The Annals of Probability
1997, Vol. 25, No. 1, 494-529

CIRCULAR LAW

By Z.D. Bait

National Sun Yat-sen University

It was conjectured in the early 1950's that the empirical spectral
distribution of an n X n matrix, of iid entries, normalized by a factor of
1/ \/H converges to the uniform distribution over the unit disc on the
complex plane, which is called the circular law. Only a special case of the
conjecture, where the entries of the matrix are standard complex Gauss-
ian, is known. In this paper, this conjecture is proved under the existence
of the sixth moment and some smoothness conditions. Some extensions
and discussions are also presented.
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1. Introduction. Suppose that E, is an n X n matrix with entries
éj = a/ \/ﬁ)xkj and {xkj, k,j=1,2,...,} forms an infinite double array of
iid complex random variables of mean zero and variance one. Using the
complex eigenvalues A, A,, ..., A, of E,, we can construct a two-dimensional
empirical distribution by

ua(X,y) = %#{i < n:Re(\) <x,Im(A) <y},

which is called the empirical spectral distribution of the matrix E,.

The motivation for the study of spectral analysis of large-dimensional
random matrices comes from quantum mechanics. The energy level of a
guantum is not directly observable and it is known that the energy levels of
guantums can be described by the eigenvalues of a matrix of observations.
Since the 1960’s, the spectral analysis of large-dimensional random matrices
has attracted considerable interest from probabilists, mathematicians and
statisticians. For a general review, the reader is referred to, among others,
Bai (1993a, b), Bai and Yin (1993, 1988a, b, 1986), Geman (1980, 1986),
Silverstein and Bai (1995), Wachter (1978, 1980) and Yin, Bai and Krish-
naiah (1988).

Most of the important existing results are on symmetric large-dimensional
random matrices. Basically, two powerful tools are used in this area. The first
is the moment approach which was successfully used in finding the limiting
spectral distributions of large-dimensional random matrices and in establish-
ing the strong convergence of extreme eigenvalues. See, for example, Bai and
Yin (1993, 1988a, b, 1986), Geman (1980, 1986), Jonsson (1982) and Yin, Bai
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and Krishnaiah (1988). The second is the Stieltjes transform which was used
in Bai (1993a, b), Bai and Silverstein (1995), Marcenko and Pastur (1967),
Pastur (1972, 1973), Silverstein and Choi (1995) and Wachter (1978, 1980).
Unfortunately, these two approaches are not suitable for dealing with non-
symmetric random matrices. Due to lack of appropriate methodologies, very
few results were known about nonsymmetric random matrices. The only
known result is about the spectral radius of the matrix E,. Bai and Yin
[(1986), under the fourth moment] and Geman [(1986), under some growth
restrictions on all moments], independently proved that with probability 1,
the upper limit of the spectral radius of =, is not greater than 1.

Since the early 1950's, it has been conjectured that the distribution (X, y)
converges to the so-called circular law, that is, the uniform distribution over
the unit disk in the complex plane. This problem has been unsolved, except
where the entries are complex normal variables [given in an unpublished
paper of Silverstein in 1984 but reported in Hwang (1986)]. Silverstein’s proof
relies on the explicit expression of the joint distribution density of the
eigenvalues of E, [see, e.g., Ginibre (1965)]. Hence his approach cannot be
extended to the general case. Girko presented (1984a, b) a proof of this
conjecture under some conditions. However, the paper contained too many
mathematical gaps, leaving the problem still open. After Girko's flaw was
found, “many have tried to understand Girko's ‘proofs’ without success,”
[Edelman (1995)]. When the entries are iid real normal random variables,
Edelman (1995) found the conditional joint distribution of the complex eigen-
values when the number of real eigenvalues are given and showed that the
expected empirical spectral distribution of E tends to the circular law.

In spite of mathematical gaps in his arguments, Girko had come up with
an important idea (his Lemma 1), which established a relation between the
characteristic function of the empirical spectral distribution of =, and an
integral involving the empirical spectral distribution of a Hermitian matrix.
Girko's Lemma 1 is presented below for easy reference.

GIRKO's LEMMA 1.  For any uv # 0, we have

m,(u,v)
(1.2)

ffexp(iux + ivy) u,(dx, dy)

u? + v?

ff(yis[fw'” xv,(dx, Z)}exp(ius + ivt) dtds,
0

wherez =s +it, i =v— 1 and v,(X, z) is the empirical spectral distribution
of the nonnegative definite Hermitian matrix H, = H,(2) = (E,, — zD*(E,, —
z1). Here and throughout this paper, E* denotes the complex conjugate and
transpose of the matrix E.

