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SEMIMARTINGALE INTEGRAL REPRESENTATION

By Hyungsok Ahn

University of California, Santa Barbara

We provide an integral representation for smooth functionals of
continuous semimartingales. The representation is related to an infinite-
dimensional nonautonomous parabolic equation. Semimartingale integral
representations, including a martingale representation, are given in terms
of a solution to this equation.

1. Introduction. Let X be a solution to a stochastic differential equation

Xt =Ht +
∫ t

0
σ�Xs�dWs�(1)

where W is a Brownian motion and H is an adapted continuous process with
paths of finite variation. For a smooth functional f defined on L2�0�T�� we
provide a representation of f�X� in terms of a stochastic integral with respect
to X� This work is motivated by the Black–Scholes framework for option repli-
cation (see Duffie [3]).

A seminal study on explicit descriptions of the integrand in the martingale
integral representation was initiated by Clark [2] in 1970. Fréchet differen-
tiable functionals of a Brownian motion were considered in his work, and the
integrand was the predictable projection of a process generated by the Fréchet
derivative of the functional. Substantial generalizations including functionals
of Itô processes have been made by many authors, and most recently, Karatzas,
Ocone and Li [7] established a relevant formula for a broader class of func-
tionals using the Malliavin derivative of the functional. More references on
the subject are contained in their work.

In some cases, the relationship between the integrand and a solution of a
partial differential equation can be obtained from the Feynman–Kac represen-
tation. A sophisticated example of the use of partial differential equations is
found in Ma, Protter and Yong [9], in which an explicit solution of a forward–
backward stochastic differential equation was obtained. However, the study
in this direction has been restricted to functionals with a certain structure.
In this paper, we establish such relationship in the case of smooth functionals
defined on L2�0�T�� with a unified treatment. In other words, this study links
Clark’s formula to infinite-dimensional parabolic equations.

In the next two sections, we prove an extended version of Itô’s formula. The
subject has been revisited numerous times, and extensions have been made
in many directions; for example, see Kunita [8] for random functions such as
flows of stochastic differential equations, see Föllmer, Protter and Shiryaev
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[4] for nonsmooth functions and see Metivier [10] for Hilbert space-valued
semimartingales. Here, we study a formula for the level processes t → X•∧t�
We designate � to be the Banach space C�0�T� or the Hilbert space L2�0�T�.
Suppose that f	 � → R is twice continuously Fréchet differentiable with
respect to the corresponding norm. For a real-valued continuous semimartin-
gale X� we show that t → f�Xt�� where Xt

s = Xs∧t� is also a continuous
semimartingale. Moreover, it has a representation

f�Xt� = f�X0� +
∫ t

0

ηs��f�Xs��dXs + 1

2

∫ t

0

ηs ⊗ ηs��2f�Xs��d�X�X�s�

Here, ηs = ��s�T� is an element of � ∗∗� the bidual of � � and the bracket 
·� ·�
is used for dual pairs. We will call this Itô’s representation for functional f;
if f�x� = g�x�T��� where g ∈ C2�R�R�� the above formula agrees with Itô’s
formula. In the case of L2�0�T�� the representation compares with the trans-
formation formula for Hilbert space-valued semimartingales (see Métivier
[10]), where the Hilbert space-valued stochastic integral was used. Regarding
s → Xs as a Hilbert space-valued semimartingale, one has 
�f�Xs�� dXs� =

ηs��f�Xs��dXs� We will also provide a relevant formula for the case of R

p-
valued semimartingales.

In Section 4, we start with an infinite-dimensional nonautonomous para-
bolic equation

∂u

∂t
�t� x� +A�t�u�t� x� = 0(2)

with u�T�x� = f�x�� where the differential operator A�t� is defined by

A�t�φ�x� = 1
2
ηt ⊗ ηt��2φ�x��σ�x�t��2 + 
ηt��φ�x��b�x�t���

We prove the existence of a solution using a probabilistic method. The idea is
contained in the following finite-dimensional example. Let f	 R

3 → R and let
W be a standard Brownian motion. For 0 ≤ t1 < t2 < t3, one retains a formula
E�f�Wt1

�Wt2
�Wt3

���t2
� = u�t2�Wt1

�Wt2
�Wt2

� where u solves a heat equation
with the first two space variables as parameters:

