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INFORMATION INEQUALITIES AND
CONCENTRATION OF MEASURE1

By Amir Dembo

Technion–Israel Institute of Technology

We derive inequalities of the form ��P�Q� ≤H�P�R�+H�Q�R� which
hold for every choice of probability measures P�Q�R, where H�P�R� de-
notes the relative entropy of P with respect to R and ��P�Q� stands for a
coupling type “distance” between P andQ. Using the chain rule for relative
entropies and then specializing to Q with a given support we recover some
of Talagrand’s concentration of measure inequalities for product spaces.

1. Introduction. In [9], Talagrand provided a variety of concentration of
measure inequalities which apply in every product space �N equipped with
a product (probability) measure R. These inequalities are extremely useful
in combinatorial applications such as the longest common/increasing subse-
quence, in statistical physics applications such as the study of spin glass mod-
els and in areas touching upon functional analysis, such as probability in
Banach spaces (cf. [9]–[11] and the references therein). For suitably chosen
“distance” functions f�·�, these inequalities are of the form

∫
exp�tf�A1� � � � �Aq�x��dR�x� ≤ exp�C�t� α��

q∏
i=1

R�Ai�−α�(1)

for some constants q ∈ N, α� t > 0 and C�t� α� < ∞, and hold for every (mea-
surable) Ai ⊂ �N, i = 1� � � � � q. Of most interest are the “dimension-free”
inequalities in which q� α� t are independent of N and C�t� α� = 0. Not to
be distracted from the main course of this paper, we follow Talagrand’s con-
vention and hereafter ignore all measurability questions (these can either be
taken care of by considering upper integrals and outer probabilities or cir-
cumvented by assuming � is Polish, the Ai are compact and all probability
measures encountered are Borel measures). Three “distance” functions that
play a prominent role in [9] are the “control by q points”

fq�A1� � � �Aq�x� = inf
yi∈Ai
i=1�����q

N∑
k=1

1xk �∈yik� i=1�����q��

the “penalties”

fh�A�x� = inf
y∈A

N∑
k=1

h�xk� yk�

Received November 1995; revised September 1996.
1Partially supported by NSF Grant DMS-94-03553 and by a US–Israel BSF grant.
AMS 1991 subject classifications. 60E15, 28A35.
Key words and phrases. Concentration of measure, information inequalities.

927



928 A. DEMBO

for h� �×�→ �0�∞� and the “convex hull”

fα�A�x� = inf
s∈VA�x�

N∑
k=1

ξα�sk��

where VA�x� �= conv-hull�1x1 �=y1
� � � � �1xN �=yN�� y ∈ A�, α > 0 and ξα� �0�1� →

�0�∞� is such that

ξα�u�≤α�1 − u� log�1 − u�− �α+ 1 − αu� log
(
α+ 1 − αu

1 + α
)

∀u∈ �0�1��(2)

The proofs of the inequalities of the form (1) provided in [9] are all
based on an induction on N, the key step of which is to fix xN+1 = ω and
then apply the induction hypothesis for the N dimensional sets A�ω� =
�y1� � � � � yN�� �y1� � � � � yN�ω� ∈ A� and B = �y1� � � � � yN�� �y1� � � � � yN� z� ∈
A for some z�.

Marton, in [6], building upon [5], proposed a new approach to concentra-
tion inequalities, based on the use of information inequalities, and in [6, 7]
applied this approach to extend some of Talagrand’s results to the context of
contracting Markov chains.

Marton’s work is the impetus for this paper, in which we concentrate on the
case of product measures and recover the sharper variants of the inequalities
of [9] (see the discussion following Theorem 1 below).

Specifically, with �N�Q1� � � � �Qq�P� denoting the set of all probability mea-
sures on ��N�q+1 whose marginals are the prescribed probability measures
Q1� � � � �Qq�P on �N, we consider the following coupling type “distances” be-
tween probability measures in a product space �N:

dq�Q1� � � � �Qq�P� = inf
π∈�N�Q1�����Qq�P�

N∑
k=1

π�Xk �∈ Yik� i = 1� � � � � q���

dh�Q�P� = inf
π∈�N�Q�P�

N∑
k=1

∫
h�xk� yk�dπ�x�y��

dα�Q�P� = inf
π∈�N�Q�P�

N∑
k=1

∫
ξα�π�Yk �=Xk�X = x��dP�x��

where �Y1� � � � �Yq�X� has the joint law π and Xk (Yik) denotes the �-valued
kth marginal of X (Yi, respectively).