4ium

It is easy to see that m(u, v) is an entire function in both u and v. By Bai
and Yin (1986) or Geman (1986), the family of distributions u (X, y) is tight.
And hence, every subsequence of u, (X, y) contains a completely convergent
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subsequence and the characteristic function m(u, v) of the limit must be also
entire. Therefore, to prove the circular law, applying Girko’s Lemma 1, one
needs only show that the right-hand side of (1.1) converges to its counterpart
generated by the circular law. Note that the function In x is not bounded at
both infinity and zero. Therefore, the convergence of the right hand side of
(1.1) cannot be simply reduced to the convergence of »,. In view of the results
of Yin, Bai and Krishnaiah (1988), there would not be a serious problem for
the upper limit of the inner integral, since the support of v, is a.s. eventually
bounded from the right by (2 + & + [z])*> for any positive . In his 1984
papers, Girko failed only in dealing with the lower limit of the integral.

In this paper, making use of Girko’s lemma, we shall provide a proof of the
famous circular law.

THeEOREM 1.1 (Circular law). Suppose that the entries of X have finite
sixth moment and that the joint distribution of the real and imaginary part of
the entries has a bounded density. Then, with probability 1, the empirical
distribution w,(x, y) tends to the uniform distribution over the unit disc in
two-dimensional space.

The proof of the theorem will be rather tedious. Thus, for ease of under-
standing, an outline of the proof is provided first.

The proof of the theorem will be presented by showing that with probabil-
ity 1, m.(u,v) - m(u, v) for every (u, v) such that uv # 0. To this end, we
need the following steps.

1. Reduce the range of integration. First we need to reduce the range of
integration to a finite rectangle, so that the dominated convergence theo-
rem is applicable. As will be seen, proof of the circular law reduces to
showing that for every large A > 0 and small ¢ > 0,

f f[aisfxln Xy, (dXx, z)}exp(ius + ivt) dsdt
T 0

_)f/T[&_ZAxIn xv(dx, z)

where T = {(s, t); [s| < A, |t| < A%, [Vs? + t? — 1] > £} and »(x, z) is the
limiting spectral distribution of the sequence of matrices H, which deter-
mines the circular law.

2. Find the limiting spectrum v(-, z) of v,(-, z) and show that it determines
the circular law.

3. Find a convergence rate of v,(x, z) to v(x, z) uniformly in every bounded
region of z. Then, we will be able to apply the convergence rate to
establish (1.2). As argued earlier, it is sufficient to show the following.

(1.2)
exp(ius + ivt) dsdt,
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4. Show that for suitably defined sequence ¢,,, with probability 1:

(1.3) Iimsup/f‘fwln X(v(dx, z) — v(dx, z))| =0,
and
(1.4) limsup | [[ [*"In xv,(dx, z) dsdt| = 0

The convergence rate of »,(-, z) will be used in proving (1.3). The proof of
(1.4) will be specifically treated. The proofs of the above four steps are rather
long and thus the paper is organized into several sections. For convenience, a
list of symbols and their definitions are given in Section 2. Section 3 is
devoted to the reduction of the integral range. In Section 4, we shall present
some lemmas discussing the properties of the limiting spectrum v and its
Stieltjes transform, and some lemmas establishing a convergence rate of v,.
The most difficult part of this work, namely, the proof of (1.4), is given in
Section 5 and the proof of Theorem 1.1 is present in Section 6. Some
discussions and extensions are given in Section 7. Some technical lemmas are
presented in the Appendix.

2. List of notations. The definitions of the notations presented below
will be given again when the notations appear.

{xy;}: a double array of iid complex random variables with E(x,;) =0,
Elx,;l* = 1 and Elx;|° < o;

Xpn =Xk j=1.2.... n ts kth column vector is denoted by x,.

En = (1/ \/H)Xn = (gjk) = (gk)

R(z) =E, —zl,with z=s+itand i = V- 1. Its kth column vector is
denoted by r,.

H, = R*(2)R(2).

A¥ denotes the complex conjugate and transpose of the matrix A.

m,(u, v) and m(u, v) denote the characteristic functions of the distribu-
tions w, and the circular law p.

FX denotes the empirical spectral distribution of X if X is a matrix.
However, we do not use this notation for the matrix E, since it is tradition-
ally and simply denoted as F,.

a =X+ iy. In most cases, y =y, =n"%In"! n, But in some places, y
denotes a fixed positive number.

v,(X, z) denotes the empirical spectral distribution of H, and »(x, z)
denotes its limiting spectral distribution.

A (a) and A(a) are the Stieltjes transforms of »(x, z) and »(x, z) respec-
tively.

Boldface capitals will be used to denote matrices and boldface lower case
used for vectors.

The symbol K, denotes the upper bound of the joint density of its real and
imaginary parts of the entries x,;. In Section 7, it is also used for the upper
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bound of the conditional density of the real part of the entry of X when its
imaginary part is given.
g, = exp(—n'/12%) a constant.
Re(+) and Im(-) denote the real and imaginary parts of a complex number.
1(-) denotes the indicator function of the set in parentheses.
I |l denotes the uniform norm of the function f, that is, || fl| = sup,|f(x)I.
lIA|l denotes the operation norm of the matrix A, that is, its largest singular
value.