∂u

∂t
�t� x1� x2� x3� +

1
2
∂2u

∂x2
3

�t� x1� x2� x3� = 0(3)

with u�t3� x1� x2� x3� = f�x1� x2� x3�� Next, we solve another heat equation

∂v

∂t
�t� x1� x2� x3� +

1
2

3∑
i=2

3∑
j=2

∂2v

∂xi∂xj
�t� x1� x2� x3� = 0(4)

with v�t2� x1� x2� x3� = u�t2� x1� x2� x3�� This yields

E�f�Wt1
�Wt2

�Wt3
���t1

� = v�t1�Wt1
�Wt1

�Wt1
��

Virtually, (2) is the aggregation of these heat equations defined piecewise.
Finally, we describe the integrand in Clark’s formula in terms of (2). Let
p�t� x� �T�y� be the transition density for a standard Brownian motion, which
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is the Green function for ut+uxx/2 = 0� Then the integrand in Clark’s formula
for f�Wt1

�Wt2
�Wt3

� can be expressed by
∫
px�t�Wt�t3� y3�f�Wt1

�Wt2
� y3�dy3 on �t2� t3��(5)

∫
px�t�Wt�t2� y2�

∫
p�t2� y2�t3� y3�f�Wt1

� y2� y3�dy3 dy2 on �t1� t2�(6)

and one more iteration yields the expression on �0� t1�� Note that (5) and (6) can
also be written as �∂u/∂x3��t�Wt1

�Wt2
�Wt� and

∑3
i=2 ∂u/∂xi�t�Wt1

�Wt�Wt��
respectively, where u and v are obtained from (3) and (4). For f	 L2�0�T� → R�
we exploit (2) to describe the integrand of Clark’s formula. We also describe
f�X�� where X is defined as in (1), as a stochastic integral with respect to X�

2. Itô’s representation for functionals. Respectively, � ∗ and � ∗∗ will
denote the dual and the bidual of � . Suppose that f	 � → R is twice con-
tinuously Fréchet differentiable. That is, �f�·�	 � → � ∗ and �2f�·�	 � →
L�� �� ∗� are continuous with respect to the corresponding norm. It is known
that L�� �� ∗� is also isometrically isomorphic to the dual of the cross-space
� ⊗γ � , where γ is the greatest crossnorm; see, Schatten [14], page 47. We
will only consider the greatest crossnorm γ and its associates, and we will not
specify it every time. Thus, ⊗ denotes ⊗γ, ⊗γ′ and ⊗γ′′ when it applies to � ,
� ∗ and � ∗∗� respectively.

Theorem 2.1. Let � be either C�0�T� or L2�0�T�� Suppose that f	 � → R

is twice continuously Fréchet differentiable at each x ∈ C�0�T�� with respect
to the corresponding norm. Then, for a continuous semimartingale X and t ∈
�0�T�� we have

f�Xt� = f�X0�+
∫ t

0

ηs��f�Xs��dXs+ 1

2

∫ t

0

ηs⊗ηs��2f�Xs��d�X�X�s�(7)

where ηs = ��s�T� and Xs
t =Xt��t ≤ s� +Xs��t > s��

One could hold that L2 topology is luxurious in this theorem, since the uni-
form norm is stronger than the L2 norm and since we are interested in contin-
uous semimartingales only. Indeed, this is true. The L2 topology is appended
for the purpose of studying partial differential equations in Section 4. For each
t ∈ �0�T�, ηt is in � ∗∗ and ηt ⊗ ηt in �� ⊗� �∗∗. Therefore 
ηt��f�Xt�� and

ηt ⊗ ηt��2f�Xt�� are well defined as dual pairs, bounded linear operators
on � ∗ and � ∗ ⊗ � ∗ acting on elements of � ∗ and � ∗ ⊗ � ∗� respectively.
Note that this representation depends more on the path of X than on the
underlying filtration. For instance, consider two different filtrations for which
X remains a semimartingale. Since 
ηs��f�Xs�� and 
ηs ⊗ ηs��2f�Xs�� are
defined path-by-path, the representation will remain the same.

The proof of the above theorem is lengthy and is presented in the next
section. For now, we illustrate how this formula works using simple examples.
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Then we prove the regularities of the integrands to assure that the stochastic
integral in (7) is well defined. A multivariate version of (7) will be stated at
the end of this section.

