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ABSOLUTE CONTINUITY OF SYMMETRIC DIFFUSIONS1

BY P. J. FITZSIMMONS

University of California, San Diego

Let X and Y be symmetric diffusion processes with a common state
m Ž �. Ž .space, and let P resp. Q be the law of X resp. Y with its symmetry

Ž .measure m resp. � as initial distribution. We study the consequences of
the absolute continuity condition Q � � P m. We show that under thisloc
condition there is a ‘‘smooth’’ version � of the Radon�Nikodym derivative

1 � Ž . Ž .�d��dm such that log � X � log � X � M � N , t � � , where M ist 0 t t2

a continuous local martingale additive functional, N is a zero-energy
continuous additive functional and � is an explosion time. The Girsanov

� � m � Ždensity L � dQ �dP then admits the representation L � exp MFF FFt t tt t
1 ² : .� M 1 . The density � also serves to link the Dirichlet forms oft �t � � 42

X and Y in a simple way. Our identification of L relies on notions of even
and odd for additive functionals. These notions complement Fukushima’s
decomposition and the forward�backward martingale decomposition of
Lyons and Zheng.

Ž x .1. Introduction. Let X � X , P be a symmetric Markov diffusiont
process with state space E, symmetry measure m, infinitesimal generator A,

Ž .and Dirichlet form DD, EE . Thus

EE u , v � u , �Av , u � DD, v � D A ,Ž . Ž . Ž .m

Ž . 2Ž .where �, � denotes the natural inner product in L m . If the domain of Am
Ž .contains a dense subalgebra, then the bilinear form defined by � u, v �

Ž .A uv � uAv � vAu extends by continuity to a bilinear mapping of DD � DD
1Ž .into L m . The form EE then admits the representation

11.1 EE u , v � � u , v dm, u , v � DD.Ž . Ž . Ž .H2
E

� �Given a function �: E � 0, � that is locally an element of DD, define a
2Ž .measure � � � � m and a Dirichlet form on L � by

1 1ˆ1.2 EE u , v � � u , v � dm � � u , v d�.Ž . Ž . Ž . Ž .H H2 2
E E

Ž .Since X is a diffusion, the mapping v � � u, v satisfies the derivation
Ž . Ž . Ž .identity � u, vw � v� u, w � w� u, v . Using this fact, a formal calculation

ˆshows that the infinitesimal generator associated with EE is given by the
formula

ˆ1.3 A u � Au � � l , u � Au � Bu,Ž . Ž .
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1where l � log �. The operator B, being a derivation, represents a first-order2
ˆterm. Thus, A may be thought of as a drift perturbation of A.

x ˆŽ .Indeed, the symmetric diffusion Y � Y , Q associated with EE may bet
constructed from X by a Cameron�Martin�Girsanov transformation as fol-
lows. Since � is locally in DD, so is l; consequently we have the Fukushima

Ž . Ž . l l l ldecomposition l X � l X � M � N , where both M and N are continu-t 0 t t

ous additive functionals of X, M l is a local martingale and N l is locally of
zero quadratic variation. The stochastic exponential of M l,

1l l² :1.4 L � exp M � M ,Ž . Ž .tt t 2

is a local martingale and a multiplicative functional of X. Define path-space
x x � x �laws Q by Q � L � P , t � 0. The resulting diffusion is a symmetricFF FFtt t

Markov process, with symmetry measure �. Using Ito’s formula, it is easy toˆ
Ž .check at least formally that the infinitesimal generator of the diffusion

x ˆŽ . Ž .corresponding to Q is A as defined in 1.3 .x � E
The above considerations can be made precise in a very general frame-

work, as is shown in Sections 4 and 5 of this paper. However the main issue
addressed is the converse problem.

Ž x .Suppose we have symmetric Markov diffusion processes X , P andt
Ž x .Y , Q with common state space E and respective symmetry measures mt

� Ž .and �. Suppose that the path-space law Q is locally absolutely continuous
m Ž .with respect to P . What can one say about the form taken by the local

� � m �Radon�Nikodym density process L � dQ �dP , and about the rela-FF FFt t t

tionship between the associated Dirichlet forms? The short answer is that
things must be as described in the first paragraph of this introduction. That

� m Ž . Ž .is, if Q � P , then i � � m, ii the density � � d��dm is locally inloc
Ž . Ž . lthe Dirichlet space of X, and iii L is given by 1.4 , where M is the

Ž . Ž .martingale part in the Fukushima decomposition of l X � l X , andt 0
1 ˆl � log � as before. Moreover, the Dirichlet forms EE and EE of X and Y are2

Ž .related as in 1.2 . For precise statements, see Theorems 3.2 and 4.9.
The problem of deciding when the law of one symmetric diffusion is

Žabsolutely continuous with respect to that of another and of describing the
.relationship between their infinitesimal generators or Dirichlet forms has

been studied by many authors. A complete discussion in the case of one-
� �dimensional diffusions may be found in Orey’s paper 36 . The multidimen-

Ž .sional case of a restricted form of our problem has been treated by
� �Fukushima 21 , wherein X is taken to be Brownian motion. We must also

� � � �mention the earlier work of Kolmogorov 28 and Nelson 35 concerning the
case in which X is a Brownian motion in a finite-dimensional Riemannian
manifold, and Y is a diffusion on the manifold with smooth generator. For an

� �elegant account of this work, see 27 , pages 274�282. For the sake of
comparison, let us give a brief statement of Fukushima’s result. The notation
is as earlier, but now X is Brownian motion in � d and Y is a symmetric
diffusion in � d. Of course, m is Lebesgue measure in this context. The main

� � x x dresult of 21 states that if Q � P for all x � � outside an X-polar set,loc
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Ž . Ž . Ž .and if X-polar sets are Y-polar and vice versa , then i � � m, ii � �
1Ž d .d��dm is locally in H � , the space of square integrable functions with

Ž .square-integrable distribution sense gradients, and iii the Radon�Nikodym
Ž .derivative L has the representation for X-quasi-every starting point x

t t 21 � �1.5 L � exp �l X � dX � �l X ds , t � 0,Ž . Ž . Ž .H Ht s s s2ž /0 0
1where l � log �. Moreover, the generator of Y, when restricted to smooth2

functions of compact support, has the form
1ˆ1.6 A f � 	 f � �l � �f .Ž . 2

An extension of this result, valid for X in a wide class of finite-dimensional
� �diffusions, has been proved by Oshima 37 .

Our main results extend the above-mentioned work, as well as more recent
� � � �work of Oshima and Takeda 38 and Albeverio, Rockner and Zhang 4 . See¨

� �also Eberle 13, 14 for work related to Sections 4 and 5 of this paper.
Ž .Diffusion processes with generators of the type 1.6 have been the subject of

� � � � � � � � � � � �much research; see 1 , 33 , 22 , 23 , 40 , 41 and the references therein.
Most of the work on this problem of which we are aware has been confined

Žto situations in which the state space is a vector space perhaps infinite
.dimensional and the infinitesimal generator of X is, loosely speaking, a

diagonalizable elliptic differential operator. In contrast to this work, we make
Ž .no special hypotheses on our processes or their state spaces beyond the

assumption of path continuity.
A crucial ingredient in our arguments is the method of forward�backward

� � �martingales developed by Lyons and Zheng 31 and applied by Takeda 44,
� Ž � � � �45 . See also 33, 35 for early forms of the technique and 30 for more recent

.work. As a complement to this method, we introduce notions of even and odd
additive functionals of a symmetric diffusion. In addition to providing the

Ž .path to a crucial uniqueness result described below , these notions shed new
Ž . Ž . u ulight on Fukushima’s decomposition u X � u X � M � N for elementst 0 t t

u of the Dirichlet space of X. For a fuller development of the idea of parity for
� � Žcontinuous additive functionals, the reader is directed to 17 . After submit-

� � � �ting this manuscript, we learned of 12 and 26 in which the notion of odd
additive functional is used to provide remarkably simple proofs of invariance

�principles in the context of symmetric Markov processes.
Since the proof of our main result, Theorem 3.2, is rather long, as an aid to

the reader we provide here a summary of the argument. Suppose Q � � P m.loc
Then clearly � � m, and Q x � P x for �-a.e. x. For simplicity, let usloc
suppose that there is no exceptional set, so that Q x � P x for all x. We alsoloc
assume in the rest of this paragraph that both X and Y have infinite
lifetime. By a result of Kunita, there is a positive martingale L, which is a

x � x �continuous multiplicative functional of X, such that Q � L � P for allFF FFtt t

t � 0 and all x. Provided L is strictly positive, general theory tells us that L
has the form

1² :1.7 L � exp K � KŽ . Ž .tt t 2
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where K is a local martingale and a continuous additive functional of X, and
² :K is the quadratic variation of K. The symmetry of X and of Y now imply
that

1 � �1.8 l X � l X � K � K � r ,Ž . Ž . Ž .t 0 t t t2

1 Ž .where l � log d��dm as before, and r is the operator of time reversal ont2
� � Ž .the time interval 0, t . Estimates based on 1.8 allow us to conclude that l is

locally in the Dirichlet space of X. This fact in hand, a symmetry argument
shows that

1 1l l � �1.9 M � M � r � K � K � r ,Ž . t t t t t t2 2

l Ž .where M is the martingale part in Fukushima’s decomposition of l X �t
Ž . Ž .l X . The quantity on the right-hand side of 1.9 is what we shall later refer0

Ž .to as the odd part of K, and similarly for the quantity on the left. Thus, 1.9
l Ž lsays that the local martingale M � K is even i.e., M � K has vanishing

.odd part . But we are able to show that a local martingale which is also an
l Ž .even continuous additive functional must vanish. Thus, K � M , and so 1.7

is the desired representation of L. Note that with the identification of K and
l Ž .M , 1.8 becomes a special case of the Lyons�Zheng decomposition

1 u uu X � u X � M � M � r ,Ž . Ž .t 0 t t t2

which is valid for any function u locally in the Dirichlet space of X. This
decomposition will play an important role in our description of the Dirichlet
space of Y in terms of that of X.

The rest of the paper is organized as follows: we introduce our basic
hypotheses and prove several preliminary results in Section 2; Section 3
contains the statement and proof of the main result discussed above; in
Section 4, we discuss briefly the relationship between the Dirichlet spaces of
X and Y; in Section 5 we use the results of Sections 3 and 4 to find sufficient
conditions for Q � � P m.loc

Although the context of the paper is symmetric right Markov processes, we
shall use a number of results which have been proved in the literature only
for symmetric processes associated with regular Dirichlet forms. This usage

� �is justified by recent work on quasi-regular Dirichlet forms 2, 32, 8 : any
symmetric Borel right process is quasi-homeomorphic to a symmetric process
associated with a regular Dirichlet form, and the quasi-homeomorphism can
be used to transfer results known for regular Dirichlet forms to our context.