3. Integral range reduction. Let u, (X, y) denote the empirical spec-
tral distribution of the matrix =, =(1/Vn)X, and ,(x, z) denote the
empirical distribution of the Hermitian matrix H = H, = (E, — zD*(E, —
z1), for each fixed z = s + it € C. The following lemma is the same as Girko’s
Lemma 1. We present a proof here for completeness; this proof is easier to
understand than that provided by Girko (1984a, b).

LEmMmMA 3.1. For all u # 0 and v # 0, we have

ffexp( ius + ivy) u,(dx, dy)

m,(u, V)

S u? + v2

= Tf/gn(s, t)exp(ius + ivt) dtds
a

where [/ --- dtds denotes the iterated integral [[ [ --- dt] ds and

t
2y Z(S:Re()\k)) 5 _ 2 “In Xv,(dx, z).
N 21 (s —Re(A)) + (t—1m(A)) ds /o

On(s,t) =

REMARK 3.1. When z = A, for some k < n, »,(x, z) will have a positive
measure of 1/n at x = 0 and hence the inner integral of In x is not well
defined. Therefore, the iterated integral in (3.1) should be understood as the
generalized integral. That is, we cut off the n discs with centers
[Re(A), Im(A )] and radius ¢ from the s, t plane. Take the integral outside
the n discs in the s, t plane and then take ¢ — 0. Then, the outer integral in
(3.1 is defined to be the limit [w.r.t. (with respect to) £ — 0]) of the integral
over the reduced integration range.

ReEMARK 3.2. Note that g,(s,t) is twice the real part of the Stieltjes
transform of the two-dimensional empirical distribution wu,, that is,

po(dx,dy) 10 1
j'/x+iy—z_ﬁk:1)\k—z

which has exactly n simple poles at the n eigenvalues of E,. The function
g,(s, t) uniquely determines the n eigenvalues of the matrix E, . On the other
hand, g,(s, t) can also be regarded as the derivative (w.r.t. s) of the logarithm
of the determinant of H which can be expressed as an integral w.r.t. the
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empirical spectral distribution of H, as given in the second equality in the
definition of g,(s, t). In this way, the problem of the spectrum of a non-
Hermitian matrix is transformed as one of the spectrum of a Hermitian
matrix, so that the approach via Stieltjes transforms can be applied to this
problem.

Proor. Note that for all uv # 0,

u® 4+ v? s _ _
2iumr f/ s? + tzeXp(lus + ivt) dtds

u? + v? sign(s)
" 2iur ff 1g_|_(t2 exp(ius + iv|s|t) dtds

u?+v
= /mgn(s)exp( ius — |vs|) ds

u? + v?
= fsmluslexp(—lvsl) ds = 1.

Therefore,

/fexp( iux + ivy) u,(dx, dy)

u? + v?
" 2ium ff | s? +t2

><exp(|us + ivt + iuRe(A,) + ivIm(A,)) dtds
u? + v? 2(s — Re(Ay))
- Aiun Unk (s = Re(A)) + (t = Im(A)’
xexp(ius + ivt) dtds

u? + v? d wl 4 _ e
- ) + _
4ium j[ &sjo n xv,(dx, z) [exp(ius + ivt) dtds

The proof of Lemma 3.1 is complete. O

LEmmMA 3.2. For all uv # 0, we have

m(u,v) = —ff exp(iux + ivy) dxdy
x2+y2<1
(3.2) ,
_ v i ivt) dtds
= Ziun ffg(s, t)exp(ius + ivt) ,
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where
2s

o(s.t) = | e ML

2s, otherwise.

ProoF. As in the proof of Lemma 3.1, we have, for all uv # 0,

u? +v2

2(s = x)
33 MUY= g I/ ff 2iy2<1 (s — x)° + (t—y)? ey

xexp(ius + ivt) dsdt.

Then, the lemma follows from the fact that the inner integral on the right-
hand side of (3.3) equals g(s, t), using Green’s formula. O

LEmmA 3.3. For any uv # 0 and A > 2, with probability 1, when n is

large, we have

(3.4) / /m gn(s, t)exp(ius + ivt) dsdt
Isl= A7~ v

4ar l| A
< —exp|——=|v
= p( 2 )
and

8(A+1+e¢)
A? '

(3.5) f f g,(s, t)exp(ius + ivt) dsdt| <
[sl<AZ|t|> A2

Furthermore, the two inequalities above hold if the function g.(s, t) is re-
placed by g(s, t).