Example 2.1. Let g	 R
k → R be a C2 function, and let f�x� = g�x�t1�� � � � �

x�tk�� for each x in � � In this case, we can derive (7) by using the usual Itô
formula. Since f�Xt� = g�Xt∧t1

� � � � �Xt∧tk�� one has

f�Xt� − f�X0�

=
k∑
i=1

∫ t

0
gi�Xs∧t1

� � � � �Xs∧tk�dXti
s

+ 1
2

k∑
i=1

k∑
j=1

∫ t

0
gij�Xs∧t1

� � � � �Xs∧tk�d�Xti�Xtj�s

=
∫ t

0

k∑
i=1

gi�Xs∧t1
� � � � �Xs∧tk���0� ti��s�dXs

+ 1
2

∫ t

0

k∑
i=1

k∑
j=1

gij�Xs∧t1
� � � � �Xs∧tk���0� ti��s���0� tj��s�d�X�X�s�

Here, the subscripts on g denote the partial derivatives. Replacing ��0� ti��s�
by ��s�T��ti�� we obtain (7).

Example 2.2. Unlike the Malliavin differential operator, f�W� →

η•��f�W•�� is not closable. Let πn be a refining sequence of partitions
of �0�1�� and let g	 R → R be a C3 function. Consider

fn�W� = ∑
πn

g′�Wtnk
��Wtnk+1

−Wtnk
��

Then, fn�W� converges to

f�W� = g�W1� − g�W0� − 1
2

∫ 1

0
g′′�Ws�ds�

Since

�fn�W��h� = ∑
πn

g′′�Wtnk
�h�tnk��Wtnk+1

−Wtnk
� +∑

πn

�h�tnk+1� − h�tnk��g′�Wtnk
��

we have 
ηt��fn�Wt�� = g′�Wtnk
� for t ∈ �tnk� tnk+1�� However, we have

�g�W��h� = g′�W1�h�1� − g′�W0�h�0� − 1
2

∫ 1

0
g�3��Ws�h�s�ds�

and hence


ηt��f�Wt�� = g′�Wt� − 1
2�1 − t�g�3��Wt��

This differs from g′�Wt�� the limit of 
ηt��fn�Wt���
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Example 2.3. Let µ be a finite signed Borel measure, and let

f�x� =
∫ T

0
g�x�s�� s� µ�ds��

where g	 R × �0�T� → R satisfy the following conditions.

(i) For each t� g�·� t�	 R → R is C2.
(ii) For each u� g�u� ·�	 �0�T� → R is µ-measurable.

Let gu and guu be the first and the second partial derivatives with respect to
the first argument. Then

�f�x��y� =
∫ T

0
gu�x�s�� s�y�s� µ�ds��

�2f�x��y� z� =
∫ T

0
guu�x�s�� s�y�s�z�s� µ�ds��

Thus, substituting ηt for y and z� we have


ηt��f�xt�� =
∫ T

t
gu�x�t�� s� µ�ds��


ηt ⊗ ηt��2f�xt�� =
∫ T

t
guu�x�t�� s� µ�ds��

Therefore, for a continuous semimartingale X, we have

f�X� − f�X0� =
∫ T

0

∫ T

t
gu�Xt� s� µ�ds�dXt

+ 1
2

∫ T

0

∫ T

t
guu�Xt� s� µ�ds�d�X�X�s�

This identity can be also obtained from the Fubini theorem for stochastic
integrals; see Protter [13].

We now investigate the measurability of 
ηt��f�Xt�� and 
ηt⊗ηt��2f�Xt��
as processes in t� Properties of �f�x� are well known as a member of � ∗�
Although L�� �� ∗� is not as easy to access as � ∗� especially when � is not
reflexive, there is a topological resemblance.

Lemma 2.1. Suppose x∗∗
n converges weakly to x∗∗ in � ∗∗; that is 
x∗∗

n � x
∗�

converges to 
x∗∗� x∗� for all x∗ ∈ � ∗. Then, for all A ∈ L�� �� ∗�, 
x∗∗
n ⊗x∗∗

n �A�
converges to 
x∗∗ ⊗ x∗∗�A��

This is a consequence of Theorem 3.4 of Schatten [14], which says that
every operator A ∈ L�� �� ∗� can be approximated by operators of finite rank
in the norm topology induced by the greatest crossnorm.