Recall that the relative entropy of P with respect to R is

H�P�R� =


∫ dP
dR

log
dP
dR
dR�

dP
dR

exists,

∞� otherwise�

Theorem 1, our main result (whose proof is provided in Section 2), states that
for appropriate choices of α� t > 0 and C�t� α� <∞ the functionals dq, dh and
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dα satisfy the inequality

td•�Q1� � � � �Qq�P� ≤H�P�R� + α
q∑
i=1

H�Qi�R� +C�t� α�(3)

for every choice of probability measures P�Qi and every product measure R.

Theorem 1. Suppose R = ∏
k Rk is a product measure on �N.

(i) The functional dα satisfies inequality (3) with C�t� α� = 0 for t = 1, any
α > 0 and ξα satisfying (2).

(ii) Inequality (3) holds for dq� q > 1, C�t� α� = 0 and t which is the unique

positive solution of 1 + αq = et + αqe−t/α. Moreover, dq� q = 1, satisfies (3) for
any t� α > 0, but now with C�t� α� =N log a�t� α�, where

a�t� α� = αα

�1 + α�1+α
�et − e−t/α�1+α

�1 − e−t/α��et − 1�α �(4)

(iii) The functional dh satisfies inequality (3) for � a Polish space and h ∈
B��×��, α = 1, any t > 0 and C�t� α� = ∑N

k=1 b�t� h�Rk� with

b�t� h�R� = sup
g≥0

ĝ�x�≤th�x�y�+g�y�

log
(∫
eĝ dR

∫
e−g dR

)
�(5)

We next show that some of the concentration of measure inequalities of [9]
are direct corollaries of Theorem 1. To this end observe that the inequality∫

f•�A1� � � � �Aq�x�dP�x� ≤ d•�Q1� � � � �Qq�P�(6)

holds for every P and Qi such that supp Qi ⊆ Ai when considering dq, dh and
dα paired with fq, fh and fα, respectively.

The following simple lemma shows that whenever (6) holds, the inequality
(1) is a consequence of (3) [for the same values of α� t and C�t� α�].

Lemma 1. Suppose that for a probability measure R and some q ∈ N, α� t >
0 and C�t� α� < ∞, the inequality (3) holds for every choice of probability
measures P�Qi. Then (1) holds provided that inequality (6) holds for every
choice of P and Qi such that supp Qi ⊆ Ai.

Proof. Set Qi = R�·�Ai� for which H�Qi�R� = log �1/�R�Ai��� and Pm is
such that

dPm
dR

= exp�tf�A1� � � � �Aq�x� ∧m�∫
exp�tf�A1� � � � �Aq�x� ∧m�dR�x� �

Then, by (6) and evaluation of H�Pm�R�,

log
∫

exp�tf�A1� � � �Aq�x� ∧m�dR�x� ≤ td�Q1� � � � �Qq�Pm� −H�Pm�R��
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Hence, (3) implies that

∫
exp�tf�A1� � � �Aq�x� ∧m�dR�x� ≤ exp�C�t� α��

q∏
i=1

R�Ai�−α�

Letting m→ ∞ we obtain (1) by monotone convergence. ✷

Remark 1. Conversely to Lemma 1, if for some q ∈ N, f�·� bounded, �
Polish, α� t > 0 and a collection � of probability measures on �N,

exp�C�t� α�� = sup
R∈�
Ai⊆�N

q∏
i=1

R�Ai�α
∫

exp�tf�A1� � � � �Aq�x��dR�x�(7)

for some C�t� α� <∞, then (6) holds for

d�Q1� � � � �Qq�P� = t−1
[
C�t� α� + inf

R∈�
α
q∑
i=1

H�Qi�R� +H�P�R�
]

