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STRING MATCHING BOUNDS VIA CODING1

BY PAUL C. SHIELDS

University of Toledo

Ž n.It is known that the length L x of the longest block appearing at1
least twice in a randomly chosen sample path of length n drawn from an
i.i.d. process is asymptotically almost surely equal to C log n, where the
constant C depends on the process. A simple coding argument will be used
to show that for a class of processes called the finite energy processes,
Ž n.L x is almost surely upper bounded by C log n, where C is a constant.1

While the coding technique does not yield the exact constant C, it does
show clearly what is needed to obtain log n bounds.

1. Introduction. Let A denote a finite set and let x n denote the se-m
Ž n.quence x , x , . . . , x , where each x � A. Define L x to be the length ofm m�1 n 1 1

n Ž n.the longest block that appears at least twice in x ; that is, L x is the1 1
largest integer L � n for which there are integers 0 � s � t � n � L such
that

x s�L � x t�L .s�1 t�1

Ž n.The asymptotic behavior of L x for sequences drawn from a stationary,1
finite-alphabet ergodic process is of interest in DNA modeling. Known results
include the following.

1. For any i.i.d. or mixing Markov process there is a constant C, which
depends on the process, such that

L x nŽ .1
lim � C almost surely.

log nn��

2. For any ergodic process with entropy rate H,

L x n 1Ž .1
lim inf � almost surely.

log n Hn��

Ž . Ž .3. For any positive function n � � n which is o n , there is a mixing process
� 4and an increasing sequence n such thatj

L x n jŽ .1
lim � �� almost surely.

� nj�� Ž .j
Positive results for i.i.d. and mixing Markov processes are discussed, for

� �example, in 1 . The fact that 1	H is lower bound follows easily from results
� � Ž n. Ž . � �in 5 . The fact that L x can grow at any o n rate was established in 10 .1
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There is a simple connection between repeated blocks and coding, namely,
the second time a block occurs it can be described merely by giving its length
and telling where it started earlier. This idea is the basis for several coding
procedures, including the well-known Lempel�Ziv coding algorithm used in
many standard data compression packages. The main purpose of this paper is
to show how this coding idea, in combination with an asymptotic lower bound
on code length due to Barron, yields an asymptotic lower bound on the
probability a repeated block, conditioned on the past of its second occurrence.

Ž n.This bound immediately shows that L x 	log n is almost surely bounded1
for processes that have suitable exponential upper bounds on conditional
probabilities, thus extending the i.i.d. and Markov upper bound results to a
much wider class of processes.

To state the principal result and the consequent string matching bounds
precisely, the following notation and terminology will be used. A process �
with alphabet A is a Borel probability measure on the space A� of infinite
sequences drawn from A. For each t � 1, L � 1, and x t�L, let1

� y � A� : yt�L � x t�L� 4Ž .1 1t�L t�� x x �Ž .t�1 1 � t t� y � A : y � x� 4Ž .1 1

denote the conditional measure on the next L steps, given the first t steps. A
sequence x n is said to have a repeated L-block at position t � 1 if t � n � L1
and there is an s such that 0 � s � t and x s�L � x t�L.s�1 t�1

THEOREM 1. Let � be stationary process with alphabet A. For each n, let
Ž . Ž . n � � nt n and L n be integer-valued mappings from A to 1, n such that x has1

Ž . Ž .a repeated L n -block at position t n � 1. Then
1

tŽn.�LŽn. tŽn.1 � x 
 x � eventually a.s.Ž . Ž .tŽn.�1 1 5n
This theorem immediately gives log n string matching bounds for finite

energy processes. An ergodic process � has finite energy if there are con-
stants c � 1 and K such that

2 � x t�L 
 x t � Kc L ,Ž . Ž .t�1 1

for all t � 1, for all L � 1, and for all x t�L of positive measure.1

THEOREM 2. If � is a finite energy A-valued process, then there is a
Ž n.constant C such that L x � C log n, eventually almost surely.1

Ž n.PROOF. Let L x be the length of the longest string that appears twice in1
n Ž n. Ž .x and assume L x � �. The repeated block bound 1 , together with the1 1