Proposition 2.1. Let f	 � → R be twice continuously Fréchet differen-
tiable at x ∈ C�0�T�� Define xt�s� = x�s���s ≤ t� + x�t���s > t�� Then both
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ηt��f�xt�� and 
ηt⊗ηt��2f�xt�� are cadlag in t; that is, they are left continu-
ous and have right limits. Especially if � = L2�0�T�� then both are continuous
in t�

Proof. First, let � = C�0�T�� For each x∗ in � ∗, 
ηt−ε� x∗� converges
to 
ηt� x∗� as ε ↓ 0� This is due to the monotone convergence theorem of a
finite signed Borel measure x∗� Also note that �f�xt−ε� converges to �f�xt�
in the norm topology as ε→ 0� Then the left continuity of 
ηt��f�xt�� follows.
Next, let η̄t = ��t�T�� Then, for each x∗ in � ∗, 
ηt+ε� x∗� converges to 
η̄t� x∗� as
ε ↓ 0� Again, this is due to the monotone convergence theorem of a finite signed
Borel measure x∗. Since �f�xt+ε� converges to �f�xt� in the norm topology,

ηt+ε��f�xt+ε�� has a limit as ε ↓ 0� Therefore 
ηt��f�xt�� is cadlag in t�
Similarly 
ηt ⊗ ηt��2f�xt�� is cadlag; we apply the previous lemma.

If � = L2�0�T�� then t→ ηt is continuous in the strong operator topology.
Since t → �f�xt� is continuous in the uniform topology, t → 
ηt��f�xt�� is
continuous in t� The continuity of 
ηt⊗ηt��2f�xt�� follows from the previous
lemma. ✷

Next we discuss the multivariate case. Let p be a positive integer and

� p = � ⊕ · · · ⊕�︸ ︷︷ ︸
p times

�

where ⊕ indicates the usual direct sum of vector spaces. That is, � p is
a Banach space of R

p-valued continuous functions (or L2 functions) de-
fined on �0�T�. Let x = �x1� � � � � xp� be an element of �p. Then �x�� p =
� ��x1�� � � � � � �xp�� � �R

p � Since norms in a finite-dimensional space are all
equivalent, any Euclidean norm will serve as � · �R

p � Note that

�� p�∗ = � ∗ ⊕ · · · ⊕� ∗︸ ︷︷ ︸
p times

and this is also the case for �� p�∗∗. Thus, we may write �f�x� = ��1f�x�� � � � �
�pf�x�� where each �if�x� is an element of � ∗. These �if�x�, i = 1� � � � � p
are essentially partial Fréchet derivatives; see Ambrosetti and Prodi [1]. Sim-
ilarly, if f is twice Fréchet differentiable at x ∈ � p, then �2f�x� is a p × p
matrix which consists of elements in L�� �� ∗�. We designate �2

ijf�x� to be
the �i� j� entry of �2f�x�. The proof of the following theorem is parallel to
that of Theorem 2.1, which will be given in the next section.

Theorem 2.2. Let f	 � p → R be twice continuously Fréchet differentiable
at each x ∈ C�0�T�� Then, for an R

p-valued continuous semimartingale X =
�X1� � � � �Xp� and t ∈ �0�T�, we have

f�Xt� = f�X0� +
p∑
i=1

∫ t

0

ηs��if�Xs��dXi

s

+ 1
2

p∑
i=1

p∑
j=1

∫ t

0

ηs ⊗ ηs��2

ijf�Xs��d�Xi�Xj�s�
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In the case of FV processes (i.e., processes with paths of finite variation),
we are able to relax the smoothness of f. Again, the proof of Theorem 2.1 can
be adapted for the following variations.

Theorem 2.3. Let f	 � p → R be continuously Fréchet differentiable
at each x ∈ C�0�T�� Then, for an R

p-valued continuous FV process X =
�X1� � � � �Xp� and t ∈ �0�T�, we have

f�Xt� = f�X0� +
p∑
i=1

∫ t

0

ηs��if�Xs��dXi

s�

Theorem 2.4. Let f	 R ×� → R be differentiable with respect to the first
argument and twice Fréchet differentiable at each x ∈ C�0�T�� Furthermore,
let us assume that all the derivatives are continuous in both directions. Then,
for a continuous semimartingale X� we have

f�t�Xt� = f�0�X0� +
∫ t

0

∂f

∂s
�s�Xs�ds+

∫ t

0

ηs��f�s�Xs��dXs

+
∫ t

0

ηs ⊗ ηs��2f�s�Xs��d�X�X�s�

(8)