(8)

and every choice of P and Qi such that supp Qi ⊆ Ai.
Indeed, fixing Ai ⊆ �N we have by (8) that

inf
P� Qi� supp Qi⊆Ai�

{
td�Q1� � � � �Qq�P� −

∫
tf�A1� � � � �Aq�x�dP�x�

}

= C�t� α� + inf
R∈�

{
α
q∑
i=1

inf
Qi� supp Qi⊆Ai�

H�Qi�R�

− sup
P

{∫
tf�A1� � � � �Aq�x�dP�x� −H�P�R�

}}

= C�t� α� + inf
R∈�

{
−α

q∑
i=1

log R�Ai� − log
∫

exp�tf�A1� � � � �Aq�x��dR�x�
}

≥ 0�

The inequality in the preceding line is due to (7), whereas the equality fol-
lows by the Donsker–Varadhan formula (cf. [1], (6.2.14)) and the well known
inequality H�Q�R� ≥ − log R�supp Q�.

In particular, if (1) holds, it should always be possible to derive it by proving
(3) and (6) for an appropriate choice of d�·�. Moreover, equality in (3) and (6)
for R and the same Qi and P implies equality in (1) for Ai = supp Qi and R.

Remark 2. Combining Lemma 1 with part (i) of Theorem 1 yields [9], The-
orem 4.2.4, whereas part (ii) yields likewise [9], Theorem 3.1.1, and [9], Propo-
sition 2.2.1 (for q > 1 and q = 1, respectively). Combining part (iii) of Theo-
rem 1 above and the bounds on b�t� h�R� provided in [9], Propositions 2.4.2
and 2.5.2, we get [9], Theorems 2.4.1 and 2.5.1, for h ≥ 0 and bounded. The
general case then follows by standard approximation arguments. Altogether,
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Theorem 1 recovers the results of Sections 2.1, 2.2, 2.4, 3.1, 3.2, 4.1 and 4.2
of [9]. The optimality of the rhs of (2) in the context of fα is observed in [9],
Lemma 4.2.1, albeit from a seemingly different reason, related to the induction
technique of [9].

Marton [7] combined the coupling characterization of the total variation
distance with information inequalities of the form of Pinsker’s inequality
�1�Q�P� ≤

√
H�P�Q�/2 to prove that

√
2du2/4�Q�P� ≤

√
H�P�R� +

√
H�Q�R��(9)

leading to [9], Corollary 4.2.5 [with du2/4�·� ·� denoting dα for α = 1 and
ξα�u� = u2/4]. Note that (9) trivially holds when du2/4�Q�P� ≤ H�Q�R�/2.
Thus, considering part (ii) of Theorem 1 for ξα�u� = αu2/�2�α + 1�� (which
satisfies (2), cf. [9], Lemma 4.2.2) and α =

√
2du2/4�Q�P�/H�Q�R� − 1 ≥ 0, we

also recover (9).
Our proof of Theorem 1 uses the extended coupling of Proposition 2(i) to

handle the case of dq and the well known Lemma 4 to handle that of dh.
To establish a result of the form (3) for a variety of “distance” functionals,
with sharper constants, our proof also differs from Marton’s in deriving in
Proposition 1 the “linearized” information inequalities of the form (11) which
might be of some independent interest.

We note in passing that [10] contains new concentration inequalities for
product spaces which are possibly sharper than those in [9]. The proofs in
[10] are again by means of the basic induction alluded to above. In Section 3
we outline how [10], Theorem 5.4, follows from an extension of part (ii) of Theo-
rem 1, whereas in [2] we use a different variant of the “transportation method”
to recover [10], Theorem 2.1, apart from the exact value of certain constants.
It is yet unclear to what extent one may recover or even improve upon the
inequalities of [10], Theorems 3.1, 4.2 and 5.1, by using the transportation
method.

Talagrand [11] used the “transportation method” with a different coupling
than the one used here (compare Lemma 4 with [11], (2.1)), showing that (3)
holds for dh with C�t� α� = 0, t = α = q = 1 and Q = R when considering
either h�x�y� = �x−y�2/2 and R the standard Gaussian measure or h�x�y� =
�1 − b��b�x − y� − 1 − e−b�x−y��/b for some b < 1 and R the product of one-
dimensional standard Laplace measures.

Ledoux [4] presented a direct derivation of some consequences of the ab-
stract inequalities of [9] and [10] out of Poincaré and logarithmic Sobolev
inequalities.

