a nonnegative locally bounded measurable
function on � d; this generality will be sufficient for us, and U will be a
nonempty open subset of � d, d � 1. We denote by RU, V the semigroupt

Ž .defined as in 1.3 , with V replaced by V. When no confusion arises, we shall�

simply write R . We begin with the following proposition.t

Ž . Ž .PROPOSITION A.1. There exists a constant c d � 1, 
 such that for any U,
V as above,

t U , V

 
� �sup E exp � V Z , � ds , T � t � RŽ . Ž .H L � Lx s U t½ 5

0xA.1Ž .
d�2
 c d 1 � � U t exp �� U t .� 4Ž . Ž . Ž .Ž .ž /V V

Ž . Ž . Ž .There exist a constant K d � 1, 
 such that for any � � 0, 1 and U, V as
above,



U , Vsup 1 � 1 � � � U exp 1 � � � U s R 1 x dsŽ . Ž . Ž . Ž . Ž .Ž .H V V sž /0x

A.2Ž . K dŽ .

 .d �2�1�
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Ž . Ž .PROOF. It can be seen that A.2 follows from A.1 by integration. As for
Ž . � Ž .�the proof of A.1 , using scaling see 1.4 , we have

�
�2 �2A.3 � �U � � � U , � � 0, provided V � � � V .Ž . Ž . Ž . Ž .V V � ž /� �

Ž . Ž . Ž .Observe that, picking c d � 1, A.1 holds automatically when � U � 0. IfV
Ž . Ž . Ž .we then can show A.1 when � U � 1, A.1 will hold for a general U, VV

Ž . Ž . Ž . 2with � U � 0, as well. Indeed one applies A.1 to �U, V � , � t, withV �

Ž .1�2 Ž .� � � U , and recovers A.1 for U, V, t.V
Ž . dWe are thus reduced to the case � U � 1. Now for t � 1, L � 0, x � � ,V

R 1 x � R 1 x � R 1 c xŽ . Ž . Ž .Ž . Ž .t t BŽ x , L. t BŽ x , L.

� r 1, x , � , R 1 � R 1 c x ,Ž . Ž .Ž . Ž .Ž . 2t�1 BŽ x , L. t BŽ x , L.L

Ž . �provided r s, x, y stands for the kernel of R which can be expressed withs
Ž . Ž .�d �2 �the help of the Brownian bridge and satisfies r s, x, y 
 2� s . We

now have
2� �2sup R 1 x 
 r 1, x , � 1 exp �� U t � 1Ž . Ž . Ž . Ž .Ž .LLt BŽ x , L.�U V

x

�P Z � B 0, L , with � U � 1.Ž . Ž .0 t V

Choosing L � 2 t, we find for t � 1,

sup R 1 x 
 c d t d �2e�t � c d e�2 tŽ . Ž . Ž .t 1 2
x

� c d 1 � t d �2 e�t .Ž . Ž .3

Possibly after increasing c , this inequality holds for all t � 0, and this3
proves our claim. �

We shall now prove a lemma which is preparatory for the main result of
this Appendix. We consider a stopping time S for the canonical right1

Ž d .continuous filtration on C � , � . Letting � , t � 0, stand for the canonical� t
Ž d .shift on C � , � , we introduce the sequence of iterates of S :� 1

A.4 S � 0, S and S � S � S �� 
 
 for k � 1.Ž . 0 1 k�1 k 1 Sk

We of course have
0 � S 
 S 
 ��� 
 S 
 ��� 
 
.0 1 k

LEMMA A.2. Let U, V be as above. Assume � � 0 and S is such that1

A.5 for x � � d , lim �S � T , � -a.s.,Ž . k U x
k

def S1A.6 � � sup E S � T , exp �S � V Z ds � 1,Ž . Ž .Hx 1 U 1 s½ 5
0x


 udef
�uA.7 � � sup du �e E S � T � u , exp � V Z ds � 
.Ž . Ž .H Hx 1 U s½ 5ž /0 0x

Then

 �

�u U , VA.8 � 
 � U and sup �e R 1 x du 
 .Ž . Ž . Ž .HV u 1 � �0x
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Ž . Ž . U, V Ž .PROOF. Using routine arguments � U � inf �lim 1�t log R 1 x .V x �U t t
˜Ž .It suffices to prove the last statement of A.8 . Define S � S � T , k � 0.k k U