3. Proof of Theorem 2.1. It suffices to prove (7) for t = T� Let �σn�∞n=1
be a refining sequence of nonrandom partitions of �0�T� with �σn� ↓ 0� Let Xn

be a piecewise linear approximation of X with respect to σn. More precisely,
if τnk is the kth smallest member of σn, and if t ∈ �τnk� τnk+1�� we have

Xn
t =

Xτnk+1
−Xτnk

τnk+1 − τnk
�t− τnk� +Xτnk

�

Since f is continuous, f�Xn� converges to f�X� almost surely. Using a tele-
scoping sum, we have

f�Xn� − f�Xn�0� = ∑
σn

�f�Xn�τnk+1� − f�Xn�τnk ���(9)

When f is defined on L2�0�T�� it is easier to work with a piecewise constant
approximation: that is, an approximation by simple predictable processes.
Nevertheless we insist on using a piecewise linear approximation, which works
for either case, C�0�T� or L2�0�T�� The following result is standard and works
for a general Banach space.

Lemma 3.1. Let f	� → R be twice continuously Fréchet differentiable, and
let R�x�y� be the remainder of the second order Taylor expansion of f; that is

f�x+ y� − f�x� = 
�f�x�� y� + 1
2
�2f�x�� y⊗ y� +R�x�y��

Then, for a compact set B, supx�y∈B �R�x�y�� ≤ rB��y�� �y�2 where rB	 R → R

is nonnegative, continuous at 0 and rB�0� = 0�
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Thus, by the Taylor expansion, (9) can be rewritten as S1
n +S2

n +S3
n where

S1
n = ∑

σn


�f�Xn�τnk �� �Xn�τnk+1 −Xn�τnk ���

S2
n = 1

2

∑
σn


�2f�Xn�τnk �� �Xn�τnk+1 −Xn�τnk � ⊗ �Xn�τnk+1 −Xn�τnk ���

and S3
n = ∑

σn
R�Xn�τnk �Xn� τnk+1 −Xn�τnk �� Next we define

ηn
[
τnk

]�t� = �t ∨ τnk+1� − τnk
τnk+1 − τnk

��t ≥ τnk�

so that Xn�τnk+1 −Xn�τnk = �Xτnk+1
−Xτnk

� ηn�τnk�� Since 
 � � is bilinear, we have

S1
n = ∑

σn


�f�Xn�τnk �� ηn�τnk�� �Xτnk+1
−Xτnk

��

S2
n = 1

2

∑
σn


�2f�Xn�τnk �� ηn�τnk� ⊗ ηn�τnk�� �Xτnk+1
−Xτnk

�2�

The following lemma will be used in proving the convergence of these sums.

Lemma 3.2. Let f	 � → R be twice continuously Fréchet differentiable. If
xn → x in the uniform topology, then


ηt��f�xtn�� → 
ηt��f�xt��

ηt ⊗ ηt��2f�xtn�� → 
ηt ⊗ ηt��2f�xt��

uniformly in t�

Proof. Let Bo = �xtn	 t ∈ �0�T� and n ≥ 1�. Since xn converges to x in the
uniform topology, Bo is an equicontinuous family, and hence, it is relatively
compact in C�0�T�� It is also relatively compact in L2�0�T�; see Friedman [5],
page 115. Let B be the closure of Bo with respect to the corresponding norm.
Then, since �f�·� and �2f�·� are continuous in the norm topology, they are
uniformly continuous on B in the norm topology. Now,

sup
t≤T

�
ηt��f�xtn� − �f�xt��� ≤ sup
t≤T

� � f�xtn� − �f�xt���

This is due to �ηt� = 1 for all t. The uniform convergence of 
ηt��f�xtn�� to

ηt��f�xt�� follows from the uniform continuity of �f�·� on B� Similarly we
prove the uniform convergence of 
ηt ⊗ ηt��2f�xtn��� ✷

Now we prove the convergence of S1
n� S

2
n� and S3

n� Then Theorem 2.1 will
follow.