2. Proof of Theorem 1. The “distance” functionals between probability
measures on �N which we consider are of the form

d�Q1� � � � �Qq�P� = inf
π∈�N�Q1�����Qq�P�

N∑
k=1

gk�π��(10)
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With each such functional we associate a basic “distance” functional
��Q1� � � � �Qq�P� such that for some α� t > 0, c�t� α� <∞ and every choice of
probability measures P�Qi�R on �,

t��Q1� � � � �Qq�P� ≤H�P�R� + α
q∑
i=1

H�Qi�R� + c�t� α� �(11)

The next lemma obtains the inequality (3) as a consequence of the basic
information inequality (11), and is the only place in our proof where we rely
on R being a product measure.

Lemma 2. Suppose that for every Q1� � � � �Qq�P and ε > 0 there are

�Y1� � � � �Yq�X� of some joint law π = πε ∈ �N�Q1� � � � �Qq�P� such that for
k = 1�2� � � � �N,

gk�π� ≤ E�
(
Q1�Y1

k�Y1
1� � � � �Y

1
k−1�� � � � �Qq�Yqk�Yq1� � � � �Yqk−1��

P�Xk�X1� � � � �Xk−1�
)+ ε(12)

[where Qi�Yik�Yi1� � � � �Yik−1� and P�Xk�X1� � � � �Xk−1� denote the correspond-
ing regular conditional probability distributions]. Then (11) implies that (3)
holds for every product measure R on �N with C�t� α� =Nc�t� α�.

Proof. By (10), (11) and (12) we have that for every ε > 0, probability
measures Qi�P on �N and Rk on �,

td�Q1� � � � �Qq�P� ≤
N∑
k=1

Et�
(
Q1�Y1

k�Y1
1� � � � �Y

1
k−1�� � � � �

P�Xk�X1� � � � �Xk−1�
)+Ntε

≤ E
[ N∑
k=1

H�P�Xk�X1� � � � �Xk−1��Rk�
]

+ α
q∑
i=1

E

( N∑
k=1

H�Qi�Yik�Yi1� � � � �Yik−1��Rk�
)

+N�c�t� α� + tε��

(13)

Note that P = ∏N
k=1 P�Xk�X1� � � � �Xk−1�� Qi =

∏N
i=1 Qi�Yik�Yi1� � � � �Yik−1� and

let R = ∏N
k=1Rk be any product measure on �N. Taking ε ↓ 0, (3) follows

from (13) by the well known chain rule for relative entropies [H�P�R� =∑N
k=1EH�P�Xk�X1� � � � �Xk−1��Rk�; cf. [3], Lemma 4.4.7]. ✷
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In particular, corresponding to the functionals dq, dh and dα are the basic
“distance” functionals

�q�Q�P� =
∫
�̃

(
1 − qdQ

dP

)
+
dP�(14)

�h�Q�P� = sup
{∫
ĝ dP−

∫
gdQ� ĝ ∈ L1�P�� g ∈ L1�Q��

(15)
ĝ�x� − g�y� ≤ h�x�y� ∀x�y ∈ �

}

and

�α�Q�P� =
∫
�̃
ξα

((
1 − dQ

dP

)
+

)
dP�(16)

respectively [where �̃ is such that P��̃c� = 0 and dQ/dP exists on �̃].
The next proposition, which is of independent interest, provides the infor-

mation inequalities of the type (11), relating �q��h and �α with the relative
entropy.

Proposition 1. (i) For every choice of probability measures P�Q�R on �,

t�α�Q�P� ≤H�P�R� + αH�Q�R�(17)

provided t = 1 and ξα satisfies (2).
(ii) Inequality (17) holds for �q when q > 1, α > 0 and t is the unique

positive solution of

1 + α = et + αe−qt/α �(18)

whereas for q = 1, any α > 0, t > 0,

t�q�Q�P� ≤H�P�R� + αH�Q�R� + log a�t� α� �(19)

where a�t� α� is determined as in (4).
(iii) For h bounded and b�t� h�R� of (5),

t�h�Q�P� ≤H�P�R� +H�Q�R� + b�t� h�R� �(20)

Remark 3. Existence and uniqueness of the positive solution t of (18) for
α > 0 and q > 1 is standard [solving E�exp�tZ�� = 1 for bounded random
variable Z such that E�Z� < 0 and P�Z > 0� > 0, taking here P�Z = 1� =
1−P�Z = −q/α� = 1/�1+α�]. Since α�1−exp�−qt/α�� increases with respect
to both q and α, so does the solution t of (18), with t = log q in case α = q.