We have

˜ ˜ ˜ ˜S � S � S �� , k � 1 and S � 0k�1 k 1 s 0k̃

˜ ˜ dŽ . Ž .S is the sequence of iterates of S . Using A.5 , for x � � ,k 1


 uTU�u U , V�e R 1 x du � E � exp �u � V Z ds duŽ . Ž .H H Hu x s½ 5
0 0 0

uS̃k�1˜� E S � T , � exp �u � V Z ds du ,Ž .Ý H Hx k U s½ 5
S̃ 0kk�0

and using the strong Markov property, this sum is no greater than

S̃k˜ ˜E S � T , exp �S � V Z dsŽ .Ý Hx k U k s½ 5
0k�0

uS̃1� sup E � exp �u � V Z ds duŽ .H Hz s½ 5
0 0z


 a � ,Ý k
k�0

provided we define, for k � 0,

S̃k˜ ˜a � E S � T , exp �S � V Z ds .Ž .Hk x k U k s½ 5
0

It follows from the strong Markov property that

S̃k˜ ˜a 
 E S � T , exp �S � V Z dsŽ .Hk�1 x k U k s½ 5
0

S̃1˜ ˜� sup E S � T , exp �S � V Z dsŽ .Hz 1 U 1 s½ 5
0z

� a � ,k

˜ ˜� 4 � 4where we used the fact that S and S coincide on S � T � S � T . By1 1 1 U 1 U
induction, we thus find

� 
 � k , k � 0.k

Summing over k, we have

 �

�u U , V�e R 1 x du 
 � 
.Ž .H u 1 � �0

This proves our claim. �

We shall now apply the above lemma to the case where we consider two
open subsets U , U of � d, d � 1, U � �, a stopping time � � 0 and a1 2 2
number � � 0. The relevant stopping time S is defined via1

A.9 S � � �� � T .Ž . 1 T UU 11
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As above S , k � 0 stand for the sequence of iterates of S . We also definek 1



�u U , V1A � sup 1 � �e R 1 x du ,Ž .H už /0x


 u
�uB � sup �e E � � T � u , exp � V Z ds ,Ž .H Hx U s½ 52

0 0x�U1

A.10Ž .

�

C � sup E � � T , exp �� � V Z dsŽ .Hx U s½ 52
0x�U1

Ž d .when U � � , then B � C � 0; when U � �, then A � 1 .1 1

THEOREM A.3. Assume that

A.11 for x � � d , lim �S � T , P -a.s.Ž . k U x2k

A.12 A � 
, B � 
Ž .
and
A.13 AC � 1.Ž .

Then
A.14 � 
 � U .Ž . Ž .V 2

PROOF. If U has the role of U in Lemma A.2, it suffices to show that2

A.15 � � 1 and � � 
.Ž .
First observe the following identity for t � 0:

ut
1 � � exp �u exp � V Z ds duŽ . Ž .H H s½ 5

0 0

ut
� V Z exp �u � V Z ds duŽ . Ž .H Hu s½ 5

0 0
A.16Ž .

t
� exp �t � V Z ds .Ž .H s½ 5

0

Now using the strong Markov property and the notation T � T �U1
Ž .T � T , we haveU U �U2 1 2

uS �T1 U2� � sup E � exp � � V Z ds duŽ . Ž .H Hx s½ 5
0 0x

uT

 sup E � exp � � V Z ds duŽ . Ž .H Hx s½ 5

0 0x

T
� sup E T � 
, exp � � V Z dsŽ . Ž .Hx s½ 5

0x

u��TU2�E � exp � � V Z ds du .Ž . Ž .H HZ s½ 5T
0 0

Observe that the inner expectation in the last term vanishes when T � T �U2


. We thus only need consider the case T � T � 
, for which Z � U .U T 11
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Ž . � � T Ž .Ž . 4�Observe A.16 implies that sup E T � 
, exp H � � V Z ds 
 A andx x 0 s
thus

� 
 A � AB � 

� Ž .�using A.12 .

Using once more the strong Markov property, we also have

S1
� � sup E S � T , exp � � � V Z dsŽ . Ž .Hx 1 U s½ 52

0x

TU1
 sup E T � T , exp � � � V Z dsŽ . Ž .Hx U U s½ 51 2
0x

�

� sup E � � T , exp � � � V Z ds 
 AC � 1,Ž . Ž .Hx U s½ 52
0x�U1

Ž . Ž .in view of A.13 . This proves A.15 , and our claim follows. �
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