For the most part, our notation is standard. Background on Markov
� � � �processes can be found in 5 and 42 , whereas for details on symmetric

� � � �Markov processes and Dirichlet spaces the reader can consult 20 , 6 and
� � Ž .32 . Let us mention here a few specifics. If F, FF is a measurable space, then
pFF and bFF denote the classes of positive and bounded real-valued FF-mea-
surable functions from F to �; these prefixed have the same meaning when

Ž .attached to other function classes. If � is a measure on F, FF and f :
� � Ž .F � 0, � is FF-measurable, then � f denotes the integral H f d� while f�F

denotes the measure whose density with respect to � is f. The term ‘‘additive



P. J. FITZSIMMONS234

Ž� � .functional’’ should be interpreted in the sense of 20 , page 124 ; that is, as
‘‘additive functional with an exceptional set of starting points.’’

Ž x .2. Preliminaries. Let X � 
, FF, FF , X , � , P be a right Markov pro-t t t
cess. We shall say that X is a diffusion provided the following additional
properties obtain:

Ž .2.1a The state space E of X is homeomorphic to a Borel subset of some
Ž .compact metric space. We write BB E for the class of Borel subsets

of E.
Ž . Ž . Ž .2.1b The transition semigroup of X, P , is Borel: P f is BB E -mea-t t � 0 t

Ž .surable for each bounded BB E -measurable function f : E � �. The
resolvent family of X, U� � H� e�� tP dt, � � 0, then has the same0 t
measurability property.

Ž . 	 � 42.1c The filtration FF � � X ; 0 	 s 	 t , t � 0, is quasi-left-continuoust s
Ž .up to null sets and the lifetime of X, denoted 
 , is a predictable
stopping time.

Ž . � � x2.1d t � X is continuous on 0, 
 a.s. P for all x � E.t

Ž . Ž .In particular, X is a strong Markov process, and by 44.5 and 47.10 in
� � Ž 	 .42 , any FF -stopping time is predictable. The quasi-left-continuity portiont�

Ž .Ž .of condition 2.1 c is imposed only to simplify the exposition; it is a conse-
quence of the symmetry hypothesis discussed below, at least after the dele-

Ž � � Ž ..tion of an exception set of starting points see 16 , 5.2 .
Without loss of generality, we take the sample space 
 to be the space of

� � � 4 � Ž .�paths � from 0, � to E 
 	 that are E-valued and continuous on 0, 
 �
Ž .and that hold the value 	 � E after time 
 � . As usual, any function f

defined on E is automatically extended to the cemetery state 	 by the
Ž .convention f 	 � 0. For technical reasons we work mainly over the filtration

Ž . 	
FF , where FF denotes the universal completion of FF . Thus F � FF ift� t � 0 t t t

and only if F is in the P-completion of FF
	 for all probability measures P ont

Ž 	 .
, FF . It is easy to check that if P and Q are probability measures ont
Ž 	 . � � � 	 � 	
, FF , then Q � P if and only if Q � P . In view of known perfec-FF FF FF FF� t t t t

Ž .tion theorems, all multiplicative and additive functionals encountered in the
Ž .sequel are assumed to be adapted to the filtration FF ; see the Appendix oft�

� �24 for a detailed discussion of this point.
Various localization arguments occurring in the sequel require the follow-

ing notion of local martingale. If S 	 
 is a stopping time, then we say that
Ž . � �an adapted process M � M is a local martingale on 0, S providedt t � 0

Ž .there is an increasing sequence T of stopping times, with T �S as n � �n n
a.s. P x for all x � E, such that t � M is a P x uniformly integrablet � Tn

martingale for each x � E. Since X is a diffusion, any such local martingale
� � Ž Ž . Ž . � � .has continuous paths on 0, S , almost surely. See 47.6 and 51.24 in 42 .

Ž .We say that the diffusion X is symmetric with symmetry measure m
Ž Ž ..provided there is a �-finite measure m defined on E, BB E such that

2.2 f , P g � P f , g � f , g � L2 m ,Ž . Ž . Ž . Ž .t tm m
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Ž . 2Ž .where u, v � H uv dm is the natural inner product in L m . A Borel setm E
Ž . mŽ . �B � E is X, m -polar provided P T � � � 0. Here, T � inf t � 0: X �B B t

4 Ž .B is the hitting time of B. A property P x which holds for each x outside an
Ž . Ž . Ž .X, m -polar set is said to hold X, m -quasi everywhere q.e. . It is well

Ž .known that the symmetry of X implies that every X-semipolar set is X, m -
polar. In particular, this means that every predictable increasing additive

Ž . � � x Ž . Žfunctional AF of X is continuous on 0, 
 , a.s. P for X, m -q.e. x � E see
� � Ž ..25 , 16.21 .

ŽConsider now a second symmetric E-valued diffusion Y � 
, FF,
x .FF , Y , � , Q . The semigroup, resolvent and symmetry measure of Y aret t t

Ž . Ž � .denoted Q , V , and �, respectively. Notice that Y is realized on the samet
Ž . Ž . Ž .sample space as X, and that X � � Y � � � t . The processes are distin-t t

guished by their respective laws P x and Q x, but we use Y for emphasist
when working with Q x.

Ž .DEFINITION 2.3. Given two �-finite measures P and Q on 
, FF , we say
Ž .that Q is locally absolutely continuous with respect to P and write Q � Ploc

� 4provided the restriction of Q to FF 
 t � 
 is absolutely continuous witht
� 4respect to the restriction of P to FF 
 t � 
 , for all t � 0.t

� �The following preliminary result extends 4 , Proposition 1.2.

Ž x . Ž x .PROPOSITION 2.4. Let X � X , P and Y � Y , Q be E-valued symmet-t t
ric diffusions, with symmetry measures m and �, respectively. Then the
following statements are equivalent:

Ž . � ma Q � P ,loc
Ž . x xb � � m and Q � P for �-a.e. x � E,loc
Ž . x x Ž .c � � m and Q � P for Y, � -q.e. x � E,loc
Ž . Ž . x xd � charges no X, m -polar set and Q � P for �-a.e. x � E.loc

Ž . Ž . Ž . Ž . Ž . Ž .The implications c � b � a are trivial. To prove a � d � c we need
� �the following form of the Lebesgue decomposition, due to Kunita 29 . Recall

Ž� � . Ž .from 42 , Section 54 that a multiplicative functional MF is a positive,
Ž . Ž .right-continuous, FF -adapted process L such that L � L L ��t� t t � 0 T�s T s T

� 4 Ž . �a.s. on T � � for each s � 0 and for each FF -stopping time T. We do nott�
xŽ . � Ž .assume that L 	 1, but L will always satisfy P L 	 1. An FF -stoppingt t t�

time T is a terminal time provided t � 1 is a MF; that is, provided�t � T 4
x � 4T � S � T �� a.s. P on S � T , for each stopping time S and each x � E.S

It is easy to check that the terminal time � of Lemma 2.5 is a terminal time
for Y as well as for X.

Ž . ŽLEMMA 2.5. There is a MF L � L of X, and a terminal time of X and oft
. Ž .Y � 	 
 such that for each FF -stopping time T,t�

2.6 Q x F ; T � 
 � F � L dP x � Q x F ; � 	 T � 
 � F � pFF .Ž . Ž . Ž .H T T�
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� �Moreover, L vanishes on � , � and

P x � � 
 � 0 � x � E.Ž .
In particular, for fixed x � E,

Q x � P x � Q x � � 
 � 0.Ž .loc

REMARK 2.7. Clearly L is a supermartingale. In fact, L is a P x-local
� � � 4 � 4martingale on 0, S , where S � inf t � 0: L � 0 . To see this, let Tt n

x �announce � under Q . The predictability of � follows from the remark below
Ž . � Ž .2.1 . By 2.6 ,

P x F � L � Q x F ; T � T � 
 � Q x F � F � pFF ,Ž . Ž .Ž .T � L n ŽT � T .�n n

Ž . Ž .where T is any FF -stopping. This ensures that L is a uniformlyt� t � T t � 0n

integrable martingale under P x. Moreover, writing T for lim T , we have� n n

0 � Q x T � � � P x L ; T � � � P x L ; T � � ,Ž . Ž . Ž .� T � T �� �

so that T � S a.s. P x.�

Ž . Ž . � mPROOF OF PROPOSITION 2.4. a � d . Assume that Q � P . Let B �loc
Ž . Ž . mŽ . �Ž .BB E be an X, m -polar set. Then P T � 
 � 0, hence Q T � 
 � 0B B

Ž .as well. Consequently B is Y, � -polar, and a fortiori �-null. In view of
Ž . �ŽLemma 2.5, to prove the second assertion of d we must show that Q � �

. � m
 � 0. But this is an immediate consequence of Q � P becauseloc
xŽ .P � � 
 � 0 for all x � E.
Ž . Ž . Ž . Ž . Ž .d � c . Assume that d holds. Fix B � BB E such that m B � 0. Then

� � 4 Ž . �the X-finely open set U 1 � 0 is m-null, hence X, m -polar. Thus �U 1B B
Ž . � Ž . � Ž .� 0. But d implies that V x, � � U x, � for �-a.e. x � E and each

� Ž . �� � 0. Therefore �V 1 � 0, and consequently � B � lim ��V 1 � 0.B � �� B
Ž .We have therefore shown that � � m. As for the second part of c , the

x Ž .function �: x � Q � � 
 is strongly supermedian with respect to Y, and
Ž . Ž . �Ž Ž ..� � � 0 � 0 by d . Thus, if T is a Y-stopping time then Q � Y 	T
Ž . � 4 Ž .� � � 0. Since � � 0 is a Borel set see the proof of Proposition 2.10 , the

Ž� � . �Ž .section theorem 10 , IV.84 allows us to conclude that Q T � � � 0.�� � 04
xŽ . Ž .This means that Q � � 
 � 0 for Y, � -q.e. x. �

Ž� �The following result is a by-product of the proof just given. Following 32 ,
. � 4III.2.1, IV.4.5 we say that an increasing sequence K of compact subsets ofn

Ž . xŽ Ž . . Ž .E is an X, m -nest provided P lim � K � 
 � 0 for X, m -q.e. x � E,n n
Ž . � 4where � B � inf t: X � B denotes the first exit time from B.t

� m Ž .COROLLARY 2.8. If Q � P , then every X, m -polar Borel set in E isloc
Ž . Ž . Ž .Y, � -polar. Moreover, every X, m -nest of compacts is a Y, � -nest.