Remark 4. Setting in (19), t = √
8H�P�R� and α = √

H�P�R�/H�Q�R�, we
recover Pinsker’s inequality �1�P�Q� ≤ √

H�P�R�/2 +√
H�Q�R�/2 by using

the bound log a�t� α� ≤ t2�1 + α−1�/8 of [9], Lemma 2.2.2. Avoiding the latter
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bound, we can improve on Pinsker’s inequality. For example, whenH�P�R� =
H�Q�R� =H and α and t are as before, (19) reads

�1�Q�P� ≤ min
{
H+ log cosh

√
2H√

2H
� 1

}
�

The proof of Proposition 1 relies on the following elementary lemma.

Lemma 3. (a) For any probability measures P0�P1�R on � and β ∈ �0�1�,
βH�P1�R� + �1 − β�H�P0�R�

= βH�P1�Pβ� + �1 − β�H�P0�Pβ� +H�Pβ�R��
(21)

where Pβ = βP1 + �1 − β�P0.
(b) For any P�Q and α > 0

inf
R
H�P�R� + αH�Q�R�� =

∫
�̃
φα

(
dQ

dP

)
dP+Q��̃c�vα�(22)

where vα = α log�1 + α−1� and

φα�x� = αx log x− �1 + αx� log
(

1 + αx
1 + α

)
�(23)

Proof. (a) The cases of β = 0 and β = 1 are trivial. When β ∈ �0�1�,
unless P0 � R and P1 � R, both sides of (21) are infinite. Hence, let fi =
dPi/dR, i = 0�1, and fβ = βf1 + �1 − β�f0 = dPβ/dR. Then

βH�P1�R� + �1 − β�H�P0�R�

=
∫
�βf1 log f1 + �1 − β�f0 log f0�dR

=
∫ [
βf1 log

f1

fβ
+ �1 − β�f0 log

f0

fβ
+ fβ log fβ

]
dR

= βH�P1�Pβ� + �1 − β�H�P0�Pβ� +H�Pβ�R��
(b) Applying (21) for β = 1/�1 + α��P1 = P, P0 = Q, since H�Pβ�R� ≥ 0,

it follows that the infimum in the lhs of (22) is obtained for Rα =
�P+ αQ�/�1 + α�. With f = dQ/dP on �̃, noting that

H�P�Rα� =
∫
�̃

log
(

1 + α
1 + αf

)
dP

and

H�Q�Rα� =
∫
�̃
f log

( �1 + α�f
1 + αf

)
dP+Q��̃c� log

(
1 + α
α

)
�

it is easy to check thatH�P�Rα�+αH�Q�Rα� is identical to the rhs of (22). ✷
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Proof of Proposition 1. (i) Without loss of generality we assume equal-
ity in (2) for every u ∈ �0�1�. Then, by (16) and (23), for every P�Q in �̃

�α�Q�P� =
∫
�̃
φα

(
dQ

dP

)
1dQ/dP<1� dP�(24)

Since φα�1� = 0, φ′
α�1� = 0 and φ′′

α�x� = α/�x�1 + αx�� is positive for x ≥ 0,
it follows that φα�x� ≥ 0 for x ≥ 0. Hence, (17) follows by comparing (22)
with (24).

(ii) Let hq�x� = φα�x� − t�1 − qx�+ for q ≥ 1, t > 0 and α > 0. Fixing
α > 0� q > 1, (18) has a unique positive solution [since k�t� = et + αe−qt/α
is convex, k�0� = �1 + α�� k′�0� = 1 − q < 0 and limt→∞ k�t� = ∞]. Since
h′q�x� = α log��1 + α�x/�1 + αx�� + tq is increasing on �0� q−1�, the global
minimum of hq�·� on �0� q−1� is at x∗ = 1/�q∨ ��1 + α�eqt/α − α��. For x ≥ q−1,
hq�x� = φα�x� is nonnegative by part (i) above, and taking t as determined
by (18) we have that hq�x∗� = log�1 + α − αe−qt/α� − t is zero. Since hq�x� is
nonnegative for x ≥ 0, we arrive at (17) by comparing (14) with (22).