ProorF. From Bai and Yin (1986), it follows that with probability 1, when
n is large, we have max {|A,} < 1 + &. Hence,

f fm gn(s, t)exp(ius + ivt) dsdt
[s|>AY -

~ 2(s — Re(Ay))
- '/\SI>A'/ on k 1(s— Re(/\k)) +(t— 'm(’\k))

(3.6) X exp(ius + ivt) dsdt

n

Ty f sign(s — Re( A, ))exp(ius — [v(s — Re(Ay))l) ds
n k=1"IsI=A

4
< Wexp( - —|V|A)
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and

8(A+1+e¢)
3.7 s, t)exp(ius + ivt) dsdt| < —.
(37) ‘ [ ] oastpess ) &

Similarly, one can prove the above two inequalities for g(s, t). The proof of
Lemma 3.3 is complete. O

From Lemma 3.3, one can see that the right-hand sides of (3.4) and (3.5)
can be made arbitrarily small by making A large enough. The same is true
when g, (s, t) is replaced by g(s, t). Therefore, the proof of the circular law is
reduced to showing

(3.8) /‘SBA/‘HSAZ[gn(s, t) — g(s, t)]exp(ius — ivt) dsdt — 0.

Finally, define sets

T={(s,t):Isl<A [tI<A?and |z] - 1] > &}
and
T, = {(s,t): Izl — 1| < &},

where z = s + it.

LEMMA 3.4. For all fixed A and 0 < £ < 1, for all n,

(3.9) ‘f[ 9,(s, t) dsdt| < 24m/e.

Furthermore, when g, (s, t) in (3.9) is replaced by g(s, t), the estimation (3.9)
remains true.

Proor. For any fixed u and v, by a polar transformation, we obtain
(s —u) dtds

‘ffn(s —u)? + (t-v)?

where D(0) is the sum of lengths of at most two segments which are the

intersection of the ring T, and the straight line (s — u)cos 6 + (t — v)sin § =

0. In the above, we have used the fact that max, D(#) < 2V4e + 2¢% < 6Vs.
This completes the proof of (3.9) for g, (s, t). The proof of (3.9) for g(s, t) is
similar and thus omitted. The proof of Lemma 3.4 is complete. O

< 2477\/;,

/2772 D(6)cos 6 do
0

Note that the right-hand side of (3.9) can be made arbitrarily small by
choosing & small. Thus, by Lemmas 3.3 and 3.4, to prove the circular law, one
needs only to show that, for each fixed A > 0 and ¢ € (0, 1),

(3.10) ff (9,(s,t) —g(s,t))dsdt -0 as.
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4. Convergence of v, (x,z) and the limiting spectrum v(x, z). In
this section, we shall establish a convergence rate of »,(x, z) and discuss
properties of the limiting distribution »(x, z) of »,(x, z). Throughout the
remainder of this paper, we shall use the notations o(1) and O(1) in the sense
of "almost surely.” Furthermore, if the quantities represented by the symbols
0(1) or O(1) are involved with indices j, | or k, or variables « or z, then the
orders are uniform about these indices and variables.

Suppose that »(:, z) is the limiting spectral distribution of some conver-
gent subsequence of y.(-, z). Denote by A (e, z) and Aa, 2), a =X + iy,
y > 0, the Stieltjes transforms of v.(-, z) and v(:, z), respectively, that is,

An(a,z)=f

1
dx,z) = —tr(H — al)~*
x—aV“( X, Z) - r( al)

and

A(a,z)=[xl

-

v(dx, z),

where « is a complex number with positive imaginary part. The variable z in
these symbols will be omitted when there is no confusion. We will prove the
following lemmas.

LEmMA 4.1. Suppose that the conditions of Theorem 1.1 are true. Write

. , a+1-1z? 1
(4.1) A(a) +2A (a) + —— A (a) + — =71,
o o
where r, = r(«, z). Then, we have
a+1-—|z? 1
(4.2) NB+2N0+ —————— A+ - =0
o o

the remainder term r,, satisfies
sup{Irl: @ = x + iywith —o <x <®,u >y, [z <M} =0(3,),

(4.3)

y,=n"¥%In"tn and §,=n" Y,

LEMMA 4.2. The limiting distribution function »(x, z) satisfies
(44)  Iv(x+u,z) = v(x,2) <7 V2 max{lul,|ul} forallz.

Also, the limiting distribution function »(x, z) is supported by the interval
(X4, X,) when |z| > 1 and by (0, x,) when |z| < 1, where

[—1 +20|z|* + 8|z|* - \/(1 + 8|z|2)3],

X =
1 8|Z|2
1 — 3
X, = L [\/(1 + 8|z|2)3 — 1+ 20z]* + 8|z|4} whenz # 0,

=4 whenz=0.
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LEmMmA 4.3. Let m,(a) and m,(a) denote the two solutions of (4.2) other
than A(a). For any given constants N > 0, A > 0 and ¢ € (0, 1), there exist
positive constants ¢, and &, such that for all large n, |[a|< N, y >0 and
z € T, we have the following:

()

(4.5) jTg,XslA(a) —m;(a)l = &,

(i) for |a — x,| = &, (and |a — x;| = &4, if |2] > 1),

(4.6) J_rl12if13|A(oz) —m;(a)l = &,
(iii) for |a — x,| < &,

(4.7) j@gm(a) —mj(a)l = gyl — x,l,
(iv) for |z] > 1+ ¢, and |a — x,| < &4,

(4.8) |ACa) — mj(a)l = goy/la — x4l

REMARK 4.1. This lemma basically says that the Stieltjes transform of the
limiting spectral distribution v(-, z) is distinguishable from the other two
solutions of the equation (4.2). Here, we give a more explicit estimate of the
distance of A(a) from the other two solutions. This lemma simply implies
that the limiting spectral distribution of the sequence of matrices H,, is
unique and nonrandom since the variation from u, to v, , is of order O(1/n)
and hence the variation from A (a) to A, (@) is O(1/ny).