Claim 1. The random variable S1
n → ∫ T

0 
ηt��f�Xt��dXt in probability.
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Proof. Note that if Hn is a sequence of cadlag processes converging to H
uniformly on compacts in probability, then a sequence of stochastic integrals∫
Hn

s dXs also converges to
∫
Hs dXs uniformly on compacts in probability;

see Protter [13], page 51. Then, by Lemma 3.2, we have

∑
σn


ητnk ��f�Xn�τnk ���Xτnk+1
−Xτnk

� →
∫ T

0

ηt��f�Xt��dXt(10)

in probability. For s ∈ �0�T�, define λn�s� = max�τ ∈ σn	 τ ≤ s�� Then

sup
s≤T

�
ηn�λn�s����f�Xn�λn�s��� − 
ηλn�s���f�Xn�λn�s����

≤ 2 sup
s≤T

� � f�Xn�λn�s���

is stochastically bounded. Also 
ηn�λn�t����f�Xn�λn�t���−
ηλn�t���f�Xn�λn�t���
converges to 0 for each t almost surely. This follows from the weak convergence
of ηn�λn�t�� −ηλn�t� for each t� Therefore, by the dominated convergence theo-
rem (see Protter [13], page 145),∑

σn

�
ηn�λn�s����f�Xn�λn�s��� − 
ηλn�s���f�Xn�λn�s�����Xτnk+1
−Xτnk

�

converges to 0 in probability. This together with (10) proves Claim 1. ✷

Claim 2. The random variable S2
n → 1

2

∫ T
0 
ηt ⊗ ηt��2f�Xt��d�X�X�t in

probability.

Proof. As in Claim 1,∑
σn


ηn�τnk� ⊗ ηn�τnk���2f�Xn�τnk ����X�X�τnk+1
− �X�X�τnk�

converges to
∫ T

0 
ηt ⊗ ηt��2f�Xt��d�X�X�t in probability. We need to verify
that∑

σn


ηn�τnk� ⊗ ηn�τnk���2f�Xτnk ����Xτnk+1
−Xτnk

�2 − ��X�X�τnk+1
− �X�X�τnk ��

converges to 0 in probability. Note that the above can be rewritten as
∫ T

0

ηn�λn�t�� ⊗ ηn�λn�t����2f�Xλn�t����Xt −Xλn�t��dXt�

This converges to 0 in probability since �Xt−Xλn�t�� converges to 0 uniformly
in t almost surely and supt≤T
ηn�λn�t�� ⊗ ηn�λn�t����2f�Xλn�t��� is stochasti-
cally bounded. ✷

Claim 3. The random variable S3
n → 0 in probability.

Proof. For each sample path w� let B�w� be the closure of �Xn� t�w�	 t ∈
�0�T� and n ≥ 1� with respect to the corresponding norm. Then B is com-
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pact with probability 1, since it is a closure of an equicontinuous family. By
Lemma 3.1, we have

�S3
n� ≤ max

σn
rB��Xτnk+1

−Xτnk
��∑

σn

�Xτnk+1
−Xτnk

�2�

The result follows from the fact that maxσn rB��Xτnk+1
−Xτnk

�� converges to 0
almost surely and

∑
σn
�Xτnk+1

−Xτnk
�2 converges in probability. ✷

4. PDE and integral representation. Suppose that f	 � → R� where
� is either L2�0�T� or C�0�T�� is twice continuously Fréchet differentiable
with respect to the corresponding norm. Let W be a standard one-dimensional
Brownian motion, and let x ∈ � � Then, by Theorem 2.1, one has

f�Wt + x� = f�x� +
∫ t

0

ηs��f�Ws + x��dWs + 1

2

∫ t

0

ηs ⊗ ηs��2f�Ws + x��ds�

Under assumptions of integrability, one obtains

Ef�Wt + x� = f�x� +
∫ t

0
EA�s�f�Ws + x�ds�

where A�t�f�x� = 1/2
ηt⊗ηt��2f�x��� Especially if the expectation and A�·�
are interchangeable, one obtains a weak form of a partial differential equation
with initial data f� Recall that 
ηt⊗ηt��2f�wt+x�� as well as 
ηt��f�wt+x��
are continuous in t� if w ∈ C�0�T� and if f	 L2�0�T� → R is twice con-
tinuously Fréchet differentiable at w; see Proposition 2.1. This property en-
ables us to differentiate Ef�Wt + x� with respect to t� and for this reason,
L2�0�T� is preferable to C�0�T�� For example, if f�x� = g�x�t1�� � � � � x�tk��
where g ∈ C2�Rk�R�� then 
ηt��f�wt+x�� has jumps at every ti, and so does
the second derivative. Thus, in this case, Ef�Wt + x� has a piecewise differ-
entiable trajectory with singularities on every ti. Despite this inconvenience,
these types of equations are indispensable; eventually one will have to deal
with a finite-dimensional approximation.