By (14) and (22) we also arrive at (19) provided that for any α > 0, t > 0,

− log a�t� α� = inf
f≥0� ∫

�̃ fdP≤1�

{∫
�̃
h1�f�dP+

(
1 −

∫
�̃
fdP

)
vα

}
�(25)

Since h1�x� is convex on �0�1� and also on �1�∞�, the rhs of (25) is minimal
when f = x11B + x21Bc for some x2 ≥ 1 ≥ x1 and p = P�B� ∈ �0�1� such that
x1p + x2�1 − p� ≤ 1. For f of this form, the expression in the rhs of (25) is
vα + p�φα�x1� − �1 − x1� − x1vα� + �1 − p��φα�x2� − x2vα� which is monotone
decreasing with respect to x2. Thus, we may set p = �x2 − 1�/�x2 − x1� for
which (25) amounts to − log a�t� α� = inf x2≥1≥x1≥0 k�x1� x2�, where

k�x1� x2� =
(
x2 − 1
x2 − x1

)
φα�x1� +

(
1 − x1

x2 − x1

)
φα�x2� −

�x2 − 1��1 − x1�
�x2 − x1�

t�(26)

Differentiating k, it is not hard to check that ∇k�x1� x2� = 0 at the unique
point x∗1 = α−1�1 − e−t�/�et/α − 1�, x∗2 = α−1�et − 1�/�1 − e−t/α� at which the
Hessian of k is positive definite (note also that x∗2 > 1 > x∗1 > 0�. Moreover,
k�x∗1� x∗2� = − log a�t� α� and the minimal value of k�·� ·� at the boundaries
x1 = 0 or x2 → ∞ exceeds k�x∗1� x∗2�.

(iii) With h bounded above, ĝ�x�−g�y� ≤ th�x�y� implies that g is bounded
below. Hence, moving a constant from ĝ to g, with no loss of generality g ≥ 0.
Suppose f = dP/dR exists and ĝ ∈ L1�P� is such that

∫
eĝ dR < ∞. Define

S via dS/dR = eĝ/�∫ eĝ dR�. Then,

0 ≤H�P�S� = −
∫
ĝ dP+H�P�R� + log

∫
eĝ dR�(27)

Likewise, for any Q, g ∈ L1�Q� and any R

0 ≤
∫
gdQ+H�Q�R� + log

∫
e−g dR�(28)

Since t�h = �th for any t > 0, adding (27) and (28) we obtain (20). ✷
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With Proposition 1 established, the next proposition is key to the proof of
parts (i) and (ii) of Theorem 1 and is of some independent interest.

Proposition 2. (i) For any q ∈ N, and probability measuresQ1� � � � �Qq�P,

inf
π∈�1�Q1�����Qq�P�

π�X �∈ Yi� i = 1� � � � � q�� = �q
(

1
q

q∑
i=1

Qi�P

)
�(29)

(ii) For any ξα�Q�P,

inf
π∈�1�Q�P�

∫
ξα�π�Y �=X�X = x��dP�x� ≤ �α�Q�P��

with equality when ξα is convex and nondecreasing.

Remark 5. For q = 1, (29) is the classical characterization of the total
variation distance.

Proof of Proposition 2. (i) Hereafter let Qq+1 = P and for nonnegative
measures S�T of finite total mass, let �S−T�+ denote the positive part of the
signed measure S−T, while S∧T denotes the nonnegative measure S−�S−
T�+ = T − �T − S�+. For r = 1� � � � � q + 1 let νr = ��P −∑r−1

i=1 Qi�+ ∧Qr����.
Since

q+1∑
r=1

(
P−

r−1∑
i=1

Qi

)
+
∧Qr = P�(30)

in particular,
∑q+1
r=1 νr = 1. Also note that for r = 1� � � � � q,

(
P−

r−1∑
i=1

Qi

)
+
∧Qr +

( r∑
i=1

Qi −P
)
+
∧Qr = Qr(31)