LEMmA 4.4. We have
J e
(4.9) Efo In xv(dx, z) =g(s,t).

LEmmMA 4.5. Under the conditions of Theorem 1.1, for any M, > M, > 0,

sup  lly(v, 2) — v(-, 2)ll = sup  lyy(x,2) = v(x, z)l
(4.10) MislzlsM; X, My <lzl<M,
_ O(n—l/lzo).

REMARK 4.2. Lemma 4.5 is used only in proving (1.3) for a suitably chosen
&,. From the proof of the lemma and comparing with the results in Bai
(19933, b) one can see that a better rate of convergence can be obtained by
considering more terms in the expansion. As the rate given in (4.10) is enough
for our purposes, we restrict ourselves to the weaker result (4.10) by a
simpler proof, rather than trying to get a better rate by long and tedious
arguments.
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ProorF oF LEMmMA 4.1. This lemma plays a key role in establishing a
convergence rate of the empirical spectral distribution v,(-, z) of H. The
approach used in the proof of this lemma is in a manner typical in the
application of Stieltjes transforms to the spectral analysis of large-dimen-
sional random matrices. The basic idea of the proof relies on the following two
facts: (1) the n diagonal elements of (H — « 1)~ are identically distributed
and asymptotically the same as their average, the Stieltjes transform of the
empirical spectral distribution of H; (2) for all k < n, (1/mtr((H, — «l,_,)™")
are identically distributed and asymptotically equivalent to (1,/nmtr((H —
al,)™ 1), where the matrix H, is defined similarly as H by = with the kth
column and row removed. By certain steps of expansion, one can obtain the
equation (4.1) which determines the Stieltjes transform A, («) of H.

Since A(a) is the limit of some convergent subsequence of A (a) and hence
(4.2) is a consequence of (4.3), only (4.3) need be shown.

To begin, we need to reduce the uniform convergence of (4.3) over an
uncountable set to that over a finite set. Yin, Bai and Krishnaiah (1988),
proved that ||E,l| = 2, a.s., where ||E, |l denotes the operator norm, that is,
the largest singular value, of the matrix =, when the entries of X are all
real. Their proofs can be translated to the complex case word for word so that
the above result is still true when the entries are complex. Therefore, with
probability 1, when n is large enough, for all |z| < M,

(4.11) Amax(Hy) < (IEall +120)* < (3 + M),

Hence, when |a| > n'/%% In n and (4.11) is true, we have for all large n

A(a) s ———
n( ) |a| _ (3 + M)Z
and consequently,
Ir,|=|A2 + 2A% + a+1_|z|2A + !
(4.12) fol =80 50 o "t g

<4Mn Y% In"t n =0(§,).
If max(|al,|a’) < n*%Innand |a — a'| < n~1/7, then
An(@) = Ap(a)l < [min(y, y)] *la - o'l <y, 2n" Y7,
which implies that
(4.13) Ir(a) —ry(a)l <My *n Y7 < Mn~ 1/
for some positive constant M.

Suppose that |z — 2’| < n~*/%, Let A, (2) and A, (Z') (arranged in increas-
ing order) be eigenvalues of the matrices H(z) = (§, — zD*(E, — zI) and
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H(z') = (B, — 2 D*(E, — z' D), respectively. Then for any fixed «, by Lemma
A.5, we have

Ay(e, 2) — Ap(a, 2')]
< 13 A (Z) = A(Z)]
TN 3 IAN(Z) = allA(Z) - a

(4.14) 12

1
<y ?z-27] Htr(ZEn —(z+ ) (2E, — (z + 2))

<y ?lz-27Z|3+2M) <Mn /8

This, together with (4.12) and (4.13), shows that to finish the proof of (4.3), it
is sufficient to show that

(4'15) F}z)r(] {|rn( ay, Zj)|} = 0( ‘Sn)'

where a, =x(D) +iy(D, 1=1,2,...,[n"®] and z;, j=1,2,...,[n'?] are
selected so that [x(D| < n®Inn, y, <y(l) <n"®Inn and for each |a| <
n*® In n with y > y,, there is an | such that |« — «,| < n~'/7; and for each
|z| < M, there is a j such that |z — z;| < n™*/%.

In the rest of the proof of this lemma, we shall suppress the indices | and j
from the variables «, and z;. The reader should remember that we shall only
consider those «; and z; which are selected to satisfy the properties de-
scribed in the last paragraph.