Ž .finite energy bound 2 , yields

L x n 5Ž .1
lim sup � ,

log n �log cn��

almost surely, which establishes the theorem. �
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Theorem 2 extends previous upper bounding results, since i.i.d. processes
and mixing Markov processes have finite energy. Furthermore, functions of
mixing Markov chains have finite energy, hence have log n string matching

Žbounds. Functions of Markov chains are also called hidden Markov chains or
.finite state processes. Another type of finite energy process is obtained by

adding i.i.d. noise to a given ergodic process, for example, the binary process
defined by

X � Y � Z mod 2Ž .n n n

� 4 � 4where Y is an arbitrary binary ergodic process and Z is binary i.i.d. andn n
� 4 Ž .independent of Y . Adding noise is often called ‘‘dithering.’’n

Ž n.REMARK 1. The question of when L x 	log n is almost surely bounded is1
� �connected to an entropy estimation algorithm proposed by Grassberger 3 ,

� 4and described as follows. For each infinite sequence x � x , x , . . . and1 2
Ž . � 4positive integer i, let x i � x , x , . . . , the sequence obtained by omittingi i�1

� � n nŽ .the first i � 1 terms of x. For i � 1, n , let L � L x denote the length ofi i
Ž . Ž . � �the shortest prefix of x i that is not a prefix of x j for j � 1, n , j � i.

Grassberger suggested that for any ergodic process of entropy H,
n1 1

n3 L x � almost surely.Ž . Ž .Ý in log n Hi�1

� � Ž .As shown in 9 , there are ergodic processes for which 3 is false, even for
convergence in probability, but a trimmed mean result is true; namely,

nŽ .eventually almost surely, � n of the numbers L x 	log n are within � ofi
Ž . Ž1	H , for any given � � 0. An error in the proof of this result is corrected in

. Ž .the Appendix of the present paper. Consequently, the limit result 3 is true
Ž n.for any ergodic process for which L x 	log n is almost surely bounded.1

REMARK 2. After submission of this paper, it was learned that Kontoyian-
� �nis and Suhov 4 , using a different method in combination with the results

� �of 9 , obtained the conclusion of Theorem 2 for processes satisfying the
condition that there be an � � 0 and an r � 1, such that the essential

Ž 0 .infimum of � x 
 x is at least � . Their result is easily derived fromr ��

Ž .Theorem 1 by using their idea to upper bound the left-hand side of 1 .

2. The coding method. A code, or more precisely, a faithful n-code, is a
one-to-one function C from An into variable length binary sequences, calledn

Ž n. ncode words. Let l x denote the length of the code word assigned to x . Two1 1
facts from coding theory will be used. The first, due to Shannon, is that for
any given probability distribution � on An, there is a faithful n-code with

Ž n. � Ž n.� � �length function l x � �log � x , where � denotes the upper integer1 1
function. In fact, such codes can be constructed with the prefix property,
namely, so that no code word is a prefix of any other code word. Such codes

� Ž n.�are called prefix codes. Any prefix n-code with length function �log � x1
will be called a Shannon code with respect to �.
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The second coding fact, due to Barron, is that for no process is there a
sequence of prefix n-codes whose lengths are shorter than Shannon code
lengths by more than 2 log n, infinitely often on a set of positive measure.

Ž .LEMMA 1 Barron’s lemma . Let � be a process with alphabet A, and for
Ž n.each n, let C be a prefix n-code with length function l x . For almost everyn n 1

� Ž .x � A , there is an N � N x such that

l x n � log � x n � �2 log n , n � N.Ž . Ž .n 1 1

� �Barron’s lemma was proved in his thesis 2 , but only published much later
� �in 8 . Its proof, along with a sketch of the proof of the existence of Shannon

codes, will be given after it is shown how Theorem 1 follows from Barron’s
lemma.

PROOF OF THEOREM 1. The basic coding idea is to code the second occur-
rence of a repeated block by telling where it starts, its length, and where it
occurred earlier, then use Shannon codes on the parts preceding and follow-
ing this second occurrence, and compare the total length of this code with the
Shannon code length for x n.1

To illustrate the coding idea, suppose a block of length L occurs at position
s, and then again at position t � 1 � s, as indicated in the following figure.

Repeated L-block

� �

x x L x L x1 s t�1 n

The sequence x n is encoded by first encoding the indices s, t and L. Since1
� �these integers are all bounded by n, each can be specified using log n bits.