Ž .Ž . Ž .For the proof, the first assertion follows as in the proof of 2.4 a � d .
The second assertion follows immediately from local absolute continuity.
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The conditions listed in Proposition 2.4 are equivalent to absolute continu-
ity on the germ �-field FF . Actually, Proposition 2.4 is valid for symmetric0�
processes with jumps, but the next proposition depends crucially on path

Ž � � .continuity cf. 29 , Theorem 6.2 . Although this proposition could be deduced
� �from the work of Dawson 9 , we give a short direct argument.

x � x �Note that because of Blumenthal’s 0�1 law, Q � P if and only ifFF FF0� 0�
x � x � xŽ .cQ � P . Recall that A � E is X-absorbing provided P T � 
 � 0FF FF A0� 0�

for all x � A.

PROPOSITION 2.9. In the context of Proposition 2.4, Q � � P m if and onlyloc
x � x � Ž .if Q � P for Y, � -q.e. x � E.FF FF0� 0�

PROOF. The ‘‘only if’’ part of the assertion follows immediately from
x � x � Ž .Proposition 2.4. Conversely, assume that Q � P for Y, � -q.e. x � E.FF FF0� 0�

Ž . � � Ž .By 6.12 in 25 , there is a Y, � -polar set N, which is Y-absorbing, such
x � x �that Q � P for all x � E � N. With � as in Lemma 2.5, we haveFF FF0� 0�

� 4 xŽ . xŽ .� � 0 � FF , hence 0 � P � � 0 � Q � � 0 for all x � E � N. Thus � is a0�
Ž .thin predictable terminal time for Y restricted to E � N. The �-symmetry

�Ž . Ž . � �of Y then implies Q � � 
 � 0, by 16.21 in 25 . �

We end this section with a complement to Kunita’s lemma, Lemma 2.5.

� x x4PROPOSITION 2.10. Define E � x � E: Q � P . Then E is a Borel seta loc a
which is absorbing for Y and finely open for X.

PROOF. That E is a Borel set follows easily from the fact that each of thea
�-algebras FF

	 is countably generated. Also, E is the set where the Yt a
xŽ .strongly supermedian function x � Q � � 
 vanishes; this implies that Ea

is Y-absorbing, as in the proof of Proposition 2.4. Finally, let T � T c andEaxŽ . xŽ . xsuppose that x � E . Then 1 � Q 
 � P L , so L � 1 a.s.-P . Using thea 0 0
xŽ . xŽ .fact that E is Y-absorbing, we have 0 � Q T � 0 � P L ; T � 0 , hencea 0

xŽ .P T � 0 � 1. It follows that x is in the X-fine interior of E , and sincea
x � E was arbitrary, E is finely open for X. �a a

x x Ž x .3. Representation of dQ �����dP . Let X, m, P be a symmetric diffu-
sion as discussed in Section 2. Recall that the Dirichlet space of X is the

Ž Ž . .inner product space DD X , EE defined by

1
2DD X � u � L m : sup u , u � P u � � ;Ž . Ž . Ž .t m½ 5tt�0

1
EE u , v � lim u , v � P v , u , v � DD X .Ž . Ž . Ž .t mtt�0

Ž . Ž . Ž . Ž .Endowed with the inner product EE u, v � EE u, v � u, v , DD X is a1 m
Ž . ŽHilbert space. Each element u � DD X admits an m-modification u a quasi-˜

. Ž . � � mcontinuous version of u such that t � u X is continuous on 0, � , a.s. P .˜ t
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� �We then have Fukushima’s decomposition 20 , Theorem 5.2.2:

3.1 u X � u X � M u � N u , � t � 0 a.s. P x for q.e. x � E,Ž . Ž . Ž .˜ ˜t 0 t t

u u Ž . uwhere M and N are continuous additive functionals CAF’s of X, M is a
�1 mŽ� u �2 . �1 mŽ� u �2 .martingale such that sup t P M � �, and lim t P N �t � 0 t t � 0 t

0. This decomposition is unique, and we refer to M u and N u as the martin-
u Ž . Ž .gale and zero energy parts, respectively, of the CAF A � u X � u X .˜ ˜t t 0

Ž . Ž .Recall that � G denotes the first exit time from G � E; that is, � G �
� 4 Ž . �cT � inf t � 0: X � G . A function u: E � � is locally in DD X notation:G t
Ž .� � 4u � DD X provided there is an increasing sequence G of finely open setsloc n

Ž . m � 4 Ž .such that � G � 
 a.s. P , and a sequence u of elements of DD X suchn n
�that u � u a.e.-m on G for each n � �. This is not the standard definitionn n

Ž . � Ž .for DD X , but it is convenient for our purposes. Each u � DD X admits aloc loc
Ž . � �quasi-continuous modification u such that 3.1 holds for t � 0, 
 , where˜

now M u and N u are locally in the classes described in the last paragraph.
u Ž � �.More precisely, M is a local martingale on 0, 
 CAF such that

�1 mŽ� u �2 . usup t P M � � for each n, and N is a CAF such thatt � 0 t � � ŽG .n�1 mŽ� u �2 . Ž � � � �lim t P N � 0 for each n. See 20 , pages 160�161; 21 ,t � 0 t � � ŽG .n� � .Appendix; and 39 .
Ž . Ž .In what follows the term Y, � -inessential set will refer to any Y, � -polar

subset of E whose complement is absorbing for Y. As noted earlier, from
Ž . � � Ž .6.12 in 25 , we know that any Y, � -polar set can be enclosed in a Borel
Ž .Y,� -inessential set.

We can now state the main result. When combined with the results of
� � � � � �Sections 4 and 5, it generalizes 21 , 37 and 4 . For a terminal time T, we

Ž .use X, T to denote the subprocess derived by killing X at time T. This is a
� xŽ . 4symmetric diffusion with state space E � x � E: P T � 0 � 1 and sym-T

� Ž .metry measure m . In case T � � G , where G is finely open, the DirichletET

Ž Ž .. Ž Ž ..form of X, � G can be identified with the restriction of EE to DD X, � G �
� Ž . Ž . c4 Ž � � � �u � DD X : u � 0, X, m -q.e. on G cf. 20 , Theorem 4.4.2 and 43 , Theo-˜

.rem 7.3 .

THEOREM 3.2. Suppose that Q � � P m. Then � � m and there is aloc
Ž .Y, � -inessential Borel set N � E which is X-finely closed, and a version � of

Ž .the Radon�Nikodym derivative d��dm such that 0 � � x � � for all x �
E � N, and:

Ž . Ž . � � xa t � � X is continuous on 0, T a.s. P for all x � N; in particulart N
� Ž .� is X, T -finely continuous;E � N N

1Ž . � Ž .b l � log � � DD X, T , and we have the Fukushima decomposi-E � N loc N2

tion

l X � l X � M l � N l , 0 	 t � T , a.s. P x , � x � N ,Ž . Ž .t 0 t t N

l Ž . � � lwhere M is a CAF of X, T and a local martingale on 0, T , and N is aN N
Ž .CAF of X, T locally of zero energy;N
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Ž . x xc For each x � E � N, Q � P and the Radon�Nikodym derivativeloc

x � x �L � dQ �dPFF 
 �t � 
 4 FF 
 �t � 
 4t t� t�

admits the representation

1l l x² :L � exp M � M 1 � t � 0, a.s. P .Ž .tt t �0 	 t � T 42 N

Ž . Ž .REMARK 3.3. a Using Theorem 3.2 b and the fact that 0 � � � � on
1�2 Ž .E � N, it is easy to show that � � � � DD X, T .loc N

Ž . xb Let P denote the law of X started at x and killed at T . The strictN N

positivity of L up to time T implies that P x � Q x for each x � N. InN N loc
x Ž . Ž . � �particular, H P � m dx � Q since m � �. Another importantE � NE � N N loc

consequence of P x � Q x is the fact that the fine topologies of X and YN loc
coincide on E � N.

Ž .c With � as in the first remark, one can also express L as

� XŽ .t
L � exp �N 1 ,Ž .t t �t � T 4N� XŽ .0

1l l t �1 �² : Ž Ž . � �. Ž .where N � N � M cf. 2.2 in 38 . Note that N � H � X dN ,tt t t 0 s s2
� �the stochastic integral being that introduced by Nakao 34 .

For the rest of this section, we fix X and Y such that Q � � P m. We willloc
Ž .prove Theorem 3.2 by building up the Y, � -inessential set N in several

steps. The inessential set produced in a given step will be deleted from the
state space in subsequent steps, with no change in notation. For example,
Step 1 yields an inessential set N ; in Step 2, the symbol Y really refers to ‘‘Y1
restricted to E � N ’’ while X refers to ‘‘X killed at the first hitting time of1
N .’’ We leave it to the reader to check that local absolute continuity is1
preserved by this deletion procedure.

Step 1. By Propositions 2.4 and 2.10, the Borel set N , consisting of those1
x x Ž .points x � E for which the relation Q � P fails, is Y, � -inessential andloc

X-finely closed. After restricting Y to E � N and killing X on its first exit1
from E � N , we can, in subsequent steps, assume that Q x � P x for all x.1 loc

Ž . x xStep 2. Let L � L be the multiplicative functional relating Q and Pt
as in Lemma 2.5.

� 4 xŽ .LEMMA 3.4. Let S � inf t � 0: L � 0 . Then Q S � 
 � 0 for all x � E,t
� xŽ . 4 Ž .while x � E: P S � 
 � 0 is an X, m -inessential set.

PROOF. For any t � 0,

Q x S 	 t � 
 � P x L ; S 	 t � 
 � 0,Ž . Ž .t

since L, being a supermartingale, vanishes after time S. This proves the first
xŽ .assertion. As for the second, S is a terminal time, so x � P S � 
 is a

strongly supermedian function of X. Thus, as in the proof of Proposition 2.4,
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mŽ . xŽ .it suffices to prove that P S � 
 � 0. But P S � 0 � 1 for all x, since
xŽ . Ž .P L � 1 � 1 for all x. Thus, S is a thin predictable terminal time of X.0

mŽ . Ž � � Ž ..The symmetry of X now implies that P S � 
 � 0 see 25 , 16.21 . �

� xŽ . 4 Ž . Ž . � �The set x � E: P S � 
 � 0 is X, m -inessential. Using 6.12 in 25 ,
Ž . � xŽ . 4we can find a Borel X, m -inessential set N � x � E: P S � 
 � 0 , and2

Ž . x xthen N is Y, � -inessential by Corollary 2.8 and the fact that Q � P2 loc
for all x. By deleting N from E, we shall assume in subsequent steps that2
Ž x x .Ž . � �Q � P S � 
 � 0 for all x. In other words, L is strictly positive on 0, 

almost surely for X and for Y.