and, in particular, for r = 1� � � � � q,
[( r∑

i=1

Qi −P
)
+
∧Qr

]
��� = 1 − νr�

Suppose 0 < νr < 1, r = 1� � � � � q+1 and that ���� � is rich enough to support
the independent random variables Wr�q+1

r=1 and Zr�qr=1 with Wr ∼ ν−1
r �P −∑r−1

i=1 Qi�+ ∧Qr and Zr ∼ �1− νr�−1�∑ri=1Qi−P�+ ∧Qr. Let I ∈ 1� � � � � q+1�
be chosen independently of all these variables according to the probabilities
ν1� � � � � νq+1�. Finally letX =WI andYr = �Wr1I=r+Zr1I�=r� for r = 1� � � � � q.

The identity (30) implies that X ∼ P while (31) results with Yr ∼ Qr. Also
note that in this coupling �Y1� � � � �Yq�X� ∼ π ∈ �1�Q1� � � � �Qq�P� is such
that

π�X �∈ Yi� i = 1� � � � � q�� ≤ νq+1 =
(
P−

q∑
i=1

Qi

)
+
��� = �q

(
q−1

q∑
i=1

Qi�P

)
�
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If νr = 0, then we do not need the variable Wr for the construction of
Y1� � � � �Yq�X, whereas for νr = 1 we never use Zr. Hence, we have just
established the less than or equal to direction in (29).

To show the converse, let D = x ∈ �̃� ∑q
i=1 dQi/dP�x� ≤ 1�. Then, for

π ∈ �1�Q1� � � �Qq�P�,
π�X �∈ Yi� i = 1� � � � � q�� ≥ π�X ∈ D� ∩i Yi �∈ D��

≥ P�D� −
q∑
i=1

Qi�D� = �q
(
q−1

q∑
i=1

Qi�P

)
�

(ii) For q = 1 the construction of part (i) above results with π�Y1 �= X�
X ∈ ·� = �P−Q�+�·�, implying that

∫
ξα�π�Y �=X�X = x��dP�x� = �α�Q�P�.

Conversely, fix ε > 0 and let Di = x ∈ �̃� 1 − dQ/dP�x� ∈ �iε� �i + 1�ε��,
i = 0�1� � � � � Then, for any π ∈ �1�Q�P�, by convexity and monotonicity of
ξα, ∫

ξα�π�Y �=X�X = x��dP�x� ≥ ∑
i

P�Di�ξα�1 −Q�Di�/P�Di��

≥ ∑
i

ξα�iε�P�Di��

Taking ε ↓ 0 the rhs converges to �α�Q�P�. ✷

The next duality lemma, which is a special case of [8], Theorem 4, is needed
for the proof of part (iii) of Theorem 1.

Lemma 4. Suppose P, Q are probability measures on a Polish space � and
h ∈ B��×��. Then

inf
π∈�1�Q�P�

∫
h�x�y�dπ�x�y� = �h�Q�P��(32)

Proof of Theorem 1. (i) Without loss of generality assume equality
holds in (2) for every u ∈ �0�1�. Fix ε > 0, P�Q and a product measure R,
using hereafter the notation Pk�·� = P�Xk ∈ ·�X1� � � � �Xk−1� and Qk�·� =
Q�Yk ∈ ·�Y1� � � � �Yk−1� for k = 1� � � � �N. Fix X of law P. By the convexity
of ξα determined above, and applying part (ii) of Proposition 2 sequentially
for �Qk�Pk�, k = 1� � � � �N, there is Yk ∈ σ�Xk�Y1� � � � �Yk−1�X1� � � � �Xk−1�
such that the joint law π of �Y�X� is in �N�Q�P� satisfying

Eξα�π�Yk �=Xk�X�� ≤ Eξα�π�Yk �=Xk�X�Y1� � � � �Yk−1��
= Eξα�π�Yk �=Xk�Y1� � � � �Yk−1�X1� � � � �Xk��
≤ E�α�Qk�Pk� + ε�

(33)

The proof is completed by combining part (i) of Proposition 1 with Lemma 2
[compare (17) and (33) with (11) and (12), respectively].