Let R = R.(2) = (ry;), where r; = £ for j # k and r,, = &, — z. Then
H = R*R. We have

A(a)=—tr(H—al)™*

(4.16) n 1

2 1 s
k=1 Irel” —a = rER(Hy — al ;) "Riry

S|k S|k

where r, denotes the kth column vector of R, R, consists of the remaining
n — 1 columns of R when r is removed and H, = R%R,.
First, notice that

-1
(417) ||rk|2—a—r:2Rk(Hk—aln_l) Rir| )
>Im(Inl? = a = FER (Hy — al, 1) "Rin)| > y.

By Lemma A.4, we conclude that

(4.18) max ||rk|2— (1+|z|2)| =o(n %3 1In?n),
i, ILk<n

As mentioned earlier, with probability 1 for all large n, the norm of R is

not greater than 3 + M. We conclude that with probability 1, for all large n,

the eigenvalues and hence the entries of R (H, — al,,_,) 'R} are bounded

by (3 + M)?/y < (3 + M)?/y,. Therefore, the sum of squares of absolute
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values of entries of any row of R, (H, — al,_,)"'R% is not greater than
B+ M)*/y? < (3 + M)*/y2. By applying Lemma A.4 and noticing that r, =
(1/Vn)x, — ze,, where e, is the vector whose elements are all zero except
the kth element which is 1, we obtain

max
j, 1, k<n

* -1
re Ry(Hy —al,_;) "RYry

1 o
(4.19) —(Ftr(Rk(Hk—alnl) R%)

-1
+zP[R(Hy — aly ) Ri]kk)

— O(ynfln75/36 |n2 n),

where [A],, denote the (k, k)th element of the matrix A.

Now, denote by A; < -+ <A and Ay ; < === < Ay, the eigenvalues of
H and those of H,, respectively. Then by the relation0 < A} — A, |_; < A, —
A,_,, and by the fact that with probability 1

A, < (2 +1zl)? + & forall large n,

1 _ 1 _
Ftr(Rk(Hk —al,_y) RY)=1- —+ %tr((Hk —al, ) ),

and
[tr(H—al) ™) = tr((H — al, ;) Y)|
n AI - Ak,l—l 1
(4.20) - =22(Al_a)(Ak,lfl_a) " Al —a

<A./y*+1/y,
we conclude that

max
j,ILk<n

1 -1
Htr(Rk(Hk —al, ;) Ri)—1-aA,(a)

(4.21)

1 | o
<—+ —(A,/y*+1/y) =o(n"*?).

— o+ —(Aa/y? +1/y) = o )

We now estimate [R (H, — al,_ ) *R¥],,. Let B, denote the kth row of
R\, and R, denote the matrix of the remaining n — 1 rows of R\ when g, is
removed. Also, write H, = R¥R,. Note that g, is just the kth row of E,

with the kth element removed. Then we have

-1 (3 n ’ 1
[Rk(Hk_aln—l) Ri]kkzﬁk(Hk_alnfl_FBkBk) Bx
(4.22) B(((ﬁk - aln—1)_llék

—1_

1+ B(((ﬁk - aln—l) B
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Applying Lemma A.4 with K, = y;*, we obtain
o -1 1 ~ 1
max (H — al - —=tr{(H, — al
(4.23) il ksn ’Bk( k@ “*1) B n (( P nfl) )

= O(y,'n7*/*%In?n).
By elementary knowledge of matrix theory, A;(H)) < Aj(ﬁk) < Aj,,(H), and
we have

%tl’((l:ik — aln—l) ) - Ay(a)

By noticing

(4.24) <4y;?n"1 =o(n"919),

|a(l + An(a))| 2||m(a(1 + An(a)))| >y,

~ -1 ~

‘a(l—’_BI’((Hk_aln—l) Bk) =

and by (4.23) and (4.24), one obtains
An(a)
Re(He —al, ) 'RE| — —1 P
j,Tﬁ‘i(n[ (Hic = al ) RY, 11 A (a)
4.25 ~ -1_
(4.25) < _max Ialzy‘z\ Bi(Hy — al, ) Bk—An(a)\
J, L K<n

=0(a’y,®n"*/*Inn).

Combining estimates (4.16)—(4.25), we conclude that
1+ A (@)

|z|? — a(l+ An(a))2

From this, one can see that r, is controlled by o(a?y,*n %3 1n2? n)) =
0(8,) and thus the error estimate (4.1) follows. The proof of Lemma 4.1 is
complete. O

(4.26) max A (a) — =0(a?y,%n"%3%In?n).
j.I<n

ProoF oF LEMMA 4.2. Note that the Stieltjes transform A(a) of the
limiting spectral distribution »(-, z) is an analytic solution in « on the upper
half plane y > 0 to the equation (4.2). It can be continuously extended to the
“closed” upper plane y > 0 (but « # 0). By way of the Stieltjes transform [see
Bai (1993a) or Silverstein and Choi (1995)], it can be shown that v(-, z) has a
continuous density (probably excluding x = 0 when |z| < 1), say p(:, z), such
that

v(X,z)= foxp(u, z) du

and p(x, z) = 7 Im(A(x)). Since p(x, z) is the density of the limiting
spectral distribution »(-, z), p(x,z) =0 for all x <0 and x > (2 +|z))? Let
X > 0 be an inner point of the support of »(:, z). Write A(x) = g(x) + ih(x).
Then, to prove (4.4), it suffices to show

h(x) < max{y2/x,1}.
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Rewrite (4.2) for « = x as

1-1z” 1

+ — =
XA
Comparing the imaginary and real parts of both sides of the above equation,
we obtain

AN +2A+1+ 0.