Step 3. We shall now establish the regularity of an appropriately chosen
version of d��dm. By Remark 2.7 and Step 2, L is a local martingale on
� � � �0, 
 . Consequently, t � L is continuous on 0, 
 . Lemma 3.6 is a simplet

Ž� � .consequence of the following fact 46 , Theorem 2.1 : given a path � with
Ž . Ž .
 � � t, we define the reversed at time t path r � byt

� t � u , 0 	 u 	 t ,Ž .
r � u �Ž . Ž .t ½ � 0 , u � t .Ž .

We then have

3.5 P m F� r ; t � 
 � P m F ; t � 
 � F � pFF , t � 0.Ž . Ž . Ž .t t

Ž .This is a sophisticated but useful way to express the symmetry property
Ž . �2.2 . Of course, a similar result holds for Q .

LEMMA 3.6. Fix 0 � s 	 t. Then
m � 43.7 � X L L � r � � X L � r a.s. P on t � 
 .Ž . Ž . Ž .0 s t�s t s t t

PROOF. We first consider the special case s � t:
m � 43.8 � X L � � X L � r a.s. P on t � 
 .Ž . Ž . Ž .0 t t t t

Ž . Ž � m.Fix t � 0, and F � pFF . Then using 3.5 first for Q , then for P ,t

P m � X L F ; t � 
 � Q � F ; t � 
 � Q � F� r ; t � 
Ž . Ž . Ž .Ž .0 t t

� P m � X L F� r ; t � 
Ž .Ž .0 t t

� P m � X L � r F ; t � 
 .Ž .Ž .t t t

Ž .Varying F, we see that 3.8 holds. Now notice that if 0 � s 	 t, then
Ž . Ž .r � u � � r � u for 0 	 u 	 s. Using this, the multiplicative property ofs t�s t

Ž .L and 3.8 , we compute, for 0 � s 	 t,

� X L L � r � � X L � r L � rŽ . Ž .0 s t�s t s s s t�s t

� � X L �� � r L � rŽ .s s t�s t t�s t

� � X L �� L � rŽ . Ž .s s t�s t�s t

� � X L � r ,Ž .s t t
m � 4a.s. P on t � 
 . �
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LEMMA 3.9. There is a version of the Radon�Nikodym density � � d��dm
Ž . � � msuch that t � � X is continuous on 0, 
 a.s. P . With this choice of �, thet

� 4 � 4sets � � 0 and � � 0 are invariant in the following strong sense:
3.10 P m � X � 0; � X � 0 for some 0 � t � 
 � 0;Ž . Ž . Ž .Ž .0 t

3.11 P m � X � 0; � X � 0 for some 0 � t � 
 � 0.Ž . Ž . Ž .Ž .0 t

Ž .PROOF. First note that because of Lemma 3.4 and 3.5 ,
inf L L � r � 0s t�s t

0	s	t
m � 4 � � ma.s. P on t � 
 , for all t � 0. Also, s � L is continuous on 0, t a.s. Ps

� 4 Ž . Ž .on t � 
 , as is L � r because of 3.5 . It now follows from 3.7 andt�s t
Fubini’s theorem that for P m-a.e. � � 
,

�� X � � Z � for a.e. s � 0, 
 � ,Ž . Ž . Ž .Ž .s s
m � �for some process Z whose paths are P -a.s. continuous on 0, 
 . The method

Ž � � .of essential limits see, e.g., 19 , Section 2 now yields the existence of an
m-version of � with the stated continuity property. With the continuity of
Ž . Ž . Ž . Ž .� X in hand, 3.10 and 3.11 follow easily from 3.7 . �t

Ž . � � Ž .By Lemma 3.9 and 6.12 in 25 , there is an X, m -inessential Borel set
Ž .N such that � is finite-valued and finely continuous on E � N . Using 3.113 3

Ž . � 4one can now find a Y, � -polar set N � N 
 � � 0 whose complement is4 3
x x Ž .X-absorbing. Since Q � P for all x, N is Y, � -inessential. By deletingloc 4

N from E we can assume in the sequel that � is finite, strictly positive and4
finely continuous on E.

� �Step 4. The MF L is strictly positive on 0, 
 and is a continuous local
� �martingale on 0, 
 . Therefore, L admits an exponential representation:

1² :3.12 L � exp K � K 1 ,Ž . Ž .tt t �t � 
 42

t �1 � �where K � H L dL is a CAF of X and a local martingale on 0, 
 , andt 0 s s
² : ² :K denotes the quadratic variation process of K. In particular, K is an

� � Ž� � .increasing CAF of X, finite on 0, 
 . By a result of Walsh 46 , Section 4 ,
² : ² : ² : m� � � 43.13 K � r � K � K � s � 0, t , a.s. P on t � 
 .Ž . s t t�st

Ž .Combining these results with 3.7 , we arrive at the following proposition.

1PROPOSITION 3.14. Define l � log �. Then for fixed t � 0,2
1 � � � �l X � l X � K � K � r � K � r � s � 0, t ,Ž . Ž .s 0 s t�s t t t2

m � 4a.s. P on t � 
 .

Ž .We are now going to show that l � DD X . For the proof of the nextloc
lemma, and for later reference, recall that if A is an increasing CAF of X, the
the Revuz measure � of A is the measure on E defined byA

1 tm� f � � lim P f X dA , f � p BB E .Ž . Ž . Ž .HA s stt�0 0

Ž .The measure � is �-finite and charges no X, m -polar set.A
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Ž .LEMMA 3.15. Let f : E � � be a Borel function such that t � f X ist
� � mcontinuous on 0, 
 a.s. P . Suppose there is a CAF M of X that is a local
� �martingale on 0, 
 such that for each t � 0,

1 m� � � 43.16 f X � f X � M � M � r a.s. P on t � 
 .Ž . Ž . Ž .t 0 t t t2

Ž .Then f � DD X .loc

Ž . fREMARK 3.17. It turns out that the local martingale M in 3.16 is M ,
Ž . . Ž .the martingale part of f X � f X in Fukushima’s decomposition. See� 0

Lemma 3.21.

² :PROOF. The quadratic variation process M is an increasing CAF of X.
Choose a strictly positive Borel function g on E such that g 	 1 everywhere

Ž .and m g � �. Define �: E � � by
�

x ² :� x � P exp �t � M g X dt , x � E.Ž . Ž . Ž .H t t
0

Then 0 � � 	 U 1g 	 1, � is finely continuous and by a standard computation
�

1 x ² :U � x � P exp �t � X d MŽ . Ž . Ž .H t²M : t
0

� U 1g x � � x 	 U 1g x � x � E.Ž . Ž . Ž .
1 Ž .Clearly U g is an element of DD X , hence so is its 1-excessive minorant

1 ² :U �, as is their difference �. Let � denote the Revuz measure of M²M :
Ž . � 4 Ž . 1 �relative to X and m , and let g � bp BB E be such that U g �1 e.g.,n n

Ž Ž . n .� Ž� � Ž .. Ž .g � n 1 � n � 1 U 1 . Then by the Revuz formula 32 , IV 4.7 and 2.2 ,n

� , U 1g � U 1 � , g 	 U 1g , g � g , U 1g 	 m g .Ž .Ž . Ž . Ž .Ž .n ²M : n n n� m mm

Thus,

� � � lim � �U 1g 	 m g � �.Ž . Ž .Ž .n
n��

� � Ž . � Ž . 4 Ž .Define G � x � E: f x 	 n, � x � 1�n , and note that � G 	 n �n n
Ž . Ž . Ž . Ž 1 . Ž .� � � �, while m G 	 n � m � 	 n � m U g 	 n � m g � �. Now � �n
Ž . Ž . m � 4 Ž .DD X , so that � X � 0 as t� 
 , a.s. P on 
 � � . It follows that � G � 
t n

� G n 4 � Fnas n � �. Define F � x � G : U g � 1�n and H � x � F : U g �n n n n
4 G n1�n . Here, for example, U denotes the 0-potential operator for X killed at

Ž .time � G . Clearly each H is finely open and of finite m-measure, and byn n
� � Ž .39 , page 325, � H � 
 as n � �. We are going to produce functionsn

Ž .f � DD X such that f � f on H for each n � �. This will prove thatn n n
Ž .f � DD X .loc

Consider the condenser potentials

w x � P x T � � F , x � E.Ž . Ž .Ž .n H nn

Ž Ž ..Clearly 0 	 w 	 1, w 
 1 on H , and w is excessive for X, � F . Arguingn n n n n
� � Ž Ž ..as in 39 , pages 322�324, one can show that w � DD X, � F ; in particular,n n
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Ž . c � �w � 0, X, m -q.e. on F . Following the argument given in 39 , we now shown n
Ž Ž .. Ž . nthat f � fw � DD X, � G � DD X . For this, let P denote the transitionn n n t

Ž Ž .. � �semigroup of X, � G . Since f 	 nw on G ,n n n n

1
nlim sup f x f x � P f x m dxŽ . Ž . Ž . Ž .H n n t nt Gt�0 n

1 2 n	 lim sup f y � f x m dx P x , dyŽ . Ž . Ž . Ž .H H n n t2 t G Gt�0 n n

1 2 n� lim sup f x 1 � P 1 x m dxŽ . Ž . Ž .Ž .H n tt Gt�0 n

1 2 n	 lim sup f y � f x m dx P x , dyŽ . Ž . Ž . Ž .H H tt G Gt�0 n n

n2
2 n� lim sup w y � w x m dx P x , dyŽ . Ž . Ž . Ž .H H n n tt G Gt�0 n n

2n2
2 n� lim sup w x 1 � P 1 x m dxŽ . Ž . Ž .Ž .H n tt Gt�0 n

1 2 n	 lim sup f y � f x m dx P x , dyŽ . Ž . Ž . Ž .H H tt G Gt�0 n n

2n2
n� lim sup w x w x � P w x m dxŽ . Ž . Ž . Ž .H n n t nt Gt�0 n

� lim sup I t � I t .Ž . Ž .1 2
t�0

Ž . Ž Ž .. Ž Ž ..Now lim sup I t � �, since w � DD X, � F � DD X, � G . On the othert � 0 2 n n n
hand, by Proposition 3.14,