938 A. DEMBO

(ii) Fix ε > 0�P, Q1� � � � �Qq and a product measure R. Now let X have
law P and Yi = �Yi1� � � � �YiN� have law Qi for i = 1� � � � � q with Qk� i de-
noting the law of Yik conditioned upon �Yi1� � � � �Yik−1�. Applying part (i) of
Proposition 2 sequentially for �Qk�1� � � � �Qk�q�Pk�, k = 1� � � � �N, there exist
�Y1
k� � � � �Y

q
k�Xk� ∈ σ�Yi1� � � � �Yik−1�X1� � � � �Xk−1� such that the joint law π

of �Y1� � � � �Yq�X� is in �N�Q1� � � � �Qq�P� satisfying

π�Xk �∈ Yik� i = 1� � � � � q�� ≤ E�q
(
q−1

q∑
i=1

Qk�i�Pk

)
+ ε�(34)

The proof is completed by combining part (ii) of Proposition 1 with Lemma 2
[compare (34) with (12)], noting in the case of q>1 thatH�q−1 ∑q

i=1Qk� i�Rk�≤
q−1 ∑q

i=1H�Qk� i�Rk�.
(iii) Fix h ∈ B�� × ��, α = 1, t > 0, probability measures P�Q, a prod-

uct measure R = ∏
k Rk and ε > 0. Using the notations of part (i) above,

applying Lemma 4 sequentially for �Qk�Pk�, k = 1� � � � �N, there is Yk ∈
σ�Xk�Y1� � � � �Yk−1�X1� � � � �Xk−1� such that the joint law π of �Y�X� is in
�N�Q�P� satisfying∫

h�xk� yk�dπ�x�y� ≤ E�h�Qk�Pk� + ε�(35)

The proof is completed by part (iii) of Proposition 1 and Lemma 2 [compare
(35) with (12)]. ✷

3. Extensions of Theorem 1. Extend the “control by q points” by defin-
ing for m = 2�3� � � � � q the decreasing sequence

fq�m�A1� � � � �Aq�x� = inf
yi∈Ai�qi=1

N∑
k=1

1∑qi=1 1
xk �=yik

≥m��(36)

Note that fq�q is merely fq of (2). The corresponding coupling type “distances”
between probability measures in �N are then

dq�m�Q1� � � � �Qq�P� = inf
π∈�N�Q1�����Qq�P�

N∑
k=1

π

( q∑
i=1

1Xk �=Yik ≥m
)
�(37)

Extending part (i) of Proposition 2 it can be shown that

inf
π∈�1�Q1�����Qq�P�

π

( q∑
i=1

1X �=Yi ≥m
)

=
∫
�̃

max
q≥p≥m

max
i1 �=i2 �=···�=ip

(
1 − 1
p−m+ 1

p∑
j=1

dQij
dP

)
+
dP�

(38)

where P��̃� = 1 and dQi/dP exist on �̃ for i = 1� � � � � q. With �q�m�Q1� � � � �
Qq�P� denoting the rhs of (38), extending part (ii) of Proposition 1 it can also
be shown that for any probability measures Qi, P and R on � and any α > 0,
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q ≥m ≥ 2,

t�q�m�Q1� � � � �Qq�P� ≤H�P�R� + α
q∑
i=1

H�Qi�R��(39)

provided

p�1 − exp�−tα−1/�p−m+ 1��� ≥ α−1�exp�t� − 1� for p =m� � � � � q�(40)

By the same arguments as in the proof of Theorem 1, the inequality (3) holds
for dq�m, m = 2�3� � � � � q, C�t� α� = 0 and any t > 0 satisfying (40). In par-
ticular, for m = q we recover part (ii) of Theorem 1. By [10], Lemma 5.6, for
m = 2 and α = 1/q the condition (40) applies to t > 0 such that etq/2+e−tq = 2.
Consequently, we recover [10], Theorem 5.4, by using Lemma 1. The resulting
concentration inequalities for all other choices of α�m seem to be new.

It may be of independent interest to extend part (i) of Proposition 2 by
considering Xj, j = 1� � � � � r, for r ≥ 2. For example, with Q = q−1 ∑q

i=1Qi
and P = r−1 ∑r

j=1Pj it can be shown that

inf
π∈�1�Q1�����Qq�P1�����Pr�

π
(Xj�rj=1 ∩ Yi�qi=1 = �

) = r��q/r�Q�P� − �1 − r−1��+�
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