Next, the initial segment x t is encoded using the Shannon code for the1
Ž t . nmeasure � x and the final segment x is encoded using the Shannon1 t�L�1

Ž n t�L. � Ž t .�code for the conditional measure � x 
 x . These require �log � xt�L�1 1 1
� Ž n t�L.�and �log � x 
 x bits, respectively. The code is the concatenationt�L�1 1

of these five codes, in the order given. In particular, total code length is
1 1

4 3 log n � log � logŽ . t n t�L� x � x 
 xŽ . Ž .1 t�L�1 1

bits. Here, as later, the fact that these logarithms should be rounded up to
integers is ignored, as only asymptotic results will be of interest.

To see that the code is a prefix code, consider how the decoder, who knows
the process � and n, operates. The first 3 log n bits determine s, t and L.
Since t is now known, and Shannon codes are prefix codes known to the
decoder, the decoder can recognize that it has a code word after reading the

Ž t . tnext � log � x bits and decode to get x . Since s and L are now known, the1 1
Ždecoder knows that x � x , for 1 � j � L. This can be done recur-t�1�j s�j

� � � � .sively if it happens that s, s � L � 1 and t � 1, t � L overlap. Since
t � L � 1 and x t�L are now known, the decoder can determine x n from1 t�L�1
the final block of bits.
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To compare code length with the length of the Shannon code with respect
Ž n. Ž n.to � x , first factor � x and take the logarithm to obtain1 1

log � x n � log � x t � log � x t�L 
 x t � log � x n 
 x t�L .Ž . Ž . Ž . Ž .1 1 t�1 1 t�L�1 1

Ž .Adding this to the code length 4 produces

3 log n � log � x t�L 
 x tŽ .t�1 1

and hence Barron’s lemma gives

3 log n � log � x t�L 
 x t � �2 log n ,Ž .t�1 1

Ž .eventually almost surely, which is just the conclusion, 1 , of Theorem 1
expressed in logarithmic form. �

The key to Barron’s lemma is an inequality, known as the Kraft inequality,
which holds for any prefix code. Recall that a prefix n-code is mapping C

n Ž n.from A into variable length binary words such that if C x is a prefix of1
Ž n. n nC y then x � y . The Kraft inequality asserts that1 1 1

5 2�l Ž x1
n. � 1.Ž . Ý

nx1

One simple way to prove this inequality is to associate with each x n the1
� � �l Ž x1

n.dyadic subinterval of the unit interval 0, 1 of length 2 whose left
Ž n.endpoint has dyadic expansion C x . The prefix property implies that these1

Ž .subintervals are disjoint, which implies 5 .
By the way, it should be noted here that a kind of partial converse of the

Ž n.Kraft inequality holds, namely, if l x is a positive integer-valued function1
such that Ý 2�l Ž x1

n. � 1, then each x n can be associated with a dyadic1
subinterval of the unit interval of length 2�l Ž x1

n. such that distinct n-se-
Ž .quences correspond to disjoint subintervals. This is an easy exercise. A

Ž n.prefix code is then obtained by defining C x to be the dyadic expansion of1
n Ž n.the left endpoint of the interval associated with x . In particular, l x �1 1

� Ž n.� Ž .�log � x clearly satisfies 5 , so there is a prefix code with this length1
function; in other words, Shannon codes exist.

The standard information theory proofs of these prefix code results first
identify the code words of a prefix code with the leaves of a labeled binary

Ž . Ž .tree, then note that 5 holds if and only if l � is the depth function of such a
� �tree. See 11 , Section 1.7.3.

� 4PROOF OF BARRON’S LEMMA. Fix a sequence c of positive numbers andn
define

B � x n : l x n � log � x n � �c .� 4Ž . Ž .n 1 n 1 1 n

Ž n. lnŽ x1
n.By using the relation l x � log 2 , the set B can be expressed asn 1 n

B � x n : � x n � 2�l nŽ x1
n.2�c n ,� 4Ž .n 1 1

and hence
� B � � x n � 2�c n 2�l nŽ x1

n. .Ž . Ž .Ý Ýn 1
n nx �B x �B1 n 1 n
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Ž .Since C is assumed to be a prefix code, the Kraft inequality 5 implies thatn
�l nŽ x1

n. Ž . �c n Ž .nÝ 2 � 1, so that � B � 2 . With c � 2 log n the sum Ý � B isx n n n1

finite, and hence Barron’s lemma follows from the Borel�Cantelli lemma.