1

(4'27) 2(g(x) + 1) = X(gZ(X) + hZ(X))
and

1zl 2

h2(x) = XZ +(g(x)+1)" + X(gz(f)(j—)hz(x))

4.28 < i + ! + !
(4.28) CX 0 ax?(g?(x) 4—h2(x))2 2xh(x)

1 1 1

x 4x2h*(x) * 2xh(x) "

This implies h(x) < max{y/2/x 1}, because substituting the reverse inequal-
ity h(x) > /2/x (or h(x) > 1) will lead to a contradiction if 0 < x < 2 (or
X > 2, correspondingly). Thus, (4.4) is established.

Now, we proceed to find the boundary of the support of »(:, z). Since v(:, z)
has no mass on the negative half line, we need only consider x > 0. Suppose
h(x) > 0. Comparing the real and imaginary parts for both sides of (4.2) and
then making x approach the boundary [namely, h(x) — 0], we obtain

x(g®+2g2+g)+(1—-1z%g+1=0
and
(4.29) x(3g2+4g+1)+1—1z°=0.
Thus,
[(1-1z")g + 1| (3g + 1) = (1 —[z*)g(g + 1).
For |z| # 1, the solution to this quadratic equation in g is

430 —3+V1+8|z° ( 1 it 1] 1)
- = = ——if|z| =
(4.30) g PRRpTST g 3

which, together with (4.29), implies that, for |z| # 1,

1—z|?
X2 = T g+ 1)(3g + 1)

(4.31)

) S
—W{l 200z — 8zl + (1 + 8121%)° }, ifz 0,
z

X, = —»and x, = 4, if z=0.
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Note that 0 < x; < X, when [z|> 1. Hence, the interval (x, x,) is the
support of v(-, z) since p(x,z)=0 when x is very large. When |z| < 1,
X, < 0 < X,. Note that for the case |z| < 1, g(x;) < 0 which contradicts the
fact that A(x) > 0 for all x <0 and hence x; is not a solution of the
boundary. Thus, the support of »(-, z) is the interval (0, x,). For |z| = 1, there
is only one solution x, = —1/[g(g + 1)*] = 27/4, which can also be ex-
pressed by (4.31). In this case, the support of v(-, z) is (0, x,). The proof of
Lemma 4.2 is complete. O

ProoF oF LEMMA 4.3. We first prove that A(a) does not coincide with
other roots of the equation (4.2) for y > 0 and « # x, ,. Otherwise, if for some
a, A(a) is a multiple root of (4.2), then it must be also a root of the derivative
of the equation (4.2), that is,

a+1—]z
(4.32) 3N +4A+—— " _0

o

Similar to the proof of Lemma 4.2, solving equations (4.2) and (4.32), one
obtains « = x, or x, and A is the same as g given in (4.30). Our assertion is
proved.

We now prove (4.7). Let A + p be either m, or m;. Since both A and A + p
satisfy (4.2), we obtain

30%(a) + 4A(a) + 1+ (1 —121°)/a
3A(a) +2+p '
Write p = A(a) — A(X,). By (4.29), we have
30%(a) + 4A(a) + 1+ (1 —|2*)/«
=3A%(a) +4A(a) + 1+ (1 —12)/a
(4.34) —[38%(x,) + 4A(x,) + 1+ (1 —12°) /%,]
(1 =1z2P)(x, — @)

X, a

(4.33) p=

= p[6A(X,) +4 + 3p] +

From (4.2) and (4.29), it follows that
0 = [38%(x,) + 4A(x,) + 1+ (1 —21°)/a] B
+[3A(x,) + 2] p? + p°
(X = a)(A(Xy)(1 = 121*) + 1)
(4.35) ! X,a
= [3A(x,) + 2 + p]| p°

L O = @)[(80x) +p)( -~ 12F) +1]
X, a '
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Note that A(x,)(1 —|z|®) + 1/4 =1/4(1 + V1 + 8/z|*) = 1/2. Equation
(4.35) implies that

1 |X2 a|
4.36 pl = min , > Cpy/Ix, — al,
(436) 17l AM? \/6(|A(x2)|+1) wixe = al
for some positive constant c,. Note that A is continuous in the rectangle
{(a,2); Z€ T, Xg min — €1 < X < X3 max» 0 <Y < N}, where x, ;, = 4 (corre-
sponding to z=10) and X, . = (1/8M?)(1 + 8M?)¥? — 1 + 20M? +
8M*] (corresponding to |z| = M = VA? + A*). Therefore, we may select a
positive constant &, such that for all [zl <M and |a — Xx,| < &, |pl <
min(3, cZ2/M*). Then, from (4.33) and (4.34) and the fact that when | p(a)| < %,

BA(a) +2 + p(a)l < 4,

we conclude that

+ (1 —121*) (%, — @)

[p(a)l = min
X, a

4

11 1
> min(g, gcﬂ/lx2 —al - £M2|x2 - al)

> c,y/lx, — al.