In this section, we focus on the backward equation with terminal data f�
which agrees with (2). Using this backward equation, we provide integral
representations of a smooth functional of a diffusion process.

Theorem 4.1. Let f	 L2�0�T� → R be twice continuously Fréchet differen-
tiable at each x ∈ C�0�T�� and

�f�x�� + � � f�x�� + � �2 f�x�� ≤K�1 + �x�p�(11)

for some positive numbers K and p� Furthermore, suppose that σ and b have
bounded first derivatives. Then, for each x ∈ C�0�T�� there exists a real valued
function u satisfying

∂u

∂t
�t� x� + 1

2

ηt ⊗ ηt��2u�t� x��σ�x�t��2 + 
ηt��u�t� x��b�x�t�� = 0(12)

with u�T�x� = f�x��
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Proof. Let Yt�s� x� be a solution of

Yt =
∫ t

s
σ�Yr + x�r��dWr +

∫ t

s
b�Yr + x�r��dr(13)

for t > s� and 0 otherwise. It is well known that the process Y�s� x� is unique,
and E supt≤T �Yt�s� x��n is finite for each positive integer n; see Ikeda and
Watanabe [6], page 240. Again, Yt�s� x� will denote the corresponding stopped
process. Note that Yt�r� x� −Ys�r� x� = Yt�s�Ys�r� x� + x� holds for 0 ≤ r ≤
s ≤ t ≤ T� Then, by the Markov property, we have

E�f�Y�s� x� + x���t� = �Ef�Y�t� z� + z��z=Yt�s� x�+x�(14)

for each s < t� Define a two parameter family U by U�s� t�f�x� = Ef�Yt�s� x�+
x� for 0 ≤ s ≤ t ≤ T� Then (14) implies that U�s�T�f = U�s� t�U�t�T�f for
0 ≤ s < t ≤ T� We will show that U is an evolution system (see Pazy [11])
corresponding to our equation. Now, for each h > 0� we have

1
h
�U�t� t+ h� − I�f�x� = 1

h

∫ t+h

t
EA�s�f�Ys�t� x� + x�ds�

where A is a differential operator defined by

A�t�f�x� = 1
2
ηt ⊗ ηt��2f�x��σ�x�t��2 + 
ηt��f�x��b�x�t���(15)

This follows from Itô’s representation of f�Yt+h�t� x� + x� − f�x�� Note that
A�s�f�Ys�t� x� + x� converges almost surely to A�t�f�x� as s tends to t
from above; if C�0�T� were adopted (instead of L2�0�T�), it would have been
A�t+�f�x�� Thus, by the uniform integrability, we obtain

lim
h↓0

1
h
�U�t�T� −U�t+ h�T��f = lim

h↓0

1
h
�U�t� t+ h� − I�U�t+ h�T�f

= A�t�U�t�T�f
for each t ≤ T� Similarly, �1/h��U�t − h�T� − U�t�T��f also converges to
A�t�U�t�T�f as h ↓ 0� Therefore the derivative of U�t�T�f with respect to
t is −A�t�U�t�T�f� and hence U�t�T�f�x� = Ef�Y�t� x� + x� satisfies the
equation. ✷

The solution defined by Ef�Y�t� x� + x� is called the canonical solution of
the equation. Note that Y�t� x� = W − Wt� if σ = 1 and b = 0 identically.
The operation in W−Wt + x is a coordinate-wise shift, and one can interpret
Y�t� x� in the same manner. When x has jumps, neither σ�x�t�� nor b�x�t��
are continuous except when they are constant, and Ef�Y�t� x�+x� is not dif-
ferentiable with respect to t at those jump times. As we have discussed earlier,
the nondifferentiability issue arises more casually when the smoothness of f
is considered in the C�0�T� sense only. Yet a similar result is conceivable in
the weak sense:

u�t� x� = f�x� +
∫ T

t
A�s�u�s� x�ds
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where A is defined as in (15). Next we discuss the regularity of the canonical
solution.

Lemma 4.1. Let f	 L2�0�T� → R be twice continuously Fréchet differen-
tiable at each x ∈ C�0�T�� and satisfy (11). Suppose that σ and b have bounded
continuous derivatives up to order 2. Then the derivatives of the canonical so-
lution, ∂u/∂t� �u� and �2u� are continuous in both directions (i.e., time and
space).