2 2 22 � � � �� � � �f X � f X 	 M � M � r 	 2 M � M � r ,Ž . Ž . Ž . Ž .t 0 t t t t t t

� 4 � � �on t � 
 , where M � sup M . Using this observation, Doob’s in-t 0 	 s	 t s
Ž . � Ž Ž ..�equality and 3.5 applied with X replaced by X, � G , we may estimaten

1 2xI t � P f X � f X ; t � � G m dxŽ . Ž . Ž . Ž . Ž .H ž /1 t 0 nt Gn

2 2�x � �	 P M ; t � � G m dxŽ . Ž .Ž .H t nt Gn

2 2�x � �� P M � r ; t � � G m dxŽ . Ž .Ž .H t t nt Gn
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4 2�x � �� P M ; t � � G m dxŽ . Ž .Ž .H t nt Gn

4 2�x	 P M m dxŽ .H ž /t � � ŽG .nt Gn

16
x ² :	 P M m dxŽ .Ž .H t � � ŽG .nt Gn

16 tx ² :	 P 1 X d M m dxŽ . Ž .H H sG snž /t G 0n

	 16� G � �.Ž .n

Ž . Ž Ž .. Ž .Thus lim sup I t � � as well. It follows that f � DD X, � G � DD X .t � 0 1 n n
Ž .Since f � fw � f on H , f � DD X as claimed. �n n n loc

Step 5. Our final task in finishing the proof of Theorem 3.2 is to identify
Ž .the local martingale K appearing in 3.12 . By Proposition 3.14 and Lemma

Ž .3.15, l � DD X , so we can apply Fukushima’s decomposition: there is a CAFloc
l � � lM which is a local martingale on 0, 
 , and a CAF locally of zero energy N

such that
l l � � m3.18 l X � l X � M � N � t � 0, 
 , a.s. P .Ž . Ž . Ž .t 0 t t

Now by a slight extension of the forward�backward martingale decomposi-
Ž� � .tion of Lyons and Zheng 31 , 1.5 , we have

1 l l m � 43.19 l X � l X � M � M � r a.s. P on t � 
 ,Ž . Ž . Ž .t 0 t t t2

Ž .for all t � 0. Formula 3.19 follows from Lemma 3.21. Combining Proposition
Ž .3.14 and 3.19 we find that

l l m � 43.20 M � M � r � K � K � r a.s. P on t � 
 , � t � 0.Ž . t t t t t t

Ž . lAs we shall see, 3.20 implies that K � M , which will establish the desired
representation for L.

Given a CAF A of X, we define the even and odd parts of A by the
formulas

even � � odd � �A � A � A � r �2, A � A � A � r �2, t � 
 .t t t t t t t t
even odd even odd � �Both A and A are additive functionals, and A � A � A on 0, 
 .

Ž . even Ž odd.Let us say that A is even resp. odd provided A � A resp. A � At t t t
m � 4 Ž .a.s. P on t � 
 for each t � 0. In view of the lemma to follow, if u � DD X ,loc

u u Ž . Ž .then the even part of M is �N while the odd part is u X � u X .˜ ˜ 0

Ž . uLEMMA 3.21. If u � DD X , then the zero-energy part N is an even CAF.loc

Ž .PROOF. Suppose first that u � DD X . Then by the proof of Theorem 5.2.2
� � Žn. t Ž .in 20 , there is a sequence of Borel functions g such that N � H g X dsn t 0 n s

converges to N u uniformly on compact t-intervals, a.s. P m. It is easy to checkt
Žn. u Ž .that each N is even, hence so is the limit N because of 3.5 .
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Ž . � 4Now assume u � DD X . Then there is an increasing sequence G ofloc n
Ž . m � 4 Ž .finely open sets with � G � 
 a.s. P , and a sequence u � DD X suchn n

� �that u � u m-a.e. on G for all n. Since X is a diffusion, we have by 20 ,n n
u un � Ž .� m unLemma 5.4.6 that N � N on 0, � G a.s. P . But N is even, son

3.22 N u � r � N un � r � N un � N u a.s. P m on X � G , t � � G .� 4Ž . Ž .t t t t t t 0 n n

mŽ �1� Ž .� �We have used here the fact that P r X � G , t � � G 	 X � G ,t 0 n n 0 n
Ž .�. Ž . Ž . mt � � G � 0 because of 3.5 . Since � G � 
 a.s. P , we can let n � � inn n

Ž . u3.22 to conclude that N is even. �

PROPOSITION 3.23. Let A and B be CAF ’s of X and semimartingales on
� �0, 
 . Suppose that A is even and B is odd. Then the covariation process
² : � �A, B vanishes identically on 0, 
 .

� Ž .PROOF. Fix t � 0 and choose a sequence of partitions � � 0 � t 1, n �n
Ž . Ž Ž . . 4t 2, n � ��� � t k n , n � t with mesh sizes tending to zero, such that

Ž .k n �1

² :A , B � lim A � A B � BÝt tŽ i�1, n. tŽ i , n. tŽ i�1, n. tŽ i , n.
n3.24Ž . i�1

m � 4a.s. P on t � 
 .

� � Ž .In view of VIII.20 in 11 , we can and do assume that each � is symmetricn
� � �with respect to 0, t , in the sense that for each i there exists i such that

Ž . Ž � . ² :t � t i, n � t i , n . By the result of Walsh mentioned earlier, A, B � r �t t
² : m � 4 ŽA, B a.s. P on t � 
 . Any CAF of finite variation can be expressed ast

. Ž .the difference of increasing CAF’s. But since A is even and r � u �t
Ž . � �r �� � u for u � 0, s , A � r � A � A if 0 � s � t; since B is odd,s t�s s t t t�s

B � r � B � B . Thus,s t t�s t

A � A B � B � rŽ .tŽ i�1, n. tŽ i , n. tŽ i�1, n. tŽ i , n. t

� � A � A B � B ,t�tŽ i , n. t�tŽ i�1, n. t�tŽ i , n. t�tŽ i�1, n.

Ž . ² : ² :so 3.24 and the symmetry of each � imply that A, B � A, B � r �t tn t
² : m � 4 ² : m � 4� A, B a.s. P on t � 
 . Thus A, B � 0 a.s. P on t � 
 . Varying tt t

² : ² :and invoking the continuity of A, B , we conclude that A, B vanishes on
� � m0, 
 a.s. P . �

COROLLARY 3.25. If M is an even CAF of X and a local martingale on
� �0, 
 , then M 
 0.

Ž Ž .. 2Ž . Ž .PROOF. Let A, D A denote the L m infinitesimal generator of P .t
Ž . Ž . u Ž . Ž . t Ž .Given u � D A � DD X , let M � u X � u X � H Au X ds be the˜ ˜t 0 0 s

u Ž . Ž . u u u umartingale part of A � u X � u X . Then M � A � N , where A is˜ ˜� 0
u t Ž .odd and N � �H Au X ds is even. By Proposition 3.23,t 0 s

² u: ² u: ² u: ² u:0 � M , A � M , M � M , N � M , M ,
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u ² u: � �because N is of locally finite variation. Thus, M, M � 0 on 0, 
 , for all
Ž . �u � D A . Let us take u � U f , where f is a bounded positive element of

1Ž .L m . Then Au � � u � f, and using Ito’s formula one can verify thatˆ
t t�� s u �� t �� sZ � e dM � e u X � u X � e f X ds.Ž . Ž . Ž .˜ ˜H Ht s t 0 s

0 0

x ² : t �� s² u:Clearly Z is a P -martingale for all x, and M, Z � H e M, M � 0.t s0
Consider now the local martingale multiplicative functional

1² :J � exp M � M 1 ,Ž .tt t �t � 
 42

and the associated path-space law P x whose Radon�Nikodym density pro-J
x Ž� � .cess with respect to P is J. By Girsanov’s theorem 11 , VII.49 , Z is a

x � � xP -local martingale on 0, 
 . In fact, Z is a true P -martingale, beingJ J
xŽ .uniformly bounded on compact time intervals. Consequently, P Z � 0,J t

Ž .whence letting t � � ,

�
x �� s �P e f X ds � U f x , q.e. x � E,Ž . Ž .HJ sž /0

for all � � 0 and all f as specified. From this and separability considerations,
2 � x 4it follows that the L -resolvent associated with P : x � E coincides withJ

Ž � . x x � � xU . Thus, P � P for q.e. x � E, hence J 
 1 on 0, 
 a.s. P for q.e.� � 0 J
1 x² :x. Therefore M 
 M , and so M 
 0 a.s. P for q.e. x, since a continuous2

local martingale of finite variation is constant. �

Ž . lIn view of 3.20 , M � K is an even CAF and a local martingale. By
Corollary 3.25, M l � K. This finishes the proof of Theorem 3.2.

� �REMARK 3.26. Using the main result of 39 , one can strengthen Lemma
3.21 as follows: any CAF of X locally of zero energy is even. It therefore
follows from Corollary 3.25 that in the class of CAF’s decomposable as the
sum of a local martingale CAF and a CAF locally of zero energy, the class of
even CAF’s coincides with the class of CAF’s locally of zero energy. The
situation for odd martingale CAF’s is more involved. Consider, for example,
the case in which X is Brownian motion in � d. For a smooth vector field F,

t Ž .the odd part of the stochastic integral Z � H F X � dX is Z �t 0 s s t
1 t Ž . Ž .H div F X ds, which is precisely the Stratonovich integral of F X with0 s �2

respect to X. In particular, Z is an odd martingale CAF of X if and only if
divF � 0. In general, the odd part of a local martingale CAF can be computed

� �using the stochastic integral of Nakao 34 . These matters are developed in
� �more detail in 17 .