This concludes the proof of (4.7).

The proof of (4.8) is similar to that of (4.7). Checking the proof of (4.7), one
finds that equations (4.33)—(4.35) are still true if x, is replaced by x,. The
rest of the proof depends on the fact that for all z€ T, |z|> 1+ ¢ and
la — x| < &, BA(a) + 2 + p(a)| has a uniform upper bound and p can be
made as small as desired provided &, is small enough. Indeed, this can be
done because x; has a strictly positive minimum x; ., at [z[=1 + ¢, and
hence, A(a) is uniformly continuous in the rectangle {(«, 2); z € T, X; nin —
&1 < X < Xy max» 0 <y < N}, provided &, is chosen so that x; ,;, — &, > 0.

We claim that (4.6) is true. If not, then for each k, there exist «, and z,
with z, € T and |a, — X,| = &, (and |a, — X;| = &, if |z,| = 1 + &), such that

P[BA(X,) + 4 + 3p]

(4.37)

1
in[A(a,) —mi(a ) < —.
min 1A(ay) = mj(a)| < ¢
Then, we may select a subsequence {k'} such that «,, - aq and z,, -z, € T
and |ag — X,| = &;. If |2l = 1 + &, we also have |a, — X;| > &;. For at least
oneof j=2or3,say j =2,

1
IACa) = my(a)l < PE
If a, # 0, by continuity of A(a) and m,(a), we shall have A(ay) = m,(ay)
which contradicts the fact that A(a) does not coincide with m,(a) except
a =X, or a« = X; when |z| > 1. It is impossible that a; = 0 and |z,| > 1 + &,
since A(ay) — 1/(|zy* — 1) while min;_, 5lm;(a, )| — . Itis also impossible
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that ay, = 0 and |z,] < 1 — &, since in this case, we should have Re(A(«y)) —
+oo, my(ey) = 1/(1z5° — 1) and Re(my(ay)) — —o which follows from
ACay) + my(eye) + my(ay) = —2. This concludes the proof of (4.6).

The assertion (4.5) follows from the fact that equation (4.2) has no three
identical roots for any « and z, since the second derivative of (4.2) gives
A(a) = —2/3 equals neither A(x,) nor A(x,). The proof of Lemma 4.3 is then
complete. O

PROOF OF LEMMA 4.4.  For x < 0, we have: (1) A(x) > 0 (real); (2) A(x) - 0
as x —» —o and (3) from (4.2), as x 10,

IXTA(X) 1VL = (21, iflzl <1,
(4.38) VIXIA(X) 11, if 2] = 1,
ANz —1) ", iflzl> 1,

Thus, for any C > 0, the integral /°.A(x) dx exists. We have by exchanging
the integration order,

LOCA(X) dx=fOCA(—x) dx=focfomuixv(du,z) dx

(4.39) = /m[ln(c +u) — Inu]v(du, z)
0

=InC + fmln(l +u/C)v(du, z) — fooln ur(du, z).
0 0
Differentiating both sides with respect to s, we get

(9 © (9 o

—f Inuv(du, z) = —f In(1 +u/C)v(du, z)

ds /o ds Jo
(4.40) p

0
— —A(Xx) dx.
S 75800

[The reasons for the exchangability of the order of the integral and derivative

are given after (4.47).]
Differentiating both sides of (4.2) with respect to s and x, we obtain

B 2sA(X)

X+ 11—z

(4.41) &iSA(x) 302(X) + 4A(X) + - »

and

X+ 1—1z? A(x)(1—|z|2)+1

3A%(X) + 4A(X) + 2

ﬁA
X2 X X

Comparing the two equations, we get
2sxXA(X) J
1+ A(x)(1 - 1z?) ax

J
(1 + A(x))? 9x

J
(4.42) —-A(X) = A(X) = — A(X),
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where the last equality follows from the fact that
|z|? 1 14 A(x)(1—121%)
SR HA)T A FAM) AL+ A(X))

which is a solution of (4.2).
By (4.42), we obtain

(4.43)

o d 2s
f_ch(x) dx = —[ —A(x )—(1 YO dx
P R
(4.49) - ZSfA(—c)(l +A)° a8
2s 2s

1+A0 ) 1+A(-C)
Letting x 10 in (4.2), we get

o, if |z1? <1,

(4.45) A(0_) =

|Z|2—1, if|Z|2>1.

We also have A(—C) —» 0 as C — «. Thus, we get

(4.46) 