Proof. First, we evaluate �u and �2u using stochastic flows. Define Mr =
Mr�t� x� h� by

Mr =
∫ r

t
�h�s� +Ms�dξs�t� x��

where

ξr�t� x� =
∫ r

t
σ ′�Ys�t� x� + x�s��dWs +

∫ r

t
b′�Ys�t� x� + x�s��ds�

Then M is linear in h (see Protter [13], page 266). Since

E�f�Y�t� x+ h� + x+ h� − f�Y�t� x� + x� − 
�f�Y�t� x� + x��M�t� x� h� + h��
is o��h��� by the uniqueness of the Riesz representor, we have


�u�t� x�� h� = E
�f�Y�t� x� + x��M�t� x� h� + h��(16)

Next, we define Nr =Nr�t� x� h�g� by

Nr =
∫ r

t
Ns dξs�t� x� +

∫ r

t
�Ms�t� x� h� + h�s���Ms�t� x�g� + g�s��dζs�

where

ζr�t� x� =
∫ r

t
σ ′′�Ys�t� x� + x�s��dWs +

∫ r

t
b′′�Ys�t� x� + x�s��ds�

Then, 
�2u�t� x�� h⊗ g� can be represented by

E
�2f�Y�t� x� + x�� �M�t� x� h� + h� ⊗ �M�t� x�g� + g��
+E
�f�Y�t� x� + x��N�t� x� h�g���

(17)

It can be shown that Y� M� N� ξ� and ζ are continuous in both t and x
with respect to the uniform L2 metric on compacts. See, for instance, Prot-
ter [12]. The continuity of �u and �2u� then, follows directly from (16) and
(17), respectively. Replacing both h and g by ηt� one proves the continuity of
∂u/∂t� ✷

Now we present applications of Itô’s representation for functionals and the
canonical solution. It is known that a square integrable random variable in
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the canonical Wiener space has a martingale representation as a stochastic in-
tegral with respect to a Brownian motion. Particularly if the random variable
is Malliavin differentiable, one retains the following formula:

Y = E�Y� +
∫ T

0
E�DtY��t�dWt�

where DtY denotes the Malliavin derivative. This formula is known as Clark’s
formula; see Karatzas, Ocone and Li [7]. The following result shows that if Y
depends smoothly on the path of the Brownian motion or diffusion process,
then the integrand in Clark’s formula as well as E�Y� can be expressed in
terms of a solution to a partial differential equation.

Theorem 4.2. Let X be a diffusion process defined by

Xt =X0 +
∫ t

0
σ�Xs�dWs +

∫ t

0
b�Xs�ds�

where σ and b have bounded continuous derivatives up to order 2. Suppose
that f	 L2�0�T� → R is twice continuously Fréchet differentiable at each x ∈
C�0�T�� and satisfies (11). Then we have

f�X� = u�0�X0��0�T�� +
∫ T

0

ηs��u�s�Xs��σ�Xs�dWs(18)

where u is the canonical solution of (12) with u�T�x� = f�x��

Equation (18) is a consequence of Theorem 2.4. In fact, it is valid for
each solution u of (12) which satisfies the regularities required for Theo-
rem 2.4. Note that the martingale representation of f�X� is unique. Therefore
u�0� x�0���0�T�� and 
ηt��u�t� xt�� must be the same for any solution u which
has continuous derivatives. Next, consider the following stochastic differential
equation:

Xt =Ht +
∫ t

0
σ�Xs�dWs(19)

where H is a continuous FV process and σ has bounded continuous derivatives
up to order 2. The uniqueness and the existence of the solution to (19) are
given in Protter [13]. However the solution may not be a Markov process.
The following result, the semimartingale integral representation, is another
application of Theorem 2.4.

Theorem 4.3. Let X be a solution to (19) where H is a continuous FV
process and σ has bounded continuous derivatives up to order 2. Suppose that
f	 L2�0�T� → R is twice continuously Fréchet differentiable at each x ∈ C�0�T�
and satisfies (11). Then we have

f�X� = u�0�X0��0�T�� +
∫ T

0

ηs��u�s�Xs��dXs�

where u is the canonical solution of (12) with b = 0 and u�T�x� = f�x��
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