Ž x .4. Absolute continuity and Dirichlet forms. Let X, m, P and
Ž x . � mY, �, Q be symmetric diffusions such that Q � P . In this section weloc
shall study the Dirichlet form of Y as it relates to that of X. The results

� � � � � � � � � � � �presented here extend work found in 23 , 33 , 37 , 38 , 4 and 13 .
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Ž .To simplify the exposition, we assume that the Y, � -inessential set N of
Ž .Theorem 3.2 has been deleted from E and X killed at T . Thus, the densityN

� � d��dm has the properties listed in Theorem 3.2 on all of E. We shall
1�2 Ž .write � for � . As remarked in Section 3, � � DD X . Having deleted N,loc

we have Q x � P x for all x. In particular, the fine topologies of X and Yloc
Ž . Ž .coincide, and every X, m -nest of compacts is a Y, � -nest, and vice versa.
Ž . Ž .Consequently, the X, m -quasi-continuous version of a function is Y, � -

quasi-continuous, and vice versa.
Ž . u Ž . Ž . Ž .Given u � DD X , let M be the local martingale part of u X � u X .˜ ˜loc t 0

² u:The quadratic variation process M is an increasing CAF of X, finite on
� � � � Ž . Ž .0,
 in general, and finite on 0, � if u � DD X . We write � u for the

� �associated Revuz measure. By 20 , Theorem 5.2.2,
14.1 EE u , u � � u E � u � DD X .Ž . Ž . Ž . Ž . Ž .2

Ž . Ž� � .Since X is a diffusion, the form EE is strongly local 20 , Section 4.5 . For
Ž .our purposes, this property is best expressed as follows: if u � DD X and f :loc

1 Ž .� � � is C on an open set containing the range of u, then F�u � DD Xloc
and

t �F � u u m4.2 M � F u X dM , 0 	 t � 
 , a.s. P .Ž . Ž .Ž .˜Ht s s
0

Ž � � � �See V.1 in 32 , and I.5 in 6 , for discussions of this and equivalent
.conditions.

ˆ ˆŽ Ž . . Ž . Ž .The Dirichlet space of Y is denoted DD Y , EE . If u � DD Y , then � uloc
ˆ u ˆ u² :denotes the Revuz measure of M , where M is the martingale part of

Ž . Ž .u Y � u Y . Of course, the Dirichlet form of Y is also local.˜ ˜t 0
Here is the key result of this section.

THEOREM 4.3. Let G be a finely open subset of E on which � is bounded
Ž .Ž .away from zero and infinity. Furthermore, assume � � G � �. Then

ˆŽ Ž .. Ž Ž .. Ž Ž .. Ž . Ž .DD Y, � G � DD X, � G , and if u � DD X, � G then � u � �� u .

Before proceeding to the proof of Theorem 4.3, we record two lemmas.

� �LEMMA 4.4. Let B be an increasing CAF of X which is finite on 0, 
 . Let �
Ž . Ž . �resp. � be the Revuz measure of B computed with respect to X, m resp.ˆ
Ž .�Y,� . Then � � �� .ˆ

t Ž .PROOF. If B had the special form B � H b X ds, then the conclusiont 0 s
t Ž .would follow immediately. For in this case we would have B � H b Y dst 0 s

a.s. Q �, and then � � bm and � � b�, so that � � b� � b�m � �bm � �� .ˆ ˆ
Our argument consists of showing how to reduce the general case to this
special situation through time change.

Define a strictly increasing CAF H by H � B � t � 
 . The Revuz mea-t t
Ž . � Ž .�sure of H computed relative to X, m resp. relative to Y, � is m � � � m

Ž . �1resp. � � � � � . Now consider the time changed processes X � X andˆ t H Ž t .
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�1Y � Y . These are symmetric diffusions, with symmetry measures m andt H Ž t .
Ž � � � � .�, respectively. See 20 , Section 5.5, and 15 . The additive functional B

Ž . � ��1time changes to B � B , which by 6.2 in 18 has Revuz measure �t H Ž t .
Ž . � Ž .�relative to X, m resp. � relative to Y, � . But now dB 	 dt since dB 	ˆ t t

Ž� � Ž ..dH . By Motoo’s theorem 42 , 66.2 , there is a bounded positive Borelt
t mŽ .function b such that B � H b X ds for all t � 0, a.s. P . By the discussiont 0 s

in the first paragraph of the proof, � � �� , where � is the precise version ofˆ
�d��dm resulting from an application of Theorem 3.2 to X and Y. To see that

x x �1Ž . �Q � P for all x, use Lemma 2.5 with T � H t , t � 0. We are nowloc
Ž . Ž .going to show that � � �, X, m -q.e. Since neither � nor � charges X, m -ˆ ˆ

polars, the equality � � �� will then imply � � �� , as desired.ˆ ˆ
Ž .To see that � � �, X, m -q.e., note that from

� � � � � � �m � � m � � � �m � �Ž .ˆ ˆ

we can deduce that � � �m. But � � �m, so � � � a.e. m. Since both � and �
Žare finely continuous and the fine topology is invariant under strictly in-

. Ž .creasing time change we have � � � outside an X, m -polar set. �

Ž .Ž .LEMMA 4.5. Let G be a finely open subset of E such that � � G � �. If
2 ˆ cŽ . Ž . Ž .Ž . Ž .u � b DD X 
 L � , � u E � � and u � 0, Y, � -q.e. on G , then u �˜

Ž .DD Y .

PROOF. Using Girsanov’s theorem and Lemma 3.15, one can show that
Ž . Ž . Ž .DD X � DD Y ; see the discussion around 4.6 for more detail on this point.loc

ˆŽ .Ž .In particular, the hypothesis ‘‘� u E � �’’ is meaningful. Fix u as in the
2 ˆŽ . Ž . Ž .Ž .statement of the lemma. Then u � DD Y 
 L � and � u E � �, so thatloc

Ž� �u is an element of the reflected Dirichlet space associated with Y 43 ,
. � � � � ŽSection 14 . By 43 , Theorem 14.4, or 7 , Theorem 3.3 applied to the

. Ž . Ž .1-subprocess of Y , u � u � h where u � DD Y , h � DD Y is 1-harmonic,0 0 loc
ˆ ˆ ˆ �Ž . Ž . Ž . Ž . �and EE u, u � EE u , u � EE h, h . Thus lim u Y � 0 a.s. Q on 
 �˜1 1 0 0 1 t � 
 0 t

4 �t Ž . � �� , while H � e h Y is a continuous local martingale on 0, 
 such thatt t
� ˆŽ² : . Ž . ² :Q H 	 2 t EE h, h � � for all t � 0. It follows that H � � for allt t1

� Ž . 
t � 0, a.s. Q , and in particular that lim h Y � e lim H exists a.s.t � 
 t t � 
 t
� � 4 Ž . � � 4Q on 
 � � . Thus, lim u Y exists a.s. Q on 
 � � . Consequently˜t � 
 t

� Ž .�h � 0 in which case u � u � DD Y if and only if0

� � 4lim u Y � 0 a.s. Q on 
 � � ,Ž .˜ t
t� 


� �by 43 , Theorem 14.5.
Ž .Observe that because of the local property 4.2 ,

t �2l �² : ² :M � � X d MŽ .t H ss
0
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m � m ² l:for all t � 0 a.s. P , since l � log � . But Q � P , so M �tloc
t Ž .�2 ² �: �H � Y d M for all t � 0 a.s. Q as well. Thus,s0 s

t t �2� l � �² : ² :Q 1 Y d M � Q 1 Y � Y d MŽ . Ž . Ž .H s H sG s G s s
0 0

�2	 t � x � x � � dx � t� � G � �,Ž . Ž . Ž . Ž . Ž . Ž .H
G

Ž . ² �:because by Lemma 4.4 the Revuz measure of M , when computed rela-
Ž . Ž . t Ž . ² l: �tive to Y, � , is �� � . Thus, H 1 Y d M � � a.s. Q for all t � 0. Fixs0 G s

1Ž . 1f � bL m with f � 0 and set v � U f. Then v is a strictly positive element
Ž . � � � 4of DD X . Consequently, if H � u � v � 1�n then the sequence of exit˜ ˜n

Ž . m � �times � H , n � 1, announces 
 with respect to P . An argument in 33 ,n
� � 4 Ž .page 15, now shows that Q -a.s. on 
 � � , either � H � 
 for all n orn

² l: � � Ž . � Ž .�M � � as t� 
 . In the first case, lim u Y � v Y � 0. On the other˜ ˜t t � 
 t t
t Ž . ² l: Ž . �hand, the finiteness of H 1 Y d M forces lim inf 1 Y � 0 a.s. Qs0 G s t � 
 G t

� ² l: 4 Ž . c � Ž . �on 
 � �, M � � . But u vanishes Y, � -q.e. on G , so lim u Y � 0˜ ˜
� t � 
 t
� ² l: 4on 
 � �, M � � as well. �
�

Ž Ž .. uPROOF OF THEOREM 4.3. Fix u � b DD X, � G and let M be the associ-
ated martingale CAF. Recall from Section 3 that the Radon�Nikodym density

1l lŽ ² : .for the law of Y relative to that of X is L � exp M � M 1 . Thus,tt t �t � 
 42

Ž� � . u ² u l:by Girsanov’s theorem 11 , VII.49, VIII.20 , M � M � M , M is a local
� � ² : ² u: �martingale CAF of Y on 0, 
 . Moreover, M � M a.s. Q . By Lemma
² : � Ž .�4.4, the Revuz measure of M viewed as an increasing CAF of Y, � is

Ž .�� u . By Lemma 3.21,
1 �� � � 44.6 u Y � u Y � M � M � r a.s. Q on t � 
 ,Ž . Ž . Ž .˜ ˜t 0 t t t2

ˆ uŽ .whence u � DD Y because of Lemma 3.15. In view of Lemma 3.21, M � M ,loc
ˆŽ . Ž . Ž .the martingale part of u Y � u Y . Now Lemma 4.4 implies that � u , the˜ ˜t 0

ˆ u² : Ž .Revuz measure of M , is just �� u . In particular,

2� � uˆ² :4.7 Q u Y � u Y ; t � 
 	 CQ M 	 Ct � d� u .Ž . Ž . Ž . Ž .˜ ˜ Ž .t Hž /t 0
E

Ž . Ž .We claim that H � d� u � �. Since � is bounded above on G by b, say ,E
fŽ .this will follow once we show that � u is carried by the X-fine closure G of

fG. Indeed, � is finely continuous, hence bounded above by b on G , so we will
have

4.8 � d� u � � d� u 	 b d� u � 2b EE u , u � �.Ž . Ž . Ž . Ž . Ž .H H H
fE G E

fŽ . Ž Ž ..To see that � u is carried by G , note that since u � DD X, � G , the
u fmartingale M is constant on the excursions of X from G . But a continuous

martingale has the same intervals of constancy as its quadratic variation
t u mŽ . ² : Ž .fprocess. Thus, H 1 X d M � 0 for all t � 0, a.s. P . Since � u iss0 E � G s

² u:the Revuz measure of M , the assertion follows. Lemma 4.5 now tells us
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Ž . 2Ž .that u � DD Y since it is clear from the hypotheses that u � L � . We have
ˆŽ Ž .. Ž Ž .. Ž . Ž .shown that b DD X, � G � DD Y, � G and that � u � �� u for all u �

Ž Ž ..b DD X, � G . The boundedness assumption is easily removed by a truncation
argument, and the reverse inclusion follows upon switching the roles of X

�1 Ž . � Ž .�and Y�notice that � � DD Y and by 4.2loc

ˆ �1 �1d� � � � d� � � �. �Ž .Ž .H H
G G

� 4THEOREM 4.9. Let G � E be an increasing sequence of finely open setsn
Ž . Ž . Ž . Ž .Ž .such that i E � � G is X, m -polar, ii � � G � � for all n � � andn n n

Ž . �1iii there are constants 0 � C � � such that C 	 � 	 C on G , � n. Thenn n n n
ˆŽ Ž .. Ž .� DD X, � G is EE -dense in DD Y , andn n 1

1ˆ4.10 EE u , u � � x � u dx � u � DD X , � G .Ž . Ž . Ž . Ž . Ž . Ž .Ž .�H n2
E n

� 4REMARK. The existence of such a sequence G follows easily since � isn
Ž .strictly positive, finite-valued, finely continuous and an element of DD X .loc

Ž . Ž Ž .. Ž .PROOF. Both 4.10 and the inclusion � DD X, � G � DD Y follow fromn n
Ž .Theorem 4.3. From the X, m -polarity of E � � G , we deduce thatn n

mŽ Ž . . � �P lim � G � 
 � 0. Using 3 , Theorem 2.2, we can choose compactsn n
mŽ Ž .� Ž Ž .. Ž Ž ..�.K � G , n � �, such that P f X exp �� K � exp �� G � 1�n,n n 0 n n

1Ž .where f � 0 is a fixed bounded element of L m . Replacing K by K 
n 1
Ž . � 4K 
 ��� 
 K , we can and do assume that K is an increasing sequence. It2 n n

mŽ Ž . . � 4 Ž .then follows easily that P lim � K � 
 � 0. Thus, K is an X, m -nest.n n n
� 4 Ž . Ž� �Because of Corollary 2.8, K is also a Y,� -nest. The characterization 32 ,n

ˆ. Ž Ž .. Ž .III.2.1, IV.4.5 of nests now implies that � DD Y, � K is EE -dense in DD Y ;n n 1
ˆŽ Ž .. Ž .a fortiori, � DD Y, � G is EE -dense in DD Y . �n n 1

A variant of the above argument yields the following result, which will be
useful in the next section.

ˆŽ . Ž . Ž . Ž . Ž .THEOREM 4.11. DD Y � DD X , and � u � �� u for all u � DD X .loc loc loc

�Ž . Ž . � Ž .COROLLARY 4.12. Suppose that Q 
 � � � 0. Then DD Y � u � DD X :loc
12 ˆŽ . 4 Ž . Ž . Ž . Ž .H � d� u � � 
 L � and EE u, u � H � d� u for all u � DD Y .E2

PROOF. Since the lifetime of Y is assumed to be infinite, an element u of
2Ž . Ž . �1 �Ž� Ž . Ž .�2 .L � lies in DD Y if and only if lim t Q u Y � u Y is finite. Int � 0 t 0

Ž . Ž . Ž .view of the estimate 4.7 , this follows for u � DD X provided H � d� u �loc E
�. The assertion thus follows from Theorem 4.11, as does the evaluation of
ˆŽ .EE u, u . �
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�Ž . Ž .A simple sufficient condition ensuring Q 
 � � � 0 is � � DD X ; if X
Ž .Ž . � �has infinite lifetime, this condition can be weakened to � � E � �. See 33

� �and also 38 , Section 4.

5. A converse to Theorem 3.2. One can use the results of Sections 3
and 4, in combination with Girsanov’s theorem, to provide sufficient condi-
tions for the relation Q � � P m. We describe two such results in thisloc
section. The first of these, Theorem 5.2, when combined with Theorems 3.2

� � � �and 4.11, yields an abstract form of 21 , Theorem 2, and 37 . The second,
� �Theorem 5.19, extends work found in 4 .

Ž x . Ž x .Let X, m, P and Y, �, Q be symmetric diffusions with respective
ˆŽ Ž . . Ž Ž . .Dirichlet spaces DD X , EE and DD Y , EE . Throughout this section we shall

impose the following supplementary condition:

Ž .'� � m; � � d��dm � DD X ; there is a vector space
ˆ5.1Ž . Ž . Ž . Ž .CC � DD X 
 DD Y which is EE -dense in DD X and EE -dense1 1

2ˆ ˜Ž . Ž . Ž .in DD Y such that � u � � � u for all u � CC.

˜ Ž .Here, � denotes an X, m -quasi-continuous version of � . In the context of
� � �Ž d .Theorem 2 of 21 , an appropriate choice for CC is C � , the space of smooth0

functions f : � d � � with compact support. In the infinite-dimensional con-
� � �text studied in 4 , one can take CC to be FFC , as defined in that paper. Noteb

Ž .that because of Theorem 4.9, the conditions listed in 5.1 , with the exception
Ž . � mof � � DD X , are consequences of the relation Q � P .loc

Ž .THEOREM 5.2. In addition to condition 5.1 , assume that

5.3 Q � 
 � � � 0, and every X , m -nest of compacts is a Y , � -nest .Ž . Ž . Ž . Ž .

Under these conditions Q � � P m.loc

Ž .REMARK 5.4. Condition 5.3 is easy to verify if � is bounded; see, for
� �example, 13 .

As preparation for the proof of Theorem 5.2, we require the following
Ž . u vlemma. Given u, v � DD X , let M and M be the corresponding martingale

² u v:parts. The covariation process M , M is a CAF of X of locally finite
Ž . Ž .variation. Let � u, v denote the corresponding signed Revuz measure.

Ž .Notice that by polarizing 4.1 we obtain

15.5 EE u , v � � u , v E .Ž . Ž . Ž . Ž .2

� �See I.4 in 6 for a version of the following result under more restrictive
� �conditions; see also 34 , Lemma 2.3. If � is a signed measure, the associated

� �total variation measure is denoted � .
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Ž .LEMMA 5.6. If u and v are elements of DD X , then
1�2 1�2 1�2� �5.7 � u � � v E 	 EE u � v , u � v EE u , u � EE v , v .Ž . Ž . Ž . Ž . Ž . Ž . Ž .
Ž . Ž .In particular, if u � u in EE -norm, then � u converges to � u in totaln 1 n

variation norm.

Ž� � . Ž .PROOF. By the Kunita�Watanabe inequality 11 , VII.54 , if f � bp BB E ,
2

t t tu v u v� ² : � ² : ² :5.8 f X d M , M 	 f X d M f X d M ,Ž . Ž . Ž . Ž .H H Hs s s
0 0 0

m Ž .a.s. P for all t � 0. Consequently, � u, v being the Revuz measure of
² u v:M , M , we have

t�1 m u v� � � ² : �� u , v f � lim t P f X d M , MŽ . Ž . Ž .H s
t�0 0

1�2 1�2
t t�1 m u v² : ² :	 lim t P f X d M f X d MŽ . Ž .H Hs sž /t�0 0 0

1�2 1�2	 � u f � v f .Ž . Ž . Ž . Ž .
Thus

� u � v f � � u f � 2� u , v f � � v fŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .
1�2 1�2� � u f � 2� u f � v f � � v fŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .

21�2 1�2� � u f � � v f ,Ž . Ž . Ž . Ž .Ž .
and so

� u f � � v fŽ . Ž . Ž . Ž .
1�2 1�2 1�2 1�2� � u f � � v f � u f � � v fŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Ž .5.9Ž .

1�2 1�2 1�2	 � u � v f � u f � � v f ,Ž . Ž . Ž . Ž . Ž . Ž .Ž .
Ž .which implies 5.7 . �

˜ ˜� Ž . 4PROOF OF THEOREM 5.2. Put l � log � and let S � inf t � 0: � X � 0 .t
Ž .Then l � DD X, S , and we have the Fukushima decompositionloc

l X � l X � M l � N l , 0 	 t � S a.s. P x � x � E � N ,Ž . Ž .t 0 t t 0

Ž .where N is an X, m -inessential subset of E, outside of which l is finely0
Ž � �.continuous with values in ��, � . The process

1l l² :L � exp M � M 1Ž .tt t �t � S42

� �is a local martingale on 0, S and a multiplicative functional of X. In
xŽ .particular, L is a supermartingale. Let Y, Q be the right process whose

path-space probabilities are determined by
x xQ F ; t � 
 � P FL ; t � S , F � pFF , t � 0.Ž . Ž .t t
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x� � Ž .See, for example, 42 , Section 62. To ensure that Q Y � x we agree that0
xQ is the point mass at the path constantly equal to x whenever x � N �1

� xŽ . 4N 
 B, where B � x � E � N : P S � 0 � 1 . With this specification we0 0
x xhave Q � P for all x � E � N . Now N is m-null, hence �-null, whileloc 1 0

˜ ˜� 4 � 4 Ž .B � � � 0 . Since � is carried by � � 0 , we have � N � 0. Consequently1
� m 2 Ž .Q � P . Writing � � � and using 3.19 ,loc

m� 4� X L � r � � X L � r � � X L on t � S a.s. P .Ž . Ž . Ž .0 t t t t t 0 t

Ž . � Ž .�From this and 3.5 applied to X, S it follows that Y is a �-symmetric
Ž .diffusion. Indeed, writing Q for the transition semigroup of Y,t

mf , Q g � P f X � X g X L ; t � SŽ . Ž . Ž .Ž .Ž .t 0 0 t t�

m� P f X � X g X L � r ; t � SŽ . Ž . Ž .Ž .0 0 t t t

� P m f X � X g X L ; t � SŽ . Ž . Ž .Ž .t 0 0 t

� Q f , g .Ž .t �

Ž Ž . .Let DD Y , EE denote the Dirichlet space of Y. For the moment, suppose
˜that � is everywhere strictly positive. A careful reading of the proof of

Theorem 3.2 reveals that in this case we can take the exceptional set N to be
Ž . Ž .X, m -inessential. Thus, by Theorems 3.2 and 4.11, we have DD Y �loc

2˜Ž . Ž . Ž . Ž .DD X and � u � � � u for u � DD Y . But as noted at the end ofloc loc
Ž .Section 4, � � DD X implies that Y has infinite lifetime, which means that

2Ž . � Ž . Ž .Ž . 4 Ž .DD Y � u � DD Y : � u E � � 
 L � , by Corollary 4.12. It now followsloc
2ˆ ˜Ž . Ž . Ž . Ž . Ž .from 5.1 that CC � DD Y , and � u � � u � � � u for all u � CC.

˜To lift the strict positivity condition imposed on � in the last paragraph,
Ž .we use a truncation argument. Given n � �, let � � 1�n � � . Thenn

Žn. Žn.˜ ˜Ž . Ž .Ž . Ž .Ž . Ž .� � DD X , � � E 	 � � E � � and � � � � 1�n . Let L and Yn loc n n

be the analogs of L and Y, with � substituted for � . By the foregoingn
Žn.Ž . Ž .discussion, we have CC � DD Y , and with the obvious notation ,

Ž .n 2˜ ˆ5.10 � u B 
 H � � x � u dx � � u B 
 HŽ . Ž . Ž . Ž . Ž . Ž . Ž . Ž .Hn n n
B
Hn

˜Ž . � 4for all u � CC and all B � BB E , where H � � � 1�n . It is easy to checkn
Žn. � Ž .�that L and L coincide on 0, � H , from which it follows immediately thatn

Žn. Žn.Ž . Ž . Ž .Y and Y agree in law up to time � H . In particular, � u and � un
agree on subsets of H whenever u � CC. Using these observations and an
localization argument, we obtain, for u � CC,

u u �u Y � u Y � M � N , 0 	 t � � a.s. Q ,˜Ž . Ž .t 0 t t

uŽ .where � � lim � H , u is an X-quasi-continuous m-version of u, M is a˜n n
uŽ � �. Ž . Ž .local martingale on 0, � CAF of Y, � , and N is a CAF of Y, � locally

˜� 4 Ž .of zero energy. By Theorem 3.2, � � 0 is Y, � -inessential, and so � � 
 a.s.
� u ˆ ˜² : Ž . Ž . � 4Q . In view of 5.10, the Revuz measure of M is � u � � u on � � 0 .
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ˆŽ . Ž .This identity extends to all of E because both � u and � u vanish on
˜ ˆ ˆ� 4 Ž .Ž . Ž .Ž . Ž .subsets of � � 0 . Thus, if u � CC, then � u E � � u E � 2 EE u, u � �,

Ž .and then Lemma 3.15 implies that u � DD Y . Because Y has infiniteloc
ˆŽ . Ž .lifetime, we conclude that if u � CC then u � DD Y , and clearly EE u, u �

Ž .EE u, u .
ˆŽ . Ž .We have shown that CC � DD Y and that EE � EE on CC. Using condition 5.3

Ž . Ž .we will now show that DD Y � DD Y . This will allow us to conclude that
� �ˆŽ Ž . . Ž Ž . . Ž . Ž .DD Y , EE � DD Y , EE , so that Y, Q and Y, Q are equivalent processes,

� � mand Q � Q � P .loc
Ž . Ž .Fix u � DD Y . Then u � DD X, T , by Theorem 4.11, where N is asloc N 11

described in the first paragraph of this proof. Thus, there is a sequence
� 4 Ž . Ž . � 4u � DD X, T � DD X and a sequence G of finely open subset of E � Nn N n 11

Ž .with � G � T as n � �, such that u � u , m-a.e. on G for each n.n N n n1
� 4Substituting � 	 n 
 G for G , we can assume that � is bounded above byn n

Ž . � 4n on G . Now using 5.1 , for each n there is a sequence w � CC withn nk k � �

w � u in EE -norm. Passing to a subsequence if necessary, we can assumenk n 1
Ž .that w � u , m-a.e. Since CC � DD Y , we havenk n

1 nk nk �� 4w Y � w Y � M � M � r on t � 
 a.s. Q , � t � 0,Ž . Ž .˜ ˜nk t nk 0 t t t2

nk Ž . Ž .where M is the martingale part of w Y � w Y . This and the proof of˜ ˜nk t nk 0
Lemma 3.15 lead to the estimate

2�5.11 Q w Y � w Y ; t � � G 	 tC � x � w dx .Ž . Ž . Ž . Ž . Ž . Ž . Ž .˜ ˜ Hž /nk t nk 0 n nk
Gn

Ž . Ž .Now by Lemma 5.6, � w � � u in total variation norm, since w � unk n nk n
Ž .in EE -norm. But the integrand 1 � is bounded, so the right side of 5.111 G n

Ž .converges to tCH � d� u as k � �. Using Fatou’s lemma we can pass toG nn

Ž .the limit in 5.11 to obtain

2�5.12 Q u Y � u Y ; t � � G 	 tC � d� u .Ž . Ž . Ž . Ž . Ž .Hž /n t n 0 n n
Gn

Ž .But u � u on G , so the local nature of X means that the measures � un n
Ž . � u unand � u coincide on subsets of G . Indeed, the martingale M � M �n n

u�un t Ž . ² uM is constant on the excursions of X into G , so H 1 X d M �n 0 G sn
un: m Ž .Ž .M � 0 for all t � 0, a.s. P . This means that � u � u G � 0, whences n n

Ž . �the claim, because of 5.9 . Thus, we can replace u by u on both sides ofn
Ž .5.12 and let n � �. There results

2�5.13 Q u Y � u Y ; t � lim � G 	 tC � d� u .Ž . Ž . Ž . Ž . Ž .Ht 0 nž /n E

� ˜ ˜Ž . Ž . Ž .But lim � G � 
 a.s. Q . Indeed, since � � � 0 � 0 and t � � Y is rightn n t
� ˜ �� Ž . 4continuous a.s. Q , we have � � inf t � 0: � Y � 0 � 0 a.s. Q . Therefore,t

Ž . � � �Ž .by a now familiar application of 16.21 in 25 , we have Q � � 
 � 0. Also,
˜� 4 Ž .recalling the definition of N , we see that � � 0 � � G is Y, � -polar1 n n

Ž . �Ž . Ž . � Ž .because of 5.3 X, m -nests are Y, � -nests . Thus, lim � G � � � 
 a.s.n n
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� Ž .Q . Since the right side of 5.13 is finite and Y has infinite lifetime, we must
Ž . Ž . Ž .have u � DD Y . This proves DD Y � DD Y . �

By imposing additional hypotheses on the core CC, we can replace condition
Ž . � �5.3 by a Markovian uniqueness hypothesis of the type studied in 40 and
� � � Ž .41 . I am grateful to A. Eberle and M. Rockner personal communication for¨

�pointing out the inadequacy of an earlier form of the theorem to follow. For
example, let the situation be as for Theorem 5.2 and assume in addition that

5.14 CC is an algebra of bounded functions, and CC � D AX 
 D AY ,Ž . Ž . Ž .
5.15 � u , v � AX uv � uAX v � vAXu � L� m , � u , v � CC ,Ž . Ž . Ž . Ž .

X Ž Y . 2where A resp. A is the L -infinitesimal generator associated with X
Ž . � � � � � �resp. Y . These conditions are satisfied in the setting of 4 , 40 and 41 .

Ž . Ž . Ž .Because of 5.14 and 5.15 , if u � CC then the measure � u is absolutely
continuous with respect to m. Indeed, for u, v � CC we have

5.16 � u , v � � u , v � m , u , v � CC .Ž . Ž . Ž .

Ž� � .See, for example, 6 , I.4 . Because of the Kunita�Watanabe inequality, we
Ž . Ž . Ž .have � u, v � m for u � CC, v � DD X ; we shall write � u, v for the

Ž .Radon�Nikodym derivative d� u, v �dm even in this case. Furthermore, we
assume that the operator A� defined by

5.17 A�u � AXu � ��1� � , u , u � CC ,Ž . Ž .
2Ž . Y �maps CC into L � . Then A restricted to CC coincides with A . Indeed, if �

2 Ž .is bounded above then � � DD X and for u, v � CC,

A�u , v � AXu , � 2 v � � � , u , � vŽ . Ž .Ž .Ž .� mm

� �EE u , � 2 v � � � , u , � vŽ .Ž .Ž . m

1 2� � � u , � v , 1 � � � , u , � vŽ .Ž .Ž .Ž . m2 m

5.18Ž .

1 2 Yˆ� � � u , v , � � �EE u , v � A u , v ,Ž . Ž . Ž .Ž . �2 m

Ž 2 . Ž . 2 Ž . Ž .since � u, � v � 2v�� u, � � � � u, v as a consequence of 4.2 . A simple
Ž .truncation argument shows that the equality of the extreme terms in 5.18

Ž .persists even for unbounded � . The assumed density of CC 5.1 now implies
that AYu � A�u, a.e. m, for all u � CC, as asserted.

� �We can now state a sharpened form of Theorem 5.2, which generalized 4 ,
Ž .Theorem 1.3. For discussion in specific situations of the Markovian unique-
� � � �ness hypothesized below, see 40 , 41 and the references therein.

Ž . Ž . Ž .THEOREM 5.19. In addition to 5.1 , 5.14 and 5.15 , assume that
ˆ 2Ž Ž . . Ž .DD Y , EE is the unique Dirichlet form on L � for which the associated

� Ž Ž � . .infinitesimal generator is an extension of A D A � CC . Under these condi-
tions, Q � � P m.loc
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ŽPROOF. Arguing as in the proof of Theorem 5.2 and using the notation
Y Y �. Ž .established there , we need only show that CC � D A and A u � A u for

Y YŽ Ž . .u � CC, where D A , A denotes the infinitesimal generator of Y. But if
Ž X .u � CC � D A , then by Girsanov’s theorem the process

t
�5.20 M � u Y � u Y � A u Y ds, t � 0,Ž . Ž . Ž . Ž .Ht t 0 s

0

Ž . Ž .is a Q-local martingale. Moreover, because of 5.14 and 5.15 , the quadratic
t Ž .Ž .variation of M is given by H � u, u Y ds for which we have the estimate0 s

t
� ˆQ � u , u Y ds 	 t� � u , u � t EE u , u � �.Ž . Ž . Ž .Ž .Ž .H s

0

Doob’s inequality now implies that M is a Q-martingale. Taking expectations
�1 �1 t � � 2Ž . Ž . Ž .in 5.20 , we see that t Q u � u � t H Q A u ds � A u in L � ast 0 s

Y Y �Ž .t � 0. Thus, u � DD A and A u � A u. �

Acknowledgment. I thank an anonymous referee, whose comments
have helped to improve the exposition.
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