REMARK 3. The proof of Barron’s lemma actually yields the stronger
Ž n. Ž n.result that l x � log � x � �c , eventually almost surely, provided1 1 n

Ý 2�c n � �, which is the form given by Barron. The prefix code assumption is
not really necessary, for headers of asymptotically negligible length can

Ž� �always be added to an invertible code to make it into a prefix code, 11 ,
.Section 1.7.3 . It should also be noted that finiteness of the alphabet is not

needed, for Barron’s lemma and the consequent Theorems 1 and 2 are valid
in the countable alphabet case.

APPENDIX

� �Correction of prior proof. In 9 , two errors, one minor and one more
serious, were made in the proof of Lemma 3, which is stated here in the
following equivalent form.

� �LEMMA 3 9 . If u is ergodic with positive entropy H and if � � 0, then
� �eventually almost surely there are at most � n indices i � 1, n for which

nŽ . Ž .L x � 1 � � log n	H.i

The minor error was an incorrect definition of the Ornstein�Weiss return-
Ž .time function; see equation 4 on page 406. This author did not allow for

repetition of a k-block within the first k steps. This is easily repaired by
� �using the correct form of the Ornstein�Weiss return-time function 6 . The

more serious error was that the argument starting with the last two lines of
page 406 is only valid for the case when i � j; in other words, both forward
and backward return-time functions are needed.

The proof can be corrected as follows. The forward and backward return-
time functions are defined, respectively, by

F x � min m � 1: x m� k � x k ,Ž . � 4k m�1 1

B x � min m � 1: x�m � x 0 .Ž . � 4k �m�k�1 �k�1

The Ornstein�Weiss recurrence-time theorem yields the forward result,

1
lim log F x � H almost surely.Ž .kkk��

Likewise, when applied to the reversed process it yields the backward result,

1
lim log B x � H almost surely,Ž .kkk��

since the reversed process is ergodic and has the same entropy as the original
process. These limit results imply that there is a positive integer K and two
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sets F and B, each of measure at most � n	4, such that if k � K, then
�1log F x � kH 1 � �	4 , x � F ,Ž . Ž .k

and
�1log B x � kH 1 � �	4 , x � B.Ž . Ž .k

The ergodic theorem implies that for almost every x there is an integer
Ž . Ž . i�1N x such that if n � N x then T x � F, for at most � n	3 indices

� � i�1 � �i � 1, n , and T x � B, for at most � n	3 indices i � 1, n . Fix such an x
Ž .and assume n � N x .

Ž .Let k be the least integer that exceeds 1 � �	2 log n	H. By making n
larger, if necessary, it can be assumed that k � K. Suppose

Ln � Ln x � 1 � � log n	H .Ž . Ž .i i

By making n larger, if necessary, it can be assumed that Ln � 1 � k, andi
n � �hence, by the definition of L there is an index j � 1, n , such that j � i andi

x i�k�1 � x j�k�1. The two cases i � j and i � j will be considered separately.i j

CASE 1. i � j. In this case, the k-block starting at i recurs in the future
Ž i�1 .within the next n steps; that is, F T x � n, so thatk

1 log n �1i�1log F T x � � H 1 � �	4 ,Ž . Ž .kk k

which means that T i�1 x � F.

Ž i�k�2 .CASE 2. j � i. If i � k � 1 � n, this means that B T x � n, whichk
means that T i�k�2 x � B. Otherwise i � k � 1 � n; that is, i is within k
of n.

nŽ . Ž . i�1 i�k�2In summary, if L x � 1 � � log n	H then T x � F, T x � B, ori
i � k � 1 � n. By making n larger, if necessary, it can be supposed that

� � nk � � n	3. Thus, there can be at most � n indices i � 1, n for which L �i
Ž .Ž .1 � � log n 	H. This establishes Lemma 3.

REMARK 4. The incorrect definition of the return-time function was noted
� �by Quas 7 , as part of his extension of this author’s results to the countable

alphabet case. The need for both forward and backward return-time functions
� �was discovered by this author while fitting this material into 11 , Section

II